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Abstract: Since the product of complex numbers and rectangular fuzzy complex numbers (RFCN) is
not necessarily a RFCN in the former fuzzy complex linear system (FCLS), the scalar multiplication
and addition operations of complex numbers and fuzzy complex numbers (FCN) based on a new
representation of FCN are proposed. We also introduce a new method for solving FCLS, which can
convert FCLS into two distinct linear systems. One is an n× n complex linear system, and the other
is an (mn)× (mn) real linear system, where n is the number of unknown variables, and m is the
number of substitutional cyclic sets composed of coefficients of FCLS. In particular, using this method
to solve one-dimensional fuzzy linear systems, a (2n)× (2n) RLS is obtained, which is consistent
with Friedman’s method. Finally, FCLS based on the RFCN as a special case are also investigated.

Keywords: fuzzy numbers; fuzzy complex number; fuzzy complex linear systems

MSC: 65F99

1. Introduction

In 1989, the concept of FCN was first proposed by Buckley [1]. The basic arithmetic
operations, algebraic and exponential forms of FCN, and a distance on the space of FCN were
defined and studied. Subsequently, the derivative of fuzzy complex-valued functions (FCVF)
was further generalized and developed [2] based on the concept of derivatives of real fuzzy
mapping proposed by Dubois and Prade [3,4]. At the same time, the contour integral of FCVF
on the complex plane was given [5]. In 1999, Wu and Qiu [6] improved the results in [1],
which were different from those defined in [2,5], and introduced the derivatives and integrals
of functions that map complex numbers to generalized FCN. In 2000, Qiu et al. studied the
sequences and series of FCN and their convergence [7]. In 2001, Qiu et al. considered the
continuity and differentiability of functions that map complex numbers to FCN or FCN to
complex numbers [8].

In the process of mathematical modeling involving some practical problems, such as
optimization problems, often due to measurement error and incomplete information, there
will be some uncertain parameters and variables that can be expressed as a fuzzy number.
Therefore, the linear system modeled by fuzzy numbers has many potential applications
in actual production and life. In 1998, Friedman et al. proposed a method to solve the
fuzzy linear system (FLS) n × n [9] by using the embedding method given in [10] and
replacing the original FLS n× n with a crisp function linear system (2n)× (2n). Based on
this method, some researchers have proposed various methods for solving FLS [11–33].

As far as we know, the research results of FCLS are relatively few. In 2009, Rah-
gooy et al. considered the solution of FCLS and applied it to the circuit analysis problem [34].
In 2010, Jahantigh et al. proposed a numerical procedure for FCLS [35]. In 2012, Behera and
Chakraverty introduced a new and simple centre- and width-based method for solving
FCLS [36]. Hladik and Djanybekov also investigated a solution of the complex interval
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linear systems (FILS) [37,38]. It is worth noting that a new and simple method for solving
the general FCLS was proposed by Behera and Chakraverty [39,40].

Although Behera and Chakraverty have defined the scalar multiplication of complex
number and FCN [39], just as Buckley pointed out in [1] that the product of two RFCN is
not necessarily a RFCN, in fact, the scalar multiplication of complex numbers and RFCN
is not necessarily a RFCN either. For example, let z̃ = ã + ib̃ be a RFCN defined by the
membership function

z̃(z) =
{

1, (x, y) ∈ [−1, 1]× [−1, 1],
0, otherwise,

where z = x + iy and ã, b̃ are fuzzy numbers defined by the membership functions

ã(x) =
{

1, x ∈ [−1, 1],
0, otherwise,

b̃(y) =
{

1, y ∈ [−1, 1],
0, otherwise,

respectively. It is easy to verify that wz̃ is not an RFCN by the extension principle, where
w =

√
2

2 (1 + i). In fact,

wz̃(z) =


1, (x, y) ∈

(
[−1, 0]× [−(x +

√
2), x +

√
2]
)

∪
(
[0, 1]× [x−

√
2,
√

2− x]
)
,

0, otherwise,

which does not write the form of ã + ib̃. Therefore, the left and right sides of FCLS may
not be equal in [39]. For the above reason, based on the new representation and operation
of FCN, we propose a new method to solve FCLS, which can convert the FCLS into two
distinct linear systems. One is a complex linear system n × n, and the other is an RLS
(mn)× (mn). Finally, FCLS based on RFCN as a special case is also investigated.

The structure of this paper is as follows. Section 2 provides background notions
related to FCN. In Section 3, a new representation and the arithmetic operations of FCN are
provided. In Section 4, a new method for solving FCLS is proposed, and Section 5 studies a
system of functional equations with period 2π. A especial case of FCLS is considered in
Section 6. Section 7 presents our conclusions.

2. Background

A fuzzy set ũ is a mapping from R to [0, 1] defined by the function ũ(x). Let [ũ]r =

{x|ũ(x) > r} for r ∈ (0, 1] and [ũ]0 = {x|ũ(x) > 0}. A fuzzy set ũ is a fuzzy number if ũ
is a normal, convex fuzzy set that is upper semi-continuous, and supp ũ = {x|ũ(x) > 0}
is compact.

We denote a complex number by z = x + iy, and denote the complex plane by C.
A fuzzy complex set z̃ is a mapping from C to [0, 1] defined by the function z̃(z). Let
[z̃]r = {z|z̃(z) > r} for r ∈ (0, 1], [z̃]0 =

⋃
0<r61[z̃]r [1,7].

Definition 1 ([7]). A fuzzy complex set z̃ is called an FCN if the following conditions are satisfied:
(1) z̃ is a upper semi-continuous function;
(2) [z̃]r is a compact set for 0 6 r 6 1;
(3) z̃ is normal, i.e., there exists a z0 such that z̃(z0) = 1;
(4) z̃ is a fuzzy convex set, i.e., z̃(λz1 + (1− λ)z2) > min{z̃(z1), z̃(z2)} for all z1, z2 ∈ C,

λ ∈ [0, 1].

We use z̃, w̃ for FCN and x̃, ỹ, ũ, ṽ for fuzzy numbers. Let C̃ be the set of FCN. If
f (z1, z2) = w is a mapping from C×C into C, we may define a mapping f (z̃1, z̃2) = w̃
from C̃× C̃ into C̃ by the extension principle as [1]

w̃(w) = sup{min(z̃1(z1), z̃2(z2))| f (z1, z2) = w}.
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Let f (z1, z2) = z1 + z2 or f (z1, z2) = z1z2; then we may define the sum or multipli-
cation of two FCN by w̃ = z̃1 + z̃2 or w̃ = z̃1z̃2. We also define the subtraction of two
FCN by

z̃1 − z̃2 = z̃1 + (−z̃2),

where
−z̃2(z) = z̃2(−z).

The sum and multiplication of FCN satisfy following properties:

[z̃1 + z̃2]
α = [z̃1]

α + [z̃2]
α, [z̃1z̃2]

α = [z̃1]
α[z̃2]

α.

A FCN is called a trivial zero fuzzy number (TZFN) if [z̃]0 = {0}. A FCN is called a
nontrivial zero fuzzy number (NTZFN) if 0 ∈ [z̃]1 and [z̃]0 6= {0}.

3. A New Representation of FCN

In this section, a new representation of FCN is given, and the scalar multiplication
and addition operations of complex numbers and FCN based on the representation of FCN
are proposed.

Theorem 1 ([41]). Let õ be a NTZFN of complex plane. Then

õ =
⋃

ϕ∈[0,2π]

(
R̃(ϕ)eiϕ),

where R̃(ϕ) =
⋃

r∈[0,1]
(
r∗ ∩ [0, ρ(r, ϕ)]

)
is a fuzzy number for all ϕ ∈ [0, 2π].

We give a definition of FCN based on the above representation theorem of NTZFN.

Definition 2 ([41]). If z̃ is a FCN, then

z̃ = ẑ +
⋃

ϕ∈[0,2π]

(
R̃(ϕ)eiϕ),

where [ẑ]r = {z = x0 + iy0}, for all r ∈ [0, 1],

x0 =

∫ ∫
[z̃]1 xdxdy∫ ∫
[z̃]1 dxdy

, y0 =

∫ ∫
[z̃]1 ydxdy∫ ∫
[z̃]1 dxdy

,

⋃
ϕ∈[0,2π]

(
R̃(ϕ)eiϕ) is the new representation of NTZFN z̃− ẑ.

For simplicity, FCN z̃ = ẑ+
⋃

ϕ∈[0,2π]

(
R̃(ϕ)eiϕ) is written as z̃ = z+

⋃
ϕ∈[0,2π]

(
R̃(ϕ)eiϕ).

FCN z̃ = z+
⋃

ϕ∈[0,2π]

(
R̃(ϕ)eiϕ) can also be written as z̃ = z+

⋃
ϕ∈[0,2π]

(
R̃(ϕ+ kπ

2 )ei(ϕ+ kπ
2 )
)
,

k ∈ Z+.

Theorem 2 ([41]). Let z̃ = reiθ +
⋃

ϕ∈[0,2π]

(
R̃(ϕ)eiϕ), z = r′eiθ′ ∈ C, k ∈ R. Then

(1) zz̃ =
(
r′eiθ′)(reiθ +

⋃
ϕ∈[0,2π]

(
R̃(ϕ)eiϕ)) = r′rei(θ′+θ)+

⋃
ϕ∈[0,2π]

(
r′R̃(ϕ)ei(θ′+ϕ)

)
.

(2) kz̃ =


(kr)eiθ +

⋃
ϕ∈[0,2π]

((
kR̃(ϕ)

)
eiϕ), k > 0,

(−kr)ei(θ+π)

+
⋃

ϕ∈[0,2π]

((
(−k)R̃(ϕ)

)
ei(ϕ+π)

)
, k < 0.

Definition 3 ([41]). Let

z̃1 = a1 + ib1 +
⋃

ϕ∈[0,2π]

(
R̃1(ϕ)eiϕ), z̃2 = a2 + ib2 +

⋃
ϕ∈[0,2π]

(
R̃2(ϕ)eiϕ).
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If
w̃ = (a1 + a2) + i(b1 + b2) +

⋃
ϕ∈[0,2π]

(
(R̃1(ϕ) + R̃2(ϕ))eiϕ)

is a FCN, then w̃ is called the strong sum of two FCN z̃1 and z̃2, which is denoted by z̃1 ⊕ z̃2.

The strong sum and the sum of two FCN are equivalent when the condition of
Corollary 5.4 is satisfied in [41].

For simplicity, we also write FCN z̃ = ẑ +
⋃

ϕ∈[0,2π]

(
R̃(ϕ)eiϕ) as z̃ = z + R̃(ϕ)eiϕ,

ϕ ∈ [0, 2π], the scalar multiplication and the strong sum of FCN as

z′ z̃ = z′z + r′R̃(ϕ)ei(θ′+ϕ), ϕ ∈ [0, 2π],

kz̃ =

{
kz + kR̃(ϕ)eiϕ, ϕ ∈ [0, 2π], k > 0,

kz + (−k)R̃(ϕ)ei(ϕ+π), ϕ ∈ [0, 2π], k < 0,

z̃1 + z̃2 = z1 + z2 + (R̃1(ϕ) + R̃2(ϕ))eiϕ, ϕ ∈ [0, 2π]

respectively, where z′ = r′eiθ′ is a complex number.
It is worth noting that since FCN can be regarded as a generalization of one-dimensional

fuzzy numbers, we can similarly represent one-dimensional fuzzy numbers and define the
operations of one-dimensional fuzzy numbers; see reference [42].

4. FCLS

The n× n FCLS is written as
c11z̃1 + c12z̃2 + · · ·+ c1n z̃n = w̃1,
c21z̃1 + c22z̃2 + · · ·+ c2n z̃n = w̃2

...
cn1z̃1 + cn2z̃2 + · · ·+ cnn z̃n = w̃n.

(1)

We may write the above as
CZ̃ = W̃, (2)

where C = (cjk)n×n is a crisp n× n complex matrix, W̃ = (w̃1, w̃2, · · ·, w̃n)T is a column
vector of known FCN, and Z̃ = (z̃1, z̃2, · · ·, z̃n)T is the vector of unknown FCN.

System (1) may be also written as

n

∑
j=1

ckj z̃j = w̃k, (3)

where k = 1, 2, · · ·, n. Let ckj = rc
kje

iθc
kj , w̃k = wk + R̃w

k eiϕ, z̃k = zk + R̃z
keiϕ, ϕ ∈ [0, 2π], where

wk, zk are some complex numbers, R̃w
k = R̃w

k (ϕ), R̃z
k = R̃z

k(ϕ) are some fuzzy numbers, and
i is an imaginary unit. By (3), we obtain the system

n

∑
j=1

(ckjzj + ckjR̃z
j eiϕ) = wk + R̃w

k eiϕ,

i.e.,
n

∑
j=1

(ckjzj + rc
kjR̃

z
j ei(ϕ+θc

kj)) = wk + R̃w
k eiϕ,

where k = 1, 2, · · ·, n. The above system is written as

n

∑
j=1

ckjzj = wk, (4)
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and
n

∑
j=1

rc
kjR̃

z
j ei(ϕ+θc

kj) = R̃w
k eiϕ, (5)

where k = 1, 2, · · ·, n, and (4) is a complex linear system, which may be denoted by

CZ = W, (6)

where Z = (z1, z2, · · ·, zn)T , W = (w1, w2, · · ·, wn)T . System (5) is written as

n

∑
j=1

rc
kjR̃

z
j (ϕ− θc

kj)e
iϕ = R̃w

k eiϕ,

i.e.,
n

∑
j=1

rc
kjR̃

z
j (ϕ− θc

kj) = R̃w
k (ϕ), (7)

where k = 1, 2, · · ·, n, and rc
kj are some positive real numbers for every ϕ, R̃w

k (ϕ) are some
known fuzzy numbers known and R̃z

k(ϕ) are some unknown fuzzy numbers.
Let

[R̃w
k ]

r = [R̃w
k (ϕ)]r = [0, bk(r, ϕ)],

[R̃z
k]

r = [R̃z
k(ϕ)]r = [0, ρk(r, ϕ)],

bk(ϕ) = bk(r, ϕ), ρk(ϕ) = ρk(r, ϕ).

Then, System (7) can be equivalently written as the following system

n

∑
j=1

rc
kjρj(ϕ− θc

kj) = bk(ϕ), (8)

where k = 1, 2, · · ·, n, and ρi(ϕ) are some unknown functions with period 2π, and bi(ϕ) are
some known functions with period 2π.

We obtain the following theorem by the above discussion.

Theorem 3. A vector Z̃ = (z̃1, z̃2, · · ·, z̃n)T is a solution (a unique solution) of Equation (2) if
and only if the vectors Z = (z1, z2, · · ·, zn)T , Uρ = (ρ1(ϕ), ρ2(ϕ), · · ·, · · ·, ρn(ϕ))T are solutions
(two unique solutions) of Equation (6) and System (8), respectively, and

[z̃k]
r = zk +

⋃
ϕ∈[0,2π]

(
[0, ρk(ϕ)]eiϕ).

Example 1. Consider the 3× 3 FCLS
(1 + i)z̃1 + z̃2 + iz̃3 = w̃1,
3z̃1 + (1− i)z̃2 + z̃3 = w̃2,
z̃1 − iz̃2 − (1 + i)z̃3 = w̃3,

(9)

where

w̃1 = 3 + 2i + R̃w
1 (ϕ)eiϕ, [R̃w

1 (ϕ)]r = [0, (2 + 2
√

2 + | sin ϕ|)(1− r)],

w̃2 = 5− i + R̃w
2 (ϕ)eiϕ, [R̃w

2 (ϕ)]r = [0, (7 +
√

2 +
√

2| sin(ϕ +
π

4
)|)(1− r)],

w̃3 = 1 + R̃w
3 (ϕ)eiϕ, [R̃w

3 (ϕ)]r = [0, (3 + 2
√

2 + | cos ϕ|)(1− r)].
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Let

z̃k = zk + R̃z
keiϕ, [R̃z

k]
r = [R̃z

k(ϕ)]r = [0, ρk(r, ϕ)], ρk(ϕ) = ρk(r, ϕ), k = 1, 2, 3.

Equation (9) is written as
(1 + i)(z1 + R̃z

1(ϕ)eiϕ) + (z2 + R̃z
2(ϕ)eiϕ) + i(z3 + R̃z

3(ϕ)eiϕ) = 3 + 2i + R̃w
1 (ϕ)eiϕ,

3(z1 + R̃z
1(ϕ)eiϕ) + (1− i)(z2 + R̃z

2(ϕ)eiϕ) + (z3 + R̃z
3(ϕ)eiϕ) = 5− i + R̃w

2 (ϕ)eiϕ,
(z1 + R̃z

1(ϕ)eiϕ)− i(z2 + R̃z
2(ϕ)eiϕ)− (1 + i)(z3 + R̃z

3(ϕ)eiϕ) = 1 + R̃w
3 (ϕ)eiϕ.

Equation above is equivalent to
(1 + i)z1 + z2 + iz3 = 3 + 2i,
3z1 + (1− i)z2 + z3 = 5− i
z1 − iz2 − (1 + i)z3 = 1,

(10)

and 
(1 + i)(R̃z

1(ϕ)eiϕ) + R̃z
2(ϕ)eiϕ + i(R̃z

3(ϕ)eiϕ) = R̃w
1 (ϕ)eiϕ,

3(R̃z
1(ϕ)eiϕ) + (1− i)(R̃z

2(ϕ)eiϕ) + (R̃z
3(ϕ)eiϕ) = R̃w

2 (ϕ)eiϕ,
R̃z

1(ϕ)eiϕ − i(R̃z
2(ϕ)eiϕ)− (1 + i)(R̃z

3(ϕ)eiϕ) = R̃w
3 (ϕ)eiϕ.

(11)

The solution of Equation (10) is

z1 = 1, z2 = 1 + i, z3 = −i. (12)

Equation (11) is written as
(
√

2ei π
4 )(R̃z

1(ϕ)eiϕ) + R̃z
2(ϕ)eiϕ + ei π

2 (R̃z
3(ϕ)eiϕ) = R̃w

1 (ϕ)eiϕ,
3(R̃z

1(ϕ)eiϕ) + (
√

2ei(− π
4 ))(R̃z

2(ϕ)eiϕ) + R̃z
3(ϕ)eiϕ = R̃w

2 (ϕ)eiϕ,
R̃z

1(ϕ)eiϕ + ei(− π
2 )(R̃z

2(ϕ)eiϕ) + (
√

2ei 5π
4 )(R̃z

3(ϕ)eiϕ) = R̃w
3 (ϕ)eiϕ.

i.e., 
√

2R̃z
1(ϕ)ei(ϕ+ π

4 ) + R̃z
2(ϕ)eiϕ + R̃z

3(ϕ)ei(ϕ+ π
2 ) = R̃w

1 (ϕ)eiϕ,
3R̃z

1(ϕ)eiϕ +
√

2R̃z
2(ϕ)ei(ϕ− π

4 ) + R̃z
3(ϕ)eiϕ = R̃w

2 (ϕ)eiϕ,
R̃z

1(ϕ)eiϕ + R̃z
2(ϕ)ei(ϕ− π

2 ) +
√

2R̃z
3(ϕ)ei(ϕ+ 5π

4 ) = R̃w
3 (ϕ)eiϕ.

That is,
√

2R̃z
1(ϕ− π

4 )e
iϕ + R̃z

2(ϕ)eiϕ + R̃z
3(ϕ− π

2 )e
iϕ = R̃w

1 (ϕ)eiϕ,
3R̃z

1(ϕ)eiϕ +
√

2R̃z
2(ϕ + π

4 )e
iϕ + R̃z

3(ϕ)eiϕ = R̃w
2 (ϕ)eiϕ,

R̃z
1(ϕ)eiϕ + R̃z

2(ϕ + π
2 )e

iϕ +
√

2R̃z
3(ϕ− 5π

4 )eiϕ = R̃w
3 (ϕ)eiϕ.

It follows that
√

2R̃z
1(ϕ− π

4 ) + R̃z
2(ϕ) + R̃z

3(ϕ− π
2 ) = R̃w

1 (ϕ),
3R̃z

1(ϕ) +
√

2R̃z
2(ϕ + π

4 ) + R̃z
3(ϕ) = R̃w

2 (ϕ),
R̃z

1(ϕ) + R̃z
2(ϕ + π

2 ) +
√

2R̃z
3(ϕ− 5π

4 ) = R̃w
3 (ϕ).

i.e., 
√

2ρ1(ϕ− π
4 ) + ρ2(ϕ) + ρ3(ϕ− π

2 ) = b1(ϕ),
3ρ1(ϕ) +

√
2ρ2(ϕ + π

4 ) + ρ3(ϕ) = b2(ϕ),
ρ1(ϕ) + ρ2(ϕ + π

2 ) +
√

2ρ3(ϕ− 5π
4 ) = b3(ϕ),

(13)

where ρi(ϕ) are three functions unknown with period 2π, bi(ϕ) are three functions known
with period 2π, and

b1(ϕ) = (2 + 2
√

2 + | sin ϕ|)(1− r),
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b2(ϕ) = (7 +
√

2 +
√

2| sin(ϕ +
π

4
)|)(1− r),

b3(ϕ) = (3 + 2
√

2 + | cos ϕ|)(1− r).

It is to easy verify that

ρ1(ϕ) = 2(1− r), ρ2(ϕ) = (1 + | sin ϕ|)(1− r), ρ3(ϕ) = 1− r

are solutions of Equation (13). From Theorem 3 and Equation (12), we obtain

[z̃1]
r = 1 +

⋃
ϕ∈[0,2π]

(
[0, 2(1− r)]eiϕ),

[z̃2]
r = (1 + i) +

⋃
ϕ∈[0,2π]

(
[0, (1 + | sin ϕ|)(1− r)]eiϕ),

[z̃3]
r = (−i) +

⋃
ϕ∈[0,2π]

(
[0, (1− r)]eiϕ).

5. System of Functional Equations with Period 2π

Since System (8) is a system of functional equations with period 2π that cannot be
solved directly, we need to convert System (8) into a (mn)× (mn) RLS. First, we give the
following three definitions.

Definition 4. A set C = {ϕ− θ1, ϕ− θ2, · · ·, ϕ− θm} is said to be m-substitutional cyclic if for
any ϕ− θi, ϕ− θj ∈ C, we have ϕ− θi − θj ∈ C.

Definition 5. A m-substitutional cyclic set C is said to be generated by the set {ϕ− θ1, ϕ− θ2,
· · ·, ϕ− θk} if {ϕ− θ1, ϕ− θ2, · · ·, ϕ− θk} ⊆ C and for any m-substitution cyclic set D including
the set {ϕ− θ1, ϕ− θ2, · · ·, ϕ− θk} satisfies C ⊆ D, denoted by

C =< ϕ− θ1, ϕ− θ2, · · ·, ϕ− θk > .

Definition 6. The system (8) is said to be m-substitutional cyclic if there exists a m-substitutional
cyclic set C = {ϕ− θ1, ϕ− θ2, · · ·, ϕ− θm} such that

C =< ϕ− θc
11, · · ·, ϕ− θc

1n, ϕ− θc
21, · · ·, ϕ− θc

2n, · · · ϕ− θc
n1, · · ·, ϕ− θc

nn > .

Obviously, we can get the following theorem by Definition 6.

Theorem 4. If System (8) is m-substitutional cyclic, then the vector(
ρ1(ϕ), ρ2(ϕ), · · ·, ρn(ϕ)

)T

is a solution of System (8) if only if(
ρ1(ϕ− θ1), · · ·, ρn(ϕ− θ1), ρ1(ϕ− θ2), · · ·, ρn(ϕ− θ2), · · ·, ρ1(ϕ− θm), · · ·, ρn(ϕ− θm)

)T

is a solution of the following (mn)× (mn) system
∑n

j=1 rc
kjρj(ϕ− θ1 − θc

kj) = bk(ϕ− θ1),
∑n

j=1 rc
kjρj(ϕ− θ2 − θc

kj) = bk(ϕ− θ2),
...

∑n
j=1 rc

kjρj(ϕ− θm − θc
kj) = bk(ϕ− θm),

(14)
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where k = 1, 2, · · ·, n, ρi(ϕ) are some unknown functions with period 2π, and bi(ϕ) are some
functions known with period 2π.

Example 2. Since the m-substitutional cyclic set

C =
{

ϕ− 5π

4
, ϕ− π, ϕ− 3π

4
, ϕ− π

2
, ϕ− π

4
, ϕ, ϕ +

π

4
, ϕ +

π

2
}

=< ϕ− 5π

4
, ϕ− π

2
, ϕ− π

4
, ϕ, ϕ +

π

4
, ϕ +

π

2
>

is in System (13), we know that System (13) is m-substitutional cyclic, which is equivalent to the
following system:

√
2ρ1(ϕ +

π

2
) + ρ2(ϕ− 5π

4
) + ρ3(ϕ +

π

4
) = b1(ϕ− 5π

4
),

3ρ1(ϕ− 5π

4
) +
√

2ρ2(ϕ− π) + ρ3(ϕ− 5π

4
) = b2(ϕ− 5π

4
),

ρ1(ϕ− 5π

4
) + ρ2(ϕ− 3π

4
) +
√

2ρ3(ϕ− π

2
) = b3(ϕ− 5π

4
),

√
2ρ1(ϕ− 5π

4
) + ρ2(ϕ− π) + ρ3(ϕ +

π

2
) = b1(ϕ− π),

3ρ1(ϕ− π) +
√

2ρ2(ϕ− 3π

4
) + ρ3(ϕ− π) = b2(ϕ− π),

ρ1(ϕ− π) + ρ2(ϕ− π

2
) +
√

2ρ3(ϕ− π

4
) = b3(ϕ− π),

√
2ρ1(ϕ− π) + ρ2(ϕ− 3π

4
) + ρ3(ϕ− 5π

4
) = b1(ϕ− 3π

4
),

3ρ1(ϕ− 3π

4
) +
√

2ρ2(ϕ− π

2
) + ρ3(ϕ− 3π

4
) = b3(ϕ− 3π

4
),

ρ1(ϕ− 3π

4
) + ρ2(ϕ− π

4
) +
√

2ρ3(ϕ) = b3(ϕ− 3π

4
),

√
2ρ1(ϕ− 3π

4
) + ρ2(ϕ− π

2
) + ρ3(ϕ− π) = b1(ϕ− π

2
),

3ρ1(ϕ− π

2
) +
√

2ρ2(ϕ− π

4
) + ρ3(ϕ− π

2
) = b2(ϕ− π

2
),

ρ1(ϕ− π

2
) + ρ2(ϕ) +

√
2ρ3(ϕ +

π

4
) = b3(ϕ− π

2
),

√
2ρ1(ϕ− π

2
) + ρ2(ϕ− π

4
) + ρ3(ϕ− 3π

4
) = b1(ϕ− π

4
),

3ρ1(ϕ− π

4
) +
√

2ρ2(ϕ) + ρ3(ϕ− π

4
) = b2(ϕ− π

4
),

ρ1(ϕ− π

4
) + ρ2(ϕ +

π

4
) +
√

2ρ3(ϕ +
π

2
) = b3(ϕ− π

4
),

√
2ρ1(ϕ− π

4
) + ρ2(ϕ) + ρ3(ϕ− π

2
) = b1(ϕ),

3ρ1(ϕ) +
√

2ρ2(ϕ +
π

4
) + ρ3(ϕ) = b2(ϕ),

ρ1(ϕ) + ρ2(ϕ +
π

2
) +
√

2ρ3(ϕ− 5π

4
) = b3(ϕ),
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√
2ρ1(ϕ) + ρ2(ϕ +

π

4
) + ρ3(ϕ− π

4
) = b1(ϕ +

π

4
),

3ρ1(ϕ +
π

4
) +
√

2ρ2(ϕ +
π

2
) + ρ3(ϕ +

π

4
) = b2(ϕ +

π

4
),

ρ1(ϕ +
π

4
) + ρ2(ϕ− 5π

4
) +
√

2ρ3(ϕ− π) = b3(ϕ +
π

4
),

√
2ρ1(ϕ +

π

4
) + ρ2(ϕ +

π

2
) + ρ3(ϕ) = b1(ϕ +

π

2
),

3ρ1(ϕ +
π

2
) +
√

2ρ2(ϕ− 5π

4
) + ρ3(ϕ +

π

2
) = b2(ϕ +

π

2
),

ρ1(ϕ +
π

2
) + ρ2(ϕ + π) +

√
2ρ3(ϕ− 3π

4
) = b3(ϕ +

π

2
).

We may write the above as
KX = B,

where
X =

(
ρ1(ϕ− 5π

4 ), ρ2(ϕ− 5π
4 ), ρ3(ϕ− 5π

4 ), ρ1(ϕ− π), ρ2(ϕ− π), ρ3(ϕ− π),
ρ1(ϕ− 3π

4 ), ρ2(ϕ− 3π
4 ), ρ3(ϕ− 3π

4 ), ρ1(ϕ− π
2 ), ρ2(ϕ− π

2 ), ρ3(ϕ− π
2 ),

ρ1(ϕ− π
4 ), ρ2(ϕ− π

4 ), ρ3(ϕ− π
4 ), ρ1(ϕ), ρ2(ϕ), ρ3(ϕ),

ρ1(ϕ + π
4 ), ρ2(ϕ + π

4 ), ρ3(ϕ + π
4 ), ρ1(ϕ + π

2 ), ρ2(ϕ + π
2 ), ρ3(ϕ + π

2 )
)T ,

B =
(
b1(ϕ− 5π

4 ), b2(ϕ− 5π
4 ), b3(ϕ− 5π

4 ), b1(ϕ− π), b2(ϕ− π), b3(ϕ− π),
b1(ϕ− 3π

4 ), b2(ϕ− 3π
4 ), b3(ϕ− 3π

4 ), b1(ϕ− π
2 ), b2(ϕ− π

2 ), b3(ϕ− π
2 ),

b1(ϕ− π
4 ), b2(ϕ− π

4 ), b3(ϕ− π
4 ), b1(ϕ), b2(ϕ), b3(ϕ),

b1(ϕ + π
4 ), b2(ϕ + π

4 ), b3(ϕ + π
4 ), b1(ϕ + π

2 ), b2(ϕ + π
2 ), b3(ϕ + π

2 )
)T ,

K =



U
LU
L2U
L3U
L4U
L5U
L6U
L7U


,

U = (U1, U2, · · ·, U8),

U1 =

 0 1 0
3 0 1
1 0 0

, U2 =

 0 0 0
0
√

2 0
0 0 0

,

U3 =

 0 0 0
0 0 0
0 1 0

, U4 =

 0 0 0
0 0 0
0 0

√
2

,

U5 =

 0 0 0
0 0 0
0 0 0

, U6 =

 0 0 0
0 0 0
0 0 0

,

U7 =

 0 0 1
0 0 0
0 0 0

, U8 =


√

2 0 0
0 0 0
0 0 0

.

LU = L(U1, U2, · · ·, U8) = (U8, U1, · · ·, U7).
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Similarly, we also may denote System (14) in the form of a matrix as

KX = B, (15)

where
X =

(
ρ1(ϕ− θ1), · · ·, ρn(ϕ− θ1), ρ1(ϕ− θ2), · · ·, ρn(ϕ− θ2), · · ·, ρ1(ϕ− θm),

· · ·, ρn(ϕ− θm)
)T ,

B =
(
b1(ϕ− θ1), · · ·, bn(ϕ− θ1), b1(ϕ− θ2), · · ·, bn(ϕ− θ2), · · ·, b1(ϕ− θm),

· · ·, bn(ϕ− θm)
)T ,

K =


U

LU
L2U

...
Lm−1U

,

U = (U1, U2, · · ·, Um)

Ui (i = 1, 2, · · ·, m) denotes an n×m coefficient matrix of the first n equations of System (14)
determined by the variable ϕ− θi in order ρ1, ρ2, · · ·, ρn. L denotes putting the previous
column of the block matrix into the latter column, and the last column of the block matrix
into the first column, i.e.,

LU = L(U1, U2, · · ·, Um) = (Um, U1, · · ·, Um−1).

We obtain the following theorem by the above discussion.

Theorem 5. A vector Z̃ = (z̃1, z̃2, · · ·, z̃n)T is a solution (a unique solution) of Equation (2) if
and only if the vectors Z = (z1, z2, · · ·, zn)T and

X =
(
ρ1(ϕ− θ1), · · ·, ρn(ϕ− θ1), ρ1(ϕ− θ2), · · ·, ρn(ϕ− θ2), · · ·, ρ1(ϕ− θm),

· · ·, ρn(ϕ− θm)
)T ,

are solutions (two unique solutions) of Equation (6) and (15), respectively, and

[z̃k]
r = zk +

⋃
ϕ∈[0,2π]

(
[0, ρk(ϕ)]eiϕ).

FCLS can be transformed into two distinct linear systems: one is an n× n complex
linear system, and the other is an (mn) × (mn) RLS. Since FCN can be regarded as an
extension of one-dimensional fuzzy numbers, we discuss the one-dimensional FLS by
using the method of studying FCLS. Our method can also transform the one-dimensional
FLS into two distinct linear systems: one is an n× n RLS, and the other is a (2n)× (2n)
RLS. The method of solving the one-dimensional FLS is similar to the method of solving
FCLS [42].

It should be noted that the method introduced by Friedman et al. for solving the
one-dimensional FLS is to transform the original n× n FLS into a (2n)× (2n) RLS [9]. The
coefficient matrix of the (2n)× (2n) RLS is a block matrix, the positive part of the original FLS
coefficient matrix is the main diagonal of the block matrix, and the negative part of the original
FLS coefficient matrix is the negative diagonal of the block matrix. Our method is to transform
the one-dimensional FLS into a n× n RLS and a (2n)× (2n) RLS, where the coefficients
of the n× n RLS are the coefficients of the original FLS, and the coefficient matrix of the
(2n)× (2n) RLS is also a block matrix. The positive part of the original FLS coefficient matrix
is the main diagonal of the block matrix, and the negative part of the original FLS coefficient
matrix is the negative diagonal of the block matrix. This is identical to the coefficient matrix
of the (2n)× (2n) RLS in the approach developed by Friedman et al. Therefore, our method
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can be regarded as an extension of the method introduced by Friedman et al. in the case
of FCLS.

6. FCLS Based on RFCN

From Theorem 5 in the reference [1] and Lemma 2, as well as Theorem 2.3 in the
reference [43], we know that a RFCN z̃ may be written as a form of ã + ib̃. It follows from
(2) of Theorem 2 and Definition 3 that

kz̃ = kã + i(kb̃), z̃1 + z̃2 = (ã1 + ã2) + i(b̃1 + b̃2),

where z̃ = ã + ib̃, z̃1 = ã1 + ib̃1, z̃2 = ã2 + ib̃2, k ∈ R.
However, by (1) of Theorem 2, we note that the scalar multiplication of an RFCN

is not always an RFCN. Therefore, We consider only a FCLS based on an RFCN, and its
coefficients are all real numbers.

The n× n FCLS based on RFCN is written as
a11z̃1 + a12z̃2 + · · ·+ a1n z̃n = w̃1,
a21z̃1 + a22z̃2 + · · ·+ a2n z̃n = w̃2

...
an1z̃1 + an2z̃2 + · · ·+ ann z̃n = w̃n,

(16)

where z̃j = x̃j + iỹj(j = 1, 2, · · ·, n) are unknown RFCN, w̃k = c̃k + id̃k(k = 1, 2, · · ·, n) are
known RFCN, ajk(i, j = 1, 2, · · ·, n) are real numbers, and i is an imaginary unit.

We can write the above as
AZ̃ = W̃, (17)

where A = (ajk)n×n is a real n× n matrix, W̃ = (c̃k + id̃k)n×1 is a column vector of the
known RFCN and Z̃ = (x̃j + iỹj)n×1 is a column vector of the unknown RFCN.

Then, Equation (17) is equivalent to the equations

AX̃ = C̃, (18)

and
AỸ = D̃, (19)

where C̃ = (c̃k)n×1, D̃ = (d̃k)n×1 are two column vectors of known fuzzy numbers, and
X̃ = (x̃j)n×1, Ỹ = (ỹj)n×1 are two column vectors of unknown fuzzy numbers.

We obtain the following theorem by the above discussion.

Theorem 6. A column vector of RFCN Z̃ = X̃ + iỸ is a solution of Equation (17) if and only if X̃
and Ỹ are the solutions of Equations (18) and (19), respectively.

Example 3. Let {
z̃1 − z̃2 = w̃1,

z̃1 + 3z̃2 = w̃2,
(20)

be a 2× 2 FCLS based on RFCN, where

[w̃1]
α = [α, 2− α] + i[1 + α, 3− α], [w̃2]

α = [4 + α, 7− 2α] + i[α− 4,−1− 2α].

Let
[z̃1]

α = [xα
1−, xα

1+] + i[yα
1−, yα

1+], [z̃2]
α = [xα

2−, xα
2+] + i[yα

2−, yα
2+].

Then, Equation (20) is equivalent to the systems{
[xα

1−, xα
1+]− [xα

2−, xα
2+] = [α, 2− α],

[xα
1−, xα

1+] + 3[xα
2−, xα

2+] = [4 + α, 7− 2α],
(21)
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and {
[yα

1−, yα
1+]− [yα

2−, yα
2+] = [1 + α, 3− α],

[yα
1−, yα

1+] + 3[yα
2−, yα

2+] = [α− 4,−1− 2α].
(22)

By System (21), we get

xα
1− =

11
8

+
5α

8
, xα

1+ =
23
8
− 7α

8
,

xα
2− =

7
8
+

α

8
, xα

2+ =
11
8
− 3α

8
.

By System (22), we get

yα
1− =

1
8
+

5α

8
, yα

1+ =
13
8
− 7α

8
,

yα
2− = −11

8
+

α

8
, yα

2+ = −7
8
− 3α

8
Hece, we obtain that

[z̃1]
α = [

11
8

+
5α

8
,

23
8
− 7α

8
] + i[

1
8
+

5α

8
,

13
8
− 7α

8
],

[z̃2]
α = [

7
8
+

α

8
,

11
8
− 3α

8
] + i[−11

8
+

α

8
,−7

8
− 3α

8
].

Our calculation results are consistent with those in the literature [39].

7. Conclusions

We have discussed the scalar multiplication and addition operations of complex
numbers and FCN based on the representation of FCN and also introduced a method for
solving FCLS, which can convert FCLS into two distinct linear systems: one is a n × n
complex linear system, and the other is an (mn)× (mn) RLS. Finally, FCLS based on the
RFCN as a special case are also investigated. Our calculation results show the efficiency
and effectiveness of the methodology by several examples. In the future, the research in
this field will focus on fuzzy complex analysis and applications of FCLS.
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