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Abstract: Ground surface roughness is difficult to predict through a physical model due to its complex
influencing factors. BP neural networks (BPNNs), a promising method, have been widely applied in
the prediction of surface roughness. This paper uses the concept of BPNN to predict ground surface
roughness considering the state of the grinding wheel. However, as the number of input parameters
increases, the local optimum solution of the model that arises is more serious. Therefore, “identify
factors” are designed to judge the iterative state of the model, whilst “memory factors” are designed
to store the best weights during network training. The iterative termination conditions of the model
are improved, and the learning rate and update rules of the weights are adjusted to avoid the local
optimal solution. The results show that the prediction accuracy of the presented model is higher and
more stable than the traditional model. Under three types of iteration steps, the average prediction
accuracy is improved from 0.071, 0.065, 0.066 to 0.049, 0.042, 0.039 and the standard deviation of
prediction decreased from 0.0017, 0.0166, 0.0175 to 0.0017, 0.0070, 0.0076, respectively. Therefore, the
proposed method provides guidance for improving the global optimization ability of BPNNs and
developing more accurate models for predicting surface roughness.

Keywords: BP network; local optimum; ground surface roughness; wheel wear

MSC: 68T07

1. Introduction

Grinding is a widely used practice in precision machining, and the grinding quality
directly affects the surface finish and working life of products. Surface roughness is an
important parameter for evaluating the quality of ground surfaces and the competitiveness
of the overall grinding system, which is closely related to the assembly accuracy, corro-
sion resistance and wear resistance of the products [1]. Predicting the surface roughness
accurately for the grinding process is beneficial for selecting efficient process parameters
and guaranteeing the grinding quality. Hence, high-precision prediction of ground surface
roughness is of great importance [2,3].

In the research of grinding mechanisms, most physical models only consider the
grinding wheel speed, workpiece speed, and depth of cut. However, surface roughness
is equally sensitive to wheel wear, and it is difficult for the physical model to consider
the time-varying state of the grinding wheel. Statistical analysis is commonly used for
prediction [4,5], but it has limitations in solving complex nonlinear relationships such as
grinding processes. Therefore, to meet the control needs of actual processing, researchers
are more inclined to use machine learning models to predict surface roughness [6–10].
Nikolaos et al. [11] took the depth of cut, feed rate, and spindle speed as input parameters
to establish an artificial neural network to predict the ground surface roughness Ra. The
results showed that the prediction accuracy was as high as 0.796, which proved the validity
of the model. To control the surface roughness during high-speed machining, Jiao et al. [12]
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used a fuzzy adaptive network to predict the surface roughness. The results showed
that the average absolute error of the model was 0.25 µm, while that of the regression
analysis method was 0.70 µm. Kechagias et al. [13] took the upper width, down width,
and kerf angle as input parameters to establish a feed-forward and backpropagation
neural network to predict the ground surface roughness Ra. The results showed that
the complex correlation coefficients between the predicted and experimental values of
surface roughness were all greater than 0.975, which proved the model validity. As a
typical machine learning algorithm, BP neural networks (BPNNs) are widely used in the
development of surface roughness prediction models due to their strong self-learning
ability, high fault tolerance, and circumvention of the revelation of complex physical
mechanisms. Baseri et al. [14] took the depth of cut, feed rate, and grinding wheel speed as
input parameters to establish a BPNN to predict the ground surface roughness and verify
the efficiency of the model. To reduce the effect of tool chatter on the workpiece surface of
metal cutting, Shrivastava et al. [15] used an artificial neural network and multi-objective
genetic algorithm to predict the optimal cutting zone. The results showed that the tool
chatter was most closely related to the depth of cut compared to the feed rate and cutting
speed. According to the interaction mechanism between abrasive grains and workpiece in
the grinding area, Jiang et al. [16] established a prediction model for the ground surface
roughness. The results showed that under the basic parameters of depth of cut, feed
rate, and grinding wheel speed, the prediction error decreased from 50% to 10% when
the grinding wheel wear was considered. At present, the wear of the grinding wheel is
generally studied through force signal. Zhou et al. [17] collected the cutting force signals
and extracted features such as average force value, standard deviation, and frequency
domain energy with a force sensor. The tool wear was predicted based on the SVD linear
feature recognition method, followed by verifying the feasibility of the method through
experiments. Elbestawima et al. [18] extracted the components of the milling force signal in
each direction and the harmonic power to identify the tool wear, and the results showed
that the accuracy rate was between 85% and 100%.

Based on neural networks and physical models, the above studies have developed the
relationship between surface roughness, force signal, and grinding wheel wear from the
perspectives of time domain, frequency domain, and time–frequency domain. However,
problems such as slow convergence and local optimal solutions exist in BPNNs and become
more serious with the increase of input dimensions. Additionally, these problems lead
to the reduction of the efficiency of model prediction, a large fluctuation in accuracy, and
deterioration of stability. Therefore, it is necessary to optimize the BPNN. At present,
the optimization methods of BPNNs are mainly divided into three types. The first is to
optimize the BPNN based on the swarm algorithm [19–25]. To solve the problem of the
BP model easily falling into local optimal solutions, Chu et al. [26] proposed a simplified
PSO algorithm based on a stochastic inertia weight algorithm. The results showed that the
convergence speed of the model was increased by two times and the prediction accuracy
increased from 75% to 85%. The principle of swarm optimization is to generate multiple
groups of initial weights of the BPNN for network training, and then select the optimal
weights. Because the different initial weights will cause the BPNN to fall into different
local optimal solutions. This approach reduces the adverse effects of a single local optimal
solution. The second is to optimize the BPNN based on a genetic algorithm [10,27–30].
Ding et al. [31] used a genetic algorithm with good global search ability to train the network,
and then used the BPNN with good local search ability to find the optimal solution. The
optimization principle of a genetic algorithm is to generate multiple groups of initial
weights of the BPNN, select the optimal solution through the fitness function, and then
update the initial weight group for network training. This approach reduces the influence
of the local optimal solution by continuously updating the weight group. The third is to
adaptively change the learning rate of the BPNN. Liu and Gao et al. [32,33] changed the
learning rate of the BPNN through the size of the training function error, which improved
the convergence speed of the BPNN and reduced the impact of the local optimal solution.



Mathematics 2022, 10, 2788 3 of 18

In the above studies, different optimization algorithms were applied to improve the global
search ability of the BPNN in the prediction of surface roughness. The first two types
of approaches improved the global search ability by expanding the number of weighted
solutions, but the model would still fall into the local optimal solution. In addition, the
threshold for iteration termination was selected artificially, resulting in over-convergence
and non-convergence of the network; they could not achieve fast convergence and local
accurate search of the network at the same time or maximize the prediction performance of
the model. In the third type of approach, the learning rate could not be adjusted based on
the network training state. Adjusting the learning rate too early or too late would reduce
the prediction accuracy and make it not possible to effectively solve the local optimal
solution problem. Therefore, improving the local optimal solution and convergence of a
BPNN while ensuring the convergence efficiency and prediction accuracy is still a problem
to be solved.

In this paper, an adaptive BP network for the prediction of ground surface roughness
is proposed to settle these matters, processing the force signal and extracting the features
of grinding wheel wear as input parameters. In addition, optimizing the BP algorithm,
improving the iterative termination conditions of the prediction model, and adjusting the
weight update rules help to solve the problem of local optimal solutions and reduce the
impact of human factors. Furthermore, dynamically adjusting the learning rate based
on the iterative state of the network maximizes the prediction performance of the model
itself, and improves the search accuracy of the target weights with the premise of ensuring
rapid convergence. The rationality of the method is verified by comparing the prediction
performance of the BP model of ground surface roughness before and after optimization.

2. Data Source and Processing
2.1. Experimental Setup

The experimental material was quartz glass, which was cut into standard specimens
with a size of 15 mm × 15 mm × 10 mm. To explore the effect of grinding wheel wear on
ground surface roughness, the same grinding wheel was used continuously for processing
in the experiment. The grinding wheel material was #80 electroplated diamond, with
approximately 190 µm grit and 20 mm in diameter. Three grinding parameters were
selected to carry out experiments of 3 × 3 × 3 combinations; the specific parameters are
shown in Table 1.

Table 1. Grinding parameters.

Parameter Level Wheel Speed
vs (rpm)

Workpiece Speed
vw (mm/min)

Depth of Cut
ap (µm)

1 500 100 50
2 2000 200 100
3 5000 500 150

A CNC milling machine was used for grinding experiments. First, the test piece was
bonded to the iron plate fixed on the milling machine to ensure the synchronous movement
of the test piece and the worktable. Then, the triaxial force sensor fixed on the iron plate
detected the force of the specimen; the specific experimental process is shown in Figure 1.

2.2. Data Processing and Selection

The grinding force signal is closely related to the wear of the grinding wheel. Therefore,
it is a feasible approach to extract the features of grinding wheel wear through the normal
force data and obtain parameters for the subsequent BPNN prediction, extracting features
in time, frequency, and time–frequency domains to retain as many features of the normal
force signal as possible. Due to the large amount of experimental data, 20,000 data points
in the smooth grinding state were selected for analysis in each group of experiments.
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Figure 1. Experimental flow.

Due to machine tool vibration and ambient temperature, there was a lot of noise
interference in the collected normal force signal, which affected subsequent feature analysis.
Therefore, noise reduction and zero-drift compensation were performed on the normal
force signal to reduce the impact of the environment and ensure a high signal-to-noise ratio
of the signal. According to the experimental environment, the force signal was processed
by low-pass filtering with a cutoff frequency of 500 Hz. Finally, the features of grinding
wheel wear were determined in the time domain, frequency domain, and time–frequency
domain, as shown in Table 2.

Table 2. Relevant features of grinding wheel wear.

Analytical Method Features Calculated Equations

Time domain analysis
The mean value AVG AVG = 1

N ∑N
i−1 xi

The root mean square value RMS RMS =
√

1
N ∑N

i−1 x2
i

Frequency domain analysis The barycenter frequency FC FC =
(∑N

i−1 fi pi)
∑N

i−1 pi

Time–frequency domain analysis
The proportion of energy in each

frequency band Eij
Eij =

Eij
′

∑2i−1
j=0 Eij

′

Figure 2 shows the processing of the normal force signal. In the time domain and fre-
quency domain, the mean value AVG, the root mean square value RMS, and the barycenter
frequency FC were often used to characterize grinding wheel wear. In the time–frequency
domain, wavelet packet decomposition was used to analyze the non-stationary signals.
From the frequency domain analysis, it was known that 0–62.5 Hz is the main frequency
band of the normal force signal, and the four-layer wavelet packet decomposition was
performed on this frequency band to observe the change of the energy ratio of the first
eight frequency bands. By comparison, it was found that the energy of the fourth frequency
band (16.5–19.5 Hz) and the total energy of the first eight frequency bands (0–31.25 Hz)
were sensitive to grinding wheel wear. Therefore, the energy value ratios of the above
two frequency bands were selected as the time–frequency domain features of grinding
wheel wear.

According to the processed data, the parameters of the input layer are shown in Table 3.
The processed data was divided into training samples and testing samples according to
the principle of 3:1, which was convenient for the training and testing of the BP prediction
model of ground surface roughness.
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Figure 2. Processing of the normal force data: (a) time domain analysis of the normal force data;
(b) frequency domain analysis of the normal force data; (c) time–frequency domain analysis of the
normal force data.

Table 3. Input parameters of the prediction model.

Input Parameters Features

Basic process parameters

Wheel speed vs
Workpiece speed vw

Depth of cut ap
Tangential force Ft

Normal force Fn

Time–frequency domain parameters

4th frequency band energy ratio of normal
grinding force (16.5–19.5 Hz) E4

The energy ratio of the first 8 frequency bands of
the normal grinding force (0–31.25 Hz) E0~8

Time domain parameters The root mean square value of normal force FRMS

Frequency domain parameters The barycenter frequency of normal force FC

3. Presented BP Neural Network Prediction Model

The core content of the BP algorithm is to update the parameters through gradient
descent and error back propagation to find the optimal result for the entire path. When
predicting ground surface roughness, the BP model can be trained by a certain number of
training samples to fit the relationship between the ground surface roughness and grinding
parameters under specific processing conditions. The presented BP prediction model of
ground surface roughness with a single hidden layer constructed in this paper is shown in
Figure 3.
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According to the basic principle of BPNN, compared with multiple hidden layers,
the BPNN with a single hidden layer is simpler and has the property of fitting nonlinear
functions well. The number of nodes in the input layer depends on the dimension of the
input samples; the parameters of the input layer are shown in Table 3. The number of nodes
in the output layer is 1, and the output is the predicted value of the surface roughness
Ra. The number of hidden layer nodes is determined through the principle of the golden
section method:

h =
√

m + n + a (1)

where h is the number of hidden layer nodes, m is the number of input layer nodes, n is the
number of output layer nodes, and a is an adjustment constant from 1 to 10. In this work, a
is set as 5 −

√
10, and the number of hidden layer nodes h is 5.

In addition, the activation function of the hidden layer of the prediction model is the
Sigmoid function, the activation function of the output layer is the identity function, and
the error function is the global mean square error. The default learning rate µ is 0.024,
the initial weights and biases are generated randomly, and the learned function is used to
update the weights and biases of each layer.

3.1. The Standard BP Algorithm

The input layer vector of the neural network is x = (x1, x2, · · · , x9), the hidden layer
vector is y = (y1, y2, · · · , y5), and w and γ represent the connection weights and biases
between the input layer and the hidden layer. The output layer vector is z, whilst v and θ
represent the connection weights and biases between the hidden layer and the output layer.
The activation functions of the hidden layer and output layer are f 1, f 2.

The information forward propagation process of the neural network can be expressed as

yj = f1(
9

∑
i=1

wijxi − γj) (2)

z = f2(
5

∑
j=1

vjyj − θ) (3)
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After the BPNN completes the forward propagation of the information once, the back
propagation of the error is carried out. First, the error function of the neural network
is calculated:

e =
1
2
(M− z)2 (4)

where e is the error function and M is the expected output vector.
According to the negative gradient direction of the error function e, the connection

weights and biases between the hidden layer and the output layer are updated:

v′ = v− µ
∂e
∂v

(5)

θ′ = θ − µ
∂e
∂θ

(6)

where µ is the learning rate.
The connection weights and biases between the input layer and the hidden layer are

then updated; the process is shown in Figure 3.

w′ = w− µ
∂e
∂w

(7)

γ′ = γ− µ
∂e
∂γ

(8)

The above is an iterative process of the BPNN. The training and prediction of the
model can be achieved by setting the number of iterations or the threshold of the error
function e.

Finally, the developed predictive model can be represented by Equation (9):

Ra = f
(
vs, vw, ap, Ft, Fn, E4, E0∼8, FRMS, FC

)
(9)

3.2. The Local Optimal Solution

Based on the mathematical theory, the BPNN uses the local gradient feature of the error
function to update the weights within finite iterative steps, and finally obtains the minimum
training function value. However, the minimum training function value found is not
necessarily the global optimal solution. From the perspective of the training function, there
are multiple local optimal solutions instead of global optimal solutions, so the algorithm
finally finds a local optimal solution with a high probability. From the perspective of the
gradient descent method, the adjustment principle of the weights is based on local optima,
and there is no algorithmic idea to avoid the local optima. When the initial weights and
biases are determined, the local optimal solution is also determined, which is an important
reason why many types of neural networks are difficult to optimize. The selection of initial
weights and learning rate are two main factors that affect the generation of local optimal
solutions. The initial weight is a sensitive parameter of the BP network, and different initial
weights often cause the model to fall into different local optimal solutions. The learning
rate affects the convergence characteristics of the neural network. When the learning rate is
too large, the BP network may not converge, or converge rapidly in the early iteration, but
may skip the local optimal solution and the global optimal solution in the later iteration,
which will result in a decrease in the accuracy of the prediction model. When the learning
rate is too small, the iteration of the BP network is slow, which reduces the efficiency of
model and makes the model fall into the local optimal solution.

3.3. The Development of the Presented BP Algorithm

The traditional model does not judge the state of the network, it will iterate until the
end of training. To solve the local optimal solution, a network state identification method
is proposed in this paper. First, “identify factors” are designed to determine whether the
BP network falls into the local optimal solution. Then, “memory factors” are designed to
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dynamically update and store the best weights during training. It is stipulated that after the
error function value oscillates continuously three times during model training, “identify
factors” is 1 and the BP network is considered to fall into the local optimal solution. In the
rest of the cases, “identify factors” is 0.

identify factors =

{
1 eN > eN−1, N = t− 1, t, t + 1
0 else

(10)

where eN is the error value of the Nth training; eN−1 is the error value of the (N − 1)th
training; and t − 1, t, and t + 1 are three consecutive positive integers. The “identify factors”
are used to solve the convergence and local optimal problems later.

A fixed learning rate µ in traditional model cannot guarantee fast convergence and
accurate prediction of the BPNN at the same time. Therefore, according to the different
characteristics of the BP network in the early iteration and later iteration, the learning rate
µ is adjusted dynamically. We judge the iterative state of the BPNN via “identify factors”:
early iteration and later iteration. In the early iteration, the learning rate µ is kept at the
default value, which improves the convergence speed and results in quickly approaching
the optimal solution area. In the later iteration, “identify factors” = 1 and the learning rate
µ decays through the Equation (11), which will improve the solution accuracy and avoid
model oscillation:

µ′ =
1

1 + h
µ (11)

To ensure that the learning rate µ decays moderately, h is set as the number of adjust-
ments; the values are 0, 1, 2.

After falling into the local optimal solution, the traditional model does not process and
continues to iterate until the end of training. In this paper, when h = 2, the learning rate µ is
reset to the default value, h is reset to 0, and random oscillation is loaded on the weights of
each layer in “memory factors”, so that the model avoids the local optimal solution:

wij = Mem1ij + p× sin[(i + j + rand(0, 2))× π

2
] (12)

vj = Mem2j + p ∗ sin[(j + 1 + rand(0, 2)) ∗ π

2
] (13)

Mem1 and Mem2 are the weight matrices of the hidden layer and the output layer in
“memory factors”. p is a random number in (0, 2) which represents the range of the random
change of the weights. The sin function represents the direction in which the weights
randomly change. i, j, and rand (0, 2) represent random changes between different weights.
Then BP network is trained with wij and vj as the weights of each layer. After the training,
the best weights in “memory factors” are taken as the final solution. The comparison of
the traditional and proposed updating principle of the weights and thresholds is shown in
Figure 4.
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In the training process of the presented BP, the adjustment of the learning rate and
update of the weights are influenced mutually. The change of the learning rate affects the
result of the weight update, and the update of the weights affects the iterative state of the
network, which in turn affects the value of the “identify factors” and finally affects the
change of the learning rate. The specific process of the prediction model of ground surface
roughness is shown in Figure 5.

Mathematics 2022, 10, x FOR PEER REVIEW 9 of 19 
 

 

 

Figure 4. Comparison of the traditional and improved updating principle of the weights and thresh-

olds. 

In the training process of the presented BP, the adjustment of the learning rate and 

update of the weights are influenced mutually. The change of the learning rate affects the 

result of the weight update, and the update of the weights affects the iterative state of the 

network, which in turn affects the value of the “identify factors” and finally affects the 

change of the learning rate. The specific process of the prediction model of ground surface 

roughness is shown in Figure 5. 

 

Figure 5. The process of predicting ground surface roughness. 

3.4. The Performance Evaluation of the Presented BP 

The prediction performance of the presented BP network for ground surface rough-

ness is evaluated from two aspects: firstly, analyzing the influence of grinding wheel wear 

parameters on the prediction model of ground surface roughness; secondly, comparing 

the prediction performance of the BP network before and after optimization. 

The traditional BP network is used to predict the ground surface roughness to ana-

lyze the influence of grinding wheel wear, and the global relative error is used as the 

measurement index of the prediction accuracy: 

1

1
=

N
i i

i i

x

N




=

−
  (14) 

where δ is the global relative error, N is the number of the testing samples, and μi and xi 

are the measured and predicted values of the surface roughness of the ith sample in the 

testing samples. 

Comparing the prediction performance of the BP network before and after optimiza-

tion, Equation (14) is used as the measurement index of the prediction accuracy, and the 

standard deviation is used as the measurement index of the stability of the prediction 

model: 

( )
2

1

1

1

N

i

i

s
N

 
=

= −
−
  (15) 

Figure 5. The process of predicting ground surface roughness.

3.4. The Performance Evaluation of the Presented BP

The prediction performance of the presented BP network for ground surface roughness
is evaluated from two aspects: firstly, analyzing the influence of grinding wheel wear
parameters on the prediction model of ground surface roughness; secondly, comparing the
prediction performance of the BP network before and after optimization.

The traditional BP network is used to predict the ground surface roughness to an-
alyze the influence of grinding wheel wear, and the global relative error is used as the
measurement index of the prediction accuracy:

δ =
1
N

N

∑
i=1

∣∣∣∣ xi − µi
µi

∣∣∣∣ (14)

where δ is the global relative error, N is the number of the testing samples, and µi and xi
are the measured and predicted values of the surface roughness of the ith sample in the
testing samples.

Comparing the prediction performance of the BP network before and after optimiza-
tion, Equation (14) is used as the measurement index of the prediction accuracy, and the
standard deviation is used as the measurement index of the stability of the prediction model:

s =

√√√√ 1
N − 1

N

∑
i=1

(δi − δ)2 (15)

where s is the sample standard deviation and δi is the relative error of the predicted value
of the ith sample in the testing samples.

4. Results and Discussion
4.1. Influence of Grinding Wheel Wear Features

The traditional BP network was used to predict the ground surface roughness to verify
the influence of grinding wheel wear parameters. The basic process parameters in Table 3
were selected as the input parameters of the neural network—Traditional BP1 (Tra BP1), and
all the parameters in Table 3 are the input parameters of the neural network—Traditional
BP2 (Tra BP2). The number of input layer nodes of Traditional BP1 and Traditional BP2 are
5 and 9, respectively, whilst the other parameters are set to be the same. The number of



Mathematics 2022, 10, 2788 10 of 18

nodes in the hidden layer and output layer are 5 and 1, respectively; the default learning
rate is 0.024; and the three types of iteration steps K are set to 2000, 10,000, and 15,000.

Both models were trained with training samples and then tested 20 times with testing
samples for three types of iterative steps. The relative error has been used to characterize
the prediction accuracy; the results are shown in Table 4, whilst the experimental results
and predicted results appear in Appendix A at the end of the paper.

Table 4. Influence of grinding wheel wear features on prediction results.

Prediction Accuracy
Traditional BP1 Traditional BP2

K = 2000 K = 10,000 K = 15,000 K = 2000 K = 10,000 K = 15,000

Best value 0.062 0.062 0.061 0.045 0.035 0.031
Average value 0.071 0.065 0.066 0.050 0.053 0.054

After the grinding wheel wear features were introduced, the best prediction accuracy
of surface roughness Ra improved from 0.062, 0.062, 0.061 to 0.045, 0.035, 0.031, respectively.
The average prediction accuracy also improved, from 0.071, 0.065, 0.066 to 0.050, 0.053, 0.054,
respectively. The BP prediction model is essentially an optimal nonlinear function that
maps input parameters to output parameters. The results show that the wear characteristics
of the grinding wheel enhance the correlation between the input parameters and the ground
surface roughness and promote the development of the BP model during iterative training:
the update of the weights and biases of each layer. According to the physical model, the
increase in the dimension of the input parameters improves the mapping ability of the
model (the best prediction accuracy of the BP network).

The specific data of the relative prediction error of Traditional BP1 and Traditional BP2
are shown in Figure 6. Compared with K = 10,000 and K = 15,000, the prediction accuracy
of Traditional BP1 is fluctuates more when K = 2000. Because the number of iterations is
too small, the training level of the Traditional BP1 is low, and a good mapping relation-
ship between the input parameters and the surface roughness Ra cannot be established.
However, the prediction accuracy of Traditional BP2 tends to be stable and is significantly
higher than that of Traditional BP1. Because the grinding wheel wear features enhance the
mapping relationship between input and output, high prediction accuracy is achieved with
fewer iteration steps.
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As the number of iteration steps increases, the prediction accuracy of Traditional BP1
gradually stabilizes around 0.065, which indicates that the model has reached a saturated
training level. However, the fluctuation of the prediction accuracy of Traditional BP2
becomes larger, which is caused by overfitting. Because after the model training is saturated,
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continuing to iterate will reduce the generalization and lead to overfitting. At the same
time, the increase of the input parameter dimension and the randomness of the initial
weight will make the model more likely to fall into the local optimal solution. This is a
typical defect of the traditional BPNN, which is the problem that the next section focuses
on solving.

In summary, the selected grinding wheel wear features enhance the correlation be-
tween the input parameters and the ground surface roughness and improves the mapping
ability and prediction performance of the model. However, it makes the model fall into the
local optimal solution more easily.

4.2. Comparison of Prediction Models before and after Optimization

Section 4.1 proves the effect of grinding wheel wear, but the local optimal solution and
over-convergence of the BP model become more serious due to the increase of the input
dimension. Based on it, the iterative termination conditions of the prediction model, the
weight update rules, and learning rate should be improved. To compare the prediction
performance of the BP network before and after optimization, all the parameters in Table 3
are selected as the input parameters of the traditional BP network—Traditional BP (Tra BP)
and the presented BP network—Presented BP (Pre BP). The number of input layer, hidden
layer, and output layer nodes of both are 9, 5, and 1, respectively; the default learning rate
is 0.024; the three types of iteration steps K are set to 2000, 10,000, and 15,000; and the
initial weights are the same and generated randomly. The training and prediction process
of the two models is the same as in Section 4.1; the results are shown in Figure 7, whilst the
experimental results and predicted results appear in Appendix B at the end of the paper.
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4.2.1. Influence of “Identify Factors”

The error functions in the training of the Traditional BP and Presented BP were
analyzed, as shown in Figure 8. In the early iteration, the error functions of both decrease
rapidly. In the later iteration, the error function curve of Traditional BP decreases very
slowly, while that of Presented BP changes suddenly and then decreases rapidly. Under the
same number of iteration steps, the error function value eP of Presented BP is smaller than
the error function value eT of Traditional BP, and the final training accuracy of Presented BP
is higher. Because the two models deal with the local optimal solution problem differently
during training. After falling into the local optimal solution, Traditional BP does not process
and continues to iterate until the end of training. Presented BP judges the network state
by “identify factors”. When “identify factors” = 1, the network falls into the local optimal
solution, and the model begins to dynamically adjust the learning rate and selectively
update the weights of each layer, avoiding the local optimal solution and continuing to
search for the global optimal solution. Hence, the “identify factors” in this paper can
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effectively determine whether the BP network falls into the local optimal solution, which is
a good remedy for the defects of the BP algorithm; Presented BP can completely solve the
global optimal solution in the training process.
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Figure 8. The error function of the traditional model and the presented model during training: (a) the
number of iteration steps K of the models is 2000; (b) the number of iteration steps K of the models is
10,000; (c) the number of iteration steps K of the models is 15,000.

4.2.2. Influence of Dynamic Learning Rate

Figure 9 shows the change in learning rate in the training of the Presented BP. During
training, the learning rate µ of Presented BP changes dynamically at a specific iteration step,
decaying from 0.024 to 0.012 and eventually to 0.008 at the end. According to the principle
of the optimized algorithm, in the early iteration, the learning rate µ is kept at the default
value, so that the model converges quickly to a local optimal solution. In the later iteration,
after “identify factors” judges that the network is falling into the local optimal solution, the
learning rate µ is dynamically attenuated according to Equation (11), which slows down
the magnitude of weight update and improves the accuracy of the target weights. After the
network avoids the local optimal solution, the learning rate µ is reset to the default value to
adapt to the next early iteration. The dynamic learning rate not only ensures the training
efficiency of the prediction model, but also improves the accuracy of the target weights.

4.2.3. Comparison of Prediction Accuracy

Under three types of iteration steps, the prediction accuracy of Traditional BP and
Presented BP are compared, as shown in Figure 10. Under the iteration steps of K = 2000,
K = 10,000, and K = 15,000, the best prediction accuracy of Traditional BP is 0.0466, 0.0344,
and 0.0306, while that of Presented BP is 0.0452, 0.0324, and 0.0295, respectively. The
difference between the best prediction accuracy of the two models is small because under
the same number of iteration steps, the dimension and feature quantity of the input
parameters are the main factors, which affect the best prediction accuracy of the BP model.
However, the accuracy of Presented BP is slightly higher because in the early iteration
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of network training, the two models have not fallen into the local optimal value, and
are iterated and updated in the same way. When both fall into the same local optimal
solution, Traditional BP is limited by its own algorithm and does not process until the end
of training. However, Presented BP judges the network state through “identify factors”,
and dynamically adjusts the learning rate µ (which reduces the weight update range and
improves the solution accuracy of the target weights) and selectively updates the weights
(which makes the model avoid the local optimal solution, in order to search for the global
optimal solution until the end of training). Presented BP can continuously search for the
global optimal value, so its best prediction accuracy is improved.
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With the increase of the number of iteration steps, the average prediction accuracy
of Traditional BP decreases (0.050, 0.054, and 0.055) while that of Presented BP increases
(0.049, 0.042, and 0.039). During the training process, after falling into the local optimal
solution, Traditional BP continues to iterate and results in overfitting, which reduces
the generalization and prediction accuracy of the model. However, there is no over-
convergence phenomenon in Presented BP. As the number of iteration steps increases,
Presented BP will continue to avoid the local optimal solution and search for the global
optimal solution, so the average prediction accuracy will be improved.

4.2.4. Comparison of Predictive Stability

Under three types of iteration steps, the prediction stability of Traditional BP and
Presented BP is compared, as shown in Figure 11. Under the iteration steps of K = 2000,
K = 10,000, and K = 15,000, the prediction standard deviations of Traditional BP and Pre-
sented BP are 0.0017, 0.0166, 0.0175 and 0.0017, 0.0079, 0.0076, respectively. As the number
of iteration steps increases, the prediction stability of Presented BP is significantly better.
Because the algorithm structure of Presented BP is more reasonable, the dynamic learning
rate and the improved weight update rules avoid the model falling into the local optimal
solution and keep the prediction stable. When the input parameters are unchanged, the
prediction performance of Traditional BP mainly depends on the fixed learning rate and
initial weight, so the stability is extremely poor. As the number of iteration steps increases,
the over-convergence phenomenon of Traditional BP is more serious, and the prediction
fluctuation is bigger. In summary, as the number of iteration steps increases, Presented BP
continuously avoids the local optimal solution and the dependence of the model on the
initial weights decreases, so the stability of the prediction accuracy improves.
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5. Conclusions

Based on the physical model of ground surface roughness, this paper proposes an
adaptive BP network prediction model considering grinding wheel wear. However, the
increase of input parameter dimension makes the problem of local optimal solution of BP
network more serious. In this situation, improving the iterative termination conditions of
the prediction model, dynamically decaying the learning rate, and adjusting the weight
update rules help to solve the problem of local optimal solutions. Comparing the prediction
performance of the presented BP network and the traditional BP network, the results show
the following:

(1) The features of the force signal selected in this paper contain enough grinding wheel
state information, which enhances the correlation between the input parameters and
the ground surface roughness Ra and improves prediction performance of the model.

(2) The “identify factors” effectively judge whether the BP network falls into the local
optimal solution and reduces the influence of human factors. The “memory factors”
can update and store the best weights in real time during network training.

(3) The improvement of the iterative termination conditions of the prediction model and
the adjustment of the weight update rules are effective measures for solving the local
optimal solution problem, reducing the influence of human factors, and maximizing
the prediction performance of the model itself. Dynamic adjustment of learning rate
improves the search accuracy of the target weights with the premise of ensuring rapid
convergence.

In summary, the presented BP prediction model of ground surface roughness con-
sidering grinding wheel wear not only greatly improves the prediction accuracy, but also
significantly enhances the prediction stability.
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Appendix A

Appendix A.1

Data
Number

Wheel Speed
vs (rpm)

Workpiece Speed
vw (mm/min)

Depth of Cut
ap (µm)

Normal Force Fn
(N)

Tangential Force
Ft (N)

Experimental
Value Ra (µm)

1 500 100 50 11.9 3 6.1736
2 500 100 50 51 7.4 11.1541
3 500 100 50 103 5 21.9520
4 500 200 100 34.8 10.3 10.2449
5 500 200 100 100 9.2 18.3258
6 500 200 100 151 17 26.6484
7 500 500 150 72.7 29.6 15.2052
8 500 500 150 167 42.6 25.1561
9 500 500 150 321 50 48.0556

10 2000 100 100 4.3 1.5 6.1047
11 2000 100 100 78 9 17.0280
12 2000 100 100 103 13 20.9814
13 2000 200 150 18 5.1 8.1575
14 2000 200 150 72 14.4 13.9500
15 2000 200 150 136 27.6 26.1880
16 2000 500 50 14.3 3.7 7.7320
17 2000 500 50 75 7.2 14.0218
18 2000 500 50 105 17.5 17.9756
19 5000 100 150 24 4.8 10.8010
20 5000 100 150 42.3 13.3 11.5534
21 5000 200 50 4.13 1 7.1582
22 5000 200 50 11.7 1.8 8.2657
23 5000 200 50 4.3 1 9.1648
24 5000 500 100 9.5 3.3 11.6318
25 5000 500 100 42 8.2 11.6829
26 5000 500 100 93 26 19.8032

Appendix A.2

Data
Number

Experimental
Value Ra (µm)

Traditional BP1—Predictive Value Ra (µm) Traditional BP2—Predictive Value Ra (µm)

K = 2000 K = 10,000 K = 15,000 K = 2000 K = 10,000 K = 15,000

1 6.1736 5.9377 6.0387 6.2356 6.1662 6.1155 6.1012
2 11.1541 12.0337 11.6825 11.5120 10.5000 11.1706 11.2820
3 21.9520 21.5702 21.2504 21.2368 20.5791 22.4294 22.5386
4 10.2449 10.0019 10.3689 10.4252 9.8667 10.3491 10.3809
5 18.3258 18.8424 19.2144 19.2610 18.7863 18.9356 19.0346
6 26.6484 28.3290 28.2966 28.7689 25.2541 27.1364 27.2721
7 15.2052 15.0605 15.2562 15.1439 15.4312 16.1145 16.1340
8 25.1561 25.2395 24.9701 24.9139 23.5573 24.5187 24.5491
9 48.0556 46.0416 47.0087 45.4198 45.3688 46.1008 46.2746

10 6.1047 6.4816 6.6989 6.6483 6.2067 5.8297 5.7838
11 17.0280 17.2812 16.7244 16.4367 15.6231 16.6271 16.5679
12 20.9814 24.2625 21.6212 21.7584 22.9222 22.8483 23.1165
13 8.1575 9.2555 8.8188 8.8718 8.2594 8.7358 8.7104
14 13.9500 14.5951 14.4810 14.2326 13.4412 13.9532 13.9405
15 26.1880 24.8701 23.6104 24.0026 22.1440 22.6590 22.6393
16 7.7320 7.5589 7.3077 7.1534 6.4606 6.8010 6.7185
17 14.0218 14.4235 14.1043 14.0486 13.1745 13.8179 13.8261
18 17.9756 19.3721 19.6324 19.6932 16.7902 17.5231 17.5951
19 10.8010 11.7955 12.0829 12.0662 11.1319 11.3751 11.2238
20 11.5534 14.1061 13.4673 13.4241 12.1707 12.7432 12.7371
21 7.1582 8.1107 7.2854 7.1587 6.7721 6.8446 6.6590
22 8.2657 9.1981 8.7790 8.5764 9.1519 8.8483 8.7494
23 9.1648 8.1302 7.3138 7.1842 7.8731 9.9086 10.0518
24 11.6318 11.7538 11.9479 11.8384 10.6782 12.6480 12.3767
25 11.6829 14.1239 13.1856 12.8342 11.3742 11.3799 11.3417
26 19.8032 19.3947 19.2437 19.2250 18.7686 19.7676 19.6758
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Appendix B

Data
Number

Experimental
Value Ra (µm)

Traditional BP—Predictive Value Ra (µm) Presented BP—Predictive Value Ra (µm)

K = 2000 K = 10,000 K = 15,000 K = 2000 K = 10,000 K = 15,000

1 6.1736 6.4858 6.0926 6.1053 6.4803 6.3844 6.3914
2 11.1541 11.0681 11.1851 11.3842 11.0661 11.0914 11.1930
3 21.9520 21.6907 22.2608 22.2202 21.8527 22.7907 22.5332
4 10.2449 10.3773 10.3049 10.3420 10.3619 10.3389 10.2789
5 18.3258 18.8043 19.4418 19.3012 18.8031 18.7728 18.6973
6 26.6484 26.4874 26.9640 27.3843 26.4996 26.9174 26.8206
7 15.2052 16.2578 16.1387 16.4480 16.2493 15.9223 15.9661
8 25.1561 24.8344 24.6758 24.8958 24.8125 24.7823 24.8555
9 48.0556 47.7151 46.1312 47.2702 47.9425 46.3802 45.8345

10 6.1047 6.5375 5.7150 5.7788 6.5362 6.2685 6.2314
11 17.0280 16.4552 16.6609 16.4891 16.4355 16.4205 16.4199
12 20.9814 22.9105 21.7201 21.6857 22.9364 21.2162 21.2612
13 8.1575 8.7020 8.7292 8.7220 8.6979 8.5404 8.6626
14 13.9500 14.1399 14.0282 13.9418 14.1267 14.0676 14.1740
15 26.1880 23.3289 22.7952 23.4145 23.3002 23.0938 23.7798
16 7.7320 6.7857 6.7942 6.8517 6.7897 6.6948 6.6982
17 14.0218 13.8670 13.8426 13.9006 13.8532 13.9206 13.9464
18 17.9756 17.6694 17.5528 17.6178 17.6093 17.3578 17.4885
19 10.8010 11.6912 11.4173 11.3406 11.6866 11.1868 11.0692
20 11.5534 12.7916 12.6634 12.7060 12.7486 12.7000 12.6143
21 7.1582 7.1516 6.8157 6.5673 7.1731 6.9274 6.9051
22 8.2657 9.6312 8.9185 8.8806 9.6243 8.6722 8.4149
23 9.1648 8.3259 10.4199 10.7947 8.4040 9.0801 9.2246
24 11.6318 11.2833 12.8674 12.5209 11.2640 11.2953 11.4915
25 11.6829 11.9769 11.4133 11.3775 11.9692 11.5338 11.5788
26 19.8032 19.7932 19.6678 20.0712 19.8338 19.9598 19.9507
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