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Abstract: This paper presents an analytical transfer matrix modeling framework for the forced
vibration of a bending-torsional-warping coupling Euler-Bernoulli thin-walled beam carrying an
arbitrary number of three degree-of-freedom (DOF) spring-damper-mass (SDM) subsystems. The
thin-walled beam is divided into a series of distinct sub-beams whose ends are connected to the SDM
subsystems. The transfer matrix for each sub-beam is developed based on the exact shape functions
of the bending-torsional-warping coupling Euler-Bernoulli theory. Each SDM system is modelled by
a set of effective springs based on the dynamic condensation method. The governing matrix equation
is formulated based on the compatibility conditions of the placement and the force at the common
interfaces of two adjacent sub-beams. Then, a closed-form expression for the frequency response
function of the thin-walled beam system is proposed. The results computed by the proposed method
achieve good agreement with those obtained by the conventional finite-element method, which
shows the accuracy and reliability of the proposed method. The effects of the system parameters
on the vibration transmission and vibration isolation properties of the thin-walled beam system are
studied. The presented method can simultaneously consider arbitrary number of SDM subsystems
and boundary conditions. Furthermore, none of the associated matrices are larger than 12 x 12,
which provides a significant computational advantage.

Keywords: thin-walled beams; spring-damper-mass subsystems; transfer matrix method; force
vibration; frequency response function

MSC: 74 Mechanics of deformable solids

1. Introduction

Thin-walled structures are commonly found in most branches of structural engi-
neering such as aircraft wings, vehicle bodies, ship-hull structures, wind-turbine towers,
construction machinery arms and bridge decks. The inconsistency of the shear center and
mass center leads to severe bending-torsional-warping coupling dynamic behaviors of the
thin-walled structures. The evaluation of these dynamic behaviors of thin-walled structures
has long been regarded as a significant task for designers in order to avoid dangerous
resonance situations and improve dynamics performance and structural robustness.

A large numbers of researchers have made efforts to deal with the dynamic models of
thin-walled structures. Narayanan et al. [1] investigated the free vibration characteristics
of a thin-walled open section beam with unconstrained damping layers at the flanges.
Bank and Kao [2] studied the forced and free vibration of a thin-walled composite material
Timoshenko beam. Rao and Jin [3] proposed a universal grey number-based approach
and an interval-discretization method to analyze the coupled bending-torsional vibration
of thin-walled beams involving uncertainties. To give a more accurate description to the
dynamic behavior of thin-walled structures, tarping is further considered in the modeling
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of thin-walled structures. Li et al. [4-6] employed the dynamic transfer matrix method
to investigate the free and stochastic vibration of the bending-torsion of coupled thin-
walled structures, and their method took the effect of warping stiffness into account and
allowed the presence of axial force. Lezgy-Nazargah et al. [7] proposed a quasi-3D finite
element model to study the coupled bending and torsional-warping dynamics of thin-
walled beams. Jrad et al. [8] analytically study the free and forced vibration of warping
and flexural-torsional coupling thin-walled beams and discussed the dynamic behavior
of thin-walled beams in the design of buildings and bridges. Thin-walled structures with
complex shape section were also extensively studied for practical applications. Based
on the d”Alembert principle, Chen and Hsiao [9] derived the governing equations of the
axial-torsional coupled vibration of thin-walled Z-section beam. Proki¢ [10,11] derived
the governing differential equations for triply coupled and fivefold coupled vibration of
thin-walled with arbitrary cross-section by using the principle of virtual displacements.
Chen and Hsiao [12] presented a finite element formulation for the quadruply coupled
vibration analysis of thin-walled beams with a generic open section. By introducing
Vlasov’s assumptions, Kim et al. [13,14] investigated the free vibration and spatial stability
of the circular curved thin-walled beams with non-symmetric sections. Xu et al. [15]
analyzed the high-order vibration modes of thin-walled beams with complex open cross-
sections using the framework of Carrera Unified Formulation.

The studies in Refs. [1-15] concentrated on the dynamic behavior of uniform beams,
with no attachments or subsystems mounted along the span. However, in engineering
practice, thin-walled structures such as aircraft wings, vehicle bodies, ship-hulls and wind-
turbine towers are often mounted with lumped mass oscillations. Hence, study of the
dynamic behaviors of thin-walled structures with elastically mounted masses is desperately
needed for the structural design of these systems. Many investigations have been focused
on the dynamic behavior of classical Bernoulli-Euler and /or Timoshenko beams with single
or multiple lumped masses, including the free vibration (beams with attachments [16-18],
beams with single-degree of freedom SDM subsystems [19-23], beams with two-degree of
freedom SDM subsystems [24—28]) and forced vibration (beams with attachments [17,29],
beams with single-degree of freedom SDM subsystems [30-35], and beams with two-degree
of freedom SDM subsystem [36,37]) dynamics. In general, for a large number of thin-
walled beams used in practical engineering, the shear center and the mass centroid are not
coincident, which results in a coupling of the bending and torsional modes of the oscillation
that are independent in classical beams. Therefore, the coupled vibration between rigid
motions of subsystems and thin-walled beams becomes more complicated than classical
beams and needs to be clarified [38,39]. Oguamanam et al. studied the coupled flexural-
torsional free vibration of thin-walled beams with tip mass attachments [38]. Gokdag and
Kopmaz [39] analyzed the influences of tip mass and distributed mass on the coupled
bending and torsional free vibration characteristic of cantilever thin-walled beams with
different cross sections. Wang et al. [40] investigated the natural frequencies and mode
shapes of a thin-walled turbine tower with different elastic attachments, and in his model
the variations of material and cross section are considered using D’ Alembert’s principle.
Wu and Titurus [41] studied the damping enhancement of thin-walled a helicopter blades
system by internally distributed spring-damper elements; in this research, the closed-form
governing equation of the thin-walled systems are established by Lagrange’s equation.
Hoffmeyer and Hegsberg [42] studied the vibration absorber characteristic of multiple
tuned mass absorbers acting on bending-torsion coupled thin-walled beams. In the above
studies, the dimensions of the governing equations are increased with the number of
subsystems, which result in a heavy burden of computation. By employing the complex
modal analysis approach, Burlon et al. obtained the closed analytical solutions for the
frequency response of bending-torsional-warping coupled thin-walled beams with arbitrary
attached masses, springs [43-45], dampers [46] and sub-beams [47], and the free, forced and
stochastic vibration dynamics of these models were systematically discussed. Furthermore,
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all of the associated matrices of their modal are less than 6 x 6, resulting in a significant
computational advantage.

It is noticed, however, that, the solutions in [43—47] are unable to compute the fre-
quency response of bending-torsional-warping coupled thin-walled beams with multiple
DOF spring-damper-mass subsystems. Hance, closed analytical solutions for the bending-
torsional-warping coupled frequency response of thin-walled beams with multiple DOF
spring-damper-mass subsystems is significant for the parameter design of multiple DOF
absorbance and elastic suspension in vibration reduction application. Furthermore, despite
the valuable insights provided by transform methods [48,49], no analytical expressions are
available for the bending-torsional-warping coupled frequency response of thin-walled
beams with multiple DOF spring-damper-mass subsystems; this requires a specific complex
transformation approach with dynamic condensation.

This paper presents a new closed analytical approach to obtaining the forced vibration
of bending-torsional-warping coupled thin-walled beams with an arbitrary number of
3-DoF spring-damper-mass subsystems and boundary conditions, based on the transfer
matrix approach and dynamic condensation methods. The size of all associated matrices
is always less than 12 x 12 regardless of the number of subsystems, which leads to great
computational efficiency. The results computed by the proposed method achieve good
agreement with those obtained by the conventional finite-element method. The effects of
the system parameters on the vibration transmission and vibration isolation properties of
the thin-walled beam system are studied.

2. Derivation of the Frequency Response Function

Figure 1 illustrates the physical model of the thin-walled beam system under investiga-
tion, which consists of a bending-torsional coupled thin-walled beam with N three-degree-
of-freedom spring-damper-mass systems attached to it. The whole beam is subdivided into
N + 1 segments with length [; (i =1,2- - - N + 1) at the positions xi where (i =1,2- - - N) the
subsystems locate.

(]\JEI ’-JZ_ 2

Figure 1. A elastically-damping constraint thin-walled beam carrying a number of spring-damper-
mass systems.
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The primary assumptions of the system are as follows: (a) the beam is a Euler-Bernoulli
thin-walled beam with only the transverse in z and y directions and torsional vibration
considered; (b) the cross-section is perfectly rigid in its own plane; (c) all the springs are
idealized as general points connecting to the thin-walled beam.

Figure 2a illustrate the physical model for the cross section of the thin-walled beam
system at the connection point. As shown in the figure, the variables are defined as follows:
m; the lumped mass; J; the mass moment of inertia; kZ ” szz' kly“l, kR and cZ ” 51, C]j,i' Cgi
denote the stiffness and the damping of the left and right springs of the SDM system in
z and y directions, respectively; I and IX are the distance between the lumped mass and
the left and right springs; y; and 6;, the translational displacement and the rotational angle
of the lumped mass respectively; v ]Zz/ 7’51/ v, and ZJR the transverse displacements of the
beam in z and y directions at the node connected w1th the two springs, respectively; u-
e ”]y“
the shearing center and mass center of the cross section, respectively. v; and w; denote the
displacement in z and y direction of the thin-walled beam, 1; is rotational displacement in
x direction. z. is the distance between S and C. a and b is the length and wide of the cross
section.

z,i’

u ;»and u ; denote the corresponding displacements of the lump mass. S and C are

(a) I Ny

K et [ N g (o

Yt

uzL,z (m,, [;) 9 Yis ui.

0
R R
(k? ir CI:I,) Ui wi ( iy Cui
X Zb : Al,bi S Uy,

vz,l Z,
RS _R
Oy,i Uyi
Zc
vy G o
b
a .
[ ] |
b

( ) 11 12 21 k 22
ke, ke, ke, e

21

kel ke,

ke

vi

N

N

ngZ

i

Figure 2. (a) The cross section of the thin-walled beam system at the connection point; (b) the three-
DOF SDM subsystems is condensed into eight complex effective stiffness via dynamic condensation.
2.1. Dynamic Condensation of the Three-DOF SDM Subsystems

The internal force of springs ky . kR Vi k]£z and kR can be reasonably given as

L gellyl 12, R 21 22, R
Fy; = key o, + ke, v, ; —key,vyl—l—keyl v (1)

L _ 1,11 12 R 21 22 R
F k621021+kezz z,i kezzvzz+kezz z,i (2)
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mico® +@(ck; + cR)) + (kL + kX)) — (KL IL — KRR — (e L, — cRIR)
KLt —

—(

2,i°2,1

where —2 _ =R _ R (L o 1L
ol (—mjw” — wey; — ky,i)(wcy/i + ky,i)
P m@? +w(ep +eg) + (K k)

®)

— R R \(—,.L L
o (wey; +ky;) (wcw + ky,i) @
YU miw? + w(c‘yji + c;i) + (k};,i + k]If,i)

— L L \(—-R R
2 (wcyli + ky,i)(wcy,i + ky,i) 5
T+ w(ch, + )+ (KL, + kR ©)
1 y,i Yl y,i y,i

2 (—m@z — wc;i — k;i)(wc;i + kg,i)

Mm@+ w(ch + R )+ (K R

(6)
ke%,li = VVHXI2 - lellLX12 — W21llLX12 + W221}2X12 - X )
ke;%- =WnXiXo + lellRX1X2 — W2111RX1X2 — szl}llelxz 8)
keZ = Wi X1 Xp — Wiali X1 X5 + Worlj X1 X — Wl IR Xy Xp )
keizl = W11X22 + W1211-RX22 + WzlllRXZZ + WQZZZ-RZXZZ - X5 (10)
and

[ 7=2 | —/.L L2 R 1R 2
w-+w(cs.lz2 + e IR
Wi = ]i(kL,le(J:’}(lz?'fle)Z'l i) /A

2,i°2,1 2,i°2,0

Wig = | (kL1 — K5 I5) + @ (Ll — Ci{,ilgi)] /A =Wy

Wa = _m@Z +@(cl;+ ) + (kL + kgi)} /A

with

z,i"z,i z,i"z,i z,i"z,i z,i'z,i

R 1R — (L JL R 1R —2 . —(-L L2 R 1R 2 L L2 R 1R 2
kz,ilz,i) _w(cz,ilz,i _Cz,ilz,i) Jicw +w(cz,ilz,i +Cz,ilz,i )+ (Cz,ilz,i +Cz,ilz,i )

From Equations (1) and (2), one can see that the four springs, four dampers, lumped
mass and mass movement of inertia of the three-DOF SDM system (see Figure 2a) are,

respectively, condensed into eight effective springs ke;l,», keg, ke;,li, keizi and ke;ll», keg;, ke;li,

keizl- as shown in Figure 2b; the derivations of Equations (1)—(10) are given in Appendix A.

2.2. The Frequency Response Function for the Thin-Walled Beam System

The governing equations of motion of Euler-Bernoulli thin-walled beams illustrated
in Figure 2a on which the external loads is zero can be written as follows:

oty 0%v
o*w *w %
oty 0%y 0w %Y
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where E is Young’s modulus of elasticity and G is the shear modulus of the material, EI,
and EI, are the bending stiffness of the thin-walled beam about the centroidal principal
axes, which are parallel to the y and z axes, respectively. GJ and ETj are, respectively, the
torsional stiffness and warping stiffness of the thin-walled beam. pA is the mass of the
thin-walled beam per unit length and Iy denotes the polar mass moment of inertia of per
unit length beam cross section about the x axis.

For forced vibration of the constrained thin-walled beam (beam with subsystems), the
harmonic responses take the form:

v =V(x)e“" w=W(x)e p =¥(x)e (14)

where @ = Qi is the frequency of the excitation force and i = v/—1.
Substituting Equation (14) into Equations (11)—(13) yields

ELV® (x) 4+ pA@?V(x) =0 (15)
EL,WW (x) + pAw*W (x) + pAz@* ¥ (x) = 0 (16)
ETo¥ ™ (x) — GJ¥ @) (x) + pAz@* W (x) + plo@* ¥ (x) = 0 (17)
From Equation (16):
__ By wey L
¥(x) = pAzcwz W™ (x) - W(x) (18)

Substituting Equation (18) into Equation (17) yields:
{A4D8 1 A3D® + A,D* + A, D? + AO} W(x) =0 (19)

where
D =d/dx Ay = ETyl, A3 = —GJEl, A, = ETgpAw” + plyw?EI,
M = —GJpAwW? Ay = —(pAz@?)? + p?Ip Aw*

The solution of Equation (19) can be obtained by substituting the trial solution
W(x) = wpe™ to give the characteristic equation

}\41(8 + /\31(6 + )\21(4 + /\1K2 +Ap=0 (20)
Leth = 2, the Equation (20) can be rewritten as
Aah® + Ash® 4+ Aoh? + Ak + 1 =0 (21)

For Equation (21), all of its four roots are real when the vibration frequency is within
the practical range [4,5], two of them are positive (h; and h;) and the other two are negative
(—h3 and —hy). Then the eight roots of the characteristic Equation (21) are 31, —B1, B2, — B2,
'53;, —,53;, ‘B4i, —/34;, where ; = \/j and ,Bl = \/E, 152 = \/]/T, ,53 = —h3, /34 = —]’14. It

follows that the solutions of Equations (15)—(17) are in the following forms:

V(x) = cg sin B5x + c19 cos Bsx + c118inhBsx 4 c1p cosh Bsx (22)

W (x) = ¢sinhB1x + ¢ cosh B1x + c3sinhBox + ¢4 cosh Box + c5sinhBzx + ¢ cosh B3x + c7sinhByx + cg cosh Byx (23)

IF(X) = t1csinhBqx + t1cp cosh B1x + frczsinhBox + tocy cosh Box + tzcssinhfzx + tzcg cosh B3x + tacysinhBgx + tycg cosh Bax (24)

A .
where ,354 = }g—lzwz and cj to cqp is a set of constants, and

t = —(EIp1* + pA@?) /pAzcw?® t, = —(EL,B* + pAw?) / p Az
ts = —(EI,Bs* + pAw?) /pAzcw? ty = —(ELBy* + pAwW?) /pAzco?
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Following the sign convention as shown in Figure 2, the expressions of bending
moment M(x), shear force S(x), torque T(x) and bi-moment B(x) can be obtained as

MY (x) =ELV" (x) = EIZAB52(*C9 sin B5x — c19 cos Bsx + c11sinhBsx + c12 cosh ‘35)()
M®(x) = EL,W" (x) = Ely(cLBlzsinhﬁlx + c2B12 cosh B1x + c3B22sinhBox + c4 B2 cosh Box (25)
—|—C5,B3zsinh/33x + 66/332 cosh B3x + 67,[34zsinh/34x + C8ﬁ42 cosh B4x)

SY(x) = EL,V" (x) = EL;B53(—co cos Bsx + c1g sin Bsx + c11 cosh Bsx + cqpsinhBsx)
S®(x) = EI,W" (x) = EIy(c1B1° cosh B1x + c213sinhB1x + c3B2% cosh Box + c4 o sinhBox (26)
+¢5B3% cosh Bax + coB3’sinhB3x + c7B4> cosh Bax + cgBs>sinhByx)

T(x) = ETo¥” (x) — GJ¥'(x)
= ETo(c1B13t1 cosh B1x + caB13t1sinh By x + c3B23t, cosh Box + c4BatrsinhBox
+c5B33t3 cosh Bax + cs B33 t3sinhB3x + c7B43ty cosh Byx + cgBstssinhByx) (27)
—G](tlclﬁl cosh B1x + tycpBysinhBx + tac3Ba cosh Box 4 trcafosinhBorx
+t3c5B83 cosh B3x + tacefasinhBax + tycyBa cosh fax + tycgfasinhBax)

B(x) = ET\¢” (x) = Ero(t1C1ﬁ12Sinh‘B1X + tlczﬁlz cosh B1x + t2C3ﬁ225il’lhﬁ2x + t264ﬁ22 cosh Brx (28)
+t3C5‘3328h‘1hﬁ3x + t3C6ﬁ32 cosh Bax + f4C7‘34ZSil‘lh‘B4x + t4C8ﬁ42 cosh ﬁ4x)

The spatial solution of Equations (15)-(17) can be expressed in terms of both sinusoidal
and hyperbolic terms, and can be written in vector form as

V(x) =V(x)C] W(x) = W(x)C’ ¥(x) = ‘I’(x)Cl.p (29)

1

where C?, C¥, C} are column vector of integration constants associated with the sub-beam
i. V(x), W(x), ¥(x) are row vectors of mode shape terms. And

C? = [C9 C10 C11 Clz]TC? = [C9 C10 C11 Clz]TV(JC) = [sin ﬁ5x COs ,B5X sinhﬁ5x cosh 5596]

W(x) = [sinhBix cosh B1x sinhBrx cosh Brx sinhfsx cosh Bsx sinhfax cosh Bax]
¥ (x) = [t1sinhByx t1 cosh Byx tysinhByx t cosh Box tzsinhBax t3 cosh B3x tysinhByx tg cosh Bax]

From Figure 2a, the relationship between the displacement of connection points and
the shear center can be given as follows

L _
yi

R

v w;i + Zpp; Ul;,i = w; + 2pi 0%; = 07 — Yuhi V5 = 0+ Yu; (30)

where z, and y,, = a/2 are the distances between the shearing center and spring connection
point in z direction and y direction, respectively.
Substituting Equation (30) into Equations (1) and (2), one can obtain

Fri = (ke +key%) (w; + zpi) Fyy = (kejl + kep) (w; + zp i) (31)
FZL’Z- = (ke;}i + keg)vi + (—ke;,ll- + keﬁ)yutpi lefi = (keill- + kef%)vi + (—keili + keizi)yut,bi (32)
Then the external force and torque applied at the shear center can be written as

Fi= Fyl“,i + Fyl?i = (ke;,li + ke;lzi + keili + keizi)(wi + zp¥;) = Ky;(w; + zp¥;) (33)

F,;= FZL,Z. + le?i = (ke;}i + keii + kef,ll- + keﬁ%)vi + (—ke;}i + keﬁ — keill- + kegz)yulpi = Kz;v; + Kziyulpi (34)

i
Ti=Ty+Tu = (FyL,i +F£i)zb _FZL,,']/u +F5i]/u
= (kE;,li + ke;,zi + ke;li + ke;?i)(wi + zpi)zp + (—ke;,li — ke;% + keg}i + kegﬁ)viyu + (kei}i — keg - keg}i + keﬁ%)yuzwi (35)
= Kyi(w; + zp¥i)2p, + Kziviyu + Kziyu o
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The continuity condition at the cross section where the subsystem mounts enforces
that the displacements and slopes at the common interface of two adjacent sub-beams must
be equal, hence

Wi(li) = Wit1(0), Vi(li) = Vi1 (0) ¥i(li) = ¥i(0) Wi (i) = Wi11(0), Vi (L) = V{1 (0) ¥;(l;) = ¥i(0) (36)

1

Similarly, the moment, force, torque and bi-moment at interface must be equal to zero
and the equilibrium conditions are illustrated in Figure 3. Hence, one can obtain:

M (1) = M} 1 (0) M7 (1;) = M7, 4(0) (37)
Slw(li) + Fy,i = Sﬁl(O) S?(li) + Fz,i = S?Jrl (0) (38)
T;(l;) + Tri = Ti11(0) (39)

B;i(I;) = Biy1(lix1) (40)

| + Porr vt >
Bi Bi T: Tr Tia

Mi Mia
T Fuz.i

Si 'l' S -+

Figure 3. The force equilibrium conditions at the interface.

Substituting Equations (22)—(29) and (33)—(35) into Equations (36)—(40), and writing
the compatibility conditions across the spring connection point in matrix form, one obtains

riCiv1 = TLCY (41)
Tﬁi i1 = Tficzw + Tlflv (o (42)
%iCii1 = T7,C) + T} Cip (43)

where T%, T¥ and T? are the derivative matrices, the components of which are given in
Appendix B.
Combining Equations (41)—(43) and organizing them in matrix form, one obtains

T Oaxa w T} Oaxa cv
TV, Ogs [;H} =T T [g,] (44)
04><8 T%i i+1112x1 Tzlf Tzii 1 112x1

12x12 12x12

Then, the transitive relationship between the integration constants of the ith and the i
+ 1th sub-beam is obtained:
-1
w Tzﬁi 044 Tzi 04 l/>)<;1 cv
[ 5;“] = Tﬁ,- O4x4 T, T {Clv} = Hj12x12C; (45)
1

i+l Os4x8 T, 4

v
Li TLi
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By repeating Equation (45), the transitive relationship between the first sub-beam and
the last sub-beam can be written as

N
Cn+1 = (H HNi+l> C1 = Hi2x12C1 (46)
i=1

where N is the total number of three-DOF SDM systems.

For the derivation of frequency response function of the thin-walled beam system, the
basic idea is to treat the excitation force as an external discontinuity and involve it in the
boundary or compatibility conditions associated with the shear force and torque of the thin
walled beam.

2.2.1. Force Excitation at the Ends

Case 1. With a harmonic force (FVel®, Tﬁl’ el Freill) at the left-hand end of a
thin-walled beam, the boundary conditions can be written as follows:

Brex12
N &= o) -n )
BRrex12 <Hl HNi+l) G 061
1= -
12x1

12x12

where Fy = [0 F0 Tip 0OF 00000 0]7 is excitation force vector; B; and By are the
coefficient matrices associated with the left and right ends; the expressions of these matrices
are given in Appendix C. For any other boundaries, the boundary constraint equations are
all in the form of Equation (47). Through changing the elements of matrices By, Bg, one
can formulate the constraint equation for arbitrary boundary conditions easily.

By substituting Equation (46) into Equation (47), the integration constant parameters
for the first component can be obtained as

-1

cv Biex12
G| = = N F 48
€l {Cﬂ BRéxlz(HlHNiH) - #8)
=
12x12

Next, introducing Equation (48) into Equation (31) lead to the constant parameters for
the nth sub-beam C,, and the corresponding FRFs can be expressed as [28]:

N+1
Y(Y) = 2 Tn(f_ynfl)cn[H(f_fnfl) —H(Y—Yn)] (49)
n=1

where X is the global coordinate with Xy = 0 and Xy1 = L, H(Xx—xg) is the Heaviside function,
which increases from zero to unity at location xj,

Case 2. With a harmonic force (Fyel®, Ty ei, Fyel®) applied at the right-hand end
of the thin-walled beam, through similar matrix manipulations as in Equation (47), the
integration constant parameters of the first sub-beam are

Brex12

cy =
] = 1}: N F 50
€l [C? BR6X12(I£I{NH1> K 0)
1=
12x12

where FR =[0000000 Fy 0 Tff 0 FE]T. Similarly, the FRFs can be expressed as
Equation (49).
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2.2.2. Force Excitation at an Arbitrary Position of the Thin-Walled Beam
In most conditions, the excitation force F,e'¥ is applied at arbitrary positions of the
system. The force equilibrium conditions at the excitation point of the mth sub-beam are

illustrated in Figure 3 and can be written as

Ty 2Cno = Ty 1Cip1 + F (51)
sz,zciz,z = Ti,lcgi,l + TV (52)
Ty 2Cno =T 1Cpq +F (53)

where the subscripts (m, 1) and (m, 2) correspond to the 1th (left) and 2th (right) component
of the mth sub-beam; F¥=[000 F¥]T, T¥=[000 T¥]", F’= [0 0 0 F’]". the components of
the derivative matrices are given in Appendix D.

The combination of Equations (51)—(53) leads to

T,/ 5 Oaes » T%ﬁ Osxca| - ., F®
A 2

TV, Oss { 31’2] = Tipn 1 Oaxa [ 21’1] + | TV (54)
4 m,2 ! m,118x1 j

v,1 8x1 0,2
Osxs  Tpn Osxs T3

12x12 12x12

Then, the transitive relationship between the integration constants of the 1th and the
2th component of the mth sub-beam is obtained:

w,1 1 w2 w,1 -1
c, T$12 044 T$ 1 Oaxa| - 1 T$12 Ogx4 o rew A
|: 21,2:| = Tm’,z 04><4 '1-"11’,1 04><4 |: Zl,l:| + Tm,,z 04><4 Tlp = Hi’f’l |: ;}71/1:| + HFF (55)
m,. b m, .
Ouxs T%h]  |Oaws T3 Osxs Toh| LF
Casel.m=1

The substitution of Equation (55) into Equation (46) leads to

w

w N . [C N .
{ NH} = Hy_in1 Hl{cﬂ + | [ [Hn—is1 |HeF (56)
i=1

0
CN-l—l i=1

Then the boundary conditions can be written as follows:

BLox12 cv 0 ~
[ 1 =F (57)

N N = N ~
BRsxu(l—[l HN—i+1>H1 CZJ —BR<H1 HN—i+1>HFF
1= 1=

12x12
Next, the integration constant parameters of the first sub-beam can be written as

-1
BLex12 B

Czl"] o

- A F 58

{sz BL6><12('| |1 HN—i+1)Hm (58)
1=

Therefore, the integration constants of the n + 1 (n = 1, 2. - - N) sub-beam can be
expressed as

Ci'i1 - v [T T ?
s = ([ [He i1 |H ol T [[H, i1 |HEF (59)
n+1 i=1 1 i=1

Case2.m=2,3---N

Similarly, the relationship between the integration constants of the N + 1th and the 1th
sub-beam can be expressed as
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Cw N—m+1 R C N—-—m+1 .
{ 71)”1} ={ [I Hn-is1|Hn H Hy_it1 [Cv:| +| I1 Hn-is1 |HEF (60)
N+1 i=1 i=N—m+2 i=1
Then, the boundary conditions can be expressed as
Brex12 c Oex1
Nomt1 N [ g}} _ Nomt1 —F (6
Brex12 < H Hy_ z+1> H,, ( IT HN—i+1> (&1 —Brex12 ( H Hy- z+1> HpF
' i=N—m+2 ‘
. ~ J \
12x12 121

Next, substituting Equation (61) into Equation (60), the integration constant parameters
for the first component can be obtained:

-1

v Brsx12
[ %] — N-—m+1 N EF (62)
(61 BR6><12< H Hy_ 1+1>Hm< I HN—z‘+1>

i i=N—m+2

Introducing Equation (62) into Equation (60) leads to the integration constants of the n

+1(n=1,2--N)sub-beam:
n Cw
w (Han#l){C%] n=1,2---m—1
v 1 n—m+1 n Ci" n—m+1
mr H, in H, IT Hy i c? + H Hy i1 HFF n=m,2---N
=1 i=n—m-+2 1 1
Case3.m=N+1
For the similar derivations, the expressions of these constants are
cv i
{ QH} — {(HHn l+1> {C”} n=12---N (64)
n+1
where .
w BL6><12
@ - F (65)
G Brox12HN 11 H Hn-in1
with
T 06><1 ]
F= . 66
{BRsquFF (66)
12x1

2.2.3. Force Excitation at the Subsystem

If the excitation force is applied at the mth subsystem, the compatibility conditions
across the spring connection point can be expressed as

RinCn1 = T Con + Fe® (67)
Thek, TG T T )
OmCost = T9,,Co +T7¥ Ch, + Fe (69)

where Fe®=[000 Fe“]T, Te¥=[000 Te‘/’]T, Fe’=[000 Fe']™.
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Combining Equations (67)—(69) and organizing them in matrix form, one obtains:

T?Q;m 0454 cv Tzum O4x4 v Fe
T, Osa {gﬂrl] =’ T {CZ’?}JF TeV (70)
s el ]

12x12 12x12 12x1

Then, the transitive relationship between the integration constants of the ith and the i
+ 1th sub-beam is

1

- -1
cv T;l‘{m Ogx4 TzL;}m 041/704 ” T;l‘{m Ogx4 Fe® cw A
|: Zil] = TRm Ogx4 T%Z]f TLm |:C£] + TRm Ogx4 TBZJ =H, |:CZ:| + HrFe (71)
048 Tk, T," TV, Osxs  T%,, Fe

By repeating Equation (71), the transitive relationship between the first sub-beam and
the last sub-beam can be written as

w N w N—m
Gl =) ) ()
i=1 i=1

N+1

Next, the boundary conditions can be written as follows:

L
Bl\?xu N06><1
C — —m N
BS1o (H1 HNi+1> ' -BRas < H1 HN—i+1>Fe
1= 1=

=Fe (73)

12x12

The substitution of Equation (73) into Equation (72) obtains the integration constants
ofthen+1(m=1,2---N) sub-beam:

n
< Hni+l)cl n=1...m-—1
i=1

CH+1 = ln n—m N (74)
(IIl Hni+l) C + ( 111 Hni+1)Pe n=m...N
1= 1=
where C is the integration constants of the 1th sub-beam and
-1
By ox12 _
C = Fe (75)

N
BR6><12 (Hl HNiH)
1=

From the derivations above, it is obvious that all of the computing matrices (H;, By, Br
and Hr) associated with C; are not larger than 12 x 12, which will lead to a small-dimension
matrix operation, and hence a significant computational advantage.

3. Validation of the Proposed Method

To validate the reliability of the proposed method, some of the results in this work
are checked with those obtained from the conventional FEM. The motion equation of
thin-walled beam system can be written as

M]{x} + [C]{x} + [K]{x} = {F} (76)

where [M], [K] and [C] denote the mass, stiffness and damping matrix for the thin-walled
beam system, {v} represent the node displacement vector of beam, and {F} is the force
vector. The overall matrixes are obtained by imposing the prescribed boundary condition
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and assembling the associated mass matrix [Me] stiffness matrix [Ke] and the damping
matrix [Ce] of the constrained beam element, which are given in Appendix E.
Introducing harmonic solutions in the form

{x} = {x}' ! (77)

The frequency response functions can be obtained as
{7} = (-QM +i0C +K) ' {F} (78)

The forced vibration of a elastically constraint thin-walled beam carrying three spring-
damper-mass subsystem (See in Figure 4) is solved both by the presented method and
conventional finite-element method. The geometrical and physical properties of the thin-
walled beam system are given as: E = 2.1 x 10! Pa, G = 80 x 10'° Pa, p = 7850 kg/m?,
I, =1.3745 x 1074 m*, I, = 1.6625 x 10~* m*, ] =4.7657 x 10° m*, T =2.2783 x 1078 m®,
Ip=5.9992 x 10~* m*, A =0.0116 m?, L =3 m, z. = 0.0619 m, z, = —0.0550 m, a = 0.26 m,
b =032 m, K} = K} = Kj; = Kif = 40,000 kN/m C} = C} = Cy; = Cjf = 800 N-s/m, m; =100 kg,
Ji=58.33kg-m* KL; = K}, = K, = Ki}; =16,666.67 KN/m, c; = ¢ = ¢ = ¢, =33.33N's/m,
l; =08m,l,=08m,l3=08m,l; =08, 1L =0.08m, X =036m,}=036m, I} =0.08m,
1£=0.08m, I} =036m,i=1.23.

Without loss of generality, the forced vibration of the thin-walled beam system with
an excitation force (F¥e', F¥e!¥, FV¢iO ) applied at P; (representing the end point of
thin-walled beam), P, (representing the arbitrary position of the thin-walled beam) and P3
(representing the subsystem) are calculated by the proposed method and FEM, respectively.
The frequency responses of Py, Py, P4, P5 (right end of the beam) in each calculation are
illustrated in Figure 5. It can be seen that the curves calculated by the proposed method are
greatly consistent with FEM. Hence, it is believed that the analytical method and FEM are
accurate and reliable.

The frequency responses of the bare beam at Py, Py, P4, and P5 with force applying at
P; are illustrate in Figure 6. The comparison of Figures 5 and 6 reveals that the introduction
of a subsystem can generate several anti-resonance bands, in which the three-DOF SDM
systems act as absorbers for the thin-walled beams, leading to a high suppression of
structural vibration transmission. Moreover, a special frequency bandwidth is observed,
in which the magnitude of the frequency response at the excitation points is the largest
and, the further the detection point deviates from the excitation points, the smaller the
response is. This phenomenon indicates that the elastic vibration in the thin-walled beam
is increasingly and dramatically decayed when moving from the right end to the left end.
Therefore, this structure can be applied in engineering practice to restrain the vibration
transmission in the thin-walled beam based on these results.

mieJ mﬁI)’]g mse Js

ks1,Cs1 (Fes2,cs2) (Fes3, cs3)

I > Iz ls

(KF, CR)

Excitation point ~ Detecting point

Figure 4. The front view of a thin-walled beam carrying three spring-damper-mass subsystems.
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Figure 5. Frequency response at Py, Py, P4, and Ps, as illustrated in Figure 4 ( FR at P; with
the presented method, O FR at Py with FEM, FR at P, with the presented method, O FR at P,
with FEM, FR at P4 with the presented method, O FR at P4 with FEM, FR at P5 with
the presented method, and O FR at P5 with FEM). (a) Force is applied at P1; (b) Force is applied at Py;
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Figure 6. Frequency response of the bare beam at P;, P,, P4, and P5 with force applying at P;.
( FR at Pl/ FR at Pz, FR at P4, FR at P5).
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Magnitude of FR (m)

4. Parameter Study and Discussion
4.1. Effect of Subsystem Parameters on Vibration Transmission of the Thin-Walled Beam

This subsection investigates the influence of the subsystem parameters on the fre-
quency response (FR) at the right end of the beam. In this subsection, the stiffness and
damping of the elastic constraints are set to 0, and the excitation force (Fe¥, F¥¢i€¥, FveiQlt)
is applied at the left end of the beam.

Figure 7 illustrates the Frequency Response at the right end of the beam with symmet-
rical llL = llL = 0.22 m) and asymmetric (I =0.08 m, l{{: 0.36 m, l% =0.36 m, lg =0.08 m,
1} =0.08 m, IX = 0.36 m) subsystems. The introduction of asymmetric subsystems is able to
make the bending vibration in W direction and the torsional vibration of the thin-walled
beam couple with the bending vibration of it in V direction, which are independent in the
thin-walled beam with symmetrical subsystems. The vibration of subsystem in z direction
and 6 direction will couple strongly when the centroidal deviation of subsystem is large,
which leads to all the degrees of freedom of the whole system coupling with each other.
Notice that (1) when the excitation force is applied in W direction, the force transmission
path is W-y, W-¥-6-z-V; (2) when the excitation force is applied in ¥ direction, the force
transmission path is Y-W-y, ¥-6-z-V; (3) when the excitation force is applied in V direction,
the force transmission path is V-z-0-%-W-y. Moreover, the vibration coupling is very strong
at low frequencies (() < 2200 Hz) since the natural frequencies of low order modes of the
thin-walled are close to the natural frequencies of subsystems; thus, the bending vibration
in W directions and the torsional vibration of the thin-walled beam strongly couple with the
bending vibration of it in V direction via the force transmission of subsystem; conversely,
the natural frequencies of high order modes are much higher than the subsystems, which
result in a very slight force transmission between the three directions of thin-walled beam,
and lead to a significant weak vibration coupling between them.

0

107! 7 10!
— A l — -
£ 10° \lg'/"-" Al B
o [ N —— x \
L 103 1| o 103}t
G | 5
§ 104+ A g 107
S 105} S 105
© ©
1 1 1 2 10*6 1 1 1 1 1 E 1076
100 200 300 400 500 600 0 100_200 300 400 500 600 0 100_200 300 400 500 600
Frequency Q (Hz) Frequency Q (Hz) Frequency Q (Hz)
(a) (b) (c)
Figure 7. FR at the right end of the thin-walled beam with symmetrical and asymmetrical subsystems.
( W (with symmetrical systems), ———-W (with asymmetrical systems), Y (with
symmetrical systems) - - - . Y (with asymmetrical systems) V (with symmetrical systems),

_____ V (with asymmetrical systems)). (a) Force is applied in W direction; (b) Force is applied in ¥
direction; (c) Force is applied in V direction.

The effects of the subsystems’ stiffness kg;, damping cg;, mass m;, moment of inertia
J; on the vibration transmission characteristics of the thin-walled beam are illustrated
in Figures 8 and 9, respectively. Figure 8 shows that the location of the anti-resonance
bands can be adjusted by the subsystems’ stiffness to suppress the vibration with a specific
frequency, since their move to a higher frequency area with the increase of k,;. Figure 9
reveals that a larger damping of the subsystem is helpful for the suppression of vibration
transmission in the thin-walled beams, since cg; can significantly decrease the peak values
of FR. It can be observed in Figure 10 that, when the mass is small, the resonance peaks and
anti-resonance points generated by the subsystems are very weak, since the translational
motion mode of subsystems (J; is relatively small) are not strong enough to affect the
vibration characteristic of the whole system; by increasing the value of m;, the effect of
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104
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subsystems on vibration characteristic of the whole thin-walled system become stronger,
resulting in more remarkable resonance peaks and anti-resonance points. It is worth noting
that a higher m; corresponds to a decrease in the frequency of the potential well in ¥
direction, accompanying an increase in the width of the frequency band. Figure 11 shows
the moment of inertia of the subsystem has a great effect on the vibration transmission
potential well in all three directions. Generally, a higher J; corresponds to a decrease in the
frequency of the anti-resonance band.
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Figure 8. Effect of the stiffness of the subsystem on the frequency response at the right end

of the thin-walled beam ( ksi = 3333.33/2 kKN/m, — — — _kg; = 3333.33 kN/m, —. . _ ksi =
3333.33 x 2kN/m, .. ke =3333.33 x 4 kN/m).
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Figure 9. Effect of the damping of the subsystem on the frequency response at the right end of the

beam (

=66.67 X 4 N-s/m).
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Figure 10. Effect of the mass of the subsystem on the frequency response at the right end of the beam
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Figure 11. Effect of the moment of inertia of the subsystem on the frequency response at the right
end of the beam ( J; =53.33/2kgm?, — _ __J; =5333 kgm?, . _._ J; = 53.33 x 2 kg:m?,
__________ Ji =53.33 x 4 kg-m?).

Apparently, a relatively deeper and wider anti-resonance band can guarantee effective
restraint of the vibration transmission in the beam, hence the parameter design of the
subsystem should follow the following principle: (1) For an excitation force with a relatively
high frequency, the stiffness of subsystem should be large; (2) For an excitation force with a
relatively low frequency, larger mass and moment of inertia are required.

4.2. Effect of Parameters on the Vibration Isolation Characteristic of the Thin-Walled
Beams Systems

For the system, consisting of power machines and thin-walled structures, the isolation
of the excitation force of the machines’ transfer to the structures is a main measure to control
the structure vibration and noise radiation of the system. Obviously, the parameters of the
elastic suspensions and the position of the machines are believed to significantly influence
the dynamic response of the thin-walled beam. This subsection studies the relationship
between these parameters and the dynamic response of the thin-walled beam. The system
is illustrated in Figure 12, and the parameters of the system were arbitrarily selected as
follows: K = K¥ = Ki; = K§ = 40,000 kN/m, CI = C} = Cy = Cyf =800 N-s/m, Ky = Kf
= 1500 kN-m/rad; K} = K} = 300 N-m-s/rad; m = 300 kg, ] = 160 kg-m?, ki = kX = kj; =
k§ = ks = 40,000 kN /m, ¢k = R = c; = c1y< =100 N-s/m,l; =1.6 m, I, =1.6 m, [* = 0.08 m,
IR=0.36 m.

1t RI

Excitation poin

(ks,_Cs)
I 2
[
FR—
d
(K%, Ch) (KR, CF)

/.

Figure 12. The front view of an elastically constrained thin-beam carrying a spring-damper-mass
subsystem.
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In order to accurately describe the intensity of the structural vibration, the vibration
energy of the thin-walled beam is defined as follows:

EV = EK/Q? = / PAW(x)2 + V(x)2) + plo¥ (x)%dx (79)

where EK is the kinetic energy of the thin-walled beam.

The influences of the subsystems’ stiffness kg;, damping c;, location d (the distance
between the subsystem and the symmetry center of the thin-walled beam), elastic constraint
stiffness K and elastic constraint damping C on the vibration isolation characteristics of the
thin-walled beam systems are illustrated in Figures 13-17, respectively. It can be observed
for Figure 13 that the high frequency magnitude of EV increases with the increase in kg;
due to the increasing coupling degree of the rigid motion of the subsystem and the higher
order mode of the thin-walled beam. Figure 14 shows that a suitable lager cy; is helpful to
suppress the resonance peaks values of EV, while the excessive damping will deteriorate the
isolation performance of the thin-walled beam systems due to the bonding effect between
the subsystem and beam. It can be seen from Figure 15 that the resonance peak values
of EV decrease along with the increase of d, which also leads to an increased number of
resonance peaks, since the stronger asymmetry of the system will cause more resonances
mode. Figure 16 shows that the frequency of the resonance peaks increases with K due
to the increase of the mode stiffness of the thin-walled beams. However, the excessive
stiffness will decrease the mode damping coefficient of the thin-walled beam, resulting in a
dramatic increase of the magnitude of the resonance peak of EV. Figure 17 reveals that the
EV curves of the thin-walled for a higher C have a smaller peak value compared to that for
a lower C due to the increase of the mode damping coefficient of the thin-walled beam.
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Figure 13. Effect of the stiffness of the subsystem on vibration energy of the thin-walled beam
( ks = 40,000/100 kN/m, — — — ks = 40,000/10 kN/m, - - __. ks = 40,000 kN/m, —. — . _
ks = 40,000 x 10 kKN/m).
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Figure 14. Effect of the damping of the subsystem on vibration energy of the thin-walled beam
( ¢cs = 100/10 N's/m, — — — ¢ = 100 N-s/m kN/m, _____. ¢s =100 x 10 N-s/m, —. . _
ks =100 x 100 N-s/m).
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Figure 15. Effect of the distance between the machine and the beam’s axis of symmetry on vibration
energy of the thin-walled beam ( d=0m, —___d=03m,
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Figure 16. Effect of the stiffness of elastic constraint on vibration energy of the thin-walled beam
( K/100, — — _ _K/10, - ___. K _ . _ Kx10,K = (Ky, K, Kr)).
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Figure 17. Effect of the damping of the elastic constraint on vibration energy of the thin-walled beam
( C/10, - ——_C,_____. Cx10, . —._ C x 100, C= (Cy, C;, C1)).

Based on the above discussions, relatively smaller stiffnesses and larger damping
of the subsystem and elastic constraint are beneficial to isolate the excitation force of the
machines from the base structures.

5. Conclusions

This paper presents a new closed analytical approach to obtaining the forced vibration
of bending-torsional-warping coupled thin-walled beams with an arbitrary number of
3-DoF spring-damper-mass subsystems and boundary conditions based on the transfer
matrix approach and dynamic condensation methods. The thin-walled beam is divided
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into a series of distinct sub-beams whose ends are connected to the SDM subsystems. The
transfer matrix for each sub-beam is developed based on the exact shape functions of the
bending-torsional-warping coupling Euler-Bernoulli theory. Each SDM system is modeled
by a set of effective springs based on the dynamic condensation method. The governing
matrix equation is formulated based on the compatibility conditions of the placement and
the force at the common interfaces of two adjacent sub-beams.

The proposed method is very convenient to apply and can be conveniently used to
obtain exact close form expression of the frequency response function; it enables simulta-
neous consideration of arbitrary boundary conditions and an arbitrary number of SDM
systems; furthermore, the proposed method reasonably yields the associate matrixes with
size never larger than 12 x 12 independent of the number of subsystems, thus leading to a
significant computational advantage.

The results computed by the proposed method achieve good agreement with those
obtained by the conventional finite-element method. The effects of the system parame-
ters on the vibration transmission and vibration isolation properties of the thin-walled
beam system are studied. The results provide useful information for the analysis and
design of thin-walled structures with power machines for the purposes of elastic vibration
transmission reduction and vibration isolation.
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Appendix A

The Derivations of Equations (1)—(10)
If the external loads on the three-DOF SDM system is zero, then from Figure 2a one
obtains

L L

L L, L L L/ . R R R R
Pz,i = kz,i(uz,i - Z)z,i) + Cz,i(uz,i - Z7z,i) E i k i

R R R /- 3

(” S vz,i) + Cz,i(“z,i - vz,i) (Al)
L L,L L L L -L R R (R R R (R -R

Fy,i = ky,i(uy,i - Uy,i) + Cy,i(uy,i - Uy,i) Fy,i = ky,i(”y,i - vy,i) + Cy,i(uy,i - vy,i) (AZ)

where F-,, FR F;i and F;’i are, respectively, the internal force of springs k., kR k;i and

z,i’ " z,i’ z,i7 Vz,i’
R L_. _qLp. ,R_. ,iRg. ,L _, R _ .
kw«, and Uy =z 170, Uy =z + 1;°0;, Uy = Uy = Yi.

According to Newton’s second law, the dynamic equation of the two-DOF SDM system
can be written as

mij; + Fyi+ Fpy = 0 (A3)
mizi + F5 + FN =0 (A4)
Jib; — FLIF + FRIE =0 (A5)

Substituting Equations (A1) and (A2) into Equations (A3)—(A5) yields

. . .L . R
mifl; + Ky (yi — 0y) + ¢ (0 — 00) + ki (yi — 0y) + ¢ (4 — 0y1) = 0 (A6)
. . SL . . R
miZi + ks j(zi — 170 — 05;) 4 ¢k (2 — 170 — 0;) + ks (zi + 170; — 05) + cXi(zi + IR0 — 0,;) =0 (A7)

Ji6; — KL (2 — 140, — b)) — chitk (2 — 140, — 05) + KRR (2 + IR0 — o8,) + SRR (2 + 1R6; —05,) = 0 (A8)

z,i"1 z,i"1 i Z,i"1 Z,1 z,i"1
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For the damped force vibration of the loading beam (beam with lumped mass system),

one has
L L oot o R _ 7R ot L _ 7L ot ,R _ =R jwt L. _ =L ,wt ,R _ =R wt
;= 1y ey =1y e =z ug =17e vy =0 e vp =Ty e (A9)
oL UL eVt gR =GR oW = 300t 7, = 7,09t 9, = 9;et
Zi zi = Yz ]/z—yz‘ i = Zi i =Y

where @ = Q i, Q) is the frequency of the excitation force; ¢ is time and i = v/—1.
Introducing Equation (A9) into Equations (A6)—(A8), then writing the results in matrix
form, one obtains

— L L —_.R R
(wcy,i + ky,i) ok 4 (wcy,i + ky,i) R (A10)
mi® +@(ch; o)+ (kb + kS ) P mi” F (el o) + (kL k) Y

vi=

le zZ,11 zZ,11 le

{zi}_ mi@? +@(cl, 4+ R) 4 (K +KR) (R I — kRIR) — @Ik — cRIR)

0; —(kplE — kS IR) — @(c EJIL RiIR)  Ji@? +@(cL L2 + cRIR?) 4 (cHE2 + cRiR2) (A11)
kL, +wc, kR, +wck by oL,
—lL (kL + wct i) lR (kR + @wcl i) 051-
Substituting Equations (A9)-(A11) into Equations (A1) and (A2) leads to
oR. FR 2L L 22, R
iy = keyboy + ke soR: By = kep oy + kejiop (A12)
Fy; = kegjoy; + keiol; By = kezjor; + keiog (A13)
where kill, kizl, k;ll, k22 and kill, k%zl, k;ll, k22 are the stiffness of effective springs as shown in
Figure 2b.
Appendix B

The Expression of Derivative Matrices in Equations (41)—(43) Are as Follows

sinhf1/; cosh B1; sinh,1; cosh Byl
Tw- o ,Bl COSh ,Blli ﬁlsinhﬁlli ‘BQ COSh ,BZZi lBQSil’lhleli
Li ™ ﬁlzsinhﬁlli ﬁ12 cosh ‘Blli ﬁzZSinhﬁzli ﬁzZ cosh ﬁZli
tH £42 #43 a4
1 i i i

sinhf3l; cosh B3l; sinhfB4/; cosh Bal; (Al4)
BscoshBsl;  BasinhBsl;  BycoshByl;  BasinhPyl;
ﬁ325inh,531i IB3Z cosh ,Bgli ‘B4ZSinh‘B4li ‘342 cosh ‘B4li
to tio tH 18
1 1 1 1
= EI, B> cosh B11; + Ky;sinhB1;(1 + zpt1), £#2 = EL, B sinhB]; + Ky; cosh B11;(1 + zpty)
t43 = EJ, ﬁz cosh Bl; 4+ Ky;sinhBoli(1 + zpt2), t}* = EI ,82 sinhByl; + Ky; cosh Bal; (1 + zpt2)
t45 =EI /33 cosh B3l; + Ky;sinhBsl; (1 + zpts), 16 = EI, ﬁg, sinhB3l; + Ky; cosh B3l;(1 + zpt3)
t47 El,B43 cosh Byl; + Ky;sinhByl; (1 + zpts), 1 = EL, B4 sinhByl; + Ky; cosh Bali(1 + zpts)
0 1 0 1 0 1 0 1
| B 0 B O B 0 pg 0
I Y T
ElL,B1

0 ELBS° 0 ELB® 0 ELBS 0

= Elyﬁl COShﬁll —l—fylsinh‘[%l 1 + Zpt1), t42 EIy,Bl smh,Bll +K]/l COShﬁl (1 + zpty

i( ), £ )
t43 = EJ, ﬁz cosh Bol; 4+ Ky;sinhBoli(1 + zpts), tH* = EI ﬁz sinhBy!l; + Ky; cosh Bal; (1 + zpty)
t45 = Elyﬁ3 cosh B3l; + Ky;sinhB3l; (1 + zpt3), tf6 = Elyﬁg sinhB3l; + Ky; cosh B3l;(1 + zpt3)
t47 El,B43 cosh Byl; 4+ Ky;sinhBal; (1 + zpts), £ = EL, B4 sinhByl; + Ky; cosh Bali(1 + zpts)

1
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0 t 0 12
T — B+ 0 t2Poiv1 0
Ri 0 ETot1B1,i41° 0 ETotB2,i41°
ETot1B1° — Gt B 0 ETot2B2% — G2 0 (A16)
0 t3 0 t4
t3ﬁ3 0 t4IB4 0
0 ETot3p3° 0 ETotsfs®
ETot3B3° — Gtaps 0 ETotsBs® — GJtaps 0
t1sinhp1l; t1 cosh B1l; trsinhB,l; t> cosh Bol;
Tl/] _ i’lﬁl cosh ﬁlli tLBlsinhﬁlli t2ﬁ2 cosh ,8211' t2ﬁzsinhﬁzli
Li Erotlﬁlzsinhﬁlli Eroi’l‘B12 cosh B1; Erotzﬁzzsinhﬁzli Erofzﬂzz cosh Bol;
4t 422 4 4
. L ! . L ! (A17)
t3sinhB3l; t3 cosh B3l; tysinhByql; t4 cosh B4l
t3B3 cosh B3l; t3B3sinhBsl; t4B4 cosh Bal; t4BasinhBal;
El"gt3532sinh/33li Er0t3‘[332 cosh B3l; El"ot4/34zsinh/34li EF0t4/342 cosh B4l;
4 44 47 e
i i i i
d;-ﬂ = Erotlﬁl?’ cosh B11; — GJ#1 1 cosh B1l; + z,(1 + thi)fyismhﬁlli + yuthﬁziSinhﬁlli
d;u = ETgtB13sinhBl; — GJt B1sinhBql; + z; (1 + zbtl)Kyicosh Bili + yuztﬂ(gi cosh B1/;
d;-B = Eroi‘zﬁzg cosh Byl; — GJta B2 cosh Bol; + zp(1+ thg)KyiSinhﬁzli + ]/uztzNKZiSinhﬁzli
d;ﬂ = Er0t2ﬁ23sinhﬁzli — GJtyBrsinhByl; + Zh(l + zp tZ)KinOSh Bali + yuthKEi cosh Byl
d;LS = Er0t3ﬁ33 cosh B3l; — GJt3B3 cosh B3l; + Zb(l + thi)KyiSinhﬁgli + yuzt;iKZiSinhlBg,li
d?é = Er0t3ﬁ33sinh‘331i — GJt3B3sinhfB3l; + zp(1 4z t3)KinOSh Bali + yuzngEi cosh B3l;
d;l7 = Er0t4‘343 cosh Byl; — GJt4f4 cosh Byl; + zp(1+ thi)K]/iSinh,leli + yuztﬁKZiSinhlelli
d?g = El’ot4/343sinh/34ll- — GJt4PasinhBal; + Zb(l + th4)Kyi cosh Bal; + yu2f4KZi cosh B4l
0 0 0 0
0 0 0 0
Ty} = 0 0 0 0 (A18)
/IZZiyu sin ‘3511' /IZZZ‘yu CcOos ‘5511‘ /Izziyusinhﬁdi /IZZZ‘yu cosh ,8511'
0 1 0 1
v ﬁS 0 .BS 0
.= A19
Ri 0 71352 0 ﬁ52 ( )
—EIzBs> 0  ElzBs° 0
sin Bsl; cos Bsl; sinhfs/; cosh Bsl;
,35 Ccos ,B5li —ﬁ5 sin ‘3511‘ ﬁ5 cosh ﬁ5li ﬁ5sinhﬁ5li
T = —Bs? sin Bs1; —Bs? cos Bsl; Bs’sinhpBsl; Bs? cosh Bsl; (A20)
—EIZ‘B53 CcOos ,B5li EIZ‘B53 sin,B5ll- EIZ‘B53 COSh‘B5li EIZ‘B5BSinh‘B5li
+Kz; sin Bs; +Kz; cos Bs; +Kz;sinhBs; +Kz; cosh Bs;
0 0 0 0
oY 0 0 0 0
Ty = 0 0 0 0
Kziyu tysinhB11; Kziyutl cosh B411; Kziyu trsinhBol; Kziyutz cosh Bal;
(A21)
0 0 0 0
0 0 0 0
0 0 0 0

Kz,»yu tzsinhB3l; Kziyu t3 cosh B3l; Kz,»yut4sinhﬁ4li Kziyut4 cosh Bal;

Appendix C. The Derivations of By, and Br

Some possibly complicated boundaries, such as an elastically supported, lumped
mass, rotational inertia boundary, or any combination, can be given in a general way as
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M®(0) = —(Ki’r + Ciirw + Jiw @?)W'(0) M (L) = (Kigy + CRp@ + JR@w*)W' (L) (A22)
SY(0) = —(K¥ 4+ C@ + mpw?)W(0) S¥(L) = (K¥ + C¥w + mpw*)W(L)
M?(0) = —(KPy + CPyw + Jfw?)V/(0) M®(L) = (Kgy + Cirw + JR@?*)V'(L) (A23)
S(0) = —(K¥ + Cﬁw + mpw?)W(0) S(L) = (K + C{w + mrw?)W(L)
B(0) =0 B(L ) 0 (a24)
T(0) = —(Kfy + Cly@ + JJ@)¥(0) T(L) = (Kiy + Clg@ + J§@?) ¥ (L)

where K{°, K¥, K{*r, Kgr and C’, C¥, C{*;, Cgr and K, Kg, K{%, Kigp and C{Y, C¥, C[%,
Cgp are, respectively the translational and rotational stiffness and damping of lumped
attachment at the left and right end of the thin-walled beam in the w and v direction; m,,
mg and [V, J§ and J{, Jg are the corresponding mass and moment of inertia. KKT, KﬁT and
CﬁT, CgT and ]]lfT, ng are the rotational stiffness, damping and moment of inertia of lumped
attachment at the left and right end of the thin-walled beam in p direction respectively.
Substituting Equations (22)—(35) into Equations (A22)—(A24) and organizing them in
matrix form, one obtains:
B CY = {0}g,4 (A25)

where

w_ [KefrBy ELp:* Kefrpy ELBs* Kefyps EIl,Bs* Kefrps ELBs? (A26)
L™ |ELB®  Keé® ELB® Ke ELBs® Ke ELBS  Kel

with Kel = K + C%@ + ['@? Kel’ = K + CV@ + my w*

chlw = {0}g,1 (A27)
where
0 Elg#B12 0  ETlptaBr%2 03 ETpt3B32 0 ETptyB42
=g, T T T | e
L21 L21 L21 L21 L21 L21 L21 L21
with

bgm = (ETop1° — GJB1)t bL22 = KeLtl bL23 = (EToB2° — GJB2)t bL24 = Ke}/jtz
#25 (EToBs® — GJB3)ts bL26 = KeL t3 bL27 (EToB4® — GJBa)ty bng = Kelp

and KeﬁT = KfT + CKTE + ]le @’

Blzicij = {0}4><1 (A29)
where ) )
Kev ,35 —EI ,35 Kev ‘35 EIZ,B5
v o_ LT z LT
BL = {—EIZ,B53 Ke? ELBs®  Ké¥ (A30)

with Ke{'r = Ki'p + Cpw + [{w? Kef = K{ + CYw + mw?

BRCN+1 = {0} (A31)
where
BY — bRir PRz DRz DR DRis DRie DRiz  DRis (A32)
R b'w bw bZU bw bw bw b'w bw
R21 YRo1 YR21 YrR21 YRo1 YR21 YR21 YR21

with
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bgwull = Elyﬁlis%nhﬁllNJrl - KE%UTﬁl cosh ﬁllN+l, b%{012 = EIle1i cosh ‘BllNJrl - KE%UTﬁl S%l’l ﬁllNJrl
leS = Ely‘Bz s1nhﬁle+1 — KE%)T‘BZ cosh ,BZZN—H/ b%{UM = Elyﬁz cosh ﬁle_H — KEEJT‘BQ sin ,BllN—H
bfs = Elyﬁgzsinhﬁg,lNH — KegrBs cosh B3lny1, bR = EIy’B32 cosh B3ln41 — Kefp B3 sin B3ln 41
bR17 = EIy‘B4 Sil’lhﬁ4lN+1 KEIH{T‘B4 cosh ‘B4ZN+1, bf{(}18 = Elyﬁ42 cosh ﬁ4lN+1 — KE%UT‘BAI sin ‘B4ZN+1
bRZl = Ely‘Bl cosh ,BllN—i-l Kegsil‘lhﬁll]\]_i_l,bﬁ)zz = EIyﬁ13SinhﬁllN+1 — Ke}‘{’ cosh ﬁllN—H
by = Elyﬁz cosh Baln41 — KegsinhBoln 1, bR,y = Ely,323sinh,321N+1 — Ke{ cosh Boln 11
brhs = Eljﬁg, cosh B3ln11 — KegsinhB3ln 1, b = Elyﬁg,?’sinhﬁg,lNH — Keg cosh B3ln 41
bR27 = EIy‘B4 cosh ‘3411\]4_1 Keﬁ’sinhﬁ4lN+1, b%{UZS = EIy,B43Sil’lh,B4lN+1 — Keﬁ’ cosh ,B4ZN+1

and Ke{y = K + C&4@w + JY@? Ke{' = KV + CPw + mw?

Blpclﬁul {0}g1 (A33)
where N . A I A T
BY — bpii brip Ugis brig bris Drig briy  Urig A34
R™ 1P p b b b b o bY (A34)
R21 R21 R21 R21 R21 R21 R21 R21
with

b, = ETopi2hisinhByly 1, by, = ETop12t cosh Biln 1, bl = EToBa2tsinhBaln 1, bly, = EToBa%ts cosh Baln i1
bis = EToBs?tasinhBaly 1, by = EToBs?t3 cosh Baln 1, b;gw = ETpBs2tsinhBaln 1, bihg = EToBa>ty cosh Baln i1
by, = (ETop1® — GJB1)t cosh Bilys1 — KelytysinhBly 1, b Ro1 = = (EToB1® — GJB1)tisinhBln 1 — Kef§rty cosh Biln
bfzzg = (ETO,BZ — G]ﬁz)fz cosh Bolnt1 — KeRthslnh‘BZZNJr], R23 = (Er0ﬁ23 — G]ﬁz)fzsinhﬂleJr] — Ke{‘{th cosh Baln11
R25 = (EFOIB33 — G]ﬁg,)tg cosh B3ln41 — KeRTt3s1nhﬁ31N+1, R23 = (Er0ﬁ33 — G]ﬁg)f3sinh‘33[1\]+1 — Ke%’Ttg cosh B3aln1
bﬁIZS = (EFOIB43 - G]ﬁ4)t4 cosh ,B4ZN+1 KERTt4SII‘1hﬁ4lN+1, R23 = (EFO’B43 - G]ﬁ4)t4smhﬁ4lN+1 - KE?{]TM cosh ﬁ4lN+l

and KellgT = KﬁT + CETG + ]}552

RCN+1 = {0}4a (A35)
where
BY — —EL3 Si;‘(ﬁSZN—s-l) — Kefpps cos Bsin+1 —ELf3 goé(ﬁ51N+1) — Kefyps sin BsIn+1
R ;Elzﬁs COS,B5ZN+1 — Kelzi Sln,B5lN+1 EZIZIBS s1n,B5lN+1 — Kelzi cos ,5511\]_;,_1 (A36)
EILBs sinh(Bsln11) — KefBs cosh Bsini1  ELBs” cosh(Bslny1) — KefrBs sinh Bslni1
ELB53 cosh Bsln 1 — Ke? sinh Bsln 1 ELB53 sinh Bsly 1 — KeP cosh Bsln 1

with Ke§p = K§; + Cjr@ + J3w? Ke§ = K§ + Cyw + mpw?.

For the other usually used boundary, one can easily derive the corresponding coeffi-
cient matrices through the similar procedure.

Combing Equations (A25), (A27) and (A29) and organizing them in matrix form, one
obtains the coefficient matrices associated with the left end By :

Biu 024 w Cw
B! 0.4 {CZ{} BL6><12[CU] = [0]6x1 (A37)
O2><8 Bi

Similarly, the combination of Equations (A31), (A33) and (A35) can show the coefficient
matrices associated with the right end Bg:

w

BY 0
R 2x4 Cw+1 Cl
= Brex12H12x12 |~ [0]6x1 (A38)

BR 02><4

N+1
O2xs  BR
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Appendix D. The Expressions of the Derivative Matrices T, T¥ and T?

BE; 02><4 Cw Cw
B! 054 {C%] = BL6><12[C%;} = [0]6x1 (A39)
1 1
O2><8 BE
sinhﬁl lm,l cosh ﬁl lm,l Sinhﬁzlmll cosh ﬁﬂm,]
Tw,Z — ‘31 cosh ,Bllm,l ﬁlsinhﬁllm,l ﬁz cosh ﬁZlm,l ‘stinh/blm,l
m,1 B1%sinhpBl,,1 B1% cosh B1l1 B2%sinhBal,, 1 B2% cosh hBaly 1
El,B13 cosh Bl  ELBi3sinhBily,;  EIlyBo®coshBaly1  EL,Br3sinhBoly (A40)
sinhf3ly, 1 cosh B3l 1 sinhfyly, 1 cosh Byl 1
B3 cosh B3l 1 BasinhP3l,, 1 Bacosh Baly 1 BasinhPaly, 1

B3*sinhBaly,1 B3 cosh B3l 1 Ba*sinhpyly, 1 B4 cosh Byl 1
El, B33 cosh Bsly1  ELBi3sinhBsly,;  ElyBs®coshBaly  EL,Bs3sinhBuly

0 t 0 )
! — t1p1 0 t2Bo 0
.2 0 ETot151? 0 ETot, 2>
ETot1B1° — GJt B’ 0 ETot2B2° — GJt282° 0 (A41)
0 t3 0 ty
t3B3 0 taPa 0
0 ETot3B3> 0 ETot4f4?
Erot3ﬁ33 — G]t3ﬁ33 0 EF0t4ﬁ43 — G]t4ﬁ43 0
tysinhfB11,, 1 t1 cosh B1l1 tosinhBol, 1 ty cosh Baly 1
TLP'Z . i’l‘Bl cosh ‘Bllm,1 tlﬁlsinhﬁllmJ tzﬁz cosh ,BZZm,l tzﬁzsinhﬁzlmJ
ml El"otlﬁlzsinhﬁllm,l EF0t1ﬁ12 cosh ,B1lm,1 Erot2ﬁ22sinhﬁ21m,1 Erotzﬁzz cosh ,BZZm,l
d41 d42 d43 d44
m,1 m,1 m,1 m,1 (A42)
t3sinh B3l 1 t3 cosh B3ly, 1 tysinhByly, 1 ty cosh Baly 1
t3ﬁ3 cosh ‘Bglm,] t3/335inh/53lm,1 f4‘B4 cosh ‘B4lm,1 f4‘B4SiI‘lh‘B41m,1
El—'otgﬁg,zsinhﬁ:;lm,l El—'()tgﬁg,z cosh ;BBZm,l El"ot4‘B42sinh,B4lm,1 Eroi’4‘342 cosh ‘B4lm,1
d45 46 47 d48
m,1 m,1 m,1 m,1
with
d;ﬂ,l = Erotlﬁ? cosh ,Bllm,l — G]tLBl cosh ,Bllm,l; diz,l = Erotlﬁ? sinh ﬁllm,l — G]tl,Bl sinh ﬁllm,l
dﬁ?,l = Eroi‘zﬁ% cosh ﬁZlm,l — GItz,Bz cosh ,B2lm,l; d;lf,l = Eroi‘zﬁ% sinh ﬁZlm,l — G]i‘zﬁz sinh .BZIm,l
di?l = Er0t3ﬁg cosh B3l 1 — G]t;,1ﬁ3 cosh B3l 1; dzrlné,l = Erotgﬁg sinh B3l,, 1 — GJt3B3 sinh B3l 1
d:%l = El"ot4[3?1 COSh ﬁ4lm,l — G]t4134 COSh ,84Zm,l; d;;s/l = Er0f4ﬁ43 sinh ﬁ4lm,1 — G]t4134 sinh ﬁ4lm,l
0 1 0 1
vl Bs 0 Bs 0
Tm,z - 0 _‘352 0 ,352 (A43)
—EIzBs> 0  ElIzfs® 0
sin Bsly 1 cos Bsly 1 sinhBsly, 1 cosh Bsly, 1
0,2 _ /35 COos ,351,11,1 —[35 sin ,351,11,1 /35 cosh /3517,1,1 /35Sinh,35lm,1 (A44)
m,1 —IB5Z sin ‘B5lm,1 —IB5Z COSs ‘B5lm,1 ,[352sinh,[35lm/1 ‘352 COSh 135lm/1

—Elzﬁ53COSﬁ5lm,1 EIZIB53 sinﬁ5lm,1 Elzﬁ53COSh‘B5lm,1 EIZIB53 COSh,B5lm,1
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Appendix E

The stiffness matrix [Ke], mass matrix [Me] and the damping matrix [Ce] of the constrained thin-walled beam element illustrated in Figure 2 can be given by Equations
(A45)—(A47). In the matrixes, the coefficients Meij and Keij (i,j = 1-6) are, respectively, equal to those of the mass matrix and stiffness matrix for an unconstrained beam element.
One can find their values from the general textbooks. i and n donate the serial number of the subsystem and thin-walled beam element respectively, N is the total number of
thin-walled beam elements.

U6n—5 U6n—4 U6n—3 U6n—2  Uen—1 Yen ' U(N+1)+1 U6(N+1)+2 U6(N+1)+3
U6n—5
Ko+ Kgy5+ L o (R L L _ 1R R
kL,ej_lkR K1 (kR, £ kL yi Koy Kis Ko 7(kz,i + kz,i) kz,ili - kz,ili O6n—4
1 zZ,1 ) zZ,1
K K , K"zsr L R
n 4 4 n n n _
Ken +hy kS (ky: + ki )z Koy Kas Ko (ky i +ky0) U6n—3
K. 4 K+ K. + (kL, _'_kR')yuZ
e31 €32 €33 z,i z,i K" K" K" —kR. kL. _ kLA kR~ _ kL.l.L kRJR v
(kR — kL) yu (k;i +k§,i)2b +(k§,i +k5,i)zb2 34 Kezs  Kezg (kg gy =k + gz =l + k1L )yu 61— 2 s
[Ke] = Koy Koy Ke:43 K£44 K%15 Kg46 v
n n
K%51 Kisp K;53 K%54 K5155 K5;156 6n—1
n
Keél Ke62 Ke63 Ke64 K(365 Ke66
. Uén
L R L R L R LjL 4 1R R
_(kz,i + kz,i) L X (sz - kz,]i{)y” kz,i + kz,i . R _kz,ili + kz,ili :
B (kw' * kw’ ) - (ky/i + k%,i )z ky,i + ky,i U6(N+1)+1
L R JR
KL 1f — KRR — (KL 1F + K IRy KRR —KL1f kL dE> + KSR U6(N+1)+2
U6(N+1)+3
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U6n—>5
[Me| =
O6n—5 Uon—4
L R
Cz,i + Cz,i L R
Cyi + Cyi
(C,l;,z - Céj)Vu (Cﬁ,i + Cﬁi)zb
—(ck; 4+ k) .
- (Cy,i + Cy,i)

LL__ .RiR
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