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Abstract: We consider an extension of the mean inactivity time based on a non-negative weight
function. We show various properties of the new notion, and relate it to various functions of interest
in reliability theory and information measures, such as the dynamic cumulative entropy, the past
entropy, the varentropy, and the weighted cumulative entropy. Moreover, based on the comparison
of weighted mean inactivity times, we introduce and study a new stochastic order and compare it
with other suitable orders. We also discuss some results about the variance of transformed random
variables and the weighted generalized cumulative entropy. Then, we investigate certain connections
with the location-independent riskier order. Finally, we pinpoint several characterizations and
preservation properties of the new stochastic order under shock models, random maxima, and
notions of renewal theory.

Keywords: generalized cumulative entropy; lower record values; mean inactivity time; weighted
mean inactivity time function; left spread function; renewal theory; variance
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1. Introduction and Preliminaries

Over recent decades, various concepts of stochastic orders have been defined and
studied in the literature for the sake of their useful applications in reliability and economics
and as mathematical tools for proving important results in applied probability. A compre-
hensive discussion of many stochastic comparisons between random variables is reported
and investigated in detail in the monograph given by Shaked and Shanthikumar [1]. The
mean inactivity time (MIT) function, also known as the mean past lifetime and the mean
waiting time, is a well-known reliability measure which has many applications in various
disciplines, such as reliability theory, survival analysis, risk theory, and actuarial studies,
among others.

Let X be a non-negative absolutely continuous random variable denoting the life-
time of a system or a component or a living organism, and, henceforth, named random
lifetime. We denote by F(x) = P(X ≤ x) the cumulative distribution function (CDF) of
X, and by f (x) the corresponding probability density function (PDF). Under the condi-
tion that the system has been found failed before time t, the inactivity time is defined by
X[t] = [t− X |X ≤ t]. In fact, X[t] denotes a random variable whose distribution is the same
as the conditional distribution of t− X given that X ≤ t. It is worth emphasizing that in
many realistic situations, the random lifetime can refer to the past. For instance, consider a
system whose state is observed only at certain preassigned inspection times. If at time t,
the system is inspected for the first time and it is found to be “down”, then the failure relies
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on the past (see, e.g., Kayid and Ahmad [2] and Di Crescenzo and Longobardi [3]). Now,
we recall the MIT function of X which is defined by

µ̃(t) = E[t− X|X ≤ t] =
1

F(t)

∫ t

0
F(x)dx, t ∈ D := {t ∈ R+ : F(t) > 0}. (1)

An interpretation of the MIT function is as follows: assume that at time t we perform an
inspection to a device which started working at time 0, and then we realize that it has
already failed. Hence, denoting by X the failure time, the MIT function describes the mean
time elapsed between the failure and the inspection time t. The MIT is thus useful to infer
on the actual time at which the failure of the device occurred. For further interpretations
in survival analysis and mathematical insurance we refer the readers to, e.g., Kayid and
Izadkhah [4]. Assuming that µ̃(t) is a differentiable function, from (1) we get

µ̃′(t) = 1− τ(t)µ̃(t), t ∈ D, (2)

where

τ(x) =
f (x)
F(x)

, x ∈ D (3)

denotes the reversed hazard rate function of X. It is known that the reversed hazard rate
and the MIT functions under certain assumptions define uniquely F(t) as follows:

F(t) = exp
{
−
∫ ∞

t
τ(x)dx

}
= exp

{
−
∫ ∞

t

1− µ̃′(x)
µ̃(x)

dx
}

, t ∈ D. (4)

As pointed out by Finkelstein [5], relation (4) characterizes distribution functions if the
following statements hold: (i) µ̃(0) = 0 and µ̃(x) > 0 for all x > 0; (ii) µ̃′(x) < 1;
(iii)

∫ ∞
0 (1− µ̃′(x))/µ̃(x)dx = ∞; and (iv)

∫ ∞
t (1− µ̃′(x))/µ̃(x)dx < ∞, for all t > 0. It

follows from Equation (4) and characterization conditions for µ̃(x) that there is no lifetime
distribution with decreasing MIT function. Indeed, µ̃′(x) < 0, in this case and condition
(iv) does not hold (see Finkelstein [5] for further details).

The MIT function has been the object of several investigations. Kayid and Ahmad [2]
(see also Ahmad et al. [6]) studied stochastic comparisons based on the MIT function under
the reliability operations of convolution and mixture. Badia and Berrade [7] gave an insight
into properties of the MIT in mixtures of distributions. Some further properties of MIT
function are widely studied and investigated in Finkelstein [5], Goliforushani and Asadi [8],
Kundu and Nanda [9], and the references therein. Moreover, Izadkhah and Kayid [10]
used the harmonic mean average of the MIT function to propose a new stochastic order.
Recently, Toomaj and Di Crescenzo [11] showed that the variance of a random variable can
be represented in terms of the square of the MIT function.

Following the lines of the previous investigations, in the present paper, we aim to
define a new version of MIT function, namely the weighted MIT function, and to show some
applications of such a measure. In analogy with (1), the weighted MIT function is defined
through the expectation E[ψ(t)− ψ(X)|X ≤ t], where ψ is a suitable cumulative weight
function. By means of suitable choices of ψ we show that the weighted MIT function can be
related to various notions of reliability theory, as well as to several information measures
of interest, such as the dynamic cumulative entropy, the past entropy, the varentropy, and
the weighted cumulative entropy. In other terms, the introduction of the weight function
ψ allows to construct a flexible tool which unifies various notions emerging in different
applied fields. Indeed, in Example 3 below we show that by introducing a weight based
on the function φ(t) = τ(t)µ̃(t) one can recover the dynamic cumulative entropy from
the weighted MIT function. Similarly, a suitable choice considered in Example 4 allows to
express the weighted MIT function in terms of the past entropy and the reversed hazard
rate function. Connections with the varentropy and the weighted cumulative entropy are
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given in Remark 5 and Section 4.2, respectively. Moreover, the generalized MIT function
can be used to extend the MIT stochastic order to the weighted version.

Concerning the the main theoretical contributions of this paper, we refer, first, to the
introduction of the weighted mean inactivity time function, which allows to suitably extend
the MIT function. For the essential background in this area, see the previously mentioned
articles and the recent contribution by Khan et al. [12] and references therein. Secondly,
we refer to the introduction of the left spread function, which is analog to the right spread
function (also known as excess wealth transform). For the main references on this concept
see Unnikrishnan Nair and Vineshkumar [13] and Kochar and Xu [14]. The given function,
which is of interest in risk management, is also extended to the weighted version. The latter
one is shown to be intimately related to the variance of the weighted random variable and
to the weighted generalized cumulative entropy.

Therefore, the rest of this paper is organized as follows: in Section 2, some general
properties of the weighted mean inactivity time function are discussed. We provide suitable
connections with the Receiver Operating Characteristic (ROC) curve (see Remark 1). We
also analyze conditions expressed in terms of the reversed hazard rate function, such
that the weighted mean inactivity time function is constant, and also that it is increasing.
Section 3 is devoted to introduce the weighted mean inactivity time order. We also analyze
its properties and connections to other well-known stochastic orders. In particular, we find
additional conditions that allow to relate this order with the reversed hazard rate order.
In Section 4, we use the weighted MIT function to obtain expressions and various results
for the variance of transformed random variables, as well as for the weighted generalized
cumulative entropy. Furthermore, attention is given to the determination of bounds and to
the representation of measures in terms of expectations. Section 5 is finalized to investigate
some connections of the previous results with the location-independent riskier order. In
Section 6, we focus on applications to reliability theory, with special attention to ordering
results for a shock model governed by a non-homogeneous Poisson process, and for the
maximum of independent and identically distributed (i.i.d.) random variables. Finally, we
provide also applications to renewal theory based on the weighted mean inactivity time
order, with emphasis on the excess lifetime of a customary renewal process.

Throughout this paper, we deal with non-negative random variables. Additionally, it
is assumed that the expectations exist whenever they appear. The mean and the variance of
X are denoted, respectively, by E(X) and Var(X). For simplicity, we write gn(x) instead
of [g(x)]n for any given function g. Moreover, g′(x) denotes the derivative of g(x), and
G−1(u) = inf{x ∈ R+ : G(x) ≥ u}, u ∈ [0, 1], denotes the left-continuous quantile function
of G(x). In addition, “log” denotes the natural logarithm, with the convention 0 log 0 = 0,
and 1B(x) is the indicator function, i.e., 1B(x) = 1 when x ∈ B, and 1B(x) = 0 otherwise.
The terms increasing and decreasing are used in a non-strict sense.

Finally, given two subsets of the real line U and V , we say that a non-negative function
K(u, v) defined on U × V is totally positive of order 2, denoted as TP2, if K(u1, v1)K(u2, v2) ≥
K(u1, v2)K(u2, v1) for all u1 ≤ u2 in U and v1 ≤ v2 in V (see Karlin [15]).

2. Weighted Mean Inactivity Time Function

The aim of this section is to investigate on the weighted mean inactivity time function
by applying the cumulative weight function, say. For this aim, we first consider an integrable
function φ : [0, ∞)→ [0, ∞). Then, the cumulative weight function is defined as

ψ(x) :=
∫ x

0
φ(u)du, x ≥ 0. (5)

This function plays a pivotal role in achieving our results. Specifically, given the random
lifetime X, we will focus on various properties of the transformed random variable ψ(X).

Let F(t) = 1− F(t) be the survival function of X, and let
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λ(x) =
f (x)
F(x)

, ∀ x ≥ 0 : F(x) > 0 (6)

denote the hazard rate function of X. For example, if we consider φ(x) = λ(x), then (5)
gives the cumulative hazard function of X. Due to (5), it is clear that ψ(x) is an absolutely
continuous increasing function for x > 0, such that ψ(0) = 0 and ψ′(x) = φ(x) ≥ 0.
Additionally, if the weight function φ(x) is increasing (decreasing) in x > 0, then ψ(x) is
convex (concave). This function was successfully applied by Toomaj and Di Crescenzo [16]
to provide expressions for the variance of cumulative weighted random variable ψ(X) by
defining the weighted mean residual life (WMRL) function as

mψ(t) = E[ψ(X)− ψ(t)|X > t] =
1

F(t)

∫ ∞

t
φ(x)F(x)dx, (7)

for all t ≥ 0, such that F(t) > 0. In analogy with (7), now we can provide the following:

Definition 1. Given a random lifetime X and a cumulative weight function defined as in (6), the
weighted mean inactivity time (WMIT) function of X is defined as

µ̃ψ(t) = µ̃ψ(X)(t) = E[ψ(t)− ψ(X)|X ≤ t] =
1

F(t)

∫ t

0
φ(x)F(x)dx, t ∈ D. (8)

We remark that the absolutely continuity of X is not really needed to introduce the
WMRL and WMIT functions in Equations (7) and (8), respectively.

In what follows, to ensure the finiteness of µ̃ψ(t), we implicitly assume that

E[ψ(X)] =
∫ ∞

0
ψ(x) f (x)dx < ∞. (9)

Clearly, if ψ(t) = t, and hence φ(t) = 1, then Equation (8) coincides with the MIT func-
tion (1), and Equation (7) gives the mean of the residual lifetime of X at age t, i.e.,

Xt := [X− t |X > t], t ∈ D. (10)

We remark that if ψ is strictly increasing, then the WMIT function of X can be seen as
the mean of the residual lifetime of ψ(X) at age ψ(t). Hence, in this case certain properties
of the WMIT function of X can be derived from the MIT function of ψ(X). Consequently,
in the remainder of the paper we bear in mind that ψ is increasing, but not necessarily
in the strict sense. For instance, if φ(x) = 1[y,+∞)(x) and thus ψ(x) = (x− y) 1[y,+∞)(x),
for a fixed y > 0, then recalling Equations (1) and (8) one has that the WMIT function is
expressed in terms of the MIT function as follows:

µ̃ψ(t) =
[

µ̃(t)− F(y)
F(t)

µ̃(y)
]
· 1[y,+∞)(t), t ∈ D.

Remark 1. Let Y be a random variable with PDF g(t) and CDF G(t). Let us consider the
cumulative weight function ψ(x) = G(x) and hence φ(x) = g(x). Clearly, ψ(X) = G(X) takes
values in [0, 1], with distribution function

Fψ(X)(u) = P[G(X) ≤ u] = F(G−1(u)), 0 ≤ u ≤ 1.

This function is related to the ROC curve, which was first developed during the Second World War
by electrical engineers to analyze radar signals and to study the relation signal/noise, in particular
in order to detect correctly enemy objects in battlefields. Recently, this function has been widely
studied by Calì and Longobardi [17]. By interchanging the role of F and G in Section 3 of [17], the
ROC curve has the following representation
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ROC(u) = F(G−1(1− u)), 0 ≤ u ≤ 1,

so that ROC(0) = 0 and ROC(1) = 1. We also recall the relevant index given by the area under
the ROC curve, i.e., AUC, which is defined by (for details, see Section 5 of [17])

AUC :=
∫ 1

0
ROC(u)du =

∫ ∞

0
g(x) F(x)dx = E

[
F(Y)

]
,

where we have set x = G−1(1− u). Clearly, since ψ(x) = G(x), and thus φ(x) = g(x), from (7)
one has AUC = mψ(0) = mG(0). On the other hand, from (8) we have also

AUC = 1−
∫ ∞

0
g(x) F(x)dx =: 1− µ̃ψ(∞) = 1− µ̃G(∞).

Moreover, in this case one has ψ(∞) = 1, so that applying Equations (8) and (9) the following
useful representation is obtained:

AUC = E[G(X)].

Hereafter, we discuss the WMIT function when the CDF of X is expressed through a
distortion of a baseline distribution function, and when the cumulative weight function (5)
is the baseline distribution function itself. We recall that an increasing function ζ : [0, 1]→
[0, 1] such that ζ(0) = 0 and ζ(1) = 1 is called distortion function, and is often employed to
construct distortion distributions. These functions were introduced in the context of the
theory of choice under risk (cf. Yaari [18]). As an example, for some recent applications see
Hu et al. [19] (in risk theory), and Navarro [20] and Navarro et al. [21] (in statistics).

Remark 2. Given an absolutely continuous baseline distribution function F0(x) and a distor-
tion function ζ, let the CDF of the random lifetime X be a distorted distribution of the form
F(x) = ζ[F0(x)].
(i) If the cumulative weight function is given by ψ(x) = F0(x), then due to (8) the WMIT function
of X can be expressed as

µ̃ψ(t) =
Z[F0(t)]
ζ[F0(t)]

, t ∈ D, where Z[u] =
∫ u

0
ζ(y)dy, u ∈ [0, 1].

(ii) If, in addition, X satisfies the proportional reversed hazard model (for details see, for instance,
Sankaran and Gleeja [22] and references therein), such that ζ(y) = yθ , θ > 0, then the WMIT
function of X becomes

µ̃ψ(t) =
F0(t)
θ + 1

, t ∈ D.

As example, it is not hard to see that if X is exponentially distributed, then:

(i) If φ(x) = xr, x ≥ 0, r > 0, then µ̃ψ(t) is increasing in t > 0 and tends to +∞ as t→ +∞;
(ii) If φ(x) = e−x, x ≥ 0, then µ̃ψ(t) is increasing in t > 0 and tends to a finite limit as
t→ +∞;
(iii) If φ(x) = e−x2

, x ≥ 0, then µ̃ψ(t) is not monotonic as t > 0 and tends to a finite limit as
t→ +∞.

Henceforward, we investigate some further properties of the WMIT function given in
(8). To begin with, from Equations (5) and (8) the following lemma is easily obtained.

Lemma 1. If X is an absolutely continuous non-negative random variable, then for all t ∈ D

µ̃′ψ(t) = φ(t)− τ(t) µ̃ψ(t).

This result allows to give the condition such that the WMIT function is constant.
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Proposition 1. Let X be an absolutely continuous non-negative random variable. Given a constant
c > 0, one finds that

µ̃ψ(t) = c for all t > 0,

if, and only if,
φ(t) = c τ(t) for all t > 0.

It is evident from (8) that for a non-negative random variable X, the weighted mean
inactivity time function for all t ∈ D can be rewritten as

µ̃ψ(t) = ψ(t)− µψ(t), (11)

where

µψ(t) = E[ψ(X)|X ≤ t] =
1

F(t)

∫ t

0
ψ(x)dF(x), t ∈ D

is termed as the weighted mean failure time of a system conditioned by a failure before
time t, also named weighted mean past lifetime. Clearly, if X is absolutely continuous then the
derivative of this function is given by

µ′ψ(t) = τ(t)[ψ(t)− µψ(t)], t ∈ D. (12)

By virtue of (4) and using Lemma 1, the WMIT function under certain assumptions defines
uniquely F(t) as follows:

F(t) = exp
{
−
∫ ∞

t
τ(x)dx

}
= exp

{
−
∫ ∞

t

φ(x)− µ̃′ψ(x)

µ̃ψ(x)
dx

}
, t ∈ D. (13)

Equation (13) characterizes the distribution function under the following statements:

(i) µ̃ψ(0) = 0 and µ̃ψ(x) > 0 for all x > 0;
(ii) µ̃′ψ(x) < φ(x);
(iii)

∫ ∞
0 (φ(x)− µ̃′ψ(x))/µ̃ψ(x)dx = ∞, and

(iv)
∫ ∞

t (φ(x)− µ̃′ψ(x))/µ̃ψ(x)dx < ∞ for all t > 0.

Remark 3. We remark that from (13) and the characterization conditions for µ̃ψ(x), it follows
that there is no lifetime distribution with decreasing WMIT function. Indeed, recalling (13), if
µ̃′ψ(x) < 0 and:

(a) If C(t) :=
∫ ∞

t φ(x)dx = ∞ for some t > 0, then one has

F(t) < exp
{
−
∫ ∞

t

φ(x)
µ̃ψ(x)

dx
}

< exp
{
− C(t)

µ̃ψ(t)

}
= 0;

(b) If C(t) =
∫ ∞

t φ(x)dx < ∞ for all t > 0, then from condition (i) we have

F(0) < exp
{
− C(0)

µ̃ψ(0)

}
= 0.

Hence, in both cases the condition leads to a contradiction, so that there exists no lifetime distribution
with decreasing WMIT function.

It is worth to point out that in some situations the conditions (i)–(iv) may be not
satisfied, as shown in the following example.
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Example 1. Let X be a non-negative random variable with CDF F(x) and survival function F(x).
With reference to (5), we consider the weight function φ(x) = F(x)/F(x), also known as odds of
survival (see, for instance, Gupta and Peng [23]), so that from (8) we obtain

µ̃ψ(t) =
1

F(t)

∫ t

0
F(x)dx, t ∈ D. (14)

Clearly, if inf(D) = 0 and if X is absolutely continuous with PDF f (x), such that 0 < f (0) < ∞,
then µ̃ψ(0) = 1/ f (0) > 0. In this case, condition (i) above does not hold and hence the distribution
function cannot be characterized. The function in the right-hand-side of (14) is known as the mean
time to failure of an item that is subject to an age replacement policy in which a unit is replaced
t hours, say, after its installation or at a failure, whichever occurs first (see Section 3.3 of Barlow
and Proschan [24] for details). From the latter reference, if X has decreasing (increasing) failure
rate, i.e., X is DFR (IFR), then the function µ̃ψ(t) given in (14) is increasing (decreasing) in t. This
conclusion can also be obtained from Point (i) of Theorem 1 below by noting that, due to (6),

φ(t)
τ(t)

=
1

λ(t)
, t > 0,

which is increasing (decreasing) when X is DFR (IFR).

The following result deals with the WMIT and MIT functions.

Lemma 2. Let X be a non-negative random variable with weighted mean inactivity time function
µ̃ψ(t) defined as in (8). If ψ(x) is convex (concave) on [0, ∞), then

µ̃ψ(t) ≥ (≤) ψ(µ̃(t)) for all t ∈ D. (15)

Proof. By assumption ψ(x) is increasing convex (concave) on [0, ∞), with ψ(0) = 0. Thus,
ψ(x) is superadditive (subadditive), i.e., ψ(z + y) ≥ (≤) ψ(z) + ψ(y), for z, y ≥ 0. By
substituting z = x and y = t− x, with 0 ≤ x ≤ t, we obtain ψ(t)− ψ(x) ≥ (≤) ψ(t− x)
for all t ≥ x ≥ 0. Hence, recalling (8) and (1) we find that

µ̃ψ(t) = E[ψ(t)− ψ(X)|X ≤ t],

≥ (≤) E[ψ(t− X)|X ≤ t],

≥ (≤) ψ(E[t− X|X ≤ t]) = ψ(µ̃(t)), t ∈ D,

where the last inequality is obtained by using Jensen’s inequality. This gives the desired result.

Lemmas 1 and 2 will be used to derive various results presented in the sequel.

Lemma 3. Let X be a non-negative random variable with weighted mean inactivity time function
µ̃ψ(t) defined as in (8). Assume that there exist non-negative constants m and M, such that
m ≤ φ(t) ≤ M for all t ≥ 0. Then,

m ≤
µ̃ψ(t)
µ̃(t)

≤ M for all t ∈ D. (16)

Proof. The proof is immediately obtained by recalling Equations (1) and (8).

Lemma 3 allows us to obtain ordering relations between the WMIT and MIT functions.
Indeed, (i) if M = 1, then µ̃ψ(t) ≤ µ̃(t) for all t ∈ D; (ii) if m = 1, then µ̃ψ(t) ≥ µ̃(t) for all
t ∈ D.

For instance, if φ(t) = F(t) and condition (9) is satisfied, then M = 1, and
µ̃ψ(∞) = Gini(X), where Gini(X) = E[|X− X′|]/2 denotes the Gini mean semi-difference,
with X′ an independent copy of X.
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Hereafter, we focus on a non-parametric class of lifetime distribution based on increas-
ing nature of weighted mean inactivity time function µ̃ψ(t). As pointed out earlier there is
no lifetime distribution with decreasing WMIT function.

Definition 2. A non-negative random variable X is said to have increasing weighted mean inactiv-
ity time function, denoted by IWMIT, if µ̃ψ(t) is an increasing function of t ∈ D.

From the results exploited above it follows that the monotonicity properties of µ̃ψ(t)
are based on φ(x) and τ(x). This is confirmed in the following theorem, which provides
sufficient conditions for the increasingness of µ̃ψ(t). We recall that X is said to be increasing
in the mean inactivity time function, i.e., IMIT, if µ̃(t) is increasing in t.

Theorem 1. Let X be an absolutely continuous non-negative random variable with reversed hazard
rate function τ(x) defined as in (3). If any of the following conditions hold:

(i) φ(x)/τ(x) is an increasing function of x;

(ii) φ(x) is increasing in x and X is IMIT;

(iii) ψ(x)τ(x)/φ(x) is decreasing in x > 0;

then X is IWMIT.

Proof. The proof under the conditions (i) and (ii) is similar to those of Theorems 1 and
2 of Toomaj and Di Crescenzo [16], respectively, and hence is omitted. Now, consider
case (iii); since ψ(t) ≥ 0 is increasing in t, it is sufficient to prove that the following function
is increasing in t > 0:

µ̃ψ(t)
ψ(t)

=

∫ t

0
φ(x)F(x)dx

ψ(t)F(t)
=

∫ t

0
φ(x)F(x)dx∫ t

0
[ψ(x) f (x) + φ(x)F(x)]dx

. (17)

Define now
Ψ(i, t) :=

∫ ∞

0
ν(i, x)η(x, t)dx, i = 1, 2,

where

ν(i, x) =

{
ψ(x) f (x) + φ(x)F(x), i = 1

φ(x)F(x), i = 2,
and η(x, t) = 1(0,t](x).

Due to the assumption, ν(i, x) is TP2 in (i, x) ∈ {1, 2} × (0, ∞). On the other hand, it is easy
to observe that η(x, t) is TP2 in (x, t) ∈ (0, ∞)2. From the general composition theorem of
Karlin [15], it follows that Ψ(i, t) is TP2 in (i, t) ∈ {1, 2} × (0, ∞). This implies that µ̃ψ(t) is
an increasing function of t, due to (17), and this gives the desired result.

Remark 4.

(i) It should be noted that the condition that φ(x)/τ(x) is an increasing function of x, given in
Point (i) of Theorem 1, is ensured under the assumptions that ψ(t) is convex and X is DRHR,
i.e., the reversed hazard rate function τ(t) is decreasing in t;

(ii) We point out that if X is an absolutely continuous non-negative random variable with the
reversed hazard rate τ(x), such that xτ(x) is decreasing in x > 0 and if ψ(x) = xr, r ≥ 1,
then

ψ(x)τ(x)
φ(x)

=
1
r

xτ(x),

is a decreasing function of x > 0. In this case, thanks to the Point (iii) of Theorem 1, one can con-
clude that X is IWMIT. (See Proposition 13 of Di Crescenzo et al. [25] for a characterization
of the property that xτ(x) is decreasing).
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The following examples show the usefulness of Theorem 1.

Example 2. Let X have Fréchet distribution with CDF F(x) = exp{−cx−γ}, x > 0, for c, γ > 0.
Then, under the conditions considered in Point (ii) of Remark 4 we have that X is IWMIT.

Example 3. Assume that φ(t) = τ(t)µ̃(t) = 1− µ̃′(t), where the last equality is due to (2).
From (5) we thus have ψ(t) =

∫ t
0 φ(u)du = t− µ̃(t) for all t > 0. In this case, from (8) we obtain

µ̃ψ(t) =
1

F(t)

∫ t

0
f (x)µ̃(x)dx, t ∈ D.

Hence, making use of Theorem 5.2 of Di Crescenzo and Longobardi [3], we have

µ̃ψ(t) = CE(X; t), t > 0, (18)

where CE(X; t) is known as the dynamic cumulative entropy of X. Recalling Corollary 6.1 of
Di Crescenzo and Longobardi [3], we find that if X is IMIT, then CE(X; t) is increasing in t, and
thus from (18) we obtain that X is IWMIT in this case. This conclusion can also be obtained from
point (i) of Theorem 1. Further connections with generalized versions of the cumulative entropy
can be elaborated on relating the WMIT function to the mixture considered in Equation (11) of
Kattumannil et al. [26].

The following example is dual to Example 2 of Toomaj and Di Crescenzo [16].

Example 4. Let X be an absolutely continuous non-negative random variable with decreasing and
differentiable PDF f (x), with D = (0, ∞) and 0 < f (0) < ∞. Let

ψ(x) = − log
f (x)
f (0)

, φ(x) = − f ′(x)
f (x)

≥ 0, x > 0.

Hence, from (8) and after some calculations, the WMIT function is given by

µ̃ψ(t) =
∫ t

0

f (x)
F(t)

log
f (x)
f (t)

dx = −H(t)− log τ(t), t > 0, (19)

where

H(t) = −
∫ t

0

f (x)
F(t)

log
f (x)
F(t)

dx, t > 0, (20)

is the past entropy of X (cf. Di Crescenzo and Longobardi [27] and Muliere et al. [28]). In this case,
due to condition (i) of Theorem 1, if

f ′(x)F(x)
f 2(x)

is decreasing in x > 0,

then X is IWMIT. Equivalently, if
τ′(x)
τ2(x)

is decreasing in x > 0 then X is IWMIT.

3. Stochastic Comparisons

In this section, we introduce the weighted mean inactivity time order, and focus our
attention on the relations between this one and some well-known stochastic orders. In this
regard, we first recall the following notions (see Shaked and Shanthikumar [1], and Kayid
and Ahmad [2]).

Definition 3. Let X and Y be two non-negative random variables with cumulative dis-
tribution functions F(t) and G(t), and mean inactivity time functions µ̃X(t) and µ̃Y(t),
respectively. Then:
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• X is said to be smaller than Y in the reversed hazard rate (RHR) order, denoted by
X ≤rhr Y, if, and only if,

G(t)/F(t) is increasing in t > 0.

• X is said to be smaller than Y in the mean inactivity time (MIT) order, denoted by
X ≤mit Y, if µ̃X(t) ≥ µ̃Y(t) for all t > 0, or equivalently,∫ t

0
G(x)dx

/ ∫ t

0
F(x)dx is increasing in t > 0.

• X is said to be smaller than Y in the dispersive order, denoted by X ≤disp Y, if, and
only if,

G−1(F(t))− t is increasing in t > 0. (21)

The MIT order gives a further motivation for studying the MIT function. For instance,
if two devices have independent random lifetimes satisfying the ordering X ≤mit Y, and if
they are both found failed at the inspection time t, then the difference µ̃X(t)− µ̃Y(t) gives
the mean time elapsed between the failure of the second device and that of the first one.

Now, as already announced, we define a new stochastic order in terms of the WMIT function.

Definition 4. For a given non-negative weight function φ, let X and Y have the weighted mean
inactivity time functions µ̃ψ(X)(t) and µ̃ψ(Y)(t), respectively. Then, X is said to be smaller than
Y in the weighted mean inactivity time function with respect to weight function φ(x), denoted by
X ≤φ

wmit Y, if, and only if,

µ̃ψ(X)(t) ≥ µ̃ψ(Y)(t) for all t > 0 such that F(t) > 0 and G(t) > 0.

The next theorem provides equivalent conditions for the weighted mean inactivity
time order.

Theorem 2. Let X and Y be two non-negative random variables with CDFs F and G, respectively.
Then, for any non-negative weight function φ, the following statements are equivalent:

(i) X ≤φ
wmit Y;

(ii)
∫ t

0 φ(x)G(x)dx∫ t
0 φ(x)F(x)dx

is increasing in t > 0;

(iii) E[ψ(X)|X ≤ t] ≤ E[ψ(Y)|Y ≤ t] for all t > 0.

Proof. In this case, we have

d
dt

∫ t
0 φ(x)G(x)dx∫ t
0 φ(x)F(x)dx

=
φ(t)

∫ t
0 φ(x)[F(x)G(t)− G(x)F(t)]dx[∫ t

0 φ(x)F(x)dx
]2 , t > 0.

By the definition, one has X ≤φ
wmit Y if, and only if,

∫ t
0 φ(x)[F(x)G(t)− G(x)F(t)]dx ≥ 0

for all t > 0. This proves that (i) and (ii) are equivalent. Finally, the equivalence of
statements (i) and (iii) is clear from (8).

It is worthwhile to mention that by taking φ(x) = x in Definition 4 one obtains the
so-called strong mean inactivity time (SMIT) order studied by Kayid and Izadkhah [4].
As pointed out by the latter authors, the SMIT order lies down between the reversed
hazard rate and the MIT orders. So, the WMIT order is a generalization of SMIT order.
Hereafter, we illustrate some connections between the WMIT order and two orders recalled
in Definition 3.
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Theorem 3. Let X and Y be two non-negative random variables with CDFs F(t) and G(t) and
WMIT functions µ̃ψ(X)(t) and µ̃ψ(Y)(t), respectively, where ψ(·) is an increasing non-negative
and differentiable function on (0, ∞). Then

(i) If X ≤rhr Y, then X ≤φ
wmit Y;

(ii) If ψ(t) is convex on [0, ∞) and X ≤φ
wmit Y, then X ≤mit Y.

Proof. (i) Since X ≤rhr Y, then G(x)/F(x) is increasing in x, or equivalently[
F(x)
F(t)

− G(x)
G(t)

]
≥ 0, x ≤ t.

Since φ(x) ≥ 0, from (8) one can conclude that

µ̃ψ(X)(t)− µ̃ψ(Y)(t) =
∫ t

0
φ(x)

[
F(x)
F(t)

− G(x)
G(t)

]
dx ≥ 0,

so that X ≤φ
wmit Y.

(ii) Let

zt(x) := φ(x)
[

F(x)
F(t)

− G(x)
G(t)

]
1[x ≤ t],

and let dZt(x) = zt(x)dx. Then, for all t > 0 from (1) we obtain

µ̃Y(t)− µ̃X(t) =
∫ ∞

0

1
φ(x)

dZt(x) =
∫ t

0

1
φ(x)

d
[∫ x

0
φ(u)

(
F(u)
F(t)

− G(u)
G(t)

)
du
]

,

where 1/φ(x) is a non-negative decreasing function due to assumption. For all s > t > 0,
we have ∫ s

0
dZt(x) =

∫ t

0
dZt(x) =

∫ t

0
φ(x)

[
F(x)
F(t)

− G(x)
G(t)

]
dx ≥ 0,

where the inequality is obtained by the assumption X ≤φ
wmit Y. Let us assume that t > s > 0.

Due to (8), assumption X ≤φ
wmit Y implies that, for all t > 0,∫ t

0 φ(x)F(x)dx∫ t
0 φ(x)G(x)dx

≥ F(t)
G(t)

. (22)

In addition, X ≤φ
wmit Y implies that

∫ x
0 φ(u)G(u)du/

∫ x
0 φ(u)F(u)du, is increasing in x,

and then it holds that, for all t > s > 0,∫ s
0 φ(x)F(x)dx∫ s
0 φ(x)G(x)dx

≥
∫ t

0 φ(x)F(x)dx∫ t
0 φ(x)G(x)dx

. (23)

Combining (22) and (23), one obtains, for all t > s > 0,∫ s
0 φ(x)F(x)dx∫ s
0 φ(x)G(x)dx

≥ F(t)
G(t)

.

which provides that, for all t > s > 0,∫ s

0
dZt(x) =

∫ s

0
φ(x)

[
G(x)
G(t)

− F(x)
F(t)

]
dx ≥ 0.
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Therefore, X ≤φ
wmit Y implies that

∫ s
0 dZt(x) ≥ 0, for all s, t > 0. Finally, appealing to

Lemma 7.1(b) of Barlow and Proschan [29], it is concluded that
∫ ∞

0
1

φ(x) dZt(x) ≥ 0, for all
t > 0, and hence the proof is completed.

The instance provided in the following example shows that X ≤mit Y does not imply
X ≤φ

wmit Y.

Example 5. Let X be uniformly distributed in (0, 1) and let Y have the following CDF:

G(t) =
t
2

1[0, 1
2 )
(t) +

(
1
2
+

t
2

)
1[ 1

2 ,1)(t) + 1[1,+∞)(t), t ∈ R.

Since the CDF of X is F(t) = t for 0 ≤ t ≤ 1, it is not hard to check that G(t)/F(t) is
not monotonic in t, so that there is no RHR order between X and Y. However, one can see
that

∫ t
0 G(x)dx/

∫ t
0 F(x)dx is increasing in t > 0, so that X ≤mit Y. Moreover, by taking

φ(x) = x 1[0, 1
2 )
(x) + (2− x) 1[ 1

2 ,1](x) for x ∈ [0, 1], one can easily find that
∫ t

0 φ(x)G(x)dx∫ t
0 φ(x)F(x)dx

is

not monotonic in t ∈ (0, 1). Hence, recalling Theorem 2, in this case X ≤mit Y does not imply
X ≤φ

wmit Y.

In the context of Theorem 3 (i), Counterexample 1 of Kayid and Izadkhah [4] shows
that X ≤φ

wmit Y does not imply X ≤rhr Y for an increasing non-negative and differentiable
function ψ(x) = x2/2.

Finally, we remark that further connections between the ≤mit-order and the ≤φ
wmit-

order can be found by following the lines adopted in Section 5 of Belzunce et al. [30] and
Section 4 of Belzunce and Martínez-Riquelme [31].

4. Weighted Generalized Cumulative Entropy and Variance

In the following two subsections, we discuss some relevant applications of the weighted
mean inactivity time function to supply expressions for the variance of a transformed ran-
dom variable and the weighted generalized cumulative entropy.

4.1. Variance of Transformed Random Variable

Recently, Toomaj and Di Crescenzo [11] showed that the variance of a random variable
X can be represented in terms of MIT function as follows:

Var(X) = E[µ̃2(X)], (24)

provided that the expectation exists. In what follows, we extend the result (24) to the case
of the transformed random variable ψ(X), where ψ(x) is the cumulative weight function
defined in (5). Indeed, in the following theorem we express the variance of ψ(X) in terms
of the WMIT function (8).

Theorem 4. Let X be an absolutely continuous non-negative random variable with WMIT function
µ̃ψ(t), and having finite second moment E[ψ2(X)]. Then

Var[ψ(X)] = E[µ̃2
ψ(X)]. (25)

Proof. Let us set

wψ(x) := µψ(x)F(x) =
∫ x

0
ψ(t) f (t)dt, x > 0.

Using (11), we obtain
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E[µ̃2
ψ(X)] =

∫ ∞

0
[ψ(x)− µψ(x)]2 f (x)dx

= E(ψ2(X)) +
∫ ∞

0
µ2

ψ(x) f (x)dx− 2
∫ ∞

0
ψ(x)µψ(x) f (x)dx. (26)

Recalling (12), it holds that∫ ∞

0
µ2

ψ(x) f (x)dx =
∫ ∞

0
µψ(x)τ(x)wψ(x)dx

=
∫ ∞

0
ψ(x)τ(x)wψ(x)dx−

∫ ∞

0
µ′ψ(x)wψ(x)dx

=
∫ ∞

0
ψ(x)µψ(x) f (x)dx−

∫ ∞

0
µ′ψ(x)wψ(x)dx.

Integrating by parts gives∫ ∞

0
µ′ψ(x)wψ(x)dx = [E(ψ(X))]2 −

∫ ∞

0
ψ(x)µψ(x) f (x)dx,

which implies∫ ∞

0
µ2

ψ(x) f (x)dx = 2
∫ ∞

0
ψ(x)µψ(x) f (x)dx− [E(ψ(X))]2. (27)

By substituting Equation (27) into (26), we have

E[µ̃2
ψ(X)] = E[ψ2(X)]− [E(ψ(X))]2 = Var[ψ(X)].

The proof is thus completed.

We remark that the result expressed in Theorem 4 is analogous to Theorem 3 of Toomaj
and Di Crescenzo [16], where the variance of ψ(X) is expressed as the expectation of the
squared weighted mean residual life function of X.

In the proof of Theorem 4, recalling (5), we used relation ψ(0) = 0. However, by using
similar arguments it is not hard to see that for every increasing and differentiable function
g, even with g(0) 6= 0, the variance of g(X) can be expressed as

Var[g(X)] = E[µ̃2
g(X)],

where

µ̃g(t) =
1

F(t)

∫ t

0
g′(x)F(x)dx, t > 0.

As an application of Equation (25), let us consider the following example.

Example 6. Consider a parallel system composed by m units having lifetimes X1, . . . , Xm, which
are i.i.d. absolutely continuous random variables with CDF F(x) and PDF f (x). The system lifetime
is thus Xm:m = max{X1, . . . , Xm}, whose CDF is given by Fm:m(x) := P(Xm:m ≤ x) = [F(x)]m,
x ≥ 0. Setting ψ(t) = F(t), and thus φ(t) = f (t), from (8) we obtain, for t > 0,

µ̃ψ(Xm:m)(t) =
1

Fm:m(t)

∫ t

0
f (x)Fm:m(x)dx =

1
[F(t)]m

∫ t

0
f (x)[F(x)]m dx =

F(t)
m + 1

.

Thanks to the use of Equation (24) and Theorem 4, thus the variance of the probability integral
transformation F(Xm:m) can be obtained as

Var[F(Xm:m)] = m
∫ ∞

0
f (x)[F(x)]m−1

[
F(x)

m + 1

]2

dx =
m

(m + 1)2(m + 2)
.
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We remark that the expression of the variance of Fm:m(x) follows also from the fact that Fm:m(x) has
a Beta distribution with parameters α = m and β = 1.

Another useful application of Theorem 4 involves the so-called varentropy. If X is
an absolutely continuous non-negative random variable with PDF f (x), the (random)
information content of X is defined by

IC(X) = − log f (X).

It is worth pointing out that IC(X) is the natural counterpart of the number of bits needed
to represent X in the discrete case by a coding scheme that minimizes the average code
length. It is well known that

HX = E[IC(X)] = −
∫ ∞

0
f (x) log f (x)dx (28)

denotes the differential entropy of X. The varentropy of X is defined as (see Di Crescenzo
and Paolillo [32] and references therein)

V(X) := Var(IC(X)) = E[(− log f (X))2]− [HX ]
2 (29)

=
∫ ∞

0
[− log f (x)]2 f (x)dx−

(∫ ∞

0
[− log f (x)] f (x)dx

)2
,

so that it measures the variability of the information content of X. The relevance of this
measure has been pointed out in various investigations, especially in Fradelizi et al. [33]
where an optimal varentropy bound for log-concave distributions is obtained.

Remark 5. Let X be an absolutely continuous non-negative random variable with decreasing and
differentiable PDF f (x) over the support (0, ∞) and 0 < f (0) < ∞, and let

ψ(x) = − log
f (x)
f (0)

, φ(x) = − f ′(x)
f (x)

≥ 0, x > 0.

Hence, we have
V(X) = Var(ψ(X)) = Var(− log f (X)),

so that, recalling Example 4, due to Equations (19) and (25), we obtain another representation of the
varentropy in terms of the past entropy (20) and the reversed hazard rate (3) of X as follows:

V(X) = Var(− log f (X)) = E
{
[H(X) + log τ(X)]2

}
.

On the other hand, recalling Example 2 of Toomaj and Di Crescenzo [16], a further expression for
the varentropy can be given as

V(X) = Var(− log f (X)) = E
{
[H(X) + log λ(X)]2

}
,

where λ(x) is the hazard rate function (6), and where (cf. Ebrahimi [34])

H(t) := −
∫ ∞

t

f (x)
F(t)

log
f (x)
F(t)

dx, t > 0,

is the residual entropy of X, i.e., the entropy of the residual lifetime (10).

Hereafter, we see that the results stated in Remark 5 and stimulated by Theorem 4 can
be proved under more general assumptions.
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Theorem 5. Let X be an absolutely continuous non-negative random variable with PDF f (x),
such that E[(IC(X))2] < ∞. Then:

(i) V(X) = E
{
[H(X) + log λ(X)]2

}
;

(ii) V(X) = E
{
[H(X) + log τ(X)]2

}
.

Proof. Let us set
g(x) := −

∫ ∞

x
f (z) log f (z)dz, x > 0,

such that the differential entropy (28) is given by HX = g(0). First note that

H(x) + log λ(x) =
g(x)
F(x)

+ log f (x), x > 0.

Hence, one has

E
{
[H(X) + log λ(X)]2

}
=

∫ ∞

0
[log f (x)]2 f (x)dx +

∫ ∞

0
g2(x)

f (x)

F2
(x)

dx

+ 2
∫ ∞

0
f (x) log f (x)

g(x)
F(x)

dx. (30)

By noting that

g2(x) =
(∫ ∞

x
f (z) log f (z)dz

)2
,

and integrating by parts with u = g2(x) and v = 1/F(x), we have

∫ ∞

0
g2(x)

f (x)

F2
(x)

dx =
g2(x)
F(x)

]∞

0
− 2

∫ ∞

0
f (x) log f (x)

g(x)
F(x)

dx

= −[HX ]
2 − 2

∫ ∞

0
f (x) log f (x)

g(x)
F(x)

dx, (31)

since lim
x→∞

g2(x)
F(x)

= 0. By substituting Equation (31) into (30), we have

E
{
[H(X) + log λ(X)]2

}
= E[(− log f (X))2]− [HX ]

2 = Var(− log f (X)),

where the last equality is due to (29). The proof of Point (i) is thus completed. The proof of
Point (ii) is similar and then is omitted.

By including a further assumption on f , we obtain the following result.

Proposition 2. Let the assumptions of Theorem 5 hold.
(i) If H(t) is decreasing in t and

log
f (x)
f (t)

≤ 1 for all x ≥ t > 0, (32)

then V(X) ≤ 1.
(i) If H(t) is increasing in t and

log
f (x)
f (t)

≤ 1 for all 0 < x ≤ t, (33)

then V(X) ≤ 1.
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Proof. (i) First, we recall that

H(t) + log λ(t) = −
∫ ∞

t

f (x)
F(t)

log
f (x)
f (t)

dx, t > 0.

Hence, by the assumption (32) we have H(t) + log λ(t) ≥ −1, t > 0. On the other hand, if
H(t) is decreasing in t, then H(t) + log λ(t) ≤ 1, t > 0 (cf. Theorem 3.2 of Ebrahimi [34]).
Therefore, we obtain |H(t) + log λ(t)| ≤ 1, so that from Theorem 5 we have V(X) ≤ 1. The
proof of Point (i) is thus completed. In the case (ii), one similarly has

H(t) + log τ(t) = −
∫ t

0

f (x)
F(t)

log
f (x)
f (t)

dx, t > 0,

so that from assumption (33) we obtain H(t) + log τ(t) ≥ −1, t > 0. Moreover, if H(t) is
increasing in t, then H(t) + log λ(t) ≤ 1, t > 0 (cf. Proposition 2.3 of Di Crescenzo and
Longobardi [27]). Thus, it follows |H(t) + log λ(t)| ≤ 1, and finally from Theorem 5 we
obtain V(X) ≤ 1.

Clearly, if f (x) is decreasing in x > 0, then the condition (32) holds. However, such
a relation can be fulfilled even for non-decreasing densities. For instance, if X has PDF
f (x) = 1

3 (1 + 2x)e−x, x > 0, then (32) is satisfied. Moreover, if f (x) is increasing in x
on a bounded support, then the condition (33) holds. On the other hand, (33) cannot be
fulfilled if f (t) is close to 0, for instance for large t when f (x) has support (0, ∞). However,
relation (33) can be satisfied if X has a bounded support, for instance when it is uniform on
(a, b), a < b.

In the next theorem, we state that when the weight function is bounded between two
real numbers, the ratio of standard deviation of the transformed random variable with
respect to the standard deviation of the associated random variable also lies down between
the same bounds.

In the following, we denote by σ(X) =
√

Var(X) the standard deviation of X.

Theorem 6. Under the conditions of Lemma 3, it holds that

m ≤ σ[ψ(X)]

σ(X)
≤ M.

In particular, (i) if m = 0 and M = 1, then σ[ψ(X)] ≤ σ(X) and, (ii) if m = 1 and M < ∞, then
σ[ψ(X)] ≥ σ(X).

Proof. The proof is immediately obtained from (16) and recalling (24) and (25).

Now, let us consider an application in the following example.

Example 7. Assume that X1, X2, . . . , Xn are independent and identically distributed random
lifetimes with the common CDF F(x) and PDF f (x). The ith smallest value is usually called
the ith order statistic, and is denoted by Xi:n, i = 1, 2, . . . , n. Let us set ψ(x) = F(x) and thus
φ(x) = f (x). If S is the support of f , then

inf
x∈S

f (x) =: m ≤ f (x) ≤ M := sup
x∈S

f (x).

It is known that the probability integral transform Vi = F(Xi:n) has a beta distribution with
parameters i and n− i + 1, respectively. Since

Var[Vi] = Var[F(Xi:n)] =
i(n− i + 1)

(n + 1)2(n + 2)
, i = 1, 2, . . . , n,
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from Theorem 6 we have

i(n− i + 1)
M2(n + 1)2(n + 2)

≤ Var[Xi:n] ≤
i(n− i + 1)

m2(n + 1)2(n + 2)
, i = 1, 2, . . . , n

provided that 0 < m ≤ M < ∞.

In the next theorem, we provide a connection between the variance of the weighted
random variable ψ(X) and the cumulative entropy. For a non-negative random vari-
able X with CDF F(x) and support (0, ∞), the cumulative entropy (CE), defined by (see
Di Crescenzo and Longobardi [35])

CE(X) = −
∫ ∞

0
F(x) log F(x)dx =

∫ ∞

0
F(x) T(x)dx, (34)

where
T(x) = − log F(x) =

∫ ∞

x
τ(u)du, x > 0 (35)

denotes the cumulative reversed hazard function. Another useful representation of CE(X)
is given in terms of the MIT function as follows:

CE(X) = E[µ̃(X)] =
∫ ∞

0
µ̃(x) f (x)dx.

Several properties of CE in (34) as well as its dynamic version are widely discussed in Di
Crescenzo and Longobardi [35] and Navarro et al. [36] and references therein.

Theorem 7. If ψ(x) is an increasing convex and differentiable function, then,

σ[ψ(X)] ≥ ψ(CE(X)).

Proof. The proof is based on Jensen’s inequality, and is similar to that of Theorem 6
of [16].

4.2. Weighted Generalized Cumulative Entropy

As noted in (28), for an absolutely continuous non-negative random variable X having
PDF f , the differential entropy is given by HX = −E[log f (X)]. It assigns equal importance
(or weights) to the occurrence of every event of the form {X = x}. However, in certain
situations they have different qualitative characteristic usually known as utility of an
outcome. This motivated us to define the weighted entropy of X as (cf. Di Crescenzo and
Longobardi [35])

Hw(X) = −E[X log f (X)] = −
∫ ∞

0
x f (x) log f (x)dx. (36)

In analogy with (36), Misagh et al. [37] proposed an alternative weighted measure called
weighted cumulative entropy (WCE) and based on the distribution function F(x) instead of
the PDF f (x) in (36), defined by

CEw(X) = −
∫ ∞

0
xF(x) log F(x)dx =

∫ ∞

0
xF(x)T(x)dx, (37)

with T(x) defined in (35). Recently, the WCE was extended by Tahmasebi et al. [38] to the
weighted generalized cumulative entropy (WGCE) given by

CEφ
n(X) =

∫ ∞

0
φ(x)

Tn(x)
n!

F(x)dx, (38)
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for all n ∈ N := {1, 2, . . .}, and for any non-negative weight function φ(x). In particular
by taking φ(x) ≡ 1 in (38), we immediately derive the generalized cumulative entropy
(GCE) introduced by Kayal [39]. Several results on weighted entropies are investigated
and discussed in Mirali and Baratpour [40], Misagh et al. [37], Suhov and Sekeh [41] and
Tahmasebi [38]. Despite the various investigations of these measures, the analysis of their
exact meaning and interpretation can still be improved.

Suppose that {Yn, n ∈ N} is a sequence of non-negative i.i.d. random variables hav-
ing the common CDF F(x). We say that Yi is a lower record value of this sequence if
Yi < min{Y1, Y2, . . . , Yi−1}, with i > 1, and by definition Y1 is a lower record value. Let
L(1) = 1 and L(n + 1) = min{j : j > L(n), Yj < YL(n)} for n ∈ N, so that L(n) denotes
the index where the nth lower record value occurs. The random variables Xn+1 = YL(n+1),

n ∈ N0 := {0, 1, . . .}, are said to be the lower records, such that YL(1)
d
= X. Denoting by

Fn+1(x) the cumulative distribution function of Xn+1, n ∈ N0, it follows that

Fn+1(x) = F(x)
n

∑
k=0

Tk(x)
k!

, x ≥ 0, (39)

so that the PDF of Xn+1 is given by

fn+1(x) = f (x)
Tn(x)

n!
, x ≥ 0, (40)

where T(x) is the cumulative reversed hazard function defined in (35). We recall that the
GCE of order n of X is given by (see Kayal [39], and Di Crescenzo and Toomaj [42])

CEn(X) =
∫ ∞

0
F(x)

Tn(x)
n!

dx =
∫ ∞

0
F(x)

[− log F(x)]n

n!
dx, (41)

for all n ∈ N. Thus, the GCE of order n corresponds to the expected spacings of lower record
values. A fractional version of the GCE has been investigated in Di Crescenzo et al. [43].
Let us now provide a suitable extension of CEn(X). For all increasing non-negative and
differentiable function ψ(x), the weighted GCE of X is expressed as follows:

CEψ,n(X) = E[ψ(Xn)− ψ(Xn+1)] =
∫ ∞

0
φ(x)[Fn+1(x)− Fn(x)]dx,

=
∫ ∞

0
φ(x)

Tn(x)
n!

F(x)dx = E
[

φ(Xn+1)

τ(Xn+1)

]
, n ∈ N. (42)

Note that for n = 0 one has CEφ,0(X) =
∫ ∞

0 ψ(x)F(x)dx, which may be divergent. Hence,
the function CEψ,n(X) can be identified with the WGCE introduced in (38). This measure
extends the GCE through a suitable ψ. For example, if we take ψ(t) = t, then the WGCE
coincides with the GCE introduced by Kayal [39], see also Di Crescenzo and Toomaj [42]
and Toomaj and Di Crescenzo [11]. Moreover, if we take ψ(t) = t2

2 , it concurs with the
weighted GCE introduced by Kayal and Moharana [44]. We note that CEψ,n(X) can be
viewed as the area of the region between the functions Fψ(Xn)(x) and Fψ(Xn+1)

(x), since
from (42) we have

CEψ,n(X) = E[ψ(Xn)− ψ(Xn+1)] =
∫ ∞

0

[
Fψ(Xn+1)

(x)− Fψ(Xn)(x)
]
dx, n ∈ N.

Proceeding similarly as in the proof of Proposition 1 of Toomaj and Di Crescenzo [11],
from (42) one can see that the weighted GCE of X is equivalent to the GCE of a cumulative
weighted random variable ψ(X), i.e., CEψ,n(X) = CEn(ψ(X)) for all n ∈ N.
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With reference to the GCE, defined in (41), in the following theorem we obtain a result
analogous to Theorem 7 of Toomaj and Di Crescenzo [16]. The proof is omitted, being
similar to that theorem by virtue of the following relation

∫ ∞

t

Tn−1(x)
(n− 1)!

τ(x)dx =
Tn(t)

n!
, t ≥ 0, n ∈ N.

Theorem 8. Let X be an absolutely continuous non-negative random variable with weighted mean
inactivity time function µ̃ψ(t). Then, for all n ∈ N one has

CEψ,n(X) = E[µ̃ψ(Xn)]. (43)

In the following theorem, we determine two recurrent expressions for the GCE analo-
gous to those given in Theorems 4 and 5 of Toomaj and Di Crescenzo [11] and, thus, the
proof is omitted.

Theorem 9. Under the assumption of Theorem 8, for all n ∈ N, we have
(i)

CEψ,n(X) = CEψ,n−1(X)− 1
(n− 1)!

E[h̃ψ,n(X)],

where

h̃ψ,n(t) :=
∫ t

0
µ̃′ψ(x) Tn−1(x)dx.

(ii)
CEψ,n(X) = CEψ,n−1(X)

{
1−E[µ̃′ψ(Z̃)]

}
,

where Z̃ is an absolutely continuous non-negative random variable having PDF

fZ̃(x) =
F(x)

CEψ,n−1(X)

Tn−1(x)
(n− 1)!

, x > 0.

It is worthwhile to mention that when X is IWMIT, since µ̃′ψ(x) ≥ 0, as an immediate
consequence of Theorem 9 we have

CEψ,n(X) ≥ CEψ,n−1(X), for all n ∈ N.

Hereafter, we obtain an upper bound for the WGCE in terms of the expected value of the
squared weighted mean inactivity time. The proof is omitted being similar to Theorem 6 of
Toomaj and Di Crescenzo [11].

Theorem 10. Let X be an absolutely continuous non-negative random variable and let ψ(x) denote
a non-negative weight function. Then, for all n ∈ N,

CEψ,n(X) ≤
√
[2(n− 1)]!
(n− 1)!

σ[ψ(X)].

Remark 6. We note that, due to Remark 6 of Toomaj and Di Crescenzo [16], we have H[ψ(X)] =
H(X) + E[log φ(X)]. Hence, by making use of Remark 6 of Toomaj and Di Crescenzo [16] and
Proposition 5 of Tahmasebi et al. [38], the following lower bound can be immediately obtained:

CEψ,n(X) ≥ 1
n!

Cn exp {H(ψ(X))}, n ∈ N,

where Cn = exp{
∫ 1

0 log(u[− log u]n)du}.
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Further useful results are given below.

Theorem 11. Let X be an absolutely continuous non-negative random variable and let ψ(x) denote
a non-negative weight function. Let n ∈ N.

(i) If ψ(x) is an increasing convex (concave) function on (0, ∞), then

•
CEψ,n(X)

CEn(X)
is decreasing (increasing) in n ∈ N;

• CEψ,n(X) ≥ (≤)ψ(CEn(X)) for all n ∈ N.

(ii) Under the condition of Lemma 3, it holds that

m ≤
CEψ,n(X)

CEn(X)
≤ M.

In particular, if M = 1 then CEψ,n(X) ≤ CEn(X), whereas if m = 1 then CEψ,n(X) ≥ CEn(X).

Proof. (i) The proofs are analogue to Theorems 8 and 10 of Toomaj and Di Crescenzo [16],
respectively. (ii) The proof is immediately obtained from (16) and recalling (43).

In the next corollary, we provide different probabilistic expressions for the WGCE.
The second one involves the covariance of the transformation of the n-th epoch time and
the random variable T(Xn). The proof is similar to that of Theorem 13 of Toomaj and Di
Crescenzo [16], and, thus, is omitted.

Corollary 1. For all n ∈ N, it holds that

(i)
1
n
E
[

φ(Xn)T(Xn)

τ(Xn)

]
= CEψ,n(X);

(ii)
1
n

Cov[ψ(Xn), T(Xn)] = −CEψ,n(X).

We can now prove the following theorem, which allows to compare the WGCE of two
random variables under the dispersive ordering.

Theorem 12. Let X and Y be absolutely continuous non-negative random variables, and let ψ be a
cumulative weight function defined as in (5). If ψ(X) ≤disp ψ(Y), then CEψ,n(X) ≤ CEψ,n(Y)
for all n ∈ N.

Proof. Let us consider the cumulative weighted random variables ψ(X) and ψ(Y) with
CDFs H and Q, respectively. It is easy to see that

ψ(Y) d
= Q−1H(ψ(X)), (44)

where Q−1H is an increasing function. Since ψ(X) ≤disp ψ(Y), by the Definition 3 it holds
that Q−1H(x)− x is increasing in x > 0. Taking into account that CE ϕ,n(X) = CEn(ϕ(X))
for an increasing function ϕ, by taking ϕ(x) = Q−1H(x), Point (ii) of Theorem 11 implies
that CEn(Q−1H(ψ(X))) ≥ CEn(ψ(X)) for all n ∈ N. From (44), we immediately obtain
that CEn(ψ(Y)) ≥ CEn(ψ(X)), which yields CEψ,n(Y) ≥ CEψ,n(X) for all n ∈ N.

In the following theorem, we can show that if two random variables X and Y are
ordered with respect to their reversed failure rate functions, then their corresponding
variance and WGCE will be ordered too, provided that a weighted MIT is increasing, and
the cumulative weight functions are increasing. We recall that if X is greater than Y in the
usual stochastic order, denoted by X ≥st Y, then

E[h(X)] ≥ E[h(Y)], (45)
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for all increasing functions h.

Theorem 13. Let X and Y be absolutely continuous non-negative random variables with weighted
mean inactivity time functions µ̃ψ(X)(t) and µ̃ψ(Y)(t), respectively, such that X ≥st Y. If X ≤φ

wmit
Y and either X or Y is IWMIT, then

(i) Var[ψ(X)] ≥ Var[ψ(Y)];

(ii) CEψ,n(X) ≥ CEψ,n(Y), for all n ∈ N.

Proof. (i) Let X be IWMIT. From (25), we obtain

Var[ψ(X)] = E[µ̃2
ψ(X)(X)] ≥ E[µ̃2

ψ(X)(Y)] ≥ E[µ̃2
ψ(Y)(Y)] = Var[ψ(Y)].

The first inequality is obtained by noting that X is IWMIT, so that µ̃2
ψ(X)(t) is increasing,

and by virtue of (45). The last inequality is obtained by the fact that X ≤φ
wmit Y implies

µ̃ψ(X)(t) ≥ µ̃ψ(Y)(t), t > 0, due to Definition 4. When Y is IWMIT, the proof is similar.
(ii) Let X be IWMIT. From Theorem 8, for all n ∈ N, we obtain

CEψ,n(X) = E[µ̃ψ(X)(Xn)] ≥ E[µ̃ψ(X)(Yn)] ≥ E[µ̃ψ(Y)(Yn)] = CEψ,n(Y).

The first inequality is obtained as follows: it is not hard to find that X ≥st Y implies
Xn ≥st Yn for all n ∈ N, and, hence, the first inequality is concluded by virtue of (45)
since µ̃ψ(X)(t) is increasing. The second inequality is obtained noting that assumption

X ≤φ
wmit Y implies µ̃ψ(X)(t) ≥ µ̃ψ(Y)(t), t > 0, from Definition 4. When Y is IWMIT, the

proof is similar.

5. Connection with the Location-Independent Riskier Order

In recent decades, the attention of scholars on quantiles of probability distributions has
increased continuously, since they have an immediate interpretation in terms of over/or
undershoot probabilities. Several applications of quantiles have been oriented to current
problems of risk management involving the concept of Value at Risk (VaR). For a random
variable X with CDF F, the VaR or left-continuous inverse (quantile function) is defined by

F−1(p) = inf{x ∈ R : F(x) ≥ p}, for p ∈ (0, 1).

In today’s financial world, VaR has become the benchmark risk measure: its importance is
unquestionable since regulators accept this model as the basis for setting capital require-
ments for market risk exposure; see, e.g., Denuit et al. [45]. The excess wealth transform (or
right spread function) of a random variable X with distribution function F and with a finite
mean, is defined by (see Fernández-Ponce et al. [46])

WX(p) = E[(X− F−1(p))+] =
∫ ∞

F−1(p)
F(x)dx =

∫ 1

p
(F−1(q)− F−1(p))dq, (46)

for p ∈ (0, 1). For any real number a, we denote by a+ its positive part, that is, a+ = a if
a > 0, and a+ = 0 if a ≤ 0. We remark that it is not necessary for the random variable X to
be non-negative in order for WX(p) to be well defined. Indeed, it is only required that X
has a finite mean. Based on this concept, the excess wealth order (or the right spread order)
is introduced in Fernández-Ponce et al. [46], by expressing that the expected shortfall risk
measure (for the positive tail) is comparable, that is, E[(X− F−1(p))+] ≤ E[(Y−G−1(p))+]
for all p ∈ (0, 1). Some applications of this function and the excess wealth order are
considered in Toomaj and Di Crescenzo [11,16]. Hereafter, we define the left spread
function, which is dual to the right spread function given in (46).
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Definition 5. Let X be a random variable having CDF F(x) and with finite mean. The left spread
function of X, for 0 < p < 1 is defined by

W̃X(p) = E[(F−1(p)− X)+] =
∫ F−1(p)

0
F(x)dx =

∫ p

0
(F−1(p)− F−1(q))dq.

The left spread function is an increasing function of p. Moreover, it is closely related
to the MIT function given in (1) by the following relation, if X is non-negative:

µ̃(F−1(p)) = E[F−1(p)− X|X ≤ F−1(p)] =
W̃X(p)

p
, 0 < p < 1.

Thanks to the previous identity, in the next theorem we show that the variance and the
GCE of a random variable can be expressed in terms of the left spread function. The results
follow from Theorems 19 and 21 of Toomaj and Di Crescenzo [11] and, thus, the proof
is omitted.

Theorem 14. Let X denote an absolutely continuous non-negative random variable with CDF F.
Then, it holds that

(i) Var(X) =
∫ 1

0

[
µ̃(F−1(p))

]2
dp;

(ii) CEn(X) =
1

(n− 1)!

∫ 1

0
µ̃(F−1(p))(− log p)n−1 dp, for all n ∈ N.

Let us consider the following example.

Example 8. If X is uniformly distributed in [0, b], then

µ̃(F−1(p)) =
bp
2

.

Recalling Theorem 14, we obtain

Var(X) =
∫ 1

0

[
µ̃(F−1(p))

]2
dp =

b2

12
.

On the other hand, for any n ∈ N we obtain

CEn(X) =
b

2(n− 1)!

∫ 1

0
p (− log p)n−1 dp =

b
2n+1 .

In economics, many stochastic orders are built to compare the risks of two random
assets. To keep the comparison independent of locations, Jewitt [47] proposes the following
concept. A non-negative random asset Y is said to be location independent riskier than another
non-negative random asset X, denoted by X ≤lir Y, if, and only if,

∫ F−1(p)

0
F(x)dx ≤

∫ G−1(p)

0
G(x)dx, for all p ∈ (0, 1),

or equivalently
µ̃X(F−1(p)) ≤ µ̃Y(G−1(p)), for all p ∈ (0, 1), (47)

where µ̃X and µ̃Y denote the MIT functions of X and Y, respectively. Roughly speaking, if
the inequality (47) holds then Y has more weight in the lower tail than X. Intuitively, having
a great weight in the lower tail is something which should be avoided by risk averters.
One advantage of the above definition is that it is a “choice based” criterion of risk which
does not stipulate that the distributions have equal means. The proof of the next theorem is
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straightforward due to Theorem 14 and applying the equivalent condition (47) for X ≤lir Y,
and, therefore, it is omitted.

Theorem 15. Let X and Y be two absolutely continuous non-negative random variables, such that
X ≤lir Y. Then

(i) Var(X) ≤ Var(Y);

(ii) CEn(X) ≤ CEn(Y) for all n ∈ N.

Based on Theorem 15, it is worth pointing out that if Y is more risky than X both in the
variance and GCE, then it has a larger variance and GCE. Hereafter, we obtain expressions
for the transformed random variable and weighted GCE in terms of transformed excess
wealth function. For an absolutely continuous non-negative random variable X with
CDF F(x), assume that ψ(·) is an increasing non-negative function defined by (5). The
transformed (or weighted) left spread function, for all 0 < p < 1, is defined by

W̃ψ(X)(p) = E[(ψ(F−1(p))− ψ(X))+] =
∫ F−1(p)

0
φ(x)F(x)dx

=
∫ p

0

[
ψ(F−1(p))− ψ(F−1(q))

]
dq. (48)

When ψ(t) = t, then from (48) we have that W̃ψ(X)(p) is equal to the left spread function
introduced in Definition 5. Moreover, this function is related to the weighted mean inactivity
time function by the following relation:

µ̃ψ(X)(F−1(p)) =
W̃ψ(X)(p)

p
, 0 < p < 1. (49)

Now, in the following theorem, we provide expressions for both the variance of a trans-
formed random variable and the weighted GCE in terms of (49).

Theorem 16. Let X denote an absolutely continuous random variable with CDF F. Then, it
holds that

(i) Var[ψ(X)] =
∫ 1

0

[
µ̃ψ(X)(F−1(p))

]2
dp;

(ii) CEψ,n(X) =
1

(n− 1)!

∫ 1

0
µ̃ψ(X)(F−1(p))(− log p)n−1 dp, for all n ∈ N.

Proof. (i) By taking p = F(x), it holds that∫ 1

0

[
µ̃ψ(X)(F−1(p))

]2
dp =

∫ ∞

0

[
µ̃ψ(X)(x)

]2
dF(x) = Var[ψ(X)],

where the last equality is obtained from Theorem 4. The proof of Point (i) is thus completed.
By virtue of (43), Point (ii) can be proved in a similar way.

6. Applications

In this section, we propound two applications in reliability and renewal theory based
on results given in the preceding sections.

6.1. Reliability

Let us consider a one-unit system which has the ability to withstand a random number
of shocks. We assume that the shocks arrive according to a non-homogeneous Poisson
process, and that the number of shocks and the interarrival (or successive) times of shocks
are independent. Let N denote the random number of shocks survived by the system,
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whereas Xj denotes the random interarrival time between the (j− 1)-th and j-th shocks.
Hence, the lifetime T of the system is given by T = ∑N

j=1 Xj. Moreover, let the interarrivals
be independent and identically distributed, and let the renewal process describing the
number of shocks have cumulative intensity function Λ(t) = − log F(t) =

∫ t
0 λ(τ)dτ,

t ≥ 0, where λ(τ) is the associated hazard rate (6). Then, the CDF of T can be written as

FT(t) =
∞

∑
k=0

P(k)
Λk(t)

k!
e−Λ(t), t > 0, (50)

where P(k) = P(N ≤ k), k ∈ N, is the distribution function of the number of shocks
survived by the device, with P(0) = 1− P(0) = 1. Relation (50) also holds for a repairable
system as discussed in Chahkandi et al. [48].

Theorem 17. Let us consider two devices with random lifetimes T1 and T2 subject to shocks
arriving according to a non-homogeneous Poisson process, and let P1(k) and P2(k) be, respectively,
the distribution functions of the number of shocks survived by the two devices. If N1 ≤rhr N2, then
T1 ≤

φ
wmit T2.

Proof. By making use of (50), where T is replaced by Ti, we have for all t > 0,

∫ t

0
φ(x)FTi (x)dx =

∞

∑
k=0

Pi(k)
∫ t

0
φ(x)

Λk(x)
k!

F(x)dx, i = 1, 2.

From (ii) of Theorem 2, it is sufficient to see that
∫ t

0 φ(x)FT2(x)dx/
∫ t

0 φ(x)FT1(x)dx is an
increasing function of t, or, equivalently,

∫ t
0 φ(x)FTi (x)dx is TP2 in (i, t) ∈ {1, 2} × R+.

Since N1 ≤rhr N2 by assumption, then Pi(k) is TP2 in (i, k) ∈ {1, 2} ×N. On the other hand,
it is not hard to see that ∫ t

0
φ(x)

Λk(x)
k!

F(x)dx,

is TP2 in (t, k) ∈ R+ ×N. Then, the general composition theorem of Karlin [27] provides
that

∫ t
0 φ(x)FTi (x)dx is TP2 in (i, t) ∈ {1, 2}×R+ and hence the claimed result follows.

In the special case in which the interarrival times are independent and identically
exponentially distributed, one clearly has that Λk(t) = (λt)k in the right-hand-side of the
distribution function (50). Let us consider the cumulative weight function ψ(x) = xr, i.e.,
the weight function φ(x) = rxr−1, for r ∈ N.

Theorem 18. Let T1 and T2 be the random lifetimes of two devices subject to shocks governed by a
homogeneous Poisson process having intensity λ, and let Ni, i = 1, 2, be the random number of
shocks survived by the i-th device, with Pi(k) = P(N ≤ k), k ∈ N. If, for r ∈ N,

∑
j−r
k=0 (

r+k−1
k )P2(k)

∑
j−r
k=0 (

r+k−1
k )P1(k)

is increasing in k ∈ N, (51)

then T1 ≤
φ
wmit T2, for the cumulative weight function ψ(x) = xr.

Proof. It is known that the distribution function of Ti, i = 1, 2, is given by

HTi (x) =
∞

∑
k=0

Pi(k)
e−λx(λx)k

k!
, x ≥ 0. (52)

Let us consider the following well-known relation:
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∫ ∞

t
e−λx λk+1xk

k!
dx =

k

∑
j=0

e−λt (λt)j

j!
, k ∈ N0, t > 0.

Recalling (52) and using the aforementioned equation, after some manipulations we obtain,
for r ∈ N and i = 1, 2,∫ t

0
rxr−1HTi (x)dx =

∫ t

0
rxr−1

∞

∑
k=0

Pi(k)
e−λx(λx)k

k!
dx

=
r!
λr

∞

∑
k=0

Pi(k)
(

r + k− 1
k

) ∫ t

0
e−λx λk+rxk+r−1

(k + r− 1)!
dx

=
r!
λr

∞

∑
k=0

Pi(k)
(

r + k− 1
k

)[
1−

∫ ∞

t
e−λx λk+rxk+r−1

(k + r− 1)!
dx

]

=
r!
λr

∞

∑
k=0

Pi(k)
(

r + k− 1
k

)[
1−

k+r−1

∑
j=0

e−λt (λt)j

j!

]

=
r!
λr

∞

∑
k=0

Pi(k)
(

r + k− 1
k

) ∞

∑
j=k+r

e−λt (λt)j

j!

=
r!
λr

∞

∑
j=r

e−λt (λt)j

j!

j−r

∑
k=0

(
r + k− 1

k

)
Pi(k).

Since e−λt(λt)j/j! is TP2 in (j, t) ∈ N×R+, and recalling relation (51), the general compo-
sition theorem of Karlin [15] implies that

∫ t
0 rxr−1HTi (x)dx is TP2 in (i, t) ∈ {1, 2} ×R+.

This is equivalent to state that T1 ≤
φ
wmit T2 for ψ(x) = xr.

We remark that the case concerning the weight function φ(x) = x is considered in
Theorem 14 of Kayid and Izadkhah [4].

Let us now consider another application. Let X1, X2, . . . be a sequence of i.i.d. random
variables, and let N be a positive integer-valued random variable, which is independent of
the Xi. Denote by

XN:N = max{X1, X2, . . . , XN}

the maximum extreme order statistic in a sample having random size. This random
variable arises naturally in reliability theory as the lifetime of a parallel system with the
random number of identical components with lifetimes X1, X2, . . . , XN . In life testing, if
a random censoring is adopted, then the completely observed data constitute a sample
X1, X2, . . . , XN of random size N > 0. Let XNi :Ni denote the maximum order statistic among
X1, X2, . . . , XNi , where Ni is a positive integer-valued random variable which is indepen-
dent from the sequence of X1, X2, . . . for each i = 1, 2. Now, we have the following theorem.

Theorem 19. Let the weight function φ(x) be increasing in x. If N1 ≤hr N2, then XN1 :N1 ≤
φ
wmit

XN2 :N2 .

Proof. Denote by HNi :Ni (t) the distribution function of XNi :Ni given as

HNi :Ni (t) =
∞

∑
k=1

pi
k Fk(t), for all t > 0,

where F(t) is the common cumulative distribution function of the Xi and pi
k = P(Ni = k),

k ∈ N, is the probability mass function of Ni, i = 1, 2. Clearly, Fk(t) is the CDF of XN:N
conditional on N = k. It is not hard to see that for all t > 0 and for each i = 1, 2 one has
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ϕ(t, i) =
∫ t

0
φ(x)HNi :Ni (x)dx =

∞

∑
k=1

η(t, k)ρ(k, i),

where η(t, k) =
∫ t

0 φ(x)Fk(x)dx, and ρ(k, i) = pi
k. Denote ν(k, i) = ∑∞

j=k pi
j, for each k ∈ N

and i = 1, 2. Assumption N1 ≤hr N2 (inequality ≤hr stands for the hazard rate order
between N1 and N2) implies that ν(k, i) is TP2 in (k, i) ∈ N× {1, 2}. On the other hand,
η(t, k) is TP2 in (t, k) ∈ R+ ×N. Applying Lemma 2.1 in Ortega [49] gives ϕ(t, i) is TP2 in
(t, i) ∈ R+ × {1, 2}, which is equivalent to say that XN1 :N1 ≤

φ
wmit XN2 :N2 .

6.2. Renewal Theory

Let us consider a renewal process with i.i.d. non-negative interarrival times {Xn}n∈N
having common distribution function F(t) and finite mean µ = E[Xn]. Let Sn = ∑n

i=1 Xi,
n ∈ N, with S0 ≡ 0, be the time of the kth arrival. We define N(t) = max{n : Sn ≤ t}, which
represents the number of renewals during (0, t]. The excess lifetime γ(t) = SN(t)+1 − t at
time t ≥ 0 is the time elapsed from the time t to the first arrival after t. Recall that γ(0) has

distribution function F, that is, γ(0) d
= X1. The expected number of renewals in (0, t] can

be obtained as

M(t) = E[N(t)] = F(t) +
∫ t

0
F(t− u)dM(u). (53)

It is well-known that the CDF of γ(t) is given as

P[γ(t) ≤ x] = F(t + x) +
∫ t

0
F(t− u + x)dM(u)−M(t), (54)

for all x, t ≥ 0. In the literature, several results have been given to characterize the stochastic
orders by the excess lifetime in a renewal process. For more details on definitions and
properties, readers are referred to Barlow and Proschan [29]. Next, we will investigate the
behavior of the excess lifetime of a renewal process with WMIT interarrivals. We recall that
the CDF of the residual lifetime (10) is given by

Ft(x) = P(X− t ≤ x|X > t) =
F(t + x)− F(t)

1− F(t)
, t > 0.

Moreover, we say that X is new better than used (NBU) if Xt ≤st X for all t > 0, where Xt
is the residual lifetime defined in (10).

Theorem 20. Let Xt ≤φ
wmit X for all t > 0. If X is IWMIT and is NBU, then γ(t) ≤φ

wmit γ(0)
for all t > 0.

Proof. Since Xt ≤φ
wmit X for all t > 0, it follows that

∫ s

0
φ(x)[F(t + x)− F(t)]dx ≥ [F(t + s)− F(t)]

∫ s

0
φ(x)

F(x)
F(s)

dx,

for all s > 0. By (53) and (54), we have that
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∫ s

0
φ(x)P[γ(t) ≤ x]dx

=
∫ s

0
φ(x)[F(t + x)− F(t)]dx +

∫ s

0

∫ t

0
φ(x)[F(t− u + x)− F(t− u)]dM(u)dx

=
∫ s

0
φ(x)[F(t + x)− F(t)]dx +

∫ t

0

∫ s

0
φ(x)[F(t− u + x)− F(t− u)]dx dM(u)

≥
∫ s

0
φ(x)[F(t + x)− F(t)]dx +

∫ t

0
[F(t− u + s)− F(t− u)]

∫ s

0
φ(x)

F(x)
F(s)

dx dM(u)

=
∫ s

0
φ(x)[F(t + x)− F(t)]dx +

∫ s

0
φ(x)

F(x)
F(s)

dx
∫ t

0
[F(t− u + s)− F(t− u)]dM(u)

=
∫ s

0
φ(x)[F(t + x)− F(t)]dx +

∫ s

0
φ(x)

F(x)
F(s)

dx[P(γ(t) ≤ s)− F(t + s) + F(t)]

≥ [F(t + x)− F(t)]
∫ s

0
φ(x)

F(x)
F(s)

dx +
∫ s

0
φ(x)

F(x)
F(s)

dx[P(γ(t) ≤ s)− F(t + s) + F(t)]

=
∫ s

0
φ(x)

F(x)
F(s)

dxP[γ(t) ≤ s].

Hence, it holds that for all t, s ≥ 0,∫ s

0
φ(x)

P[γ(t) ≤ x]
P[γ(t) ≤ s]

dx ≥
∫ s

0
φ(x)

F(x)
F(s)

dx,

which means that γ(t) ≤φ
wmit γ(0) for all t > 0.

7. Concluding Remarks

It is of interest for the industry to perform systematic studies using reliability concepts
in view of economic repercussions and safety issues. Due to the existence of a great number
of scenarios, a statistical comparison of reliability measures is desired in several applied
contexts, such as reliability engineering and biomedical fields. For this reason, we have
introduced a stochastic order based on the MIT function, named weighted mean inactivity
time (WMIT) order, which is dual to the weighted mean residual life order. The relationship
of this new order with other well-known stochastic orders has been discussed. It was
shown that the WMIT order lies in the framework of the RHR and the MIT orders under
suitable conditions, and hence it enjoys several useful properties which can be applied in
reliability and survival analysis. Moreover, we also discussed its monotonicity properties.
Further, we used the WMIT to determine the expressions for the variance of transformed
random variable, as well as the weighted GCE. Among the several results on such measures,
we provided some characterizations and preservation properties of the new order under
shock models, random maxima, and renewal theory. Our results provide new concepts and
applications in reliability, statistics, and risk theory.

Further properties and applications of the new stochastic order and the new proposed
class will be the object of future investigations. For example, the result of this paper can
be extended to the doubly truncated (interval) random variables. Specifically, given the
random lifetime X and the cumulative weighted random variable ψ(X), one can consider

[ψ(X)− ψ(t1)|t1 ≤ X ≤ t2] and [ψ(t2)− ψ(X)|t1 ≤ X ≤ t2]

where (t1, t2) ∈ D? = {(t1, t2) : F(t1) < F(t2)}. Given that the lifetime having age t1
will expire before age t2, the first random variable is related to the remaining lifetime,
whereas the second one is related to the inactivity time (see, e.g., Sankaran and Sunoj [50],
Khorashadizadeh et al. [51] and references therein).
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Moreover, the harmonic mean inactivity time order introduced by Izadkhah and
Kayid [10], based on the harmonic mean average of the MIT function, can be extended
to a new stochastic order based on the comparison of the harmonic mean average of the
WMIT function.
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MIT Mean inactivity time
NBU New better than used
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