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Abstract: We present an analytical solution for the scattering of linear progressive waves by a surface
rectangular obstacle above a muddy seabed. The bottom cohesive mud is assumed to act as a
Newtonian fluid, and the thickness of the mud layer is considered to be comparable to the Stokes
boundary layer thickness. Our analytical results based on the matched eigenfunction expansions
incorporate the combined effects of obstacles and a fluid mud bottom. By reducing the mud layer
thickness or the dimensions of the obstacle to zero, the present study recovers the classical solution
for wave scattering by a surface obstacle above a solid bed or wave propagation over a layer of fluid
mud. Our analytical predictions of wave amplitudes and wave forces acting on the bottom of the
obstacle agree satisfactorily with the available numerical results. The most prominent effect of a
muddy seabed is a strong damping of wave amplitude. Parameter study reveals that the obstacle
submerged depth, mud layer thickness, and wave frequency can have significant impacts on the
attenuation of wave amplitude due to the presence of a muddy seabed.

Keywords: linear progressive waves; surface obstacle; muddy seabed; eigenfunction expansions
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1. Introduction

The scattering of surface water waves by a fixed structure of finite dimensions re-
mains an intruding and practical research topic in the engineered coastal and offshore
systems. Many classical analytical solutions based on the linear wave theory have been
reported for waves interacting with a floating or submerged obstacle [1–5]. For instance,
Mei and Black [4] employed the eigenfunction expansions [1] to study the effects of a fixed
and rigid rectangular prism on two-dimensional wave propagation on a constant water
depth. Prominent scattering features such as reflection and transmission coefficients were
reported. The method of eigenfunction expansions is one of the well-received mathematical
techniques for wave-structure problems. It has been applied to many related problems,
such as diffraction of obliquely incident waves by a rectangular trench [6], wave scattering
by a porous structure [7], and even the wave problem involving a moving obstacle with
small displacements [8]. More recent analytical studies on wave-obstacle problems include
the use of mild-slope assumption to investigate the effects of bottom undulation on wave
scattering [9], the application of dual poroviscoelastic wave barriers as a protection measure
for floating solar farms [10], and the scattering of flexural-gravity waves by a floating ice
sheet [11], among others.

In many coastal areas where the obstacles of interest can be relevant for various
engineering applications, bottom cohesive sediments may interact with the wave field.
Consequently, the wave–seabed interaction not only changes wave characteristics such
as wave celerity, wavelength, and wave height but also causes significant motions of
cohesive sediments [12]. The effects of a muddy seabed on wave propagation have been
frequently observed in the field [13,14]. Past studies of wave–seabed interactions often
employed a two-layer system consisting of a upper inviscid water layer and a bottom
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muddy seabed [12,15–18]. Suggested by the rheological testing of field samples taken from
various sites, several representative theoretical rheological models, including Newtonian
fluids [12,16], viscoelastic fluids [15,17,18], viscoplastic materials [19], and poroelastic
models [20], have been proposed to model the rheological behaviors of the bottom fluid
mud. Due to the diverse rheological properties of fluid mud partly as a consequence
of its distinct physico-chemical compositions, it is unequivocal that no single model is
capable of describing the entire spectrum of rheological behaviors of fluid mud. Recent
analytical results for wave–mud interactions include a depth-integrated model for weakly
nonlinear long waves over a thin layer of viscoelastic mud on a mild-slope beach [21],
a Boussinesq-type model incorporating two distinct soft mud layers to take into account
the vertical variation of mud properties [22], and a linear theory for waves and currents
over a viscoud fluid bed [23].

Through the above discussion, it is evident that continuous efforts have been made
to study both wave–obstacle and wave–mud interactions. However, the combined wave–
obstacle–mud problem seems to receive less attention. Therefore, in the present study, we
shall investigate the scattering of water waves by a surface obstacle above a muddy seabed.
A common two-layer system is adopted for the wave–obstacle–seabed problem. The bottom
fluid mud is idealized as a Newtonian fluid. We consider only waves of small amplitudes
in a two-dimensional setting. The method of eigenfunction expansions is employed as the
analytical tool to incorporate the effects of a surface obstacle in the shape of a rectangle.
Due to the presence of a muddy seabed, the usual orthogonality of eigenfunctions can
no longer be applied to deduce unknown coefficients in the expansions. In this regard,
the idea of orthogonal mode-coupling [11,24,25] is adopted.

In Section 2, we present the formulations and the solution forms for wave scattering
by a surface obstacle above a muddy seabed. Assumptions and simplifications are also
discussed. Section 3 is devoted to the solution methods for the unknown coefficients and
the dispersion relations. Model predictions are examined using a set of available numerical
results [26], and a reasonable agreement is observed as presented in Section 4. With the
help of the new solution, the effects of key parameters, such as wave frequency, obstacle
submerged depth, and mud layer thickness, on wave amplitudes and wave forces are
discussed and presented also in Section 4. Key findings of the present study and the
limitations of the present model are summarized and discussed in Section 5. Finally, we
conclude with the potential directions for future studies.

2. Solution Forms
2.1. Assumptions and Simplifications

We consider a two-dimensional two-layer system commonly used in the theoretical
studies of wave–mud interactions [12], as sketched in Figure 1. The upper water layer
follows the typical assumptions of a perfect fluid and linear progressive waves [4]. The bot-
tom muddy seabed is idealized by a Newtonian fluid. Although the simple viscous model
has been shown to efficiently capture the prominent features of mud-induced wave energy
dissipation [14], we reiterate that there are still many occasions in which the Newtonian
model fails to accurately describe the field reality due to the complex rheological properties
of fluid mud, as discussed previously.

Assuming laminar flows and the thickness of the mud layer to be much smaller than
the water depth but comparable to the Stokes boundary layer thickness of mud, interfacial
mixing can be ignored, and a sharp interface is persistent between the two layers [18].
A solid obstacle in the shape of a rectangle is fixed in the free surface. The surface obstacle
is sufficiently high so that no wave overtopping is possible.
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Figure 1. An immiscible two-layer system for wave scattering by a surface rectangular obsta-
cle above a a muddy seabed. h, H = water depths, d = mud layer thickness, 2B = obstacle
length, W = obstacle submerged depth, ζw = free-surface displacement, ζm = water–mud inter-
facial displacement, (x, z) = horizontal and vertical coordinates. The fluid mud layer is on top of a
solid bottom.

2.2. Muddy Seabed

Inside the muddy seabed, the motion of the fluid mud is governed by the linearized
Navier–Stokes equations [15],

∂um

∂x
+

∂wm

∂z
= 0, (1)

∂um

∂t
= − 1

ρm

∂pm

∂x
+ νm

(
∂2um

∂x2 +
∂2um

∂z2

)
, (2)

∂wm

∂t
= − 1

ρm

∂pm

∂z
+ νm

(
∂2wm

∂x2 +
∂2wm

∂z2

)
, (3)

where t is time, (x, z) are defined in Figure 1, (um, wm) are velocity components, pm is
pressure, ρm is mud density, and νm is the viscosity of mud. We reiterate that nonlinear
convection terms have been neglected, since we focus only on a linear problem. At the very
bottom, the no-slip condition requires

um = 0, z = −(h + d), (4)

and
wm = 0, z = −(h + d), (5)

where h is the constant depth in the incident region and d is the thickness of the mud layer.
At the water–mud interface, the dynamic conditions require the continuity of tangential
and normal stress components, respectively, as [18]

ρmνm
∂um

∂z
= 0, z = −h, (6)

and
− pm + 2ρmνm

∂um

∂z
= −pw, z = −h, (7)

where pw is the pressure of water above the muddy seabed. In addition, the kinematic
condition states that

ww = wm =
∂ζm

∂t
, z = −h, (8)

where ww is the vertical component of water particle velocity and ζm(x, t) denotes the
interfacial displacement.
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We assume that d is much smaller than the water depths but comparable to the Stokes
boundary layer thickness defined as

δm =

√
2νm

ω
, (9)

where ω is the wave frequency. It follows that the horizontal momentum Equation (2), can
be approximated by the typical boundary layer equation as [17]

∂um

∂t
= − 1

ρm

∂pm

∂x
+ νm

∂2um

∂z2 (10)

and the vertical momentum Equation (3), suggests a vertically uniform pressure inside the
mud layer [17],

pm = pm(x, t). (11)

Since in the present study O(d) = O(δm), the dynamic condition in the normal direction,
(7), can be simplified as the continuity of pressure across the interface [17],

pm = pw, z = −h. (12)

Hence, using (12) in (10), the horizontal momentum Equation (10), becomes

∂um

∂t
= − 1

ρm

∂pb
∂x

+ νm
∂2um

∂z2 , (13)

where
pb = pw(x, z = −(h + d), t). (14)

Flow motion in the water layer is governed by the Euler equations. Therefore, the pres-
sure gradient term in (13) can be expressed as

∂pb
∂x

= −ρw
∂uw

∂t
, (15)

where uw is the horizontal water particle velocity and ρw is the density of water. Substi-
tuting (15) into (13), the linearized horizontal momentum equation in the muddy seabed
becomes [18]

∂um

∂t
=

ρw

ρm

∂ub
∂t

+ νm
∂2um

∂z2 , (16)

where
ub = uw(x, z = −(h + d), t). (17)

The two-point boundary value problem for um, i.e., (16) with (4) and (6) can be readily
solved to obtain the solution form for um as [18]

um(x, z, t) =
ρw

ρm
ub[− cosh α(z + h + d) + tanh(αd) sinh α(z + h + d) + 1], (18)

where

α = (1− i)
√

ω

2νm
. (19)
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Consequently, by the conservation of mass, (1), the solution for wm is

wm(x, z, t) =
∫ z

−(h+d)
−∂um(x, z′, t)

∂x
dz′

=
ρw

ρm

∂ub
∂x

{
sinh α(z + h + d)

α

− tanh αd
α

[cosh α(z + h + d)− 1]− (z + h + d)
}

. (20)

We note that in (18) and (20), the water particle velocity ub(x, t), defined in (17), is yet
to be determined. For later use, the vertical velocity at the water–mud interface is

wb = ww

∣∣∣
z=−h

= wm

∣∣∣
z=−h

=
ρw

ρm

∂ub
∂x

[
d− tanh αd

α

]
. (21)

2.3. Water Layer

With the usual assumptions for water waves, we can define a velocity potential for the
motion of water particles as

∇Φ = (uw, ww), (22)

which satisfies the Laplace equation

∇2Φ =
∂2Φ
∂x2 +

∂2Φ
∂z2 = 0,


Region 1: x < −B, −h < z < 0,

Region 2: − B < x < B, −H < z < −W,

Region 3: B < x, −h < z < 0,

(23)

and the following conditions
∂Φ
∂z

=
∂ζw

∂t
,

∂Φ
∂t

= −gζw, z = 0 (Region 1 & Region 3: |x| > B)

∂Φ
∂z

= 0, z = −W (Region 2: |x| < B)
, (24)

∂Φ
∂z

= wm, z = 0, (25)

∂Φ
∂x

= 0,

{
x = ±B

−W < z < 0
. (26)

In the above, g is the gravitational acceleration, ζw is the free-surface displacement,
H is the constant depth below the surface obstacle of length 2B and submerged depth W.
In addition, the pressure filed can be obtained from the unsteady Bernoulli equation as

pw = (hydrostatic) + (dynamic) = −ρwgz + ρw
∂Φ
∂t

. (27)

We consider first the flow region before the surface obstacle, i.e., Region 1: x < −B.
To satisfy the Laplace Equation (23), by the method of eigenfunction expansions, the
solution form for Φ is formulated as

Φ(1) = e−iωt

{
A1eik1(x+B)

[
cosh k1(z + h) + Ω̃1 sinh k1(z + h)

]
+

∞

∑
n=1

Bne−ikn(x+B)
[
cosh kn(z + h) + Ω̃n sinh kn(z + h)

]}
, (28)
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where (A1, Bn, Ω̃n) and kn are unknowns to be determined and the infinite terms appear
due to the presence of the surface obstacle [4]. We remark that the term associated with A1
is related to the incident waves while B1 term represents the reflected waves [4]. For conve-
nience, the superscript (1) is also introduced to denote Region 1. Substituting (28) into the
interfacial condition, (25), and using (21), we obtain the coefficient Ω̃n to be

Ω̃n = Ωkn, Ω =
ρw

ρm

(
tanh αd

α
− d
)

. (29)

It follows from the free-surface conditions, (24), that a dispersion relation can be
derived as [18]

ω2 = gkn tanh knh
1−Ω coth knh
1−Ω tanh knh

. (30)

Clearly, Ω represents the effects of a muddy seabed on wave propagation. The disper-
sion relation needs to be solved numerically and is discussed shortly in Section 3.1.

Similarly, in Region 3, i.e., x > B, the solution form for the velocity potential can be
readily obtained as

Φ(3) = e−iωt
∞

∑
n=1

Eneikn(x−B)[cosh kn(z + h) + Ωkn sinh kn(z + h)], (31)

where En is to be determined and Ω and kn are the same as those given in (29) and (30),
respectively. The flow motion is expected to be different in Region 2 (|x| < B), since the
bottom of the surface solid obstacle acts as a rigid lid, as indicated by the no-flux condition
in (24). Following the same procedure, we shall obtain the velocity potential for |x| < B
as [4]

Φ(2) = e−iωt

{
C1 + D1

x
B
+

∞

∑
m=2

[
Cm

cosh Kmx
cosh KmB

+ Dm
sinh Kmx
sinh KmB

]
cos Km(z + W)

}
, (32)

where (Cm, Dm) are unknown coefficients and Km satisfies

ΩKm = tan KmH. (33)

We have obtained the complete solution form for the velocity potential. In the follow-
ing, we first comment on the solution procedure for the dispersion relations, (30) and (33);
then, we discuss the approach to obtain the unknown coefficients, (An, Bn, Cm, Dm, En).

3. Dispersion Relations and Unknown Coefficients
3.1. Dispersion Relations

The dispersion relation for both Region 1 and Region 3 is given in (30). Clearly, in the
absence of a muddy seabed, the mud response function, Ω defined in (29), reduces to
Ω = 0 and, consequently, (30) recovers the familiar form for the case of a solid bottom
with k1 being the wavenumber of the incident wave, k̃0, and kn>1 representing the evanes-
cent mode [4]. If there is no surface obstacle, (30) permits only one relevant solution,
a complex wavenumber k̃ whose real part represents wave propagation, and the imaginary
part shows the wave amplitude attenuation rate due to bottom mud [17]. Furthermore,
if the mud thickness is much smaller than the typical wavelength of the incident wave,
i.e., ε = O(k̃0d)� 1, an asymptotic solution for k̃ can be obtained by the perturbation
expansion in ε as [18]

k̃ ≈ O(1) +O(ε) = k̃0 + k̃1,


ω2 = gk̃0 tanh k̃0h

k̃1 =
Ωk̃0

sinh k̃0h cosh k̃0h + k̃0h

. (34)
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In the present study, the approximation given in (34) is used as the initial guess for solving
numerically the full dispersion relation (30). We remark that an infinite number of kn
shall be obtained. However, only the first several terms are important [4]. The numerical
implement for solving (30) is standard. For instance, the common fsolve syntax in either
MATLAB or Python is sufficient for the computational task. We do not reiterate here.

As an example, Figure 2 demonstrates the wavenumbers for the case of h = 10 m,
ρw/ρm = 0.9, νm = 0.01 m2/s, and d/δm = 1.5. As shown in the figure, all kn are complex
numbers. The imaginary part of the propagation mode, see k1 in the top panel of the figure,
represents the wave amplitude attenuation rate due to the presence of a muddy seabed [17].
In addition, stronger damping occurs in shallow waters. As for the solutions of kn>1 shown
in the bottom panel of Figure 2, they represent a rapid exponential decay away from the
obstacle, which is typical for wave-structure problems. As can be expected, the real part of
k1 is much larger than those of kn>1 while the opposite is true for the imaginary parts. We
remark that for the evanescent mode, kn>1, only the imaginary parts are relevant.

0 0.5 1 1.5 2 2.5 3

0

0.005

0.01

0.015

0.02

0.025

-0.2 -0.15 -0.1 -0.05 0

0

10

20

30

40

Figure 2. Wavenumbers for Region 1 and Region 3. Top: propagation mode, k1. Bottom: examples of
the evanescent mode, kn=2∼11, corresponding to <(k1h) = 0.01, 0.05, 0.25, 1, 2.5 (4, �, �, ◦, /). In all
cases, h = 10 m, ρw/ρm = 0.9, νm = 0.01 m2/s, and d/δm = 1.5.

Regrading the dispersion relation for Region 2, since (33) is in the form similar to the
typical equation governing the evanescent mode [4], the numerical solution for Km follows
the standard procedure given in the literature [27]. We note that by setting d = 0, (33)
reduces to the case of a solid seabed and Km = (m− 1)π/H [4]. Figure 3 shows the results
of Km>1 under H/h = 0.5. In the present study, we have complex wavenumbers, and the
real part of Km is approximately <(Km) = (m− 1)π/H.



Mathematics 2022, 10, 2838 8 of 13

0 2 4 6 8 10

0

0.02

0.04

0.06

0.08

0.1

Figure 3. Wavenumbers for Region 2. Each curve corresponds to <(k1h) = 0.05, 0.1, 0.2, 0.8, 2.5 (4,
�, �, ◦, /). In all cases, H/h = 0.5 and all other parameters are the same as those used in Figure 3.

3.2. Unknown Coefficients

If the free-surface displacement of the incident wave is formulated as

ζw = a0ei(k0x−ωt), (35)

immediately from (24) and (28), we obtain k1 = k0 and

A1 =
a0g
iω

e−ik1(x0+B)

cosh k1h−Ωk1 sinh(k1h)
, (36)

where a0 is the wave amplitude measured at some reference point x = x0 and k0 is the
corresponding wavenumber. As for the remaining unknown coefficients associated with the
solution for Φ, namely (Bn, Cm, Dm, En) in (28), (31), and (32), they are determined by the
matching conditions typical for wave scattering problem by the method of eigenfunction
expansions [4]. Specially, we shall require the continuity of both Φ and ∂Φ/∂x, i.e., pressure
and velocity, across the vertical interfaces at x = ±B. Unfortunately, the usual orthogonality
of eigenfunctions that can be conveniently employed to deduce a linear system for unknown
coefficients is no longer valid due to the presence of a muddy seabed, which can be readily
understood by the nonzero vertical water particle velocity at the bottom of the water layer,
as shown in (21). We reiterate that if wb = 0, the present model recovers the classical
problem of wave scattering by a surface obstacle above a solid bed [4]. In the present
study, to make the problem tractable, we shall adopt the idea of the so-called method of
orthogonal mode coupling [11,24,25] as the treatment for the matching conditions. In other
words, we define the following two inner products

〈 fn, fm〉 =



(
1 + Ω2K2

n

) sinh 2knh
4kn

+
Ω(1− cosh 2knh)

2
+

h
(
1−Ω2k2

n
)

2
, n = m∫ 0

−h
fn fmdz− 1 + Ω2knkm

2
sinh(kn + km)h

kn + km
−Ω(1− cosh kmh cosh knh)

−1−Ω2knkm

2
sinh(kn − km)h

kn − km
, n 6= m

, (37)

〈pn, pm〉 =


H
2
+

sin 2KnH
4Kn

, n = m∫ −w

−h
pn pmdz− Kn sin KnH cos Km H − Km cos Kn H sin KmH

K2
n − K2

m
, n 6= m

, (38)
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where fn = cosh kn(z + h)−Ωkn sinh kn(z + h) and pm = cos Km(z + w) are those vertical
functions that appear in the solution forms for Φ, i.e., (28), (31), and (32). We note that fn
and pm are orthogonal with respect to the above inner products [25],

〈 fn, fm〉 = 〈pn, pm〉 = 0, n 6= m. (39)

Using the above inner products, we obtain from the continuity of pressure at x = −B
and x = B

N

∑
n=1

BnΓn,m̃ −
M

∑
m=1

(Cm − Dm)∆m,m̃ = −A1Γ1,m̃, (40)

N

∑
n=1

EnΓn,m̃ −
M

∑
m=1

(Cm + Dm)∆m,m̃ = 0, (41)

and from the matching of velocity

N

∑
n=1

iknBnΘn,ñ −
M

∑
m=1

(CmKm tanh KmB− DmKm coth KmB)Γñ,m = ik1 A1Γ1,ñ, (42)

N

∑
n=1

iknEnΘn,ñ −
M

∑
m=1

(CmKm tanh KmB + DmKm coth KmB)Γñ,m, = 0, (43)

where

Γnm =
kn sinh knH + Km sin Km H −Ωk2

n(cosh kn H − cos KmH)

k2
n + K2

m
, (44)

∆nm =
Kn sin Kn H cos Km H − Km cos Kn H sin Km H

K2
n − K2

m
, (45)

Θnm =
1 + Ω2knkm

2
sinh(kn + km)h

kn + km
−Ω(1− cosh kmh cosh knh)

− 1−Ω2knkm

2
sinh(kn − km)h

kn − km
. (46)

In addition, m̃ = 1, 2, · · · , M and ñ = 1, 2, · · · , N. We note that the summations of
infinite series are truncated at finite N and M terms with N/M ≈ h/H [4]. Hence, (40)–(43)
now form a system of (2M + 2N) linear equations that can be solved numerically to obtain
a total of (2N + 2M) unknown coefficients (Bn, Cm, Dm, En).

4. Numerical Examples

We reiterate that by setting d = 0, our model recovers the classical solution for wave
scattering by a surface obstacle above a solid bed [4]. If there is no obstacle, i.e., B = W = 0,
the model reduces to the study of water waves over a layer of fluid mud [17]. We have
checked our results with those reported in the literature [4,17].

With the surface obstacle and the muddy seabed both considered, to make a quick
check, we compare our model predictions with the available numerical results [26] obtained
using OpenFoam, which is a popular open-source CFD package. Figure 4 shows the wave
amplitudes for incident, reflected, and transmitted waves. Visually, our results agree with
the numerical solutions. The wave damping caused by the muddy seabed is evident.
In Figure 5, we also compare the records of dynamic wave force acting on the bottom of
the obstacle. The wave force, F, is obtained by integrating the dynamic pressure, which is
calculated by the Bernoulli Equation (27), over the obstacle bottom face. The agreement
between the model predictions and the numerical results is again reasonable, as can be
seen in Figure 5. We notice that the dynamic force decreases slightly in time.

To understand the dynamic aspect of the impacts caused by the muddy seabed,
in Figure 6, we show the distribution of dynamic pressure on the obstacle bottom face.
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Various values of wave frequency, ranging from long to short waves, are considered with
other parameters unchanged. We observe from the figure that the pressure difference across
the length of the obstacle is significant. The change in magnitude becomes more dramatic
for longer waves. Although we consider only a fixed obstacle, the nonuniform distribution
of dynamic pressure may cause a potential rotational failure of the structure, which requires
more attention. In Figure 7, we consider the effects of obstacle submerged depth and the
thickness of the mud layer. As can be seen, at a fixed value of W/h, the thicker the mud
layer, the larger the difference in dynamic wave force, ∆F. We note that the dimensionless
wave force difference is defined as ∆F = (Fmud − Fsolid)/Fsolid, showing the effects of a
muddy seabed. On the other hand, when d is fixed, the change in wave force becomes
larger as W/h increases. We note that the passage below the obstacle becomes smaller for
larger W/h, i.e., shallower depth below the obstacle. Hence, the cases with smaller H are
more affected by the muddy seabed.

-20 -15 -10 -5 0 5 10 15 20

0

0.2

0.4

0.6

0.8

1

Figure 4. Variation of wave amplitude before and after the surface obstacle (denoted by the shaded
box). Lines: model predictions (solid: incident wave component; dashed: reflected wave; dashed-
dotted: transmitted wave). Symbols: corresponding numerical results [26]. Distance is normalized by
the typical wavelength of the incident wave, 1/k̃0. Wave amplitude is normalized by the incident
component at k̃0x ≈ 20. In this example, ρw/ρm = 0.9, νm = 0.003 m2/s, d = δm, B = W = 0.4 m,
h = 0.8 m, and k̃0 = 1.5 m−1.
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Figure 5. Time history of dynamic wave force acting on the bottom of the obstacle. Line: model
predictions. Symbol: numerical results [26]. Time is normalized by the wave period T. Wave force is
normalized by the hydrostatic force at the obstacle bottom. Parameters are the same as those used in
Figure 4.

Finally, in Figure 8, we show the amplitudes of interfacial waves at the water–mud
interface for short to long waves under several different values of obstacle submerged
depth. When W/h is fixed, the amplitude is larger for longer waves, which is in agreement
with the common understanding that bottom conditions are more significant for long
waves. On the other hand, for a given wave frequency, there exists a peak amplitude with
respect to the relative obstacle submerged depth, W/h. Furthermore, the peak amplitude
occurs at larger values of W/h for shorter waves, which again agrees with the fact that long
waves are more affected by the seabed.
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Figure 6. Distribution of dynamic pressure along the bottom of the obstacle under different val-
ues of wave frequency: ω (s−1) = 0.5, 0.6, 0.7, 0.8, 0.9 (top to bottom). In all cases, ρw/ρm = 0.9,
νm = 0.001 m2/s, d = δm, B = 30 m, W = 30 m, and W/h = 0.1.
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Figure 7. Force difference at the bottom of the obstacle versus dimensionless obstacle submerged
depth. Each curve represents a different mud layer thickness with d/δm = 0.5, 1, 1.5, 2 (top to bottom).
∆F = (Fmud − Fsolid)/Fsolid. In all cases, ω = 0.5 s−1 and all other parameters are the same as those
used in Figure 6.
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Figure 8. Amplitudes of interfacial waves as functions of dimensionless obstacle submerged depth.
Each curve represents a different value of wave frequency with ω = 0.5, 0.6, 0.7, 0.8, 0.9 s−1 (top to
bottom). In all cases, ρw/ρm = 0.9, νm = 0.001 m2/s, d = δm, B = 30 m, W = 30 m.

5. Concluding Remarks

We present an analytical solution for wave scattering by a surface obstacle above a
muddy seabed. The bottom mud is idealized as a Newtonian fluid, and the thickness of
the mud layer is assumed to be smaller than the water depth. The present solution takes
into account the combined effects of obstacle and fluid mud bottom. It reduces to the
classical solutions reported in the literature if the mud layer or the obstacle is absent. Model
predicted wave amplitude and wave force agree reasonably with the available numerical
results. Effects of the mud layer thickness, the obstacle submerged depth, and the frequency
of incident waves are discussed. We reiterate that the present model is limited to linear
waves and the muddy seabed is considered thin. Although the fluid mud is assumed to act
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as a Newtonian fluid only, the model can also be applied to the case of a viscoelastic seabed.
This is granted by the fact that for a linear problem, we only need to introduce a complex
viscosity, νme = νm + i Gm

ωρm
with Gm being the shear modulus of elasticity, and simply

replace νm by νme in all our formulations [15,17]. To account for more complex rheological
behaviors of mud, the present model can potentially be extended to incorporate the idea
of multiple mud layers [28,29], providing that in each single layer, the mud acts as a
viscoelastic fluid [22]. The layering structure can also be introduced in the water body if
the possible effects of water density stratification are to be considered [30]. Finally, to relax
the constant depth assumption in the present model, the idea of using a staircase seabed to
approximate the varying bathymetry [31] is a potential candidate.
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