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Abstract: Fractional nonlinear systems have been considered in many fields due to their ability to
bring memory-dependent properties into various systems. Therefore, using fractional derivatives
to model real-world phenomena, such as neuronal dynamics, is of significant importance. This
paper presents the fractional memristive Wilson neuron model and studies its dynamics as a single
neuron. Furthermore, the collective behavior of neurons is researched when they are locally and
diffusively coupled in a ring topology. It is found that the fractional-order neurons are bistable in
some values of the fractional order. Additionally, complete synchronization, lag synchronization,
phase synchronization, and sine-like synchronization patterns can be observed in the constructed
network with different fractional orders.
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1. Introduction

Fractional differential equations have been used for modeling different phenomena
in various fields [1]. In fact, many natural dynamical behaviors are not dependent on
instant time and rely on time history. This reality can be considered in certain models by
changing their integer-order derivatives into fractional ones [2]. Hence, fractional-order
equations are usually more successful in modeling the nonlinear behavior of memory-
dependent systems [3]. For example, such fractal approaches are applicable for modeling
the non-equilibrium processes [4,5]. The fractional calculus can be found in biology, electro-
chemistry, electromagnetism, etc. [6–8]. The other advantage of the fractional models is
the addition of the degree of freedom by one, which lets the model exhibits more diverse
and even complex behaviors [9]. In other words, the fractional-order models indicate
more flexibility.

The advantages of fractional calculus have led neuroscientists to present fractional-
order neuron models. It has been shown that fractional-order models result in more efficient
information processing [10]. In the literature, several fractional-order neuron models have
been introduced and investigated [11–14]. For example, Brandibur and Kaslik analyzed
the asymptotic stability and instability of a two-dimensional fractional-order Morris-Lecar
neuron model [11]. Mondal et al. [12] extended the FitzHugh-Rinzel (FH-R) model by
fractional-order derivatives and reported different firing patterns such as regular spiking,
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fast-spiking, bursting, etc. The Izhikevich neuron model was generalized by the fractional-
order derivatives in [13]. In this study, numerical techniques were applied for solving the
fractional model and then their synchronization was studied. Chen et al. [14] considered a
fractional-order Hodgkin–Huxley neuron model to analyze the effect of fractional order on
the Hopf bifurcation and presented a control method.

Synchronization of neurons is an important problem in neuroscience. The reason is
that synchronization has a substantial role in the information processing of neurons and
the occurrence of pathological brain functions [15]. Consequently, it has been the focus of
many pieces of research [16,17]. Generally, synchronization relies on the network structure,
the dynamics of the neuron model, and the configuration of coupling between neurons.
Depending on these properties and the parameters’ values, complete synchronization,
phase synchronization, lag synchronization, partial synchronization, etc., can appear in the
network [18]. The synchronization behaviors have also been studied among the fractional-
order neuronal models [19–23]. Recently, Yang et al. [20] considered Hindmarsh–Rose
models under electromagnetic radiation to study synchronization and burst transitions.
Xin et al. [21] investigated the fractional-order neurons with memristive synapses. They
reported different behaviors which were dependent on the fractional-order and the parame-
ter of the synapse. Liu et al. [19] focused on the fractional-order extended Hindmarsh-Rose
neurons exposed to a magneto-acoustical stimulation input that can represent complex
firing behaviors. In this study, a control method was proposed for synchronization.

In this paper, we introduce the fractional-order memristive Wilson neuron. The dy-
namics of the model are investigated and bifurcation analysis is carried out. The collective
behaviors of the fractional-order memristive Wilson neurons are also considered. The
synchronization patterns are studied for different parameter values. The paper is organized
as follows: the fractional model is proposed and analyzed in the next section; the collective
behaviors of the network of the proposed model are investigated in Section 3; and the
conclusions are given in Section 4.

2. Fractional Memristive Wilson Neuron

Since Hodgkin and Huxley [24] proposed a nonlinear differential equation to describe
the behavior of a real neuron, many attempts have been made to model the neuron’s
dynamics. For example, Wilson [25] introduced a 2-D neuron model by performing a
simplification on the Hodgkin and Huxley model. Later, adding a flux-controlled mem-
ristor to the model, Xu et al. [26] presented the memristive Wilson (MW) model that is
mathematically expressed as

.
v = (−m∞(v)(v− ENa)− gKr(v− EK) + k(a− b|φ|)v)/Cm,

.
r = (−r + r∞(v))/tr,

.
φ = (εv− φ)/tφ,

(1)

where
m∞(v) = 17.8 + 47.6v + 33.8v2,

r∞(v) = 1.24 + 3.7v + 3.2v2.
(2)

Here variables v, r, and φ refer to the membrane potential, recovery, and flux variables.
m∞(v) and r∞(v) are two activation functions of the membrane potantial and recovey states.
Furthermore, Cm is the membrane capacitor, ENa is the reversal potential of Na+ channel,
EK is the reversal potential of K+ channel, gK is the maximal conductance of K+ channel, tr
activation time of K+ channel, tφ time scale of the flux changes, a is the memristor inner
parameter, b memductance changing rate, k is the electromagnetic induction coupling
strength, and ε is the time scale coefficient.

Since fractional calculus brings memory characteristics to the models, they are more
functional for modeling real-world phenomena, such as neuron behaviors [22]. Hence, we
present the WM model with fractional derivatives (FMW) that can be rewritten in general
form as
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Dαv = (−m∞(v)(v− ENa)− gKr(v− EK) + k(a− b|φ|)v)/Cm,
Dαr = (−r + r∞(v))/tr,

Dαφ = (εv− φ)/tφ,
(3)

where Dα denotes Caputo-type fractional derivative with the fractional order of α. The
Caputo-type derivative can be expressed by

Dαxt =
1

Γ(dαe − α)

t∫
0

(t− τ)dαe−α−1x(dαe)t . (4)

Here, d.e is an operation that rounds the inner value to the first higher integer. Ac-
cording to the definition in Equation (4), the derivative of xt is proportional to its classical
derivative x

′
s, for all 0 < s < t. Thus, past times get involved in the calculations, and

fractional calculus deals with memory. Furthermore, for 0 < α < 1, due to the determined
distribution function, recent times have more impact than past times. Note that a Caputo-
type fractional derivative mathematically includes initial and boundary conditions, and
thus, such a derivative can be practical in dealing with real problems [27]. Applying the
Riemann–Liouville integral operator [28], Equation (4) can be reformatted as

Dαxt = J(dαe−α) ddαext

dtdαe
. (5)

Equation (5) can be solved numerically by employing the Adam–Bashforth–Moulton
algorithm [28]. The model exhibits different firing patterns by varying the fractional order
of derivatives. Setting Cm = 1, ENa = 0.95, EK = −0.95, gK = 26, tr = 5, tφ = 0.5,
a = 1, b = 3, k = 8.5, and ε = 1, Figure 1 shows the bifurcation diagram of the FMW
neuron model as a function of fractional order α, where α is in the range of [0.6, 1]. In
general, a period-doubling bifurcation can be seen as α increases. Looking more closely at
Figure 1, many saddle-node bifurcations and crises can be observed as α varies. However,
the most noticeable ones are at α ≈ 0.78 (saddle-node bifurcation), α ≈ 0.81 (boundary
crisis), and α ≈ 0.88 (interior crisis). Note that the strategy for plotting the bifurcation
diagrams is taken from [29]. Accordingly, the initial condition of each step (α value) is
determined as the last sample of the previous step (former α value) trajectory by increasing
the bifurcation parameter.
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Figure 1. The bifurcation diagram of FMW neuron as a function of fractional order α. Other
parameters are Cm = 1, ENa = 0.95, EK = −0.95, gK = 26, tr = 5, tφ = 0.5, a = 1, b = 3, k = 8.5, and
ε = 1. The initial condition is (v0, r0, φ0) = (0, 1, 0).

The phase portraits of the FMW neuron in 3-D variable space by considering α = 0.75
(period-1 region of Figure 1), α = 0.82 (period-2 region of Figure 1), α = 0.83 (period-4
region of Figure 1), and α = 0.95 (chaotic region of Figure 1), are obtained and demonstrated
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in Figure 2. It can be seen that the model represents different periodic and chaotic patterns
by varying α.
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Figure 2. The phase portraits of the FMW neuron for (a) α = 0.75 and (v0, r0, φ0) = (0, 1, 0),
(b) α = 0.82 and (v0, r0, φ0) = (0, 1, 0), (c) α = 0.83 and (v0, r0, φ0) = (0, 1, 0), and (d) α = 0.95 and
(v0, r0, φ0) = (0,−1, 0). Other parameters are Cm = 1, ENa = 0.95, EK = −0.95, gK = 26, tr = 5,
tφ = 0.5, a = 1, b = 3, k = 8.5, and ε = 1.

Although the MW neuron is monostable in the determined parameter set (see [26]), more
numerical investigations reveal that the FMW neuron model is bistable in all studied fractional
orders (Figure 2a–d). The coexisting attractors of the FMW neuron are presented in Figure 3
for α = 0.75, α = 0.82, α = 0.83, and α = 0.95, respectively. Consequently, the period-1 limit
cycle (Figure 2a) coexists with a period-2 limit cycle (Figure 3a). Similarly, the period-2 and
period-4 limit cycles (Figure 2b,c) coexist with a chaotic attractor (Figure 3b,c). The coexistence
of the strange attractor (Figure 2d) and a limit cycle (Figure 3d) can also be observed.
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(b) α = 0.82 and (v0, r0, φ0) = (0,−1, 0), (c) α = 0.83 and (v0, r0, φ0) = (0,−1, 0), and (d) α = 0.95
and (v0, r0, φ0) = (0, 1, 0). Other parameters are Cm = 1, ENa = 0.95, EK = −0.95, gK = 26, tr = 5,
tφ = 0.5, a = 1, b = 3, k = 8.5, and ε = 1.
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3. Network Dynamics

This paper also investigates the collective behavior of the FMW neurons by considering
its dynamics as a ring graph’s nodes. The constructed network can be mathematically
formulated by

Dαvi =

(
−m∞(vi)(vi − ENa)− gKri(vi − EK) + k(a− b|φi|)vi + D

N
∑

j=1
Gij
(
vj − vi

))
/Cm,

Dαri = (−ri + r∞(vi))/tr,
Dαφi = (εvi − φi)/tφ,

(6)

where D is the coupling strength, G is the connectivity matrix, and N shows the network
size (number of coupled oscillators). For locally coupled oscillators in an undirected ring

network of size N = 4, G is


0 1 0 1
1 0 1 0
0 1 0 1
1 0 1 0

. Here, 100 locally coupled FMW neurons are

considered in an undirected ring network. It should be noted that the same investigations
can be performed considering an asymmetric graph. However, for simplicity, a symmetric
ring network is considered here. The synchronization error [30] and the parameter R [31]
are calculated as the measures of complete synchronization and phase synchronization in
the considered network. The synchronization error can be obtained by

E = 〈
N−1

∑
j=2

√(
v1(t)− vj(t)

)2
+
(
r1(t)− rj(t)

)2
+
(
φ1(t)− φj(t)

)2〉t/N − 1. (7)

Here, 〈.〉 denotes averaging over time.
The parameter R, which is a quantification of the phase synchronization degree, can

be defined as

R = 〈
N

∑
i=1

eiωi(t)〉t/N, (8)

And
ωi(t) = 2π(t− ti,k)/ti,k+1 − ti,k, (9)

where ωi(t) defines the phase of the i th neuron at each time step and ti,k refers to the onset
of the k the spike of the i the neuron [32].

Figure 4 shows the synchronization error and parameter R values as a function of
coupling strengths D (0 ≤ D ≤ 30) at α = 0.75. It is observed that for D > 25, the FMW
neurons become completely synchronous. Next, the network is investigated to observe
other collective patterns before the neurons reach complete synchronization. Figure 5 shows
the spatio-temporal patterns along with the snapshot of the last sample and the neurons’
time series for α = 0.75. According to Figure 5a, lag synchronization patterns can be found
in the studied network. Besides, Figure 5b shows that the neurons are synchronized in the
period-1 attractor shown in Figure 2a. Note that the randomly generated initial conditions
in a range of [0, 1] are considered for r0 values and zero initial values are assumed for v0
and φ0.

Similar to Figure 4, Figure 6 expresses the synchronization error and parameter R
values as a function of coupling strengths D (0 ≤ D ≤ 100) at α = 0.95. Neurons’
initial conditions and the parameter set are considered the same as those in Figure 4.
From Figure 6, it can be noticed that for α = 0.95, the networks cannot get completely
synchronized, although the broader range for coupling strength is investigated. However,
the signs of phase synchronization can be observed in Figure 6 since, in some D values,
the parameter R is almost equal to one, but the synchronization error has a considerable
amount. The result of studying the collective patterns of the FMW network for α = 0.95,
including the spatio-temporal patterns, the snapshot of the last sample, and the neurons’
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time series, are presented in Figure 7. Phase synchronization patterns (E = 0.075 and
R = 0.9952) can be observed for higher values of the coupling strength D (Figure 7b).
However, in lower values of D, sine-like synchronization (E = 0.182 and R = 0.0519) can
also be found (Figure 7a). Moreover, the neurons’ synchronization manifold is the chaotic
attractor, as demonstrated in Figure 2d.
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including the spatio-temporal patterns, the snapshot of the last sample, and the neurons’ 
time series, are presented in Figure 7. Phase synchronization patterns (𝐸 = 0.075 and 𝑅 =0.9952) can be observed for higher values of the coupling strength 𝐷 (Figure 7b). How-
ever, in lower values of 𝐷, sine-like synchronization (𝐸 = 0.182 and 𝑅 = 0.0519) can also 
be found (Figure 7a). Moreover, the neurons’ synchronization manifold is the chaotic at-
tractor, as demonstrated in Figure 2d. 

Figure 5. (a) The spatio-temporal patterns of locally coupled FMW neurons, as well as (b) the neurons’
time series and the snapshot of the last samples for D = 3.5. (c) The spatio-temporal patterns of
locally coupled FMW neurons, as well as (d) the neurons’ time series and the snapshot of the last
samples for D = 30. α = 0.75 is considered.
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Figure 7. (a) The spatio-temporal patterns of locally coupled FMW neurons, as well as (b) the neurons’
time series and the snapshot of the last samples for D = 20. (c) The spatio-temporal patterns of locally
coupled FMW neurons, as well as (d) the neurons’ time series and the snapshot of the last samples
for D = 70. α = 0.95 is considered.

4. Conclusions

This paper presented a fractional version of the memristive Wilson neuron model
described in [26], using Caputo-type fractional derivatives. As described in [27], the Caputo
derivative functions well in dealing with real concerns since it involves the initial and
boundary conditions in the formulation. It should be noted that applying the Caputo
derivative function, the derivative of a constant is zero. However, it cannot be employed
on non-differentiable functions. On the other hand, the Riemann-Liouville derivative
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of an arbitrary constant value is not zero, but it can be performed for non-differentiable
functions. Moreover, the Jumarie fractional derivative has no solution for a function with a
discontinuity at the origin, and therefore the derivative of a constant value with the Weyl
derivative cannot be obtained.

Firstly, the dynamical characteristics of the FMW neuron model were investigated
through a bifurcation analysis. The study of the neuron’s bifurcation diagrams showed
different types of bifurcation points, including period-doubling bifurcations, interior crises,
boundary crises, and saddle-node bifurcations. The original MW neuron model parameters
were set to the value at which the system is monostable. However, when fractional, the
numerical investigation showed the bistability of the FMW neurons in some fractional
order (α) values. Secondly, to study the collective behavior of the FMW neurons, a ring
network of 100 FMW neurons that were locally connected through diffusive couplings
was constructed. The synchronization error and parameter R were selected to investigate
the networks from the point of complete synchronization and phase synchronization. The
constructed network was explored in two fractional-order values (α = 0.75, wherein the
FMW neuron has periodic solutions, and α = 0.95, wherein the FMW neuron has a chaotic
solution). As a result, complete synchronization and lag synchronization was found for
α = 0.75. Moreover, for α = 0.95, phase synchronization and sine-like synchronization
were observed in the studied network.

A newly developed fractional derivative, namely the fractal-fractional derivative [33],
is concerned to be applicable in dealing with real problems. So, as a future study, it would
be interesting to investigate the dynamical properties and collective behavior of FMW
neurons using the fractal-fractional derivative in an asymmetric network topology.

Author Contributions: Conceptualization, K.R. and H.N.; methodology, H.N.; software, G.V. and
M.M.; validation, E.T.-C. and K.R.; investigation, G.V. and M.M.; writing—original draft preparation,
M.M. and G.V.; writing—review and editing, E.T.-C. and K.R.; visualization, K.R.; supervision, E.T.-C.;
All authors have read and agreed to the published version of the manuscript.

Funding: This work is funded by the Center for Nonlinear Systems, Chennai Institute of Technology,
India vide funding number CIT/CNS/2022/RD/006.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: No new data were created or analyzed in this study. Data sharing is
not applicable to this article.

Conflicts of Interest: The authors declare that they have no conflicts of interest.

References
1. Rahimy, M. Applications of fractional differential equations. Appl. Math. Sci. 2010, 4, 2453–2461.
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