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Abstract: To perform diagnosis and treatment, health systems, hospitals, and other patient care
facilities require a wide range of supplies, from masks and gloves to catheters and implants. The
“healthcare supply chain/healthcare operation management” refers to the stakeholders, systems, and
processes required to move products from the manufacturer to the patient’s bedside. The ultimate
goal of the healthcare supply chain is to ensure that the right products, in the right quantities, are
available in the right places at the right time to support patient care. Hospitals and the concept of a
healthcare delivery system are practically synonymous. Surgical services, emergency and disaster
services, and inpatient care are the three main types of services they offer. Outpatient clinics and
facilities are also available at some hospitals, where patients can receive specialty consultations and
surgical services. There will always be a need for inpatient care, regardless of how care models
develop. The focus of this monograph was on recent OM work that models the dynamic, interrelated
effects of demand-supply matching in the ED, OR, and inpatient units. Decisions about staffing
and scheduling in these areas are frequently made independently by healthcare managers and
clinicians. Then, as demand changes in real-time, clinicians and managers retaliate as best as they
can to reallocate staffing to the areas that require it most at a particular moment in time in order to
relieve patient flow bottlenecks. We, as OM researchers, must create models that help healthcare
administrators enhance OR scheduling policies, ED demand forecasting, and medium- and short-term
staffing plans that consider the interdependence of how demand develops.

Keywords: emergency management; surgical intake capacity; supply chain healthcare; healthcare
operation management; operating rooms (ORs); operations management (OM); scheduling

MSC: 90B99

1. Introduction

Although there are numerous studies in the OM literature dealing with different
aspects of the OR capacity supply–demand matching problem, the authors are not aware
of systematic approaches for dealing with these issues being used by hospitals with which
they have interacted. Often, ad-hoc approaches are used. (As we discussed in our earlier
paper (How to Manage Red Alert in Emergency and Disaster Unit in the Hospital? Evidence
From London), various hospitals may adopt various measures, such as (1) changing the
nurses’ scheduling to a sensitivity-based system (which rewards loyalty); (2) the emergency
department implementing supply chain management tracking software (for immediate
restocking of essential items); (3) ending double and triple shifts; (4) the D or D algorithm,
which stipulates that you have ten minutes per patient to diagnose or discharge (this
keeps patients moving through)). These approaches rely on descriptive data analysis and
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relatively simple forecasting methods. A recent report addressed to the US President [1]
mentions misaligned incentives as the primary reason for the lack of widespread use of
systems engineering (loosely interpreted OM) techniques. Other reasons include a lack
of expertise and the availability of relevant data. We agree with these assessments and
provide an example in the remainder of this section that leverages our own experience.
This example considers the problem of evaluating and adjusting OR block schedules. It
demonstrates that OM-inspired ways of thinking can be brought to bear on important
capacity decisions with the potential to improve operations significantly.

From an OM perspective, the problem of deciding how much block time to allocate to
a service or an individual surgeon is a newsvendor problem. Staffed-OR utilization suffers
if a hospital assigns too much block time. That can lead to higher staffing costs as well as
the inability to offer block time to surgeons who do not have block allocations. In contrast,
too little block time may cause surgeons to operate at other hospitals, leading to a loss of
revenue. For employed physicians who do not have that option, too little OR time could
increase the administrative burden associated with negotiating additional OR time on an
ad hoc basis and lengthen wait times for their patients. This implies that an optimal block
size balances the cost of having too little on the one hand and too much on the other hand,
similar to the tradeoff in a newsvendor model. The solution to the newsvendor model is a
percentile of the demand distribution, calculated at the critical ratio of the unit underage
cost to the sum of the unit underage and unit overage costs.

Although similar to the newsvendor problem in a broad sense, the block size deter-
mination problem is different because of important practical realities. For example, the
demand for block time is the sum of planned case lengths for surgeries that ideally should
be completed on a particular day. If block time is not sufficient to accommodate all cases,
the surgeon must either request additional time or choose a subset of cases to perform on
that day. Thus, demand for block times occurs in discrete chunks, which must be fitted into
finite staff shifts. Moreover, planned case lengths (planned case length is the amount of
time for which the OR is booked for a particular surgical case) for identical surgeries may
vary by surgeon, procedure, and patient. In fact, there exists research in the OM context
that focuses on the problem of determining the optimal planned case lengths for each given
sequence of surgeries. Another practical difficulty is how to estimate how much revenue
would be lost if hospitals reduced block allocations to some surgeons and by how much do
administrative costs increase when surgeons have to frequently negotiate for additional
OR time. Finally, most hospitals have existing block allocations, and it is difficult to change
them significantly without encountering pushback from surgeons. If surgeons move their
cases to a different hospital, then that can result in revenue loss for the hospital.

For the reasons outlined above, we discuss a practical approach to help OR directors
review and revise block allocations. We illustrate our ideas with the help of an example
based on actual data from one of the three hospitals mentioned in (Section 2.4). In the
OM literature, Olivares et al. [2] use structural estimating equations on planned surgical
case length data to identify key drivers of such booking decisions. Using their approach
and assuming that decision-makers make optimal decisions, one can estimate the implied
shortage and overage costs underlying the choice of planned case lengths. Similar to
that research, we use a newsvendor framework as the basis of our approach. However,
in contrast to that paper, we are primarily interested in the appropriateness of block
allocations to a group of surgeons who operate at the same hospital. The analysis must
take into account the fact that block time utilization is affected by the extent to which cases
arising on a particular day can be fitted into the assigned block.

The hospital, in this example, allocated time to surgeons in two modes—either as
guaranteed blocks or as to-follow blocks. A surgeon with a to-follow block did not have a
fixed start time for his or her cases. Instead, his or her cases would begin whenever the
block surgeon would finish his or her OR day. Block surgeons typically start their day at
8 a.m. Blocks were either 4 or 8 h long, and the hospital staffed ORs for a standard 8 h shift.
For all practical purposes, to-follow blocks could be viewed as blocks with a tentative start
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time of 1 p.m. In practice, to-follow surgeons experienced significant variability in their
actual first-case start times and in the number of cases they could perform. Quite apart
from this, some surgeons used block-only OR time, some used both block and to-follow
block times, and the remaining operated only in the to-follow blocks. More senior surgeons
were more likely to have dedicated blocks.

As a first step, we calculated two metrics to classify surgeons. These were the demand–
supply match and block efficiency scores. The former was the ratio of total surgery minutes
to available block minutes over a 1-year data sample, and the latter was the ratio of total
minutes that were scheduled in the block to the available block minutes (ABM). These
definitions are provided below for convenience.

SDS = Supply− Demand Score

= TSM
ABM

(1)

BES = Block E f f iciency Score

= TBM
ABM

(2)

Clearly, SDS ≥ BES. Upon calculating these metrics, we could identify efficient block
allocations—i.e., those that had high block efficiency and well-matched demand and supply.
Note these calculations assume that demand equals the scheduled surgery minutes, i.e.,
there is no lost demand. By in-block minutes, we mean all surgery minutes on the day that
a provider has block time allocation, regardless of whether the surgery occurred within the
block or not. The result of our analysis is shown in Figure 1. This representation allows a
straightforward classification of surgeons according to their use of OR blocks. In the bottom
left square, both SDS and BES are less than 50%. These surgeons could be candidates for the
reduction in their assigned block size. Similarly, surgeons whose BES is less than 50% but
SDS is greater than 50% could be suffering from inappropriate block configuration—either
frequency, day-of-week, or length of each block.

Figure 1. Demand–supply match and block efficiency scores of surgeons.
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Surgeons whose SDS and BES both lie between 50% and 100% may be considered to
have a reasonable allocation of blocks. Finally, those that have simultaneously high BES
and high SDS (different hospitals may use different thresholds) may be deemed eligible for
more block time. Once an agreement is reached regarding the criteria that will be used to
evaluate block allocations, it is not too difficult to improve existing block allocations.

The problem of deciding how much block time to assign to different surgeons or
surgical groups can be framed as a mechanism design problem. If this approach were
followed, each surgeon would be suggested a menu of allotments, along with some in-
centives (e.g., gainsharing from reduced staffing costs), for maintaining high utilization of
the assigned block time. The key challenge then would be to find a menu of block times
and corresponding payment functions that would align the hospitals’ and the surgeons’
preferences. The hospital would pay informational rents because it would not know each
surgeon’s private cost of his or her effort to improve utilization.

Finally, in our research, we ask what difficulties hospital executives have in balancing
supply and demand for medical services while preserving service quality and keeping
prices low; to what extent and in what ways the OM literature has aided in the resolution
of these issues; what the current practice trends are; and what extra opportunities and
problems they present for operations management scholars. This study is the authors’
attempt to answer these questions. Although service capacity might be measured in terms
of the number of physical and HRs used, we chose to concentrate on the three primary
types of services provided by hospitals.

In the present research, the notational scheme is used as follows. We use I, j, m, and n to
denote indices, e.g., the ith surgical case, the jth service line, the nth OR, and so on. Random
variables are denoted by upper-case letters, and a random realization is denoted via the
corresponding lower-case letter. All random variables are real-valued and non-negative.

Terminology

Emergency management: the organization and management of the resources and
responsibilities for handling all humanitarian aspects of emergencies are known as emer-
gency management, also known as emergency response or disaster management. The goal
is to avert and lessen the negative consequences of all risks, including disasters.

Disaster Management: disasters can come in many forms. Industrial explosions or
structural failures are examples of human-made disasters that are caused by mistakes made
by humans. Earthquakes and droughts are examples of physical phenomena that result in
natural disasters. Epidemics and armed conflicts are examples of complex disasters.

Patient Intake: patient intake is the procedure by which healthcare organizations
gather vital information from both new and returning patients prior to their visits, in-
cluding consent forms, insurance information, payments, and demographic, social, and
clinical data.

Operation Management Healthcare/Supply Chain Healthcare: the term “operations
management” in the context of healthcare refers to a facility’s daily operations that have an
impact on patient care and organizational objectives. Administrative, financial, and legal
components make up these procedures most frequently.

Ad-hoc Approach: done only when needed for a specific purpose, without planning
or preparation.

2. A Mathematical Framework for Current OM Approaches

Next, we present possible formulations for a subset of problems described in the last
section, discuss and critique related papers, and highlight opportunities for future contri-
bution. These problems represent a series of hierarchical decisions that OR stakeholders
are likely to face. The discussed problems may be encountered by different stakeholders,
e.g., some by OR directors and others by nursing directors, etc. There are several excellent
reviews of OM literature on operating room capacity management. Some examples include
Magerlein, Martin [3], Blake, Carter [4], Gupta [5], Gupta, Denton [6], Cardoen et al. [7],
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Guerriero, Guido [8], and May et al. [9]. In addition, a comprehensive bibliography of
operating room management research papers is maintained on the web by Dr. Franklin
Dexter [10].

2.1. Number of ORs and Flexibility

At this stage of decision-making, the hospital is interested in choosing the number of
operating rooms it should have. Such scenarios could arise either when demand patterns
are perceived to have changed or when the hospital is undergoing renovation, or when
a new hospital is being built. It is also important to decide how to equip each OR, or
equivalently, which procedure types each OR should be able to handle. We focus on the
first problem below.

For making long-term capacity decisions, it is often useful to think of a week as a
time unit. Demand is aggregated across all procedure types and measured in minutes
of OR time required on a weekly basis. Let Dt denote the demand in period t. Demand
distribution is assumed stationary and either empirically estimated or based on expert
judgment. The decision variable is n, the number of ORs such that each OR provides kβ
minutes of regular capacity, where k is the theoretical capacity per period (e.g., 40 × 60 min
per week for 8 h/day staff shifts) and β ≺ 1 is the packing-efficiency factor. Some loss of
capacity is inevitable because shift lengths and case lengths are discrete; cases cannot be
split and must be fitted in discrete shift lengths. We call _ the packing efficiency of ORs.
Different hospitals may implement different procedures to affect packing efficiency. For
example, some may try to revisit OR schedules a few days before each surgery day in an
attempt to improve OR utilization—see (Section 2.5: Improving Schedules). For this reason,
we treat β it as a discretionary variable in our calculations because management can affect
it within some range.

In order to understand the range of possible values of the parameter β, it is relevant to
consider both empirical evidence and the literature dealing with the efficiency of online
bin-packing algorithms. The latter has been a topic of interest to the computer-science
research community for some time. We discuss that literature first.

Assuming no additional constraints imposed by physician preferences, the perfor-
mance of the best-known algorithm, which is due to Seiden [11], is no worse than 1.58889 times
that of an optimal offline algorithm. Translated to our context, the value of β upon utilizing
the best scheduling algorithm and without considering surgeon preferences should be at
least 1/1.58889 = 0.6294 times the best solution under complete information. Note that even
the best possible solution may not be able to fully utilize the available OR time, depending
on the set of surgeries that need to be scheduled. Furthermore, there are certain unique fea-
tures of the OR scheduling environment that may lower scheduling efficiency. For example,
surgeons may prefer no downtime between their cases and to start their first case of the day
as soon as the assigned OR opens in the morning. On the flip side, efforts to improve OR
schedules described in (Section 2.5: Improving Schedules) can cause efficiency to be greater
than the theoretical bound. Such issues are not considered in online bin-packing literature.
A survey of this literature and key algorithms can be found in Coffman et al. [12].

Turning next to empirical evidence, we find that ORs in the US are reported to operate
at the staffed-capacity utilization of 60–70% [13]. The two pieces of evidence are surprisingly
close and suggest that one may expect a β value in the range of 0.5 to 0.7 for a typical suite
of ORs.

Each OR can provide additional capacity from the use of overtime. Given n, the cost
of building ORs is already committed. Therefore, ongoing costs are those related to patient
waiting and overtime. In this problem set, the hospital would choose n first and then decide
how much overtime to use in each period. The latter could be decided after observing
demand. Let qt denote the number of minutes of OR time (regular plus overtime) used in
period t. Then, patient wait time in period t, measured in terms of the backlog of surgery
minutes, equals

Wt = (Wt−1 + Dt − qt)
+ (3)
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and the amount of overtime used equals

Ot = (qt − nkβ)+ (4)

It is customary to assume that patients’ wait costs and overtime costs are linear and that
there is a constraint on overtime availability. (As Childers and Maggard–Gibbons discussed
in their research, costs of care in the ORs follow a linear pattern. Also, in our previous re-
search we showed that ATD costs of materials for emergency relief are linear. We approved
this issue in our previous research). Let cw and co denote the unit waiting and overtime costs.
Moreover, let o denote the maximum amount of overtime available in any period. Then,
the hospital’s per-period operating cost for each n is limm→∞

1
m [∑m

t=1 E(Wt)cw + E(Ot)co],
subject to Ot ≤ o.

When costs are linear, it is easy to see that in each period, the hospital should either
use as much available overtime as needed to bring the backlog to zero or none at all. That is,
the optimal number of OR minutes used are either q∗t = min{Wt−1 + Dt, nkβ}, if cw ≤ co,
or q∗t = min{Wt−1 + Dt, nkβ + o}, otherwise. In each scenario, we need to estimate E(Wt).
In the former scenario, there is no overtime, but in the latter, we also need to estimate E(Ot).

In each period, the maximum available OR time equals either q = nkβ(i f cw ≤ co) or
q = nkβ + o(i f cw � co). Period-t demand is Dt, and all unmet demand is backordered.
At the start of each period, the backlog Wt is updated according to Equation (3) with the
appropriate value of q. Extra minutes of capacity are wasted. When demand is discrete
(measured in 1-min units), this allows us to write

P(Wt = k) =
k+qt−1

∑
x=1

P(Dt = k + qt − x)P(Wt−1 = x),

k = 1, 2, . . .
(5)

P(Wt = 0) =
qt

∑
x=0

P(Dt ≤ qt − x)dP(Wt−1 = x), (6)

P(Ot = y) =
nkβ+o−1

∑
x=0

P(Dt = nkβ− x + y)P(Wt−1 = x),

y = 1, . . . , o− 1,
(7)

and

P(Ot = o) =
∞

∑
x=0

P(Dt = nkβ + o− x)P(Wt−1 = x). (8)

Suppose Dt is stationary, and either E(D) < nkβ with cw < co, or E(D) < nkβ + o with
cw ≥ co. Then, a stationary distribution of backlog and overtime usage exists. Even though
the transition probabilities are relatively easy to write down, it is difficult to achieve closed-
form expressions for the steady-state distributions of Wt and Ot, with the result that papers
that deal with this problem often rely on simulation. An added benefit of simulation is
that the details of the surgery scheduling process can be modelled. In contrast, we used a
packing-efficiency parameter to model this aspect of the decision problem. Goldman and
Knappenberger [14] present an early example of a simulation model.

Lovejoy and Li [15] consider three different objectives—wait time to get on the sur-
geon’s schedule, start-time reliability, and hospital profit. They develop a queueing–
theoretic model in which the key daily decision that a decision-maker makes is the number
of surgical cases that should be scheduled for each OR and the likelihood that a case will be-
gin on time. The ideal time for each OR to be open each day is determined given these two
parameters. All case lengths are assumed independent and identically distributed. Under
these assumptions, Lovejoy and Li [15] provide a model formulation, some straightforward
dominance results, and a variety of numerical examples.

The dominance results are of the following type: if, for a fixed choice of the number
of scheduled cases, the hospital wants to increase the probability of an on-time start, then
it must plan to staff the OR for a longer duration, and each procedure’s allowance must
also increase. Note that the model we presented earlier in this section is closely related,
with the difference that in our model, hospitals choose the number of staffed ORs, and
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overtime cases are fitted into available OR capacity. Like the model in Lovejoy and Li [15],
our model also does not lead to closed-form analytical expressions. Lovejoy and Li [15]
present sample calculations using data from a hospital.

Note that based on the framework we presented and those that can be found in
previous works, it is possible to relatively quickly compute the number of ORs that would
lead to the lowest overall cost. Unfortunately, these models do not result in an easy-to-use
formula or a rule of thumb that will be easy to explain to OR managers. Instead, they
provide computational techniques that can be brought to bear on each set of input data.
Moreover, as input, all of these models require forecasts of future demand, which may pose
additional challenges for hospitals that attempt to use these approaches.

We turn next to the question of determining the capabilities (dedicated equipment) for
each OR. Such issues have been studied extensively in manufacturing and service industries
under the banner of process flexibility; we refer readers to Buzacott and Mandelbaum [16]
for a comprehensive and insightful review. Process flexibility stems from a system design
that allows a firm to produce different types of products and/or services in response to
changing demand, without incurring significant penalties in labor and materials costs.
Flexible facilities (equipment) require greater up-front investment and may incur greater
per-unit production costs, as opposed to dedicated facilities (equipment). However, flexi-
bility provides a hedge against uncertain demand. Some recent articles address questions
such as (1) ‘how much flexibility is adequate?’ (e.g., [17,18]), (2) ‘how can manufacturing or
service systems be designed for flexibility?’ (e.g., [19,20]), and (3) ‘what are the costs and
benefits of utilizing flexible labor sources?’ (e.g., [21]).

There is insufficient evidence in the healthcare context to assess the extent to which
such ideas are useful when making OR capacity decisions. In addition, there are certain
unique features of OR capacity allocation that prevent the direct application of previous
results. For example, surgical equipment may be wheeled from one room to another;
equipment needs to be sterilized between procedures, doctors routinely perform multiple
cases in a day, and same-doctor cases must not overlap; different ORs may be staffed
for different shift lengths, and so on. There is a need both for new analytical models
that could help OR directors make decisions regarding the flexibility of ORs, as well as
translational/implementation studies dealing with such issues.

2.2. Staffing Decisions

Suppose a hospital has historical data on scheduled start and end times of procedures,
the physical number of ORs is fixed, and staff could work in either 8, 10, or 12 h shifts.
Furthermore, the earliest shift start time is 7 a.m., the latest end time is 7 p.m., and time is
measured in units of 15 min. How many staff shifts of each type should the hospital have
as regular staff, and what should be their start and end times? We introduce a model next
that can help answer the questions posed above. We consider each historical day of data
for a particular weekday (e.g., Mondays), denoted by w ∈ Ω, an equal-chance scenario.
There is a total of |Ω| days of data. Inputs to our models include time index t = 1, · · ·, 48,
where t = 1 refers to [7:00, 7:15) a.m., and t = 48 refers to [6:45, 7:00) p.m., dw

t , the maximum
number of procedures concurrently in progress at each time interval t in scenario w, ci, the
unit cost, and si, the length of type-i shift, where i = 1, 2, and 3. In numerical examples
presented later, we shall assume s1 = 8, s2 = 10, and s3 = 12 h. The decision variables are
ni, the number of type-i shifts used, and yit, the number of type-i shifts that start at time t.
Both are integer-valued. We use c0 to denote the cost per unit (i.e., per 15-min interval) of
staffing an OR in overtime. Typically, overtime wages are 1.5 times the regular wages. The
formulation shown below allows a user to specify mi, the maximum number of available
type-i shifts.

Suppose the hospital has already picked ni and yits. Then, it can calculate the number
of ORs concurrently staffed in overtime. We denote this quantity zw

t for time period t and
scenario w. The daily staffing cost can be calculated as co(1/|Ω|)∑w ∑

t
zw

t + ∑i cini, leading

to the following problem formulation.
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min
ni , yit

co(1/|Ω|)∑
w

∑
t

zw
t + ∑i cini, (9)

Subject to:
zw

t ≥ dw
t −∑

i
∑

t−si≺T≤t
yiT , ∀t, w (10)

zw
t ≥ 0, ∀t, w (11)

∑
t

yit ≤ ni, ∀i (12)

yit ≤ xit M, ∀i, t (13)

∑
t

xit ≤ mi, ∀i (14)

yit ∈ I, ∀i, t (15)

xit ∈ {0, 1}, ∀i, t (16)

In Constraint (13), M is a large integer, and in Constraint (15), I is the set of integers.
For our formulation, it would suffice to set M slightly more than maxt,w{dw

t }.
The staffing-problem formulation described above has some limitations. For example,

it does not consider the fact that staff schedules are typically chosen on a biweekly (pay-
period) basis and governed by a variety of work rules and contractual agreements with
specific employees. It may not be possible to have a significantly different number of
shifts in each type-category across different days of the week, although some variation
is possible because some staff work part-time. Similarly, there may be constraints on
the degree to which shift start times could differ across employees. Finally, the above
formulation attempts to find the best staffing under the assumption that historical patterns
of demand for OR time will be repeated in the future. That may not hold, and in particular,
the new staffing patterns may affect future demand patterns, making it necessary to
periodically revisit the staffing problem. Alternatively, one may use a different (more
general) characterization of uncertainty; see, for example, Bandi and Bertsimas [22].

Notwithstanding the shortcomings identified above, we used CPLEX to solve the
above optimization problem using representative data from one of the hospitals. The
results are reported in Table 1. For the purpose of this experiment, we assumed that shift
start times must be selected in 15-min intervals and that the overtime cost was 1.5 times
the regular wages per unit time. We also included one half-hour of non-productive time
in each shift. This comes from the fact that staff is typically allowed at least two 15-min
breaks during a workday. Thus, the number of productive hours in an 8 h shift is 7.5.

Table 1. Optimal staff schedules for a selected day-of-week.

Selected Day of Week Shift Types
Shift Start Times

7:30 7:45 8:00 8:15 8:30 8: 45 9:00

Current
8 h 10 n.a. n.a. n.a. n.a. n.a. n.a.

10 h n.a. n.a. n.a. n.a. n.a. n.a. n.a.
12 h 6 n.a. n.a. n.a. n.a. n.a. n.a.

Proposed
8 h 3 n.a. 3 n.a. n.a. n.a. 2

10 h n.a. n.a. 1 n.a. 1 n.a. n.a.
12 h n.a. 1 n.a. n.a. n.a. n.a. n.a.

Note. n.a. = not available or not applicable.

Table 1 shows both the actual and optimal shift schedules for an arbitrarily chosen
weekday based on data obtained from one hospital. A similar pattern was observed for
other weekdays. We observe that the original plan had ten 8 h shifts and six 12 h shifts. In
contrast, the optimal arrangement has eight 8 h shifts, two 10 h shifts, and one 12 h shift. If
we ignore the differences in shift lengths, this represents a saving of three shifts.
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Whereas the result shown in Table 1 is merely an example, it shows the benefit of
staggering shift start times and using multiple shift lengths at the same time. Multiple shift
lengths do increase the difficulty of developing staffing plans. Similarly, staggered shift
starts times require greater cooperation from staff, which may require the hospital to offer
incentives to staff willing to work at non-standard shift start times. Therefore, some of the
benefits observed in Table 1 come at the expense of greater administrative effort, as well as
the cost of incentives. Still, these benefits are significant, and techniques similar to the one
we presented above are worthy of further exploration by hospitals attempting to reduce
OR staffing costs.

There is substantial OM literature on nurse staffing. Some of this literature deals
with the optimal staffing levels; see, e.g., Miller et al. [23], Yankovic, Green [24], and
Véricourt, Jennings [25]. Some other research deals with detailed scheduling of nurse shifts
given nurse staffing levels and scheduling constraints; see, e.g., Lim et al. [26] and Bard,
Purnomo [27,28]. These studies are not directly applicable to the issue of staffing ORs. An
integrated approach, similar to the example we presented above, is likely to be more useful
for OR staffing because daily caseloads, dictated by surgeons’ booking patterns, exhibit
significant variability. Finally, surgical case volumes can lead to significant variability in
demand for inpatient beds, causing bottlenecks. In particular, McManus et al. [29] report
that surgical case volumes often cause significant variability in demand for ICU beds.

2.3. Optimal Block Sizes

Suppose a hospital has determined an appropriate total block time for each service.
The next key decision it needs to make is the size of each block. Ideally, the chosen block size
should provide a good fit with the pattern of surgical case lengths that are scheduled by that
service. We present a stylized formulation for this problem, which utilizes historical data
concerning scheduled case lengths for different service lines. We recognize the limitations
of our approach. For example, the historical data contains cases that were scheduled, not
the true demand for different types of cases, and the future case mix may be different from
the historical case mix [30–33].

Consider a particular recurring period during which the service performed m surgeries;
the number of blocks cannot exceed n; the start time, end time, and duration of the ith
surgery are si, ei, and di, respectively; and the maximum shift length is tmax. The problem
is to decide the size of each block such that no block can exceed tmax, and there cannot be
more than n blocks. An example would be a service line that receives 20 h of block time
in a week. The hospital needs to decide on optimal block lengths, given that there cannot
be more than three blocks. If the shift length may not exceed 12 h and blocks must be in
multiples of 4 h, it could choose either two blocks, one for 12 h and the other for 8 h, or two
8 h blocks and one 4 h block. The optimal choice will depend on the duration of surgeries
typically performed by the service.

Let t1, t2, . . . , tq ≥ 2m, denote critical times, where critical times are obtained by
taking the union of sorted start and end times of surgeries and convenient start and end
times of blocks. For example, convenient start/end times may consist of clock time every
hour and 30 min past the hour within the normal business day for the hospital. Some
critical times may overlap. Let (j, k) denote a combination of any two critical times tj and tk.
For j < k, we say that the block (j, k) is feasible if duration (tk − tj) meets the block feasibility
requirements such as minimum and maximum block size specifications and the ability
to contain at least one job. We preprocess data to identify sets J and Ii, where J is the set
of feasible blocks, and Ii contains surgeries that overlap surgery i. We allow an arbitrary
specification of feasible blocks, e.g., we may want to restrict attention to blocks that start
and end either on the hour or half past the hour.

The decision variables in the ensuing formulation are xiu and yu
jk, where u denotes the

uth block (1 ≤ u ≤ n), i denotes the ith surgery (1 ≤ i ≤ m), and j and k are critical points.
Both xiu and yu

jk, are binary in the sense that xiu is 1 if surgery i is assigned to block u and
0 otherwise. Similarly, yu

ij = 1 if the uth block has critical points j and k as its start and
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endpoints, and 0 otherwise. The problem of selecting block sizes could then be formulated
as follows:

max∑
i

di∑
u

xiu (17)

subject to:
yu

jk = 0, ∀(j, k) /∈ J (18)

∑
j, k

yu
jk ≤ 1, ∀u = 1, . . . , n (19)

∑
u

∑
j,k

(
tk − tj

)
yu

jk ≤ b (20)

xij ≤∑
j, k

yu
jk, ∀i, u (21)

∑
u

xiu ≤ 1, ∀i (22)

eixiu ≤∑
j, k

tkyu
jk, ∀i, u (23)

(tmax − si)xiu ≤∑
j,k

(
tmax − tj

)
yu

jk, ∀i, u (24)

xiu + xlu ≤ 1, ∀ i, l ∈ Ii (25)

yu
jk, xiu ∈ {0, 1}, ∀i, u, j, k (26)

The objective is to pick block sizes such that the amount of booked time that falls
within the block is maximized. The first constraint ensures that a block is not picked if
critical points j and k do not meet feasibility criteria. Constraint (19) ensures that each
block is associated with at most a single pair of critical points. Constraint (20) ensures that
the total block time does not exceed b. Constraints (21) and (22) prevent the solver from
picking solutions, in which case i is assigned to block u, but there is no block u, and cases in
which surgery may be assigned to more than one block. Similarly, Constraints (23) and (24)
guarantee that if case i is assigned to block u, then the start and end times of case i lie
within the start and end times of the block. Constraint (25) prevents the solver from picking
solutions in which conflicted cases are assigned to the same room, and Constraint (26)
ensures that xij and yu

jk are binary (0 or 1) variables.
The above formulation can be expanded to consider multiple days of data, where each

day is treated as a scenario. For a particular service or surgeon, only those days would
be considered on which he or she performs non-urgent surgeries. Suppose w denotes the
index of an arbitrary scenario, and Ω is the set of all scenarios. Each scenario is assumed to
occur with equal probability, giving rise to the following deterministic equivalent program.

max∑
w

∑
i

dw
i ∑

u
xw

iu
(27)

subject to:
yuw

jk = 0, ∀(j, k) /∈ J (28)

∑
j, k

yuw
jk ≤ 1, ∀u = 1, . . . , n, w ∈ Ω (29)

∑
u

∑
j,k

(
tk − tj

)
yuw

jk ≤ b, ∀w ∈ Ω (30)

yuw1
jk = yuw2

jk , ∀w1, w2 ∈ Ω (31)

xw
iu ≤∑

j, k
yuw

jk , ∀i, u (32)

∑
u

xw
iu
≤ 1, ∀i (33)

eixw
iu ≤∑

j, k
tkyuw

jk , ∀i, u, w (34)
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(tmax − si)xw
iu
≤∑

j,k

(
tmax − tj

)
yuw

jk , ∀i, u, w (35)

xw
iu
+ xw

lu
≤ 1, ∀ i, l ∈ Iw

i
(36)

yuw
jk , xw

iu
∈ {0, 1}, ∀i, u, j, k, w (37)

In the above formulation, Constraint (31) guarantees that we do not anticipate realized
surgery requests when deciding the block start and end times. For Constraint (36), we
preprocess data to obtain a set Iw

t i for each day of operations.
The formulations shown above are NP-hard (if an algorithm for solving a problem

can be used to solve any NP-problem (nondeterministic polynomial time) problem, then
the problem is NP-hard. NP-hard, therefore, means “at least as hard as any NP-problem”,
although it might, in fact, be harder) because the knapsack problem is a special case of the
above formulation. In general, such problems may be difficult to solve within a reasonable
time. However, the practical size of such problems is not too large, and such problems
can be solved with the help of general-purpose optimization software such as CPLEX. For
example, block hours for a particular service line in a data sample belonging to one of
the hospitals we described in (Section 2.4) did not exceed 24 per day, and the maximum
number of blocks per service line was three.

Using data from that same hospital and solving the above formulation for a represen-
tative sample of surgical services, we obtain the results shown in Table 2. Observe that the
block utilization could be improved by changing the block configuration while keeping
the number of blocks and total block minutes fixed. The reason is that for services with
multiple blocks per day, it helps to divide the block time unequally into one longer and one
shorter block. That facilitates the scheduling of long and short cases more efficiently. In
some cases, greater efficiency results from moving the block start times to match the time
of day when surgeries typically begin.

Table 2. Optimizing block configuration—an example.

Service DoW |Ω| n B (min) Initial Config Revised Config W (min) A/W Initial Unit Revised Unit

A M 49 2 900 7:30–15:00
7:30–15:00

7:30–12:00
7:30–18:00 46,588 0.95 55 66

A T 50 2 900 7:30–15:00
7:30–15:00

7:30–14:00
7:30–16:00 50,438 0.89 62 69

A W 51 2 900 7:30–15:00
7:30–15:00

7:30–13:45
7:30–16:15 46,115 1.00 53 65

A TR 50 2 1020 7:30–15:00
7:30–17:00

7:30–13:30
7:30–18:30 48,119 1.06 59 61

A F 49 2 900 7:30–15:00
7:30–15:00

7:30–13:30
7:30–16:30 47,134 0.94 53 61

B F 45 2 1020 7:30–16:00
8:30–17:00

7:30–15:00
7:30–17:00 28,620 1.60 49 51

C M 27 2 720 9:30–13:30
9:00–17:00

9:00–13:30
10:00–17:30 11,876 1.64 40 45

C T 34 2 720 9:00–17:00
11:00–15:00

9:00–17:00
10:30–14:30 14,946 1.64 40 50

DoW = day of the week; |Ω| = number of data days; W = total work in minutes; A/W = ratio of available minutes
to work minutes.

To our knowledge, the block configuration issue has not been studied in the literature.
It is a variant of the bin-sizing problem, which has been studied extensively for other
application areas. We believe that models such as the one presented above can provide a
basis for further discussion among OR management teams to find a block configuration
that makes scheduling more convenient and improves block utilization.
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2.4. OR Scheduling

The OR scheduling issue is the most widely studied problem in the OM literature. In
a typical model setting, researchers assume that all of the decisions mentioned earlier in
this paper have been made.

Furthermore, it is also assumed that the OR planner knows the complete set of surgical
cases that need to be scheduled on a particular day in a particular OR, the distribution
of surgical case lengths, and that each surgeon operates in a single OR only. The goal is
to minimize the weighted sum of physician delay costs and costs related to the use of
overtime via selecting case start times and the sequence in which surgical cases ought to
be performed.

For the problem mentioned above, the following formulation is fashioned after the
model represented in Denton, Gupta [34]. The problem consists of choosing case start times
of n cases. The patients and the providers are punctual, and there are no cancellations or
add-ons. Let Z denote the vector of random surgery durations, the vector of scheduled
start times, W and S the vectors of waiting and OR idle times for a given a and Z, d the
length of the day, and L the tardiness for a given a. Scheduled case lengths, which can be
obtained from the knowledge of a, is denoted by x. In particular, xi = ai+1 − ai for i = 1, · · ·,
n − 1, and a1 = 0. The waiting, idleness, and tardiness are then determined as follows:

Wi = (Wi−1 + Zi−1 − xi−1)
+, i = 2, . . . , n. (38)

Si = (−Wi−1 − Zi−1 + xi−1)
+, i = 2, . . . , n. (39)

L =

(
Wn + Zn −

n−1

∑
i=1

xi − d

)+

. (40)

Suppose cw, cs, and cl denote per-unit costs of waiting, idling, and tardiness. Then,
the operating room director’s problem is

minx

{
n

∑
i=1

cw
i E|Wi|+

n

∑
i=1

cs
i E|Si|+ clE|L|

}
, (41)

where the expectations are over Z. In practice, it is often difficult to estimate cw. Moreover,
costs are incurred by different stakeholders. The hospital, which pays the staffing costs,
cares greatly about OR idle time and overtime, but it might not have an effect on physicians’
compensation. Similar to this, patients are frequently asked to arrive early, and the waiting
costs are largely covered by patients, if the same surgeon performs all procedures in an
operating room on a given day. Among other stakeholders, anesthesiologists are concerned
about the difference between anticipated and actual start times because it may have an
impact on their compensation and show how their workdays can vary in length. Finally,
a solution of (41) is insensitive to individual patients’ wait times when cw

i = cw for all i,
which is a common assumption. In this sense, the formulation allocates total waiting time
without considering fairness to different patients.

Papers dealing with the problem of choosing surgery start times fall into two categories.
Both variants assume that all cases that need to be scheduled on a given day are known.
It is assumed that actual durations can be sampled from an existing database of surgery
durations where surgery durations are random, but their distributions are known [34–37],
in the first case, and that they are unknown in the second case [38]. We point out certain
features of the actual surgery booking process that are not modeled well by the above-
mentioned approaches. First, surgeries are booked one at a time in many US hospitals.
Surgeon offices call the hospital booking clerk to book cases as the need arises. Non-
urgent cases are booked first, followed by urgent and emergent cases. Block surgeons
have guaranteed allocations that allow them the ability to schedule cases on their OR
day. Second, many surgeons perform multiple cases on their OR day, which may be
performed in multiple ORs. Therefore, surgery bookings must avoid same-surgeon overlap.
Such constraints are not considered in the problem formulations mentioned above. Third,
scheduling papers only take into account one type of urgency; thus, they either entirely
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concentrate on non-urgent cases or entirely concentrate on urgent/emergent cases. In
articles that take into account both types, like [39], discrete surgery durations are not
modeled. In other words, they presume that surgery scheduling is flexible.

Significant attention is paid in the literature to the estimation of the distribution of
surgery durations. Many hospitals have invested in software that helps keep track of
surgery bookings on each future day. This software also tracks planned and actual case
lengths and predicts future case durations based on the surgeon, the procedure type, and
patients’ characteristics. Surgeons are given an opportunity to modify the scheduled case
lengths based on their experience. As more hospitals adopt such systems, the estimation of
surgery case lengths is likely to improve, although surgery durations will remain random.
That is, it is unrealistic to expect either that all surgeries will start on time or that there will
be no OR idle time and no staff overtime.

It is frequently challenging for OR managers to gain support from surgeons, even
though a model-related solution can significantly improve the process for setting start times
(see Denton, Gupta 2003 for details [34]). Successful surgeons frequently run their own
operating room with 24/7 access. Although it is an expensive option for the healthcare
system, it enables surgeons to use their time as efficiently as possible.

2.5. Improving Schedules

A typical scenario in many hospitals unfolds as follows. The OR management team
examines the surgical schedule for one or two days in advance and attempts to manually
adjust case start times to reduce the number of operating rooms that would need to be open
at the same time. Costs related to hiring are reduced. A surgical schedule with scheduled
start times and planned lengths of surgical cases is currently in place. The latter is based on
a combination of values prompted by the scheduling software used by hospitals and input
from the surgeons’ offices. The management team only modifies the case start times and
treats the surgical case lengths as fixed.

The mentioned OR rescheduling issue can be seen as a subset of the bin-packing issue,
with bins standing in for staffed operating rooms and items or jobs for surgeries. The
objective is to reduce the weighted sum of bins used (or, equivalently, the cost of staffed
operating rooms), where the weight of a bin is proportional to its size, because hospitals
may use more than one standard shift length. Because hospitals may employ staff with
varying shift lengths and because surgeries performed by the same surgeon cannot overlap,
this problem differs from other bin-packing problems studied in the literature.

Because the bin-packing problem is NP-hard, it is easy to check that the problem of
improving OR reschedules is also NP-hard. In such instances, it makes sense to establish
bounds, which can lead to an efficient implementation of the branch-and-bound approach.
In a recent paper, Li et al. [40] developed such bounds and identified significant oppor-
tunities for reducing OR staffing costs by rescheduling [40]. In order to understand how
rescheduling would impact surgeons’ workdays, delays in surgery start times, and over-
time usage, the authors also analyze the resulting OR schedules. We briefly summarize this
paper next.

Li et al. [40] developed a framework to improve OR schedules consisting of three
steps. In step one, they classify linked sequences of surgeries into chains. Additionally, they
divide doctors into various groups based on the characteristics of the chains created by
their operations. Step two uses surgeon classification to assign surgeries to ORs in a specific
order, producing a lower bound and assisting in step three’s recovery of a feasible solution
that is no greater than (3/2) of the lower bound. By using their algorithm on data from
three hospitals, the authors also evaluate the effectiveness of their solution. This reveals a
number of things.

First, rescheduling flattens the peak number of concurrently staffed ORs and evenly
distributes surgeries throughout the day, as is expected. Additionally, according to Li et al.’s
research [40], efficiency is higher when a hospital is able to schedule a few long shifts due
to that results in more effective packing of surgical cases. Second, efficiency improvements
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come at the expense of more staff working OT, more downtime for surgeons, and longer
surgeon stays in the hospital. Hospitals may be able to win the cooperation of surgeons
by implementing a suitable gainsharing plan, according to Li et al. [40], who analyzed the
effects of rescheduling on medical professionals and found significant cost savings from
increased efficiency.

2.6. Major Incident Situation Happened; How Do CCUS and Specialist Staff Act?

Inpatient care is required for between 5 and 15 percent of patients who arrive at
the hospital after a bombing or other mass casualty terrorist incident [30–33,41]. Less
information is available regarding the demands made on critical care resources during
other incidents, such as large fires or natural disasters [42]. However, staff at the Charity
Hospital in New Orleans had to deal with increased demand after Hurricane Katrina
without having the chance to leave for several days [43].

According to recommendations made by the US Taskforce for Mass Critical Care
in 2007 [30,44], CCU plans could represent emergency mass critical care at three times
the current capacity for up to ten days. A major incident necessitates good planning
and organization in order to release beds or expand the source because CCU beds and
specialists/staff are a limited resource that are typically fully utilized. It is also critical to
establish early connections with various hospitals in order to transfer more stable patients
in the safest manner possible, as critical care sources will frequently represent the main
limiting factor when encountering large numbers of casualties. Based on this, critical care
managers/leaders must be involved in planning [31] for mass casualties in the healthcare
communities.

The CHEST Task Force for Mass Critical Care has suggested different levels of capacity
expansion needs via different levels of casualty [45–47].

Critical care sources require enhancement as follows:

(a) Capacity of a conventional response at least 20 percent greater than the baseline
incentive care unit maximum;

(b) Crisis response is able to expand via at least 200% above baseline incentive care unit
max capacity via regional, local, national, and international agencies;

(c) Ability to expand quickly in the event of an emergency by at least 100% above baseline
incentive care unit maximum capacity by utilizing local and regional resources.

The minimum requirements for critical care offered via the EMCC taskforce [43] are:

- Vasopressor administration
- Mechanical ventilation
- Sedation and analgesia
- If recommended by the hospital or a region, the best therapeutics and interventions,

such as renal replacement therapy and nutrition for patients who cannot eat by mouth
- IV fluid resuscitation
- Antidote or antimicrobial administration for special disease processes, if applicable
- Algorithms to decrease adverse consequences of critical care and critical illness.

It is suggested that a tiered response be implemented, allowing for the consideration
of progressively more high-risk management techniques as the incident’s impact grows. In
the end, patients would also be triaged for availability of limited critical care sources.

Predicting and managing such an incident requires:

- Training and education of specialists and staff
- A degree of equipment stockpiling or recognition of substitute resources (e.g., use of

anesthetic ventilators to supply ventilatory support and NIV machines)
- Recognition of specialists and staff via transferable skills like recovery nurses, respira-

tory nurses, and previous critical care nurses;

When there is no way to dismiss patients who are still coming in, hospitals go into
red alert. In this situation, where there are more people coming in than are leaving and
there is nowhere for them to go and no spare capacity (beds), hospitals reach the point
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where staff may genuinely wonder if they can treat all patients. A red alert indicates that
there is a serious threat to the patients’ safety. All non-emergency surgeries should be
postponed in this situation, and the need emerges to look for free beds and start releasing
patients from their beds until the flow improves. All of the wards become under pressure
to discharge patients under these circumstances, and patients must be followed as they
leave the hospital.

The emergency admission system becomes dysfunctional when all wards are full and
there are no beds available in any ward. In such circumstances, hospital operations can
break down entirely if one crucial person falls. Staff experience blockage as a result of the
flow ceasing, with repeated returns to the front door. When a hospital is on alert, all wards
are under pressure to discharge patients [31].

3. A Mathematical Framework for Emergency Departments (EDs)

Emergency departments (EDs), also called accident and emergency (A&E) depart-
ments in some countries, provide immediate treatment to accident and trauma patients
with life-threatening conditions. They also provide treatment to patients who present
with urgent-care needs. EDs are staffed around-the-clock, every day of the week, by
highly trained medical professionals. Modern EDs possess advanced diagnostic and
treatment capabilities.

Patients do not require a prior appointment to be treated in the ED. Demand for ED ser-
vices is affected by patients’ perceptions of how urgently they need care. Patients’ decisions
may also be influenced by family members, ambulance crews, primary- and urgent-care
physicians, nursing-home staff, police officers, and national emergency telephone operators
(for example, 911 operators in the US). (As the first point of contact for both a patient and
an incident, an ambulance service gives the health system early notice of changes in the
general operating environment).

Many countries have experienced significant increases in ED demand, e.g., annual
increases of 5.3% in Australia and 5.9% in the United Kingdom and Switzerland have
been reported over time periods ranging from 3 to 7 years. In the US, there has been a
41% increase in ED visits between 1995 and 2011 [48]. At the same time, the number of EDs
in non-rural areas declined from 2446 to 1779 from 1990 to 2009 [49]. These trends are at
least in part responsible for long ED wait times and other undesirable outcomes [50–58]
and naturally lead to a series of questions regarding the reasons for the increased demand,
the performance metrics that the public and the policymakers (do and ought to) care about,
and what OM researchers can do to address the ED wait-time issue.

Our primary focus is on the third question posed above. Answers to the first two ques-
tions, discussed in (Section 3.1), provide the context for current and future OM researchers.
Specifically, the bulk of this section concerns the following topics:

1. What factors can most effectively sculpt (even out) the demand for ED services?
2. How can the ED service processes be improved? Improvement is measured with

respect to certain performance metrics that we discuss in (Section 3.1).
3. How can hospital managers ensure that there is an adequate supply of downstream

beds for ED patients who may need additional hospital services?

For each of the questions posed above, we provide an overview of practitioner chal-
lenges, the current state of practice, and current OM approaches for addressing them. We
conclude with opportunities for future OM research on ED demand–supply matching.

3.1. ED Demand

ED demand exhibits both predictable hourly and day-of-week patterns, as well as
unpredictable (stochastic) variability in inter-arrival time [59]. Patients arrive in EDs either
as walk-ins or in ambulances. Hospitals have no forewarning of walk-in arrivals, but
emergency medical technicians do provide some advance information about patients who
arrive in an ambulance. This information helps hospitals ensure ED bed availability when
the ambulance arrives.
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Possible Reasons for Increasing Demand. There are a variety of reasons that explain
the sustained increase in ED demand over the years. Understanding these causes is
important because they provide insight into how demand may be smoothed to make ED
operations more efficient and effective. The most frequently cited reason for increased
ED demand is the lack of timely access to primary care [60–63]. In 2010, 28% of primary
care provider visits in the US took place in EDs [64]. Other reasons include an ageing
population, higher public expectations for more convenient healthcare, the public accessing
EDs rather than more appropriate lower levels of care, and an increase in the reliance on
professional healthcare rather than self-care or other social structures for care [51,65].

The US Congress passed the EMTALA in 1986, which mandated that any hospital
receiving Medicare funds, which includes almost all US hospitals, had to provide care to
anyone presenting to its ED regardless of ability to pay [66]. The role of the ED in the
US was officially expanded with this legislation to become a safety-net access point for
healthcare for patients who have no health insurance or ability to pay for services. EMTALA
is believed to be one reason why some patients access EDs rather than more appropriate
lower levels of care.

More recently, changes in hospital same-day direct admit practices may have led
to higher ED demand. Direct admissions occur when a primary care physician makes a
request to the hospital to admit a patient. Morganti et al. [54] found that direct admissions to
US hospitals for non-elective care decreased by 10% between 2003 and 2009. The physicians
in their study cited increased barriers and time needed to coordinate a direct admit as
reasons why they tell their patients to go to the ED instead of requesting a direct admit.

ED Patient Flow. Figure 2 shows the typical steps of ED patient flow. The first steps
entail registration, triage, and waiting if a treatment room is not available. The underlying
queueing system is a multi-server priority queue, with priority determined by the ESI level
described in the next paragraph.

Figure 2. ED patient flow.

ED triage is the process in which a nurse assigns a priority rank to each patient. This
rank determines the patient’s service order and provides some information about the types
of resources that the patient might need. In some cases, triage is used to route some low-
urgency patients to a special area called a fast track. There are numerous priority scales in
use internationally [67]. In the United States, a five-level triage tool called the Emergency
Severity Index (ESI) is commonly used. The five levels are described in Table 3 [68].
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Table 3. Emergency Severity Index (ESI) Levels.

ESI Level Description

ESI Level 1 The patient requires immediate life-saving intervention (1–3% of all ED patients)

ESI Level 2 The patient should not wait to be seen if they are in a high-risk situation, are confused, lethargic, or
disoriented, or are in excruciating pain or distress (20–30% of all ED patients)

ESI Level 3

The patient is not Level 1 or Level 2, has vital signs within the accepted range for the patient’s age, and is
predicted to require two or more resources, such as labs; diagnostic testing; intravenous fluids; intravenous,
intramuscular or nebulized medications; specialty consultation; and/or a simple procedure or complex
procedure (30–40% of all ED patients)

ESI Level 4
The patient has vital signs within the accepted range for the patient’s age and is predicted to use one
resource. Levels 4 and 5 combined comprise 20–35% of all ED patients. Level 4 is an appropriate level to
stream through the fast track.

ESI Level 5
The patient has vital signs within the accepted range for the patient’s age and is predicted to require no
resources. Levels 4 and 5 combined comprise 20–35% of all ED patients. Level 5 is an appropriate level to
stream through fast-track.

Once a patient’s turn arrives, he or she is cared for by a team consisting of an ED
physician and a nurse. This team may also include consulting specialists, depending on
the patient’s needs. The ED physician diagnoses the patient’s condition and orders tests
as needed. Nurses often coordinate patient transfers to lab and imaging facilities. The ED
exam/treatment room is held for the ED patient while he or she is away for tests. Hence, the
exam/treatment room does not become available for a new patient until the current patient
is either admitted to the hospital or discharged, which is called the disposition decision.

If the patient requires hospitalization, the patient’s condition is usually stabilized first
prior to transfer to the inpatient unit. ED physicians do not write admission orders because
they typically do not have hospital admitting privileges [69]. Hence, patients requiring
admission must also be seen by the admitting physician, generally a hospitalist, who writes
the admission orders. Some patients may be placed on 24 h observation status before
deciding whether admission is warranted. Some hospitals have separate observation units,
whereas others place the patient in an inpatient unit bed. A patient may be boarded at
any stage of the flow described in Figure 2 if resources necessary for the next step in the
treatment are not available.

Performance Metrics. Key ED performance metrics relate to either baulking, flow
time, or capacity. We list key metrics in each category below.

1. Balking-related metrics: include patients leaving without being seen (LWBS) and
ambulance diversions [63].

2. Time-related metrics: time-to-treatment, time-to-treatment for specific medical condi-
tions [64,65], ED length of stay (LOS) that exceeds some threshold, and ED boarding
time [63].

3. Capacity-related metrics: frequency of ED census approaching or exceeding the
available ED beds or personnel capacity, the daily number of ED visits exceeding a
targeted number, and ED nurses or physicians reporting being rushed [66].

ED performance issues have become so acute from both clinical and political stand-
points that national mandatory reporting of key performance metrics has been implemented
in some countries. The United Kingdom, for example, had, at one time, a national target of
a maximum ED length of stay of 4 h. Such measures have since been dropped in favor of
Clinical Quality Indicators (CQI) [45]. We describe these indicators in Table 4.

In the US, the Centers for Medicare and Medicaid Services (CMS) requires hospitals to
report on five ED performance metrics [32,67]. As seen in Table 4, there are some similarities
between the CMS’ and UK’s Quality-in-Emergency-care-Dashboard (QED) metrics. There
are some notable differences as well. For example, CMS has a metric focusing on ED
boarding, whereas QED tracks the timeliness of initial assessment for patients arriving by
ambulance and repeat visits within 7 days.
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Table 4. Summary of Key ED Performance Indicators.

QED Indicators ([63], p. 31), (CQI; United Kingdom) CMS Indicators McHugh et al. ([67], p. 5), (United States)

Time in the ED—% less than 4 h The median patient time from ED arrival to ED departure for
patients who were discharged

% of patients with ED stay exceeding 6 h Median time from ED arrival to ED departure for admitted patients

Time for arrival to treatment by a decision-maker—% within
60 min or less

Door-to-diagnostic time, i.e., time to evaluation by a qualified
medical professional

% Left Without Being Seen The patient left before being seen

% Unplanned re-attendance to the ED within 7 days No equivalent metric

No equivalent metric The average amount of time admitted patients spend between
being accepted and leaving

Time to initial assessment for patients arriving by
ambulance—% less than 15 min No equivalent metric

ED performance is driven by daily cyclical variability in both ED arrivals and the
availability of inpatient beds. Figure 3 shows the typical hourly variability in ED arrivals,
for example, in hospitals. At this hospital, there is a sharp increase in arrivals around 8 AM.
The average arrival rate remains high throughout the day and early evening. Also, Monday
mornings have higher ED demand than other weekday mornings. Similar arrival patterns
are observed in many other hospitals.

Figure 3. ED hourly arrival patterns.

Some of the ED patients require hospitalization. As described in previous parts, the
weekday morning demand for inpatient beds by ED patients tends to build concurrently
with the peak daily demand by post-surgery OR patients. This can result in high demand
for beds that serve as the downstream location for both ED and OR patients. Figure 4 shows
one month’s data for one such hospital unit. Admission totals are the highest between
11 a.m. and 4 p.m., with great demand from both the ED and ORs. Later in the day, the
bulk of the bed requests come from the ED.
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Figure 4. One month’s total hourly inpatient bed requests from ED and OR.

Peaks in inpatient bed demand can result in patients boarding in the ED. We obtained
an estimate of ED patient boarding time at one hospital. These data are summarized as the
cumulative distribution function (CDF) “This is related to probability Theory and statistics”
of ED board times and shown in Figure 5. The figure shows that 50% of the patients who
experience boarding have to wait for more than 90 min, and 10% wait more than 3 h.

Figure 5. Cumulative distribution function of ED boarding times.

EDs cannot turn away walk-in patients because of EMTALA. Thus, ambulance diver-
sion of emergency patients has been the primary strategy used by EDs to reduce arrivals
during times of ED and inpatient bed congestion. However, if other EDs in the region are
simultaneously near capacity, the increase in patient arrivals to the remaining hospitals
from the diverted ambulances can worsen their congestion. This can result in additional
EDs going on divert status, making it difficult for the ambulance personnel to find an ED
with available capacity. Diversion also results in potential lost revenue for the hospital.
How to prevent ambulance diversions and how to assign patients among available EDs
when one or more EDs go on divert remain ongoing challenges. In addition, once a hospital
is on divert status, it is not clear what policies should guide its decision to go off the
divert status.

3.2. ED Treatment Process

Operational challenges in the ED treatment process include long wait times, excessive
lengths of stay, patient boarding, and overcrowding. EDs must cope with patients that
require significantly different services (diagnostic, physician, and inpatient care) and have
different urgency levels. The role of the ED is to stabilize patients’ conditions so that they
may be transferred to other appropriate parts of the healthcare system (inpatient care or
follow-up primary care) or discharged home.
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Performance metrics focusing on efficiency and throughput mirror this view. But the
role of the ED is evolving. Advanced diagnostic testing and aggressive treatment in EDs
can prevent the need for hospitalization. In addition, diagnostic workups and access to
specialists that transpire over days or weeks in the traditional outpatient setting can be
completed within hours in the ED [68,69].

In this role, the ED also serves as another delivery node in an ongoing episode of care.
This requires more effective ED patient discharge planning and better care coordination
with other providers across the healthcare service chain (Johns Hopkins University, Arm-
strong Institute for Patient Safety and Quality, 2014 (https://www.hopkinsmedicine.org/
armstrong_institute/, accessed on 20 May 2021)). Care coordination is especially important
for chronic disease care, which accounts for about 75% of US healthcare expenditures [70].
The quality and effectiveness of ED care within that episode must be quantified. Thus, the
ED operational regime is changing from one that has been primarily efficiency-driven to
one that increasingly requires balancing quality and efficiency. EDs are developing new
triage and patient streaming methods in response to their changing roles.

3.3. Downstream Bed Availability

As discussed before, many countries have reduced their supply of acute care beds,
resulting in higher bed occupancy rates. The lack of inpatient bed availability has been
implicated as a driver of poor ED performance [43,71,72]. In the US, the lack of intensive
care unit (ICU) beds specifically is frequently cited as a primary reason for ED boarding [73].

Higher bed occupancy makes it more difficult to respond to variability in patient
census and ADT. Physician daily rounding practices affect the timing of nursing work
activities related to bed management. Some physicians round first on the most critically
ill patients in order to prioritize entering their test and treatment orders. This can delay
discharge orders for patients who could be discharged that day, exacerbating daily bed
shortage situations. If facilitating patient discharges is a priority, then rounding first on
patients most likely to be discharged allows nurses to focus first on patient discharges.
However, rounding first on patients most likely to be discharged delays that day’s ongoing
diagnosis and treatment for remaining patients, which could increase their overall hospital
lengths of stay.

A key point of the discussion so far is that ED performance improvement requires
multi-faceted intervention inside and outside the ED. Upstream, it requires shaping patient
behavior and improving primary care capacity to try to reduce unnecessary ED utilization.
Downstream, it requires improving patient flow throughout the entire hospital, not just the
ED. And given OR, ED, and inpatient demand patterns, the bottleneck resource affecting
efficient ED flow may fluctuate over time. Finally, as the role of the ED evolves to provide
timely access to advanced diagnostic technology and specialist care, a new patient type
is emerging—one who needs immediate care, who will require extensive diagnostic or
treatment time in the ED, and whose ED visit can likely prevent the need for hospitalization.
We turn to discuss how EDs are coping with these operational challenges.

4. OM Opportunities

OM opportunities for ED demand–supply matching fall into two broad categories:
(1) those that focus on the hospital walls and (2) those that focus on new outpatient care mod-
els that are expected to reduce ED and inpatient demand. In this and the next paragraph, we
discuss the first category. Within the hospital, OM models have identified useful strategies
that could be translated into computerized applications that support real-time decision-
making by providers. For example, the statistical work of Peck et al. [74,75] on predicting
hospital admission could be combined with the streaming models of Saghafian et al. [76]
to support virtual streaming in real-time. Similarly, the ED wait time prediction models for
individual hospitals in an EMS region could be integrated into ambulance routing policy
models to alleviate ambulance diversion issues.

https://www.hopkinsmedicine.org/armstrong_institute/
https://www.hopkinsmedicine.org/armstrong_institute/
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OM models, combined with real-time data feeds, have the potential to support
providers’ real-time decision-making, resulting in superior ED workload management
strategies. The data sources for these models reside in the timestamps of computerized
scheduling, transport, and medical record systems. New, richer timestamp data sources
are coming online as some hospitals implement real-time radio frequency identifier tags
on patients, staff, and equipment that transmit location information every few seconds to
a database [62,77–80]. Plambeck et al. [81] highlight the operational challenges of using
real-time data feeds to support OM models.

OM models that address new approaches to design outpatient chronic disease care
will need to focus on the entire healthcare service chain. Some OM models that have this
characteristic focus on only one chronic disease condition, but patients typically have two or
more chronic conditions. OM models for chronic disease management will need to take this
into account. The data sets needed to study these models are much more labor-intensive to
build, as they span multiple locations, e.g., primary care clinics, EDs, urgent care clinics,
hospitals, nursing homes, home health agencies, etc. It is difficult to get complete patient
data across episodes of care because the patient may use services that are not owned by a
single health system, and insurance companies will only have data on those services that
they cover. Building and analyzing these types of data sets will require closer collaboration
between OM modelers and health services researchers with expertise in merging large
patient data sets.

The most readily available data from hospital databases concerns bed occupancy
(or census) levels in each unit. With bed management software, it is possible to track
every activity: admission, transfer in, transfer out, and discharge. These data can be used
to understand how the census changed over time. In Figure 6, we show the combined
census from four interchangeable units of a medium-sized hospital. We examined the total
census of approximately interchangeable units to understand demand variability at the
level of patient type, where patient type is defined by their nursing needs. Figure 6 shows
significant variability, which led us to look for possible explanations for this phenomenon.

Figure 6. Census fluctuations across four partially interchangeable units.
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In Figure 7, we show how the start-of-shift census in a single unit changes by day
of the week. There is a clear buildup of census until Thursday and then a sharp decline
on Saturday. In Figure 8, we show admissions, transfers in, transfers out, and discharges,
which help explain these changes in the census. For example, there are more transfers
from OR (shown in dark solid line) on Mondays, Tuesdays, and Wednesdays, whereas
discharges (shown in dark dashed line) peak on Fridays. In contrast, transfers from other
units remain consistent across weekdays. The direct admit is smaller on Saturdays and
Sundays. These patterns are driven by the typical workweek cycle.

Figure 7. Start-of-shift census fluctuations in a single unit—weekly cycle. D = day shift, E = evening
shift, and N = night shift.

Figure 8. Weekly activity: admissions, transfers in, transfers out, and discharges.

In Figure 7, we observe that census tapers off toward the end of the week, suggesting
a relatively lower demand for staffing. However, when we examined nurse-to-patient
ratios (the nurse-to-patient ratio refers to the number of patients in the unit per nurse and
is usually calculated based on start-of-shift census and nurse availability) across different
shifts and compared them to the planned ratios (the planned ratio for a unit refers to the
shift-specific nurse-to-patient ratio that is acceptable both to the management and to the
nurses’ union), we find the largest discrepancies during the night and weekend shifts; see
Figure 9. The planned nurse-to-patient ratios for weekend and night shifts are higher, which
means fewer nurses are scheduled to be on duty. In addition, the census usually drops
during weekends, which further lowers the number of nurses that are scheduled to work on
weekends. This means that weekend availability is at a greater risk of being compromised
even if a small number of nurses are absent. Figure 9 shows the distributions of realized
nurse-to-patient ratios after accounting for planned and unplanned absences. The S-shaped
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curve is the cumulative distribution function of the nurse-to-patient ratio, the black dotted
line is the average observed nurse-to-patient ratio, and the red line is the planned ratio. Note
that even for those shifts in which the planned and average observed nurse-to-patient ratios
are quite close, the distribution of these ratios shows significant variation. That is, there
are frequent cases of both under and overstaffing. Hospital managers often concentrate
on the average of realized nurse-to-patient ratios. What the above analysis shows is that
nurses are subjected to significant variability in their workloads even when the average
workload equals the planned levels. Specifically, for the hospital whose data were used
to develop Figure 9, there is a frequent shortage of nurses on the night shift—both during
weekdays and weekends. (The demand for night shift nurses will never decrease because
healthcare is available around-the-clock, and many nurses consider the evening shift to be
a desirable and reliable option. The Bureau of Labor Statistics reports that 4% of Americans
who worked in 2017–2018 did so on a night shift. In order to increase the safety of patients
and healthcare workers, organizations must assess practices and policies to reduce the
inevitable fatigue that results from long night shifts. Alternative shift lengths may be
investigated, or authorized workplace naps may be an option).

Figure 9. Nurse-to-patient ratios, actual and norms by shift and by weekday.

Because nurse staffing levels affect the welfare of both patients and nursing staff,
federal and state legislators have placed certain requirements on hospital administrators’
decision processes. For example, according to the American Nurses Association (2015),
Federal Regulation 42CFR 482.23(b) requires “hospitals certified to participate in Medicare
to have adequate numbers of licensed registered nurses, licensed practical (vocational) nurses,
and other personnel to provide nursing care to all patients as needed [82].” Several states have
enacted legislation to require hospitals to have either one or more of the following measures:
(1) nurse-driven staffing committees, (2) legislated and/or regulated minimum nurse-to-
patient ratios, and (3) disclosure of staffing levels. Specifically, fourteen states (CA, CT,
IL, MA, MN, NV, NJ, NY, OH, OR, RI, TX, VT, and WA) currently mandate minimum
nurse-to-patient ratios in either law or regulation.

Lang et al. (2004) presented a systematic review of 43 papers on the effect of mandated
minimum nurse-to-patient ratios in acute-care hospitals [83]. In this review, patient out-
comes were measured only in terms of in-hospital adverse events. The authors concluded
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that fewer patients per nurse were linked to better outcomes, specifically, shorter hospital
stays, lower inpatient mortality rates, and lower failure-to-rescue rates. However, there was
no evidence in favor of specific minimum nurse-to-patient ratios. OM studies that focus on
the quality-of-care and staffing cost tradeoffs could significantly add to the debate on what
remains an open question: should either state or federal governments require minimum
nurse-to-patient ratios, and if so, what levels should be prescribed?

Evidence from data reveals significant challenges in managing staffed bed capacity
due to variability in both supply and demand. The problem is further exacerbated by
specific skill sets required to provide care to specific patient types. Among the possible
sources of variability, it is possible in some cases to identify some as natural and others as
artificial. For example, variability in the number of admissions to a unit is largely natural,
whereas variability in transfers from OR is driven by OR schedules. However, for the most
part, it is difficult to tease out whether variability is a consequence of naturally occurring
changes in demand and supply or those caused by specific actions of hospital managers.
Still, when possible, it will make sense to exploit knowledge of OR schedules to better plan
staffed-bed capacity and to jointly plan OR schedules and staffed-bed capacity.

5. Impact of Unit Size & Scope

The first example concerns the size of nursing units in terms of bed capacity for a
particular care intensity. We assume that the hospital has determined the total number of
beds needed to serve its patient population, and what remains to determine is the number
of interchangeable units and the size of each unit. These units will be staffed with the same
skill-level nurse mix, equipped with the same in-room equipment, and staffed based on the
same average nurse-to-patient ratios. Also, none of these units is a swing unit.

Let mj be the number of nurses that can be supervised by a single charge nurse (the
lead nurse in each shift is referred to as the charge nurse and makes nurse-to-patient
assignments and oversees admissions, discharges, and transfers) in shift j. In addition,
let rj and

(
rj − r̂j

)
be the average number of patients that can be cared for by a regular

nurse and a charge nurse, respectively, in shift j. Parameters rjs and
(
rj − r̂j

)
s are called

nurse-to-patient ratios. Typically, morning and evening shifts have the same ratios, but
the ratios are different for the night shifts. Then, the bed capacity that allows maximum
nurse productivity to be achieved in all shifts is a multiple of mjrj +

(
rj − r̂j

)
for each j. For

example, if mj = 8, rj = 3 and rj − r̂j = 0 for each j, then unit size in multiples of 24 allows
maximum productivity of nurses. If this hospital were to build a unit with 22 beds (say),
then the nurses’ productivity may be lower because of greater indirect costs and because
when the unit is full, the eighth nurse will serve only one patient rather than three.

In the above example, it was straightforward to determine an efficient bed capacity
because the nurse-to-patient ratio did not vary by shift. For a different example with
m1 = m2 = m3 = 7, (r1, r2, r3) = (3, 3, 4) and (r̂1, r̂2, r̂3) = (3, 3, 1), the most efficient bed
capacity is 651. This is not a realistic size for a nursing unit in most hospitals.

In fact, in a hospital that the authors are familiar with, there are four interchangeable
units, three with 22 beds and the fourth with 25 beds, with the nurse-to-patient ratios
mentioned above. The bed capacities of these units do not allow maximum productivity to
be achieved in either day, evening, or night shifts.

Formally, for a unit with bed capacity i, the number of nurses required when xi ≤ ki
beds are occupied is

[(
xi − n0

(
rj − r̂j

))
/rj
]
+ n0, where n0 is the smallest number of charge

nurses needed to supervise other nurses in the unit(
i.e. n0 =

{
minn : nmj ≥

[(
xi − n

(
rj − r̂j

))
/rj
]})

. Having these arguments in hand, con-
sider two structures: (a) u units each with bed capacity ki, and (b) a single large unit with
bed capacity k = ∑u

i=1 k j. It is clear that with each fixed level of bed occupancy x, an optimal
patient placement policy must assign patients in multiples of mjrj +

(
rj − r̂j

)
to the extent

that is possible. Moreover, since each unit with at least one assigned patient must have a
charge nurse, the number of charge nurses in an arrangement (a) is no less than the number



Mathematics 2022, 10, 2784 25 of 34

of charge nurses in the arrangement (b). Put differently, if x ≤ k patients are assigned
optimally, structure (b) allows at least as good or better maximum productivity.

The above arguments lead to the conclusion that a single large unit dominates combi-
nations of smaller units of the same bed capacity. The extent to which many smaller units
could lower productivity depends on the nurse-to-patient ratios and the number of such
units. This result is based on the assumptions that (1) nurse-to-patient ratios are fixed (in
reality, acuity is different for each patient and changes over time as the patient’s medical
status changes), and (2) there are no physical constraints (such as the location of nursing
stations and limited floor space) on the design of nursing units. When these assumptions
are relaxed, the problem of determining dominant structures is more complex. The de-
termination of dominant design is further complicated by the presence of permanently
open units and one or more swing units. The latter are closed/opened as needed based on
patient volumes. In this environment, the determination of the bed capacity of permanently
open and swing units is an open problem.

Some hospitals have come up with strategies to provide additional flexibility by
creating a small unit-within-a-unit. In an example of such arrangements, a step-down
unit may have a few beds placed in special rooms, which can be stepped up to act as ICU
beds when needed. A few nurses in the unit are specially trained for such purposes,
and the rooms are equipped with more monitoring devices. The beds are staffed at the
nurse-to-patient ratio that is normal for the unit for regular patients and typically at a 1:1
ratio for ICU patients. The step-up beds are used to create room in ICUs by transferring
patients who are relatively well but still in need of intensive care. The authors are familiar
with hospitals that have successfully implemented this approach for managing their ICU
bed needs.

Finally, the effectiveness of size and scope decisions is affected by choice of perfor-
mance metrics. In our discussion so far, we considered only the maximum achievable
productivity. Other measures may be appropriate, e.g., average overtime costs, patient
waiting costs, and less-than-ideal placements or turn-away (e.g., via ambulance diversions).

5.1. The Impact of the Choice of Performance Metrics

Hospitals typically evaluate a unit’s performance by calculating variance, i.e., the
difference between the budgeted and realized NHPPD (developed by the ANA for the
NDNQI, NHPPD refers to the number of nursing care hours provided divided by the
number of patients in that hospital unit during a 24 h period) in each review period or
revenue per nurse FTE (FTE stands for full-time equivalent) [68]. Note that the meaning
of variance in nursing literature is different from its meaning in probability and statistics.
The length of a review period is typically a month, but it could be as small as a shift or as
large as a quarter [68]. The budgeted amounts are based on historical averages, NHPPD
comparisons with other similar hospitals, and realized patient census. Variance analysis is
used to control expenses, and unit managers are held accountable for using resources in
excess of the budgeted amounts. However, as we show next, a variance-based review of
unit managers’ performance may lead to poor operational choices.

Consider a short-stay nursing unit that is staffed to provide k nursing hours of care per
day. Given k available hours, suppose P(k) is the max number of patient days of care that
the unit can generate per day. We assume that P(k) is increasing in k. However, because the
output is constrained by daily demand D (expressed in patient days), the actual number of
patient days of care produced is min{P(k), D}. Let F (·) and F(·) denote the CDF and the
CCDF (complementary cumulative distribution function) of D, and b denote the bench-
mark number of patient days per nursing hour used to calculate the unit’s productivity.
Then, a nursing unit manager who is evaluated against this benchmark tries to minimize
E [(bk − min{P(k), D})+]. Clearly, k = 0 is a minimum, but that is not a practical solution.
So, as an alternative, a unit manager may choose a target staffing level based on tolerance
δ for maximum deviation from the benchmark. That is, a possible target staffing level is
k = max

{
k : E[(bk−min{P(k), D})+] ≤ δ

}
.
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Next, we consider a different performance criterion for the problem. The hospital
incurs a cost c per unit of nursing care provided, a penalty p per turned-away patient day,
and a revenue r per patient day served. Therefore, operational choice of staffing level should
depend on π(k), where π(k) = −ck− pE[(D− P(k))+] + r E[min{D, P(k)}]. When P (k)
is concave, it can be shown that π(k) is concave in k (proof is omitted in the interest of
brevity), and an optimal staffing level k* satisfies p(k∗) = F−1

(c/[(r + p)p′(k∗)]). Clearly,
the k_ calculated above is not in general equal to k calculated earlier, leading to systematic
choices of uneconomical staffing levels.

Performance metrics such as NHPPD view nursing care as a source of cost and penalize
nurse managers who do not keep costs within mandated ranges. The point of view that
nurses are a source of cost touches a nerve with nurses’ unions, who argue that nurses
also produce healthcare [70]. Therefore, both costs and outcomes need to be considered
at the same time. Numerous articles in the literature on nursing care make the case that a
shortage of nurses endangers the standard of care and patients’ safety, lengthens hospital
stays, and decreases nurses’ job satisfaction (e.g., [31,83–90]).

5.2. The Impact of Patient Movement Policies

In this section, we present two simple concepts. First, we discussed that if a hospital
were to choose between floating nurses or moving patients, and neither had any negative
consequences on patients’ health outcomes and neither consumed nurses’ time, then
moving patients would always be superior to floating nurses. This comes from the fact that
a nurse typically takes care of more than one patient. The second concept we present is
that if a hospital has a consistent patient movement policy and it chooses nurse staffing
levels commensurately, then the choice of a particular policy does not significantly affect
performance metrics of interest. The latter is based on experiments performed via a
computer simulation. We chose policies that are consistent with practices one would find
at many hospitals. The details follow.

Suppose a hospital has two units that belong to the same care intensity hierarchy, and
nurses in each unit are trained to take care of patients with similar diagnoses and care
needs. Suppose yi nurses are assigned to unit i in each shift, and the nurse-to-patient ratio is
1:k in all shifts. If, at any time, the number n of patients needing beds is less than k (y1 + y2),
then this demand can be accommodated without requiring additional nurses. Depending
on the starting census levels in each unit, this may involve either patient movement or
float of nurses. That is, when nursing needs can be met by the available cohort of nurses, it
should make no difference to the hospital whether it moves patients or floats nurses, under
the assumption that neither induces additional cost to the hospital.

Given inpatient units within the same care-intensity hierarchy, a hospital may place
patients in any one of these units and provide equal care quality. The hospital could choose
from a plethora of patient movement policies. For example, it could have a hierarchy of
movement priority: patients move to the highest priority unit first, then to the next higher
priority unit, and so on. We call this ‘static arrangement priority’ because the highest
priority unit fills up first, then the next higher priority unit, and so on. Compare this to
a different policy, which we call targeting, in which patients are placed to keep census
constant across similar units. We then tested for which of these two policies is likely to
perform better. An example of the two approaches is shown in Figure 10. In this example,
there are two equal care-intensity and equal bed capacity units, and we illustrate the
placement of five new patients on a given day.

We developed computer simulation models of each placement strategy under two
scenarios. In the first scenario, nurses could be floated from one unit to another, whereas in
the other, nurse floating was not permitted. In each case, the number of nurses assigned to
each unit was chosen to match the anticipated workload. For example, in the static priority
strategy, the highest priority unit was staffed with enough nurses to accommodate a full
census, whereas, in the targeting strategy, each unit received an equal number of nurses.
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We provide complete details of the parameters used to set up the simulation model in the
ensuing paragraph.

Figure 10. Two possible placement strategies.

In the simulated experiments, we assume that the hospital has complete information
about whether a patient will leave the unit within an hour or not. The planned staffing
level is at a level that is sufficient for the average census in the unit. Nurses can float to
other interchangeable units only at the beginning of a shift. Overtime (OT) is calculated
after utilizing all available float nurses. Specifically,

minimum OT requirement =
nursing needs of patients carried
over from the previous shift − staffing level

(42)

The patient is not to be moved from one unit to another once admitted to a particular
unit. Patients may be placed into a unit so long as there is still bed capacity. When staffed-
bed capacity is reached, the patients in excess of the staffed-bed capacity are counted as
unserved patients. Fractional OT shifts are allowed.

The parameters used in our discrete-time simulation are as follows: 3 units, 30 beds
each; nurse-to-patient ratio = 1:3; hourly patient arrival rate = 1.17 (Poisson distributed);
average LOS = 61 h; LOS distribution. Example 1: Poisson (61), Example 2: Geometric
(1/61); nurse absenteeism probability p = {0, 0.1, 0.2}. Note that the two lengths of stay
distributions have the same mean but different variability. The aggregate staffing level was
80% of bed capacity, i.e., (0.8 × 90)/3 = 24 RNs. The arrival rate was chosen such that the
average number of patients in the system was approximately 72. Under targeting strategies,
each unit is staffed with an equal number of nurses. Under a static priority strategy, first,
the two highest priority units are staffed fully with 10 nurses each, and then the remaining
4 nurses are assigned to the lowest priority unit. Thus, staff assignment strategies match
patient movement strategies.

Performance is measured by calculating the minimum OT requirements, the number
of unserved patients, and the frequency with which nurses may need to be floated from
one unit to another. The average performance metrics obtained from these experiments are
shown in Table 5. Note that the average statistics on minimum OT per shift, the number
of unserved patients per shift, and the number of nurses that need to be floated per shift
(movement) are statistically not different across these strategies at a 95% confidence level.
This suggests that so long as the patient placement strategy roughly matches the staff
assignment strategy, the choice of movement strategies does not have a significant effect
on the performance. This result is satisfying from a practitioner’s viewpoint because it
allows hospital managers to choose from a variety of different options depending on their
individual circumstances.
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Table 5. The relative performance of targeting versus static priority strategies.

Absentee Rate Metric
Poisson LOS Geometric LOS

Targeting Static Priority Targeting Static Priority

0%
Min OT/Shift 0.83 0.95 0.54 0.61

# Unserved/Shift 0.74 0.65 0.49 0.43
Movement 0.43 0.4 0.34 0.25

10%
Min OT/Shift 2.37 2.38 1.75 1.74

# Unserved/Shift 1.17 1.21 0.86 0.92
Movement 0.75 0.49 0.87 0.57

20%
Min OT/Shift 4.22 4.18 3.53 3.48

# Unserved/Shift 1.45 1.58 1.21 1.34
Movement 0.61 0.39 0.76 0.45

In the next section, we discuss the state of OM research dealing with inpatient bed
capacity. Key inputs to such models are estimates of distributions of demand for inpatient
beds and lengths of stay (LOS). There are many papers in the health services literature
that analyze data to estimate these critical parameters. Papers in the OM literature tend to
assume that such estimates exist.

6. Conclusions

Spending on inpatient care across OECD countries accounts for almost 30% of overall
healthcare expenditures, with outpatient care consuming another 33% [91]. Although
spending growth rates have slowed in recent years, spending is still increasing. It is
anticipated that the cost pressures of GDP spending on healthcare will continue to grow
as the world’s population ages. Spending increases are counterbalanced by a global life
expectancy increase of about six years in the last 20 years, which has been attributed to
advances in healthcare (GBD “The Global Burden of Disease Study”, [92,93]).

Efforts to reduce healthcare costs have focused on cutting hospital beds, cutting
salaries of healthcare workers, reducing reimbursement to healthcare providers, cutting
the healthcare workforce, and increasing patient responsibility for covering their personal
healthcare costs through co-payments [94,95]. However, trying to shape supply and de-
mand for healthcare services using these approaches has its limits, and their unintended
consequences can be counterproductive. The recent Medicare hospital payment penalties
for 30-day hospital readmission rates (see [96]), for example, were implemented to incen-
tivize improved hospital discharge planning and better patient handoffs from inpatient to
outpatient care. What has happened instead is that many hospitals are readmitting patients
for observation stays [97]. This reduces the hospital’s readmission rate since observation
status is not technically a hospital admission. However, observation stays can result in
higher out-of-pocket costs for patients, especially if they require nursing home care after
hospitalization. This is because Medicare does not cover nursing home care unless a patient
has been admitted to the hospital for at least 3 days.

Healthcare organizations face many challenges as they adjust to reimbursement
changes that are evolving from fee-for-service to value-related payments. Current and
future reimbursement policies will continue to encourage healthcare organizations to focus
on managing the care across the entire supply chain to reduce the need for escalation of
care to the inpatient setting. These challenges highlight the need for OM models that help
improve the efficiency and effectiveness of care for populations of patients across the entire
supply chain of care, focusing simultaneously on throughput and outcomes and provider
and patient perspectives. OM efforts to improve chronic care management highlighted
earlier provide examples of ongoing work needed in designing and evaluating new care
models [98–109].

Regardless of how care models evolve, however, there will always be a need for
inpatient care. This monograph highlighted recent OM work that models the dynamic
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inter-related impact of demand–supply matching across the ED, OR, and inpatient units.
Healthcare managers and clinicians tend to make staffing and scheduling decisions across
these areas independently of each other; as demand unfolds in real-time, clinicians and
managers reactively firefight as best they can to reallocate staffing to where it is most
needed at a given point in time to alleviate bottlenecks in patient flow. As OM researchers,
we need to develop models that enable healthcare managers to simultaneously improve ED
demand forecasting, OR scheduling policies, and medium- and short-term staffing plans
that take into account the inter-relationship of how demand unfolds over time across the
ED, OR, and inpatient units [100–109].

Where OM work has fallen short of its full potential is in implementing and testing
models for real-time decision support tools. In the medical field, major research funding
agencies have created a focus on translational research to more quickly bring new medical
knowledge from the bench to the bedside. Some funds are targeted to specifically support
such translational research. We recommend a similar focus on the OM fields. Newly
developed OM models have the potential to aid healthcare managers in better matching
demand and supply. The increasing use of electronic medical records, staffing systems,
and scheduling systems contain relevant data to feed these models to support real-time
decision-making. To date, we have not systematically focused on the challenges of bringing
OM models from bench to bedside and then testing the impact of the models on improving
the efficiency and effectiveness of care delivery. To be more relevant, we need to understand
and appreciate how to embed OM models for decision support into the computer systems
used by clinicians and managers and work collaboratively with them to achieve the full
potential that OM has to offer.

Finally, we suggest four key nursing unit operational choices that influence supply–
demand matching. These include decisions about unit size and scope, performance metrics,
shift assignments and time-off requests, or what we refer to as HR policies (human resources
policies), as well as decisions about patient movement. We will demonstrate that all four
decisions have an effect on nurses’ productivity and hospital costs, even though the unit
size and scope choices are the most obvious as being pertinent to OM topics. Because (1) an
estimated 80% of direct care costs in hospitals are payroll-related [31] and (2) nursing care
has a dominant influence on care, we can justify our focus on nursing costs while ignoring
other care providers.
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Nomenclatures

A list of abbreviations used in this research is as follows:

A&E Accident and Emergency
ABM Total Surgery Minutes
ADT Admission, discharge, and transfer system
ANA American Nurses Association
BES Block Efficiency Score
CCDF Complementary Cumulative Distribution Function
CCU Critical Care Unit
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CDF Cumulative Distribution Function
CMS Centres for Medicare and Medicaid Services
CQI Clinical Quality Indicators
EDs Emergency Department
EMTALA Emergency Medical Treatment & Labor Act
ESI Emergency Severity Index
FTE Full-time equivalent
GBD The Global Burden of Disease Study
ICU Incentive Care Unit
LOS Length of Stay
NDNQI National Database of Nursing Quality Indicators
NHPPD Nursing Hours per Patient Day
OM Operations Management
ORs Operating Room
OT Overtime
QED Quality-in-Emergency-care-Dashboard
SDS Supply Demand Score
TDABC Time-driven activity-based costing
TBM Total in _ Block Minutes
TSM Total Surgery Minutes
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