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Abstract: Electrocardiogram (ECG) is a common and powerful tool for studying heart function and
diagnosing several abnormal arrhythmias. In this paper, we present a novel classification model that
combines the discriminative convolutional sparse coding (DCSC) framework with the linear support
vector machine (LSVM) classification strategy. In the training phase, most existing convolutional
sparse coding frameworks are unsupervised in the sense that label information is ignored in the
convolutional filter training stage. In this work, we explicitly incorporate a label consistency constraint
called “discriminative sparse-code error” into the objective function to learn discriminative dictionary
filters for sparse coding. The learned dictionary filters encourage signals from the same class to have
similar sparse codes, and signals from different classes to have dissimilar sparse codes. To reduce the
computational complexity, we propose to perform a max-pooling operation on the sparse coefficients.
Using LSVM as a classifier, we examine the performance of the proposed classification system on
the MIT-BIH arrhythmia database in accordance with the AAMI EC57 standard. The experimental
results show that the proposed DCSC + LSVM algorithm can obtain 99.32% classification accuracy
for cardiac arrhythmia recognition.

Keywords: electrocardiogram signal; discriminative convolutional sparse coding; dictionary filter
learning; linear SVM

MSC: 68U01

1. Introduction

Electrocardiogram (ECG) is used to record cardiac activity and detect different abnor-
malities in cardiac function and is a commonly used non-invasive tool for non-invasive
diagnosis of cardiac arrhythmias. However, visual analysis is extremely limited and im-
precise due to the large amount of information contained in the ECG, which may lead to
misdiagnosis or inaccurate detection of arrhythmias. Therefore, computer-aided analysis
helps doctors to detect cardiac arrhythmias quickly and efficiently.

The automatic arrhythmia detection system mainly includes feature extraction, feature
selection, and classifier construction. ECG signal feature extraction techniques can be
divided into time-based methods [1–3], frequency methods [4–6], and time-frequency
techniques [7,8]. The time domain features mainly include heartbeat interval, duration
parameters, and amplitude parameters. Due to the subtle changes in ECG amplitude
and duration, time-based methods do not provide good discrimination [9,10]. Therefore,
frequency methods using such as Fourier transform and power spectral density (PSD) and
time-frequency methods using wavelet transform are proposed. However, the frequency
method does not provide time information from the ECG signal. Time-frequency technology
based on wavelet transform is widely used in time-frequency feature extraction of ECG
signals. Before the time-frequency feature vectors extracted by wavelet transform are
applied to the classifier, it is important to choose the best dimensionality reduction method.
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Dimensionality reduction methods for linear and non-linear transforms based on wavelet
transforms have been proposed [7,11–13]. Martis et al. [7] transformed the ECG heartbeat
using DWT and then applied independent component analysis (ICA) methods to extract
features. The experimental results show that the features extracted using the ICA method
combined with a probabilistic neural network (PNN) have better classification results. In
the classification step, the most commonly used techniques in ECG signal classification are
support vector machines (SVM) [1,14] and artificial neural networks [15].

In this paper, unlike most existing methods, we propose a novel classification model
that combines the discriminative convolutional sparse coding framework with the linear
support vector machines (LSVM) classification strategy.

The convolutional sparse coding (CSC) model assumes that the signal can be rep-
resented as a superposition of a few local filters, convolved with sparse feature maps.
The CSC model handles the signal globally, and yet pursuit and dictionary learning are
feasible due to the specific structure of the dictionary involved. CSC has been utilized for a
variety of computer vision and pattern recognition tasks, such as inpainting [16], image
separation [17], image fusion [18], object recognition [19], pedestrian detection [20], and
tissue classification [21].

Although the CSC model has achieved state-of-the-art performance in many fields,
most of the existing CSC frameworks are unsupervised and ignore label information in
the convolutional filter training stage. Chen et al. [22] proposed a novel convolutional
sparse coding classification (CSCC) approach, which introduces label information during
the training process. The results show that dictionaries trained by convolution with
label information can obtain more representative image information and achieve better
classification performance. However, in the CSCC model, a set of dictionary filters are
trained for each class of data, and then the dictionary filters from all classes build the
final discriminative filter bank. This is not an efficient approach. At the same time, the
intra-class and inter-class information are not considered, so the coding coefficients have
small within-class scatter but large between-class scatter.

How to improve the classification performance of convolutional sparse coding has
become a research direction in this field. One of the solutions is to obtain a discriminative
dictionary filter bank through training so that the samples of different classes encoded
by the dictionary filter bank are discriminative. Methods for learning a discriminative
dictionary for sparse coding from training data have been recently proposed. Zhang and
Li [23] proposed a discriminative KSVD dictionary learning algorithm. The algorithm incor-
porated the “classification error” term into the objective function, obtained the dictionary
through the KSVD algorithm, and finally realized the classification task through a linear
classifier. Yang et al. [24] learned a structured dictionary with class labels by adding Fisher’s
discriminant criterion during encoding. The method considers the intra-class and inter-class
information in the coding process so that the coding coefficients have small within-class
scatter but large between-class scatter. Following the work in [23], Jiang et al. [25] proposed
to incorporate a “discriminative sparse code error” term into the objective function to
enhance the discriminative power. It forces the signals from the same class to have very
similar sparse representations, which results in good classification performance even using
a simple linear classifier.

Obtaining a discriminative dictionary for classification by sparse coding has been
successfully applied and achieved excellent performance. However, the discriminative
dictionary obtained by sparse coding also has shortcomings, that is, it cannot capture the
shifted local features in the sample, and at the same time, for high-dimensional signals,
there is a curse of dimensionality. The dictionary filter bank obtained by convolutional
sparse coding has shift invariance, local features at the sample translation position are
extracted by convolution, and there is no curse of dimensionality.

However, how to learn discriminative convolutional dictionary filters with convolu-
tional sparse representation and classification functions by supervised training is still an
issue worth investigating. In this work, we propose a discriminative convolutional sparse
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coding (DCSC) model to learn discriminative dictionary filters for sparse coding of ECG
signals. Different from the CSCC algorithm, we explicitly incorporate a label consistency
constraint called “discriminative sparse-code error” into the objective function, transform
the DCSC model to the Fourier domain to reduce the computational cost [26], and optimize
the DCSC model using the alternating direction method of the multiplier framework [27]
(ADMM) algorithm. By adding label information to the training phase of the convolutional
dictionary filters, the learned dictionary filters encourage signals from the same class to
have similar sparse codes, and signals from different classes to have dissimilar sparse
codes. To reduce the computational complexity, we use the max-pooling operation on the
sparse coefficients. These pooled coefficients are then used as features and fed to an LSVM
classifier for the ECG classification task.

Our contributions are as follows:

• We propose a discriminative convolutional sparse coding (DCSC) model in which the
“discriminative sparse-code error” is inserted into the objective function.

• In the process of solving the objective function, the DCSC model is first transformed
into the Fourier domain, the convolution operation is converted into a multiplication
operation, and then the function solution is obtained using the alternating direction
method of the multiplier framework.

• The discriminative sparse coefficients are obtained via convolutional sparse coding,
then dimensionally reduced by the max-pooling method, and finally fed into the
LSVM classifier to complete the ECG classification task.

The rest of the paper is organized as follows: Section 2 presents the background of CSC,
CDL, and LC-KSVD. Section 3 describes the proposed DCSC model. Section 4 describes
the experimental results. The conclusion is given in Section 5.

2. Literature Survey
2.1. Convolutional Sparse Coding

The convolutional sparse coding (CSC) model assumes that a signal s ∈ <N can be
represented by the sum of M convolutions. These are built by feature maps {xm}, each
of length N, convolved with M small support filters {dm} of length n � N, ∗ denotes
convolution, and the CSC model can be formulated as:

argmin
{xm}

1
2

∥∥∥∥∑
m

dm ∗ xm − s
∥∥∥∥2

2
+ λ∑

m
‖xm‖1 (1)

where λ > 0 is a regularization parameter. Given the filters, the above problem becomes
the CSC pursuit task of finding the representations {xm}.

2.2. Convolutional Dictionary Learning

A common approach for convolutional dictionary learning (CDL) [26] entails using a
batch of K training data to optimize the filters and sparse coefficient maps. This problem
can be formulated as follows:

argmin
{dm},{xm,k}

1
2∑

k

∥∥∥∥∑
m

dm ∗ xm,k − sk

∥∥∥∥2

2

+ λ∑
k

∑
m
‖xm,k‖1 such that ‖dm‖2 = 1 ∀m (2)

where the constraint on the norms of dictionary filters {dm} is required to avoid the scaling
ambiguity between filters and coefficients. We denote the number of filters and the amount
of training data by M and K, respectively.

The CDL problem is usually addressed by alternating optimization with respect to{
xm,k

}
and {dm}. Several works have shown that solving (2) with respect to {dm} can also

be done effectively and efficiently using ADMM in the frequency domain [26,28].
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2.3. Label Consistent KSVD

Jiang et al. [25] proposed a label consistent KSVD (LC-KSVD1) algorithm to learn a
discriminative dictionary. The objective function is defined as follows:

< D, A, X >= arg min
D,A,X

||S−DX||22 + α||Q−AX||22 s.t. ‖xi‖0 < T (3)

where ||S−DX||22 denotes the reconstruction error and D is the learned dictionary. ||Q−AX||22
represents the discriminative sparse-code error, Q are the “discriminative” sparse codes of
input signals S used for classification, and A is a linear transformation matrix. α is the scalar
that controls the relative contribution of the corresponding term. X are the sparse codes
of input signals S and xi is the column vector of X. T is a sparsity constraint factor (each
signal has fewer than T non-zero items in its decomposition). By adding a discriminative
sparse-code error constraint, the LC-KSVD1 model has good classification performance
even with a simple linear classifier.

3. The Proposed ECG Signal Classification System

The proposed DCSC-based automatic arrhythmia identification system framework
is shown in Figure 1. The proposed method consists of four stages, namely (1) in the
discriminative convolutional sparse dictionary filters learning stage, we trained the DCSC
model to obtain a discriminative dictionary filter. (2) In the sparse coding stage, we used
the CSC model to obtain the discriminative sparse coefficients of the training and the test
signals. (3) Pooling was performed on those sparse coefficients to reduce the large amount of
data to an appropriate level. More importantly, it is used to obtain a compact representation
of features that are invariant to local transformations. (4) In the ECG heartbeat testing
stage, we used the pooled coefficients as features and fed them to an LSVM classifier for
ECG classification.
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3.1. Discriminative Convolutional Sparse Dictionary Learning Model

To improve the discriminative properties of the convolutional sparse coefficients, we
incorporate the discriminative terms into the objective function during training. It can be
formulated as the following optimization problem:

argmin
{dm},{am},{xk,m}

1
2 ∑

k

∥∥∥∑
m

dm ∗ xm,k − sk

∥∥∥2

2
+ 1

2 α ∑
k

∥∥∥∑
m

am ∗ xm,k − qk

∥∥∥2

2
+ λ ∑

k
∑
m
‖xm,k‖1

such that ‖dm‖2 = 1, ‖am‖2 = 1∀m
(4)

where sk is the kth training data set, sk ∈ <N . λ > 0 is a regularization parameter and α
is the scalar that controls the relative contribution of the corresponding terms. {dm} and
{am} are a set of M dictionary filters, and

{
xm,k

}
is a set of coefficient maps corresponding

to the mth dictionary filter and the kth training data, each having the same size as sk.
qk = [0, . . . , 1, 1, . . . , 0]t ∈ <N is a “discriminative” sparse code corresponding to an
input signal sk, and qk is the column vector of Q, whose size is the same as sk. For example,
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assuming that S = [s0, s1, s2, s3], where s0, s1 are from class 1, s2, s3 are from class 2, and
the length of the training data set N = 6, then Q can be defined as:

Q =



1 1 0 0
1 1 0 0
1 1 0 0
0 0 1 1
0 0 1 1
0 0 1 1

 (5)

The codes
{

xm,k
}

and the dictionary filters {dm} and {am} can then be efficiently
updated in an alternating manner, as follows.

A. Convolutional sparse coding (CSC) step

Given the dictionary filters {dm} and {am}, the codes can be updated by using ADMM
in the frequency domain.

argmin
{xm,k}

1
2∑

k

∥∥∥∥∑
m

dm ∗ xm,k − sk

∥∥∥∥2

2

+
1
2

α∑
k
‖∑

m
am ∗ xm,k − qk

∥∥∥∥2

2

+ λ∑
k

∑
m

∥∥∥∥xm,k‖
1

(6)

If we define the linear operators Dm and Am such that Dmxm,k = dm ∗ xm,k, Amxm,k =
am ∗ xm,k, and denote

D = (D0 D1 . . .), A = (A0 A1 . . .), S = (s0 s1 . . .), Q = (q0 q1 . . .), X =

x0,0 x0,0 · · ·
x1,0 x0,0 · · ·

...
...

. . .

 (7)

then we can rewrite Equation (6) as

argmin
X

1
2
‖DX− S‖2

2 +
1
2

α‖AX−Q‖2
2 + λ‖X‖1 (8)

The ADMM algorithm and shrinkage/soft thresholding algorithm can be employed
to solve Equation (8), as described in Appendix A.

B. Convolutional dictionary update (CDU) step

In developing the dictionary filter update, it is convenient to switch the index of the
coefficient map from

{
xm,k

}
to
{

xk,m
}

. With the codes fixed, the dictionary filters {dm} and
{am} can be updated by solving the following optimization problems,

argmin
{dm},{am},{xk,m}

1
2 ∑

k

∥∥∥∑
m

xk,m ∗ dm − sk

∥∥∥2

2
+ 1

2 α∑
k

∥∥∥∑
m

xk,m ∗ am − qk

∥∥∥2

2

such that ‖dm‖2 = 1, ‖am‖2 = 1∀m
(9)

Updating {dm}
With the

{
xk,m

}
and {am} fixed, the dictionary filters {dm} can be updated by solving

the following optimization problem,

argmin
{dm}

1
2∑

k

∥∥∥∥∑
m

xk,m ∗ dm − sk

∥∥∥∥2

2

such that ‖dm‖2 = 1 ∀m (10)

Addressing the CDL optimization problem (10) over {dm} is equivalent to solving the
following optimization problem

argmin
{dm}

1
2∑

k

∥∥∥∥∑
m

xk,m ∗ dm − sk

∥∥∥∥2

2
+ ∑

m
ιcPN(dm) (11)
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where ιcPN(dm) is an indicator function [26]. Problem (11) can be solved efficiently using
the consensus ADMM method, please refer to Appendix B.

Updating {am}
With the

{
xk,m

}
and {dm} fixed, the dictionary filters {am} can be updated by solving

the following optimization problem,

argmin
{am}

+
1
2∑

k

∥∥∥∥∑
m

xk,m ∗ am − qk

∥∥∥∥2

2

such that ‖am‖2 = 1 ∀m (12)

Addressing the CDL optimization problem (12) over {am} is similar to problem (10),
please refer to Appendix B.

Algorithm 1: The DCSC Algorithm.

Input: sample {sk}, parameters λ, α

Output: {dm}
Precompute: sk→ŝk, qk→q̂k,
Initialize: {Y} = {U} = {gm} = {hm} = 0,
while j = 0 to convergence do

(CSC step)
Compute FFTs of {Y}→

{
Ŷ
}

, {U}→
{

Û
}

, {dm}→
{

D̂
}

, {am}→
{

Â
}

Compute X̂ with the algorithm in Appendix A.
Compute inverse FFTs of X̂→X
Y(j+1) = Sλ/ρ(X

(j+1) + U(j))

U(j+1) = U(j) + X(j+1) − Y(j+1)

(CDU step)

Compute FFTs of
{

xk,m
}
→
{

X̂k
}

, {gm}→{ĝm}, {hm}→
{

ĥm

}
Compute d̂ with the algorithm in Appendix B.
Compute inverse FFTs of d̂→{dm}
Compute {gm} with the algorithm in Appendix B.

h(j+1)
m = h(j)

m + d(j+1)
m − g(j+1)

m
Compute {am}

end

We trained the DCSC algorithm with the training data and obtained the dictionary
filters. The dictionary filters {dm} were then used to obtain the sparse coefficients of both
the training and test signals for each class in the sparse coding stage.

3.2. Sparse Coding of Training and Test Signals

We obtained {dm} by employing the DCSC algorithm (Algorithm 1). Sparse coefficient
vectors

{
xm,k

}
for each signal were obtained by using the CSC algorithm as follows:

argmin
{xm,k}

1
2 ∑

k

∥∥∥∥∑
m

dm ∗ xm,k − sk

∥∥∥∥2

2
+ λ∑

k
∑
m
‖xm,k‖1 (13)

The sparse coefficient vectors of each signal thus obtained were then combined column-
wise to form a vector of larger dimensions. This process is depicted in Figure 2. The sparse
coefficients of these training data were used to train the LSVM model for ECG classification.
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3.3. Pooling of Coefficient Matrix

Inspired by the feature extraction methods [29,30], we apply max-pooling methods to
each column of the sparse coefficient matrix X.

The max-pooling function

fk = max(xn×1
k u(n, 1)) (14)

applies a window function u(n, 1) to each column of the sparse coefficient matrix X and
computes the maximum value in the neighborhood.

These pooled features can then be `2 normalized by

fk = fk/‖fk‖2 (15)

These pooled sparse coefficients from each sub-region are concatenated and normal-
ized to the final feature representation for the classification.

3.4. Classification by LSVM

The schematic diagram of the proposed ECG classification system is shown in Figure 3.
By learning discriminative dictionary filters, it forces signals from the same class to have
very similar sparse representations, so we use the LSVM for our ECG classification task. In
the classification stage, each class in the training dataset contains 300 training samples, and
the test dataset contains 51,722 ECG segments.
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4. Experiments and Discussion

In this section, we test on the PhysioNet MIT-BIH arrhythmia database and compare
the performance of the DCSC + LSVM method with other state-of-the-art classifiers.

4.1. Dataset

The proposed methodology is validated on the PhysioNet MIT-BIH Arrhythmia
database [31] comprising 48 ECG records of about 30 min, sampled at 360 Hz with 11-bit
resolution from 47 different patients. As recommended by the American Association of
Medical Instrumentation (AAMI) [32], the MIT-BIH arrhythmia database is projected into
five AAMI heartbeat classes, as described in Table 1. The ECG signal downloaded from
the MIT-BIH database is processed with the help of wavelet techniques to remove baseline
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wander and high-frequency noise. The ECG signals sampled at 360 Hz were decomposed
up to eight levels using the Bior2.6 wavelet to remove various kinds of noise [33]. The ECG
would not contain much information after 45 Hz. The high-frequency noise is removed by
excluding the first and second detail coefficients, which consist of bands of 90–180 Hz and
45–90 Hz. The baseline wander is removed by excluding the approximate coefficients at
the fourth level. After the corresponding wavelet reconstruction, it is obvious that we can
obtain a denoised ECG signal. Then, the R-peak is detected from the denoised ECG signal
followed by a window across each R-peak to isolate the ECG segments for processing.
After detection of the QRS complex, 99 samples preceded the QRS peak and 180 samples
after the peak, and the QRS peak itself are considered as 280 samples segment as a single
beat for subsequent analysis. The mapping of the MIT-BIH arrhythmia database into the
AAMI recommendations along with the summary of the training and testing datasets for
five classes is summarized in Table 2.

Table 1. Heartbeats of the MIT-BIH arrhythmia database classified based on the ANSI/AAMI
EC57:1998 standard.

N S V F Q

• Normal
• Left bundle branch

block
• Right bundle

branch block
• Nodal (junctional)

escape beat
• Atrial escape beat

• Atrial premature
beat

• Aberrated atrial
premature beat

• Nodal (Junctional)
premature beat

• Supraventricular
premature beat

• Premature
ventricular
contraction

• Ventricular escape
beat

• Fusion of
ventricular and
normal beat

• Paced beat
• Fusion of paced

and normal beat
• Unclassifiable

beat

Table 2. A summary of the 5 classes of beat subtypes.

AAMI Classes Training Data Testing Data Total Data

N 300 40,212 40,512
S 300 1388 1688
V 300 4610 4910
F 300 501 801
Q 300 5011 5311

Total 1500 51,722 53,222

4.2. Signal Preprocessing

Roshan et al. [7,11] pointed out that through wavelet transform decomposition, the
power spectral density of each type of different heartbeat has discriminative information
in these two sub-bands (level 4 approximation and detail), and independent component
analysis (ICA) based on wavelet transform coefficients has strong robustness and high
classification accuracy. Each beat consisting of 280 samples was decomposed into four
levels using the FIR approximation of Mayer’s wavelet (“dmey”). The ICA method was
applied independently to the two DWT sub-bands, the fourth level approximation, and the
details [7]. From each of the sub-bands fifteen ICA components were selected, so a total of
thirty features from the two sub-bands were selected for subsequent pattern recognition.

4.3. Parameter Selection

In the first set of experiments reported in Figure 4, we compare the effects of λ and α
values on classification accuracy. The λ and α values vary from 10−5 to 0. We can observe
that good performance is achieved at λ = 10−1 and α = 10−2.
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Figure 4. Effects of λ and α parameter selection on classification accuracy.

The effect of the number of iterations on the classification accuracy is shown in Figure 5.
With the increase in the number of iterations, the accuracy also increases. When the number
of iterations increases to 130, the accuracy rate changes very little and stabilizes to a certain
value. In order to balance accuracy and complexity, the number of iterations was fixed
at 130.
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Figure 5. The effect of the number of iterations on the classification accuracy.

Figure 6 shows the classification accuracy when the variable dictionary filter dimension
is changed from 6 to 20. In this experiment, we choose the dictionary size M = 128, and
the number of training samples per class is 300. However, the overall trend is that the
dictionary filter dimension has little effect on the classification performance.
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Figure 6. Classification accuracy based on variable dictionary filter dimension.

Figure 7 shows the classification results for the variable dictionary size M changing
from 128 to 576. We can see that DCSC + LSVM shows an improvement of about 2.3% over
LC-KSVD in all cases. In particular, even with the dictionary size M = 128, DCSC + LSVM
can still have higher classification accuracy than LC-KSVD with M = 576. Moreover, from
dictionary size M = 576 to M = 128, the recognition rate of DCSC + LSVM drops by 1.41%,
while that of LC-KSVD drops by 6.25%. In the following classification experiments, we
choose the dictionary filter dimension M = 128.
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Figure 7. Classification accuracy based on variable dictionary size M.

Figure 8 shows the classification results with different numbers of training samples
per class. We trained 100, 150, 200, 250, 300, 350, and 400 samples per class. We can see
that the different number of training samples per class has little effect on the classification
performance of the DCSC + LSVM algorithm, and in all cases, the classification results
of the DCSC + LSVM algorithm outperform the LC-KSVD algorithm. The classification
performance of the LC-KSVD algorithm is strongly influenced by the number of training
samples per class. When the number of training samples per class is less than 250, the
classification results of the LC-KSVD algorithm differ from those of the DCSC + LSVM
algorithm by a maximum of 9%. In the following classification experiments, we set 300
training samples per class for training.
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Figure 8. Classification accuracy based on different numbers of training samples per class.

Figure 9 shows the effect of pooling kernel size on classification accuracy. In this
experiment, the pooling stride is 2, and the pooling kernel is increased from 3 to 8. It can be
seen from Figure 9 that with the increase of the pooling kernel, the classification accuracy
decreases. At the same time, comparing the effects of max pooling and average pooling
on the classification accuracy, it can be seen that the classification effect of max pooling
is better than that of average pooling. So, we choose the max-pooling method, and the
pooling kernel is set to 3.
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Figure 9. Effects of the Pooling Kernel Size on the Classification Accuracy.

4.4. Statistical Parameters

In order to analyze the performance of the classifiers, four evaluation metrics are used:
sensitivity (SEN), positive predictive value (PPV), F1, and accuracy (Acc). The SEN, PPV,
F1, and Acc can be written as

SEN = TP/(TP + FN)× 100 (16)

PPV = TP/(TP + FP)× 100 (17)

F1 = 2TP/(2TP + FP + FN)× 100 (18)



Mathematics 2022, 10, 2874 12 of 20

Acc = (TP + TN)/(TP + FP + FN + TN)× 100 (19)

where true positive (TP) corresponds to the number of times that the classifier correctly
predicts a heartbeat without arrhythmia, i.e., normal. False positive (FP) gives the number
of arrhythmic heartbeats classified as normal. True negative (TN) quantifies the number of
heartbeats with arrhythmia that are predicted correctly. False negative (FN) indicates the
total of normal beats misclassified as arrhythmic. F1 being defined as the harmonic mean
of precision and sensitivity.

4.5. Results

We evaluated our approach on the PhysioNet MIT-BIH arrhythmia database and
compared our approach with LC-KSVD [25], Fisher discrimination dictionary learning
(FDDL) [24], class-specific dictionary learning (CSDL) [34], Euler label consistent KSVD
(ELC-KSVD) [35], convolutional sparse coding classification (CSCC) [22], label embedded
dictionary learning (LEDL) [36]. The hardware platform is Intel Xeon Gold 5122 CPU
3.60 GHz, 128.0 GB RAM, and the experimental analysis is performed by the MATLAB
2015b software package installed on the Windows 10 21H2 Microsoft USA platform. Dur-
ing the experiment, we also adjust the parameters of other classifiers to obtain the best
classification effect. For example, in the LC-KSVD algorithm, α = 2−2 and β = 2−6. In the
FDDL algorithm, λ1 = 0.005, λ2 = 0.05. In the CSDL algorithm, α = 2−8. In the ELC-KSVD
algorithm, α = 10−1, β = 10−4, γ = 2−6. In the LEDL algorithm, λ = 10−1, ω = 10−5, and
ε = 10−3. The number of atoms per class for the FDDL, CSDL, and CSCC algorithms is
the same as the number of training samples per class, which is 300. The dictionary atomic
number of LC-KSVD, ELC-KSVD, and LEDL algorithms is set to 1500. The experimental
results are as follows.

Figure 10 illustrates the confusion matrix using the LSVM method. The test dataset
contains 51,722 ECG signal segments, the accuracy of the LSVM method was 87.09%, and
45,044 ECG signals were correctly classified. Figure 11 demonstrates the confusion matrix
using the LC-KSVD method. The accuracy of the LC-KSVD method was 96.97%, and
50,156 ECG signals were correctly classified. Figure 12 illustrates the confusion matrix
using the FDDL method. The accuracy of the FDDL method was 98.80%, and 51,100 ECG
signals were correctly classified. Figure 13 illustrates the confusion matrix using the CSDL
method. The accuracy of the CSDL method was 94.15%, and 48,698 ECG signals were
correctly classified. Figure 14 illustrates the confusion matrix using the ELC-KSVD method.
The accuracy of the ELC-KSVD method was 99.02%, and 51,213 ECG signals were correctly
classified. Figure 15 illustrates the confusion matrix using the CSCC method. The accuracy
of the CSCC method was 94.70%, and 48,983 ECG signals were correctly classified. Figure 16
illustrates the confusion matrix using the LEDL method. The accuracy of the LEDL method
was 95.17%, and 49,222 ECG signals were correctly classified. Figure 17 illustrates the
confusion matrix using the DCSC + LSVM method. The accuracy of the DCSC + LSVM
method was 99.32%, and 51,371 ECG signals were correctly classified.
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Table 3 shows the classification performance (Acc, SEN, PPV, and F1) obtained by
different models on the test dataset. Compared with the LSVM algorithm, after DCSC
coding, the classification accuracy is improved by 12.23%. Meanwhile, compared with
LC-KSVD, FDDL, CSDL, ELC-KSVD, CSCC and LEDL, the accuracy of the proposed DCSC
+ LSVM is improved by 2.35%, 0.52%, 5.17%, 0.3%, 4.62%, and 4.15%, respectively. The
disadvantage is that 32 S-class and 32 F-class ECG beats are misclassified. This explains
why the SEN of class S and class F are lower, and this also affects the PPV value of class
N and Q. Future efforts will look for discriminable features which get higher accuracy for
classifying these beats.

In this system, to complete the classification of a segment of ECG signal, it needs to go
through four stages, namely, the DWT feature extraction stage, the DCSC encoding stage,
the pooling stage, and the classification stage. Since the test results of the same ECG signal
were slightly different each time, we calculated the average of 10 test times as the final
time. Table 4 lists the calculation time of each stage. The results show that the DCSC coding
stage requires the longest computation time, the classification stage requires the shortest
computation time due to the use of the linear SVM classifier, and a segment of ECG signal
needs 0.336 s to complete the classification process.
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Table 3. Performance metrics of different algorithms.

Method Acc N S V F Q

% SEN PPV F1 SEN PPV F1 SEN PPV F1 SEN PPV F1 SEN PPV F1

LSVM 87.09 90.68 96.80 93.64 84.15 69.11 75.89 48.83 96.61 64.87 98.00 16.54 28.30 93.21 66.12 77.37
LC-KSVD 96.97 97.32 99.61 98.45 94.96 80.86 87.34 95.03 92.52 93.76 93.21 50.38 65.41 96.91 94.42 95.65
FDDL 98.80 98.93 99.92 99.42 99.35 90.37 94.65 99.15 93.67 96.33 98.80 91.67 95.10 97.27 98.19 97.72
CSDL 94.15 94.88 99.05 96.92 90.35 68.90 78.18 87.98 80.99 84.34 87.43 59.19 70.59 95.69 85.12 90.10
ELC-KSVD 99.02 99.21 99.92 99.57 99.21 89.71 94.22 98.39 95.21 96.78 97.60 90.72 94.04 98.10 99.15 98.63
CSCC 94.70 95.75 98.77 97.24 87.68 69.58 77.59 90.02 78.38 83.80 89.62 96.35 92.86 93.10 89.16 91.09
LEDL 95.17 96.25 98.89 97.55 87.39 76.72 81.71 92.02 76.29 83.42 89.42 98.03 93.53 92.12 92.56 92.34
DCSC + LSVM 99.32 99.56 99.86 99.71 97.69 94.96 96.31 99.22 96.91 98.05 93.61 99.58 96.50 98.48 98.54 98.51

Table 4. Computation time for each stage for a test sample.

Methods DWT + ICA DCSC Pooling Classification

Time(s) 0.058 0.198 0.078 0.002

4.6. Discussion

In this work, we explicitly incorporated a label consistency constraint called “discrimi-
native sparse-code error” into the objective function of learning discriminative dictionary
filters for sparse coding. The learned dictionary filters encouraged signals from the same
class to have similar sparse codes, and signals from different classes to have dissimilar
sparse codes. These discriminative coding coefficients allowed us to obtain good classi-
fication results even with simple linear classifiers. Compared with the LSVM algorithm,
after DCSC coding, the classification accuracy is improved by 12.23%, which means that by
adding label information, after DCSC coding, the coding coefficients of different classes
have more obvious differences. Compared with the CSCC algorithm, the algorithm trains
filter banks for each class separately but does not use the intra-class and inter-class infor-
mation of the training samples during the training process, so it does not achieve good
classification results. The FDDL, LC-KSVD, CSDL, ELC-KSVD, and LEDL algorithms are
all supervised training algorithms and incorporate label information. The reason why their
classification effect is lower than the DCSC + LSVM algorithm is that the dictionary filter
bank has shift-invariance. The local features at translated positions of the sample can be
extracted through the convolution operation, so a better classification effect can be obtained.
We also arranged comparative experiments between DCSC + LSVM algorithm and the
LC-KSVD algorithm under different dictionary sizes and different training numbers. The
experimental results show that the discriminative convolutional dictionary-based learning
model can obtain better classification results than LC-KSVD at a smaller dictionary size. At
the same time, it is less affected by the number of training datasets. This shows that the
DCSC + LSVM algorithm can be applied to a database with a small number of samples.

A comprehensive summary of the automated classification of ECG beats using the
MIT-BIH arrhythmia database is shown in Table 5. Mathews et al. [7] used ICA on DWT
coefficients to extract features and reported an accuracy of 99.28% using the PNN classifier.
Desai et al. [37] also used ICA on DWT coefficients to extract features and obtained 98.49%
accuracy using SVM quadratic kernels. Elhaj et al. [38] used PCA on DWT and ICA on
HOS cumulants as features and obtained 98.91% accuracy using the SVM-RBF classifier.
Acharya et al. [39] classified with an accuracy of 94.03% using a 9-layer deep convolutional
neural network. Kachuee et al. [40] used a deep residual CNN network to classify with
an accuracy of 93.40%. Yildirim et al. [41] used CAE and LSTM networks to classify with
an accuracy of 99.00%. Romdhane et al. [42] classified with an accuracy of 98.41% using a
deep CNN model and a focal loss function. Li et al. [43] used a deep residual network to
classify with an accuracy of 99.06%.
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Table 5. Comparison of works on ECG heartbeat classification from MIT-BIH.

Literature Features Classifier Classes Acc

Mathews et al. [7] DWT + ICA PNN 5 99.28
Desai et al. [37] DWT + ICA SVM quadratic kernel 5 98.49
Elhaj et al. [38] PCA + DWT + HOS + ICA SVM-RBF 5 98.91
Acharya et al. [39] 9-layer deep convolutional neural network 5 94.03
M. Kachuee et al. [40] deep residual CNN 5 93.40
Yildirim et al. [41] CAE and LSTM 5 99.00
Romdhane et al. [42] Deep CNN 5 98.41
Li et al. [43] Deep residual network 5 99.06
Proposed DWT + ICA DCSC + LSVM 5 99.32

The results show that the proposed model achieves higher classification accuracy
compared to existing works presented in the literature and can be utilized for automated
computer-aided diagnosis of several cardiovascular diseases.

5. Conclusions

In this paper, we present a novel classification model that combines the DCSC model
with the LSVM classification strategy. In this work, we explicitly incorporate a label
consistency constraint called “discriminative sparse-code error” into the objective function
and transform the DCSC model into the Fourier domain to reduce the computational cost
and optimize the DCSC model using the ADMM algorithm. By adding label information
to the training phase of the convolutional dictionary filters, the learned dictionary filters
encourage signals from the same class to have similar sparse codes, and signals from
different classes to have dissimilar sparse codes. To reduce the computational complexity,
we used a max-pooling operation for the sparse coefficients. These pooled coefficients were
then used as features and fed to the LSVM classifier for the ECG classification task. The
evaluation and experiments on the MIT-BIH arrhythmia database for the five classes as
recommended by AAMI validate the effectiveness of the proposed DCSC + LSVM method
and show that the proposed DCSC + LSVM model outperforms LSVM, LC-KSVD, FDDL,
CSDL, ELC-KSVD, CSCC, LEDL and achieves state-of-the-art performance.
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Appendix A. The Coding Algorithm

Using variable splitting, problem (8) in ADMM form can be reformulated as follows:

argmin
X

1
2
‖DX− S‖2

2 +
1
2

α‖AX−Q‖2
2 + λ‖Y‖1 s.t. X− Y = 0 (A1)
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for which we have the ADMM iterations with dual variables U, which are

X(j+1) = argmin
{xm}

1
2
‖DX− S‖2

2 +
1
2

α‖AX−Q‖2
2 +

ρ

2∑
m
‖X− Y(j) + U(j)‖

2
2 (A2)

Y(j+1) = argmin
{ym}

λ∑
m
‖Y‖1 +

ρ

2∑
m
‖X(j+1) − Y + U(j)‖

2
2 (A3)

U(j+1) = U(j) + X(j+1) − Y(j+1) (A4)

Sub-problem Equation (A3) is solved via shrinkage/soft thresholding as

Y(j+1) = Sλ/ρ(X
(j+1) + U(j)) (A5)

where
Sγ(u) = sign(u)�max(0, |u| − γ) (A6)

with sign(·) and |·| of a vector being considered to be applied element-wise and� denoting
element-wise multiplication.

The most computationally expensive step is Equation (A2), which requires solving the
linear system

(DTD + αATA + ρI)X = DTS + αATQ + ρ(Y−U) (A7)

Since DTD is a very large matrix, it is impractical to solve this linear system using
the approaches that are effective when D is not a convolutional dictionary. An obvious
approach is to attempt to efficiently implement convolution via the DFT convolution
theorem using the Fast Fourier Transform (FFT). The variables D, A, X, S, Q, Y, and U
in the DFT domain are denoted by D̂, Â, X̂, Ŝ, Q̂, Ŷ, and Û, respectively. It is easy to
demonstrate via the DFT convolution theorem that Equation (A7) is equivalent to

(D̂HD̂ + αÂHÂ + ρI)X̂ = D̂HŜ + αÂHQ̂ + ρ(Ŷ− Û) (A8)

Appendix B. Convolutional form of Method of Optimal Directions

The consensus ADMM formulation of problem (11) is given as

argmin
{dm},{gm}

1
2∑

k

∥∥∥∥∑
m

xk,m ∗ dm − sk

∥∥∥∥2

2
+ ∑

m
ιcPN(gm) s.t. dm − gm = 0 ∀m (A9)

with ADMM iterations

{dm}(j+1) = argmin
{dm}

1
2∑

k

∥∥∥∥∑
m

xk,m ∗ dm − sk

∥∥∥∥2

2
+

σ

2 ∑
m
‖dm − g(j)

m + h(j)
m ‖

2
2 (A10)

{gm}
(j+1) = argmin

{gm}

1
2∑

m
ιcPN(gm) +

σ

2 ∑
m
‖d(j+1)

m − gm + h(j)
m ‖

2

2 (A11)

h(j+1)
m = h(j)

m + d(j+1)
m − g(j+1)

m (A12)

The problem with the {dm} update is of the form

argmin
{dm}

1
2∑

k

∥∥∥∥∑
m

xk,m ∗ dm − sk

∥∥∥∥3

2
+

σ

2 ∑
m
‖dm − pm‖

2
2 (A13)
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The variables dm xk,m, sk and pm are denoted in the DFT domain by d̂m, x̂k,m, ŝk, and
p̂m, respectively, where X̂k,m = diag(x̂k,m), which becomes

argmin
{dm}

1
2∑

k

∥∥∥∥∑
m

X̂k,md̂m − ŝk

∥∥∥∥3

2
+

σ

2 ∑
m
‖d̂m − p̂m‖

2
2 (A14)

Defining

X̂k = (X̂k,0 X̂k,1 . . .)d̂ =

d̂0
d̂1
...

p̂ =

p̂0
p̂1
...

 (A15)

this problem can be expressed as

argmin
d̂

1
2∑

k
‖X̂kd̂− ŝk‖

2
2 +

σ

2
‖d̂− p̂‖2

2 (A16)

with solution (
∑
k

X̂H
k X̂k + σI

)
d̂ = ∑

k
X̂H

k ŝk+σp̂ (A17)

Equation (A11) is of the form

argmin
x

1
2
‖x− y‖2

2 + ιcPN(x) = proxιcPN (y) (A18)

It is clear from the geometry of the problem that

proxιcPN (y) =
PPTy
‖PPTy‖2

(A19)

or, if the normalization ‖dm‖2 ≤ 1 is desired instead

proxιcPN (y)

PPTy if ‖PPTy‖2 ≤ 1
PPTy
‖PPTy‖2

if ‖PPTy‖2 ≥ 1
(A20)
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