
Citation: García-Díaz, J.;

Rodríguez-Henríquez, L.M.X.;

Pérez-Sansalvador, J.C.;

Pomares-Hernández, S.E. Graph

Burning: Mathematical Formulations

and Optimal Solutions. Mathematics

2022, 10, 2777. https://doi.org/

10.3390/math10152777

Academic Editor: Mikhail Goubko

Received: 4 February 2022

Accepted: 1 August 2022

Published: 5 August 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

mathematics

Article

Graph Burning: Mathematical Formulations and
Optimal Solutions
Jesús García-Díaz 1,2,* , Lil María Xibai Rodríguez-Henríquez 1,2 , Julio César Pérez-Sansalvador 1,2

and Saúl Eduardo Pomares-Hernández 2,3

1 Consejo Nacional de Ciencia y Tecnología, Mexico City 03940, Mexico
2 Instituto Nacional de Astrofísica, Óptica y Electrónica, Coordinación de Ciencias Computacionales,

Puebla 72840, Mexico
3 Laboratoire d’Analyse et d’Architecture des Aystèmes du Centre National de la Recherche Scientifique

(LAAS-CNRS), Université de Toulouse, INSA, F-31400 Toulouse, France
* Correspondence: jesus.garcia@conacyt.mx

Abstract: The graph burning problem is an NP-hard combinatorial optimization problem that
helps quantify how vulnerable a graph is to contagion. This paper introduces three mathematical
formulations of the problem: an integer linear program (ILP) and two constraint satisfaction problems
(CSP1 and CSP2). Thanks to off-the-shelf optimization software, these formulations can be solved
optimally over arbitrary graphs; this is relevant because the only algorithms designed to date for
this problem are approximation algorithms and heuristics, which do not guarantee to find optimal
solutions. We empirically compared the proposed formulations using random graphs and off-the-
shelf optimization software. The results show that CSP1 and CSP2 tend to reach optimal solutions
in less time than the ILP. Therefore, we executed them over some benchmark graphs of order at
most 5908. The previously best-known solutions for some of these graphs were improved. We draw
some empirical observations from the experimental results. For instance, we find the tendency:
the larger the graph’s optimal solution, the more difficult it is to find it. Finally, the resulting set
of optimal solutions might be helpful as a benchmark dataset for the performance evaluation of
non-exact algorithms.

Keywords: graph burning; integer programming; constraint satisfaction; social contagion

MSC: 90C27

1. Introduction

The graph burning problem (GBP) is an NP-hard combinatorial optimization problem
introduced in 2014 in the context of social contagion [1]. This problem, concerned with the
sequential spread of information over a graph, considers that information can be spread
from different places and times [1,2]. In this paper, by graph we refer to an undirected
simple graph [3]. Computer network message propagation is an example of a real-world
problem that the GBP may model; in this scenario, an initial spreading entity can send
a message one host at a time, while these hosts can propagate the message only to their
neighbors [4,5]. The GBP may model other real-world problems: social contagion in social
networks and the spread of viral infections under a very idealistic context [1,6].

The GBP receives a graph G = (V, E) as input, and its goal is to find a minimum
length sequence of vertices (s1, s2, ..., sk) that burns all graph’s vertices by following the
burning process. This process consists of repeating the following steps from i = 1 to k,
where all vertices are unburned at the beginning, and once a vertex is burned, it remains in
that state.

a The neighbors of the burned vertices get burned.

Mathematics 2022, 10, 2777. https://doi.org/10.3390/math10152777 https://www.mdpi.com/journal/mathematics

https://doi.org/10.3390/math10152777
https://doi.org/10.3390/math10152777
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com
https://orcid.org/0000-0001-6334-2305
https://orcid.org/0000-0002-1515-1261
https://orcid.org/0000-0002-2656-3659
https://orcid.org/0000-0002-0560-1687
https://doi.org/10.3390/math10152777
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com/article/10.3390/math10152777?type=check_update&version=1

Mathematics 2022, 10, 2777 2 of 20

b Vertex si gets burned.

Any sequence that burns all the vertices of the input graph by following the burning
process is known as a burning sequence. Thus, the GBP seeks a burning sequence of
minimum length; this length is known as the burning number and is denoted by b(G) [1,2].
Figure 1 shows the execution of the burning process over a nine vertices path with optimal
burning sequence (v3, v7, v9). Certainly, this example is very simple. Thus, for further
clarification, Figure 2 shows the optimal burning sequence of more interesting graphs.
These optimal solutions were computed using the proposed mathematical formulations,
which are introduced in Section 3. In all these graphs, the bigger vertices are elements si
of the burning sequence, and the color assigned to each vertex is the color of the vertex si
with the smaller index that burns it.

Figure 1. An optimal burning sequence for a nine vertices path is (v3, v7, v9). The burning process of
this sequence is depicted by each i ∈ {1, 2, 3} with its corresponding steps a and b. Notice that vertex
v3 burns all vertices in N2[v3], vertex v7 burns all vertices in N1[v7], and vertex v9 burns all vertices
in N0[v9].

Due to its NP-hard nature, the GBP has been approached chiefly through approxima-
tion algorithms and heuristics. Some of these proposals are based on centrality measures
and binary search over the possible values of the burning number b(G). According to
experimental results, these heuristics and approximation algorithms have an acceptable
performance [4–8]. However, they do not guarantee to find optimal solutions. Therefore,
there is a need for a mechanism for finding optimal solutions for arbitrary graphs. One of
these mechanisms is mathematical formulations, which can be solved using off-the-shelf
optimization software. For this reason, this paper introduces three novel mathematical
formulations for the GBP: an integer linear program (ILP) and two constraint satisfaction
problems (CSP1 and CSP2). Given the NP-hard nature of the problem, solving these for-
mulations can take exponential time. Therefore, there must be a limit to their practicality.
Through experimentation, we estimated such a limit.

The remaining part of the paper is organized as follows. Section 2 presents the
background of the problem and the main definitions used in this document. Section 3
introduces the proposed mathematical formulations. Section 4 presents an empirical
performance comparison among these formulations using random graphs and off-the-shelf

Mathematics 2022, 10, 2777 3 of 20

optimization software. Section 5 reports optimal solutions found by the implemented
CSP1 and CSP2 over some synthetic and real-world graphs using off-the-shelf optimization
software. Finally, Section 6 presents the concluding remarks.

s13

s12

s11

s10

s9

s8

s7

s6

s5

s4

s3

s2

s1

optim
al burning sequence

(a)

s10

s9

s8

s7

s6

s5

s4

s3

s2

s1

optim
al burning sequence

(b)

s6

s5

s4

s3

s2

s1

optim
al burning sequence

(c)

s3

s2

s1 optim
al burning sequence

(d)

s12

s11

s10

s9

s8

s7

s6

s5

s4

s3

s2

s1

optim
al burning sequence

(e)

s5

s4

s3

s2

s1

optim
al burning sequence

(f)

Figure 2. Optimal burning sequence (s1, s2, ..., sb(G)) of (a) a two-dimensional lattice, (b) a three-
dimensional lattice, (c) the ca-netscience graph, (d) the karate-club graph, (e) the DD199 graph, and
(f) the web-polblogs graph.

2. Background

Let us begin by listing some basic definitions used throughout the paper. Observe
that a graph is often called an undirected simple graph to distinguish it from directed
graphs and multigraphs; however, in this paper, we only use the word graph to refer to
this mathematical object.

Definition 1. Subsets with k elements are known as k-element subsets [3].

Definition 2. A graph G = (V, E) is an ordered pair consisting of a set of vertices V and a set of
edges E, where E contains 2-element subsets of V. The vertices and edges of any given graph J are
also represented by V(J) and E(J), respectively [3].

Mathematics 2022, 10, 2777 4 of 20

Definition 3. Given a graph G = (V, E), the distance d(u, v) between vertices u, v ∈ V is defined
as the number of edges in their shortest path.

Definition 4. Given a graph G = (V, E), the open neighborhood N(v) of a vertex v ∈ V is the
set of vertices at distance one from v. Notice that v 6∈ N(v).

Definition 5. Given a graph G = (V, E), the closed neighborhood N[v] of a vertex v ∈ V is the
set of vertices at distance at most one from v. In other words, N[v] = N(v) ∪ {v}.

Definition 6. Given a graph G = (V, E), the closed kth neighborhood Nk[v] of a vertex v ∈ V is
the set of vertices at distance at most k from v. Notice that N0[v] = {v} and N1[v] = N[v].

Definition 7. A finite sequence with no repeated elements is a bijective function

f : S→ {x ∈ Z+ | x ≤ |S|}, (1)

where S is the set of objects in the sequence and |S| is its length. Notice that f (v) is v’s position in
the sequence and that each object in S is assigned to exactly one position.

The decision version of the GBP is NP-complete. This problem receives as input a
graph G = (V, E) and a positive integer k; it asks if a burning sequence of length at most
k exists. The problem remains NP-complete when restricted to trees of maximum degree
three, chordal graphs, bipartite graphs, planar graphs, spider graphs, and disconnected
graphs [2]. The optimization version of the problem also remains NP-hard for trees and
graphs with disjoint paths [7]. Regarding arbitrary graphs, two approximation algorithms
are reported in the literature; they have an approximation factor of 3 and 3 − 2/b(G),
respectively [7,8]. There is a 2-approximation algorithm for trees, a 1.5-approximation
algorithm for graphs with disjoint paths, and a 2-approximation algorithm for square
grids [6,7]. For minimization problems, a ρ-approximation algorithm returns solutions of
size at most ρ ·OPT, where OPT is the size of the optimal solution and ρ ≥ 1. In the case
of maximization problems, a ρ-approximation algorithm returns solutions of size at least
(1/ρ) ·OPT [9]. Besides approximation algorithms, some heuristics have been proposed
too [4,5]; these are mainly based on centrality measures and binary search over the set of
possible values of b(G).

The GBP has been approached mostly from a theoretical point of view. As a result,
many of its properties over specific graph families have been identified. Among these
families are paths [2,7], trees [2,7], grids [6], intervals [6], fences [10], theta [11], spiders [12],
path-forests [2,7,12], caterpillars [13], products [14], and generalized Petersen graphs [15].
Some of the main properties of the GBP are the following. All paths and cycles G of order n
have b(G) = dn1/2e, all graphs G with a Hamiltonian path have b(G) ≤ dn1/2e [1,2], all
spiders and caterpillars G have b(G) ≤ dn1/2e [12,13], all complete graphs G of order at
least two have b(G) = 2, and all perfect binary trees G of depth r have b(G) = r + 1. Based
on these properties, a conjecture on the upper bound of the burning number of connected
graphs was formulated by Bonato et al. [1]:

Conjecture 1. Every connected graph G of order n has burning number b(G) ≤ dn1/2 e.

This conjecture, known as the burning number conjecture (BNC), is one of the most
important open questions in the area. To date, the best-known bound for the burning
number of arbitrary connected graphs is b(G) ≤ d(4 · n/3)1/2e+ 1 [16]. From the BNC,
Conjecture 2 for disconnected graphs follows.

Conjecture 2. The burning number b(G) of a disconnected graph G = (V, E) with p connected
components {H1, H2, ..., Hp} is at most ∑

p
i=1d|V(Hi)|1/2 e.

Mathematics 2022, 10, 2777 5 of 20

In case Conjecture 1 is true, Conjecture 2 can be proved by observing the following
facts. The concatenation of the optimal burning sequences of each Hi component is a
burning sequence for the whole graph G. This is because concatenation does not reduce
the burning capacity of any vertex. So, b(G) is upper bounded by the length of the
described concatenation.

b(G) ≤
p

∑
i=1

b(Hi) (2)

Assuming the BNC is true, b(Hi) ≤ d|V(Hi)|1/2 e, where |V(Hi)| is the number of
vertices in the connected component Hi. Therefore,

b(G) ≤
p

∑
i=1
d|V(Hi)|1/2 e (3)

Anyway, from the best-known bound on the burning number over arbitrary connected
graphs, we can prove the following lemma.

Lemma 1. The burning number b(G) of a disconnected graph G = (V, E) with p connected
components {H1, H2, ..., Hp} is at most p + ∑

p
i=1d(4 · |V(Hi)|/3)1/2e.

Proof. If we concatenate the optimal burning sequences of each Hi component, the result-
ing sequence is a burning sequence for the whole graph G. Since the concatenation does
not reduce the burning capacity of any vertex, b(G) is upper bounded by the length of
this concatenation.

b(G) ≤
p

∑
i=1

b(Hi) (4)

Then, since b(Hi) ≤ d(4 · |V(Hi)|/3)1/2e+ 1 [16],

b(G) ≤ p +
p

∑
i=1
d(4 · |V(Hi)|/3)1/2e (5)

Thanks to the best-known bounds on the burning number, the size of the explored
search space may be reduced. Consistent with this observation, the proposed formulations
tend to be solved faster when tighter lower and upper bounds on the burning number
are available. Of course, feasible solutions returned by heuristics and approximation
algorithms might help find better lower and upper bounds. We used such an approach in
Section 5 to solve the problem optimally over some benchmark graphs.

The GBP resembles other NP-hard problems, such as the vertex k-center problem
(VKCP) and the firefighter problem (FP). The VKCP consists of finding the best location
for a set of k ∈ Z+ centers, where such locations are the ones that minimize the maximum
distance a customer has to travel to its nearest center [17–19]. Although the VKCP and
the GBP are different, their approximation algorithms are conceptually similar [7,8,19].
This similarity comes from the fact that the VKCP has a polynomial-time reduction to
the minimum dominating set problem, which can be viewed as the problem of burning
all vertices in parallel in one single step [19–22]. Regarding the FP, it aims at protecting
vertices from burning given an initial set of fire sources [23–25]. Although GBP and FP have
different goals, the latter’s integer linear program (ILP) inspired us to define an ILP for
the GBP.

To end this section, notice that the GBP can be stated in different ways. For instance,
it can be formulated in terms of the burning process. However, it can be formulated as a
covering problem too [1,2,6,13]:

Mathematics 2022, 10, 2777 6 of 20

Definition 8. Given a simple graph G = (V, E), the GBP consists of finding a minimum cardinal-
ity set S ⊆ V, and a bijective function f : S→ {1, 2, ..., |S|} such that Equation (6) holds, where
b(G) = |S|, and Nb(G)− f (v)[v] is the closed (b(G)− f (v))th neighborhood of v.⋃

v∈S
Nb(G)− f (v)[v] = V (6)

By Definition 8, the GBP is a covering problem that seeks an optimal burning sequence
with no repeated elements. Namely, it consists of finding a minimum length sequence
(s1, s2, ..., sb(G)) that cover all graph’s vertices:

N0[sb(G)] ∪ N1[sb(G)−1] ∪ · · · ∪ Nb(G)−2[s2] ∪ Nb(G)−1[s1] = V (7)

3. Proposed Mathematical Formulations

This section introduces three novel mathematical formulations for the GBP: an ILP
and two CSPs (CSP1 and CSP2). The ILP is based on the burning process and is inspired by
the ILP for the FP [24]. Both CSP1 and CSP2 receive a guess B on b(G) as input. In case
B ≥ b(G), CSP1 returns a solution of length at most B, while CSP2 returns a solution of
exactly length B. The difference between CSP1 and CSP2 is not arbitrary; it comes from
their nature. Specifically, while CSP1 comes naturally from the ILP, CSP2 is based on
Definition 8.

3.1. An Integer Linear Program

Expressions (8)–(20) define an ILP for the GBP. This formulation is based on the burn-
ing process and is mostly inspired by the ILP for the FP. This ILP has O(n · U) binary
variables and O(|E| ·U) linear constraints, where G = (V, E) is an input graph of order
n and U ∈ Z+ is an upper bound on b(G). In case an upper bound is not available, U
can be set to n. However, assuming the BNC is true (Conjecture 1), it is convenient to set
U = dn1/2e if the graph is connected; otherwise, U can be set to ∑

p
i=1d|V(Hi)|1/2 e (Conjec-

ture 2), where {H1, H2, ..., Hp} is the set of connected components of the graph. Of course,
it might be safer to use the best-known bounds. This way, U can be set to d(4 · n/3)1/2e+ 1,
if the graph is connected [16]; otherwise, U can be set to p + ∑

p
i=1d(4 · |V(Hi)|/3)1/2e

(Lemma 1). For clarity, let us assume that the input graph’s vertices are labeled as
{v1, v2, ..., vn}.

min U −
U

∑
j=1

b′j (8)

s.t. si,j−1 ≤ si,j ∀vi ∈ V, ∀j ∈ [1, U] (9)

si,j ≤ bi,j ∀vi ∈ V, ∀j ∈ [1, U] (10)

bk,j−1 ≤ bi,j ∀vi ∈ V, ∀vk ∈ N(vi), ∀j ∈ [1, U] (11)

bi,j ≤ si,j + ∑
vk∈N(vi)

bk,j−1 ∀vi ∈ V, ∀j ∈ [1, U] (12)

∑
vi∈V

(
si,j − si,j−1

)
= 1 ∀j ∈ [1, U] (13)

b′j ≤ bi,j ∀vi ∈ V, ∀j ∈ [1, U] (14)

b′j ≥ ∑
vi∈V

bi,j − (n− 1) ∀j ∈ [1, U] (15)

Mathematics 2022, 10, 2777 7 of 20

where n = |V| (16)

U ∈ [b(G), n] (17)

si,j , bi,j , b′j ∈ {0, 1} ∀vi ∈ V, ∀j ∈ [1, U] (18)

bi,0 = 0 ∀vi ∈ V (19)

si,0 = 0 ∀vi ∈ V (20)

Next, each formulation’s element is explained.

• The main variables are bi,j, si,j ∈ {0, 1}; they model the burning process as follows.

– bi,j = 1 if and only if vertex vi is burned at round j of the burning process.
– si,j = 1 if and only if vertex vi is in the sequence at round j of the burning process.

• Constraint (9) indicates that once a vertex is added to the sequence, it stays there.
• Constraint (10) indicates that a vertex added to the sequence at round j is considered

a burned vertex.
• Constraint (11) indicates that all vertices in the neighborhood of some previously

burned vertex must get burned.
• Constraint (12) prevents a vertex from getting burned if it does not have a neighbor

previously burned or currently added to the sequence.
• Constraint (13) indicates that one new vertex must be added to the sequence at

every round.
• By Constraints (14) and (15), the binary variable b′j has a value of 1 if and only if all

vertices are burned at round j. Namely, if 1 is interpreted as True and 0 as False, then
these constraints are equivalent to the following logical constraint.

b′j =
∧

vi∈V
bi,j ∀j ∈ [1, U] (21)

• Variables b′j are helpful for computing the value of the Objective function (8), which
minimizes the number of rounds needed to burn all vertices. Notice that minimizing
the Objective function (8) is equivalent to maximizing ∑U

j=1 b′j. Furthermore, the length

of the optimal burning sequence is U−∑U
j=1 b′j + 1. Namely, one unit is added because

the last sequence’s vertex is not reflected in the objective function.
• If a lower bound L on b(G) is known, one can add the following restriction.

L ≤ U −
U

∑
j=1

b′j + 1 (22)

• Finally, Equations (19) and (20) indicate that all vertices are unburned at the beginning
and that the burning sequence begins as an empty sequence.

Together, Expressions (8)–(20) define an ILP for the GBP. Thus, solving this ILP means
solving the GBP for an arbitrary graph.

3.2. Two Constraint Satisfaction Problems

This section introduces two mathematical formulations for the problem: CSP1 and
CSP2. Both have a parameter B as input, a guess on b(G). Both formulations do not
need an objective function to optimize due to this parameter. Thus, if B ≥ b(G), the
solution to both formulations is a feasible solution of length at most B for the GBP. In case
B < b(G), the problems are unfeasible. Naturally, the obtained solution is feasible and
optimal if B = b(G). CSP1 comes from a slight modification of the ILP, and CSP2 is based
on Definition 8. CSP1 has O(n · B) binary variables and O(|E| · B) linear constraints. CSP2
has O(n2) binary variables, O(n) integer variables, and O(n2) linear constraints.

Mathematics 2022, 10, 2777 8 of 20

3.2.1. Constraint Satisfaction Problem 1

Expressions (23)–(34) define the CSP1. This formulation comes naturally from the
proposed ILP. Variables bi,j and si,j have the same meaning as before, and b′j variables were
removed. The set of constraints is almost the same, too; only Constraints (14) and (15) were
replaced by Constraint (29). This constraint guarantees that all vertices are burned at the
end of the burning process. If B ≥ b(G), a burning sequence of length at most B is codified
into variables si,j. In case B = b(G), the solution must be optimal. If B < b(G), the model
is unfeasible.

f ind si,j ∀vi ∈ V, ∀j ∈ [1, B] (23)

s.t. si,j−1 ≤ si,j ∀vi ∈ V, ∀j ∈ [1, B] (24)

si,j ≤ bi,j ∀vi ∈ V, ∀j ∈ [1, B] (25)

bk,j−1 ≤ bi,j ∀vi ∈ V, ∀vk ∈ N(vi), ∀j ∈ [1, B] (26)

bi,j ≤ si,j + ∑
vk∈N(vi)

bk,j−1 ∀vi ∈ V, ∀j ∈ [1, B] (27)

∑
vi∈V

(
si,j − si,j−1

)
= 1 ∀j ∈ [1, B] (28)

∑
vi∈V

bi,B = n (29)

where n = |V| (30)

B ∈ [b(G), n] (31)

si,j , bi,j ∈ {0, 1} ∀vi ∈ V, ∀j ∈ [1, B] (32)

bi,0 = 0 ∀vi ∈ V (33)

si,0 = 0 ∀vi ∈ V (34)

In general, b(G) cannot be known in advance. Therefore, the possible values it can
take have to be explored. In order to make this search less time-consuming, a binary search
can be performed. Section 3.2.3 shows how to incorporate CSP1 into a binary search.

3.2.2. Constraint Satisfaction Problem 2

Expressions (35)–(52) define the CSP2, where B is a guess on b(G). If B ≥ b(G), the
solution to this problem is a feasible solution of length B for the GBP. In case B < b(G),
the problem is unfeasible. If B = b(G), the obtained solution is feasible and optimal. The
CSP2 has O(n2) binary variables, O(n) integer variables, and O(n2) linear constraints. This
formulation is based on Definition 8, which states the GBP as a covering problem. Further-
more, CSP2 requires knowing the distance di,j between every pair of vertices vi, vj ∈ V.
These distances can be computed in polynomial-time by applying an appropriate algorithm
over the input graph G = (V, E), such as a Breadth-First Search-based algorithm [26].
If the input graph is disconnected, the undefined distance between vertices in different
connected components must be replaced by n + 1, which is greater than the maximum
distance between connected vertices.

f ind pi ∀vi ∈ V (35)

s.t. ∑
vi∈V

xi = B (36)

xi ≤ pi ∀vi ∈ V (37)

pi ≤ xi · B ∀vi ∈ V (38)

∑
vi∈V

zi,j = 1 ∀j ∈ [1, B] (39)

Mathematics 2022, 10, 2777 9 of 20

B+1

∑
j=1

zi,j = 1 ∀vi ∈ V (40)

pi =
B

∑
j=1

j · zi,j ∀vi ∈ V (41)

yi,j ≤ xi ∀vi, vj ∈ V (42)

xi · di,j ≤ xi · B− pi + (1− yi,j) ·M ∀vi, vj ∈ V (43)

xi · di,j ≥ xi · (B + ε)− pi − yi,j ·M ∀vi, vj ∈ V (44)

∑
vi∈V

yi,j ≥ 1 ∀vj ∈ V (45)

where n = |V| (46)

B ∈ [b(G), n] (47)

xi , zi,j ∈ {0, 1} ∀vi ∈ V, ∀j ∈ [1, B + 1] (48)

pi ∈ {0, 1, ..., B} ∀vi ∈ V (49)

di,j ∈ [0, n + 1] ∀vi, vj ∈ V (50)

yi,j ∈ {0, 1} ∀vi, vj ∈ V (51)

M ≥ n + 1 + ε (52)

Like CSP1, CSP2 needs to know the burning number b(G) in advance; this seems to
be a disadvantage. However, this issue can be lessened by performing a binary search
over the set of possible burning number values (See Section 3.2.3). Nevertheless, let us first
describe the CSP2, assuming that the burning number b(G) is known in advance. Namely,
B = b(G). In general terms, CSP2 seeks to assign values to variables pi that codifies a
bijective function f : S→ {1, 2, ..., B} such that Equation (53) holds, where |S| = B.⋃

v∈S
NB− f (v)[v] = V (53)

The variables xi ∈ {0, 1} take a value xi = 1 if and only if vertex vi ∈ S. The
variables pi ∈ {0, 1, ..., B} indicate the position of each vertex in the burning sequence.
More specifically, pi = f (vi) for all vertices vi ∈ V such that xi = 1. If a vertex vi ∈ V is
not in the burning sequence, then pi = 0. In order to avoid inconsistencies in the output,
variables zi,j and yi,j are added to the formulation. Next, we proceed to explain each
formulation’s element in detail.

• First, let us define variables xi and pi, where vi ∈ V:
Variables xi indicate which vertices are part of the burning sequence, and variables pi
indicate the position of a vertex in the burning sequence.

– If vertex vi ∈ V is part of the burning sequence, then xi = 1; otherwise, xi = 0.
– If vertex vi ∈ V is part of the burning sequence, then pi is equal to the position of

vertex vi into the burning sequence, i.e., pi = f (vi); otherwise, pi = 0.
– Constraint (36) indicates that the number of vertices in the burning sequence

must be equal to B.
– To avoid inconsistencies, Constraints (37) and (38) indicate that pi = 0 if and only

if xi = 0. Namely, vertices not in the sequence do not have an assigned position.

• Secondly, we define variables zi,j. These variables are used to guarantee that each
element of the burning sequence has a unique position. That is to say that f : S →
{1, 2, ..., B} is bijective.

– There are n · (B + 1) variables zi,j. If a vertex vi is at position pi in the burning
sequence, then zi,pi = 1 and zi,j = 0 for all j 6= pi. If vertex vi is not in the burning
sequence, then zi,B+1 = 1 and zi,j = 0 for all j ∈ {1, 2, ..., B}.

– Constraint (39) indicates that each burning sequence position must be associated
with exactly one vertex.

Mathematics 2022, 10, 2777 10 of 20

– Constraint (40) indicates that each vertex must be associated to exactly one po-
sition or to no position at all, where index j = B + 1 is used to indicate which
vertices are not in the burning sequence.

– Constraints (40) and (41) guarantee that variables pi and zi,j are consistent.
Namely, if vi is assigned to some position j ∈ {1, 2, ..., B}, then ∑B

j=1 zi,j = 1,
and pi is equal to the index j such that zi,j = 1.

– Together, Constraints (39)–(41) indicate that each vertex vi in the burning se-
quence must have a unique position. In other words, they guarantee that the
assignment function f : S→ {1, 2, ..., B} is bijective.

• Finally, we define variables yi,j.
These binary variables are used to guarantee that every vertex is burned. In other
words, they guarantee that Equation (53) holds. If a vertex vj is burned by a vertex vi
in the burning sequence, then yi,j = 1; otherwise, yi,j = 0.

– di,j is the distance between vi and vj.
– Constraint (42) indicates that a vertex vj can only be burned by vertices in the

burning sequence. Namely, vj can be burned only by vertices vi such that xi = 1.
– Constraints (43) and (44) require two constants M and ε. Regarding ε,

Constraint (44) is equivalent to:

xi · di,j > xi · B− pi − yi,j ·M (54)

However, since optimization solvers do not accept strict inequalities, ε had to
be incorporated. The value assigned to ε must be any positive number strictly
smaller than one and will depend on the arithmetic precision of the computer
being used. In our experimental setup, we set ε = 0.001. Regarding M, its
minimum value that respects Constraints (43) and (44) under all the possible
values of variables xi, yi,j, and pi is M = n + 1 + ε, which is greater than the
distance between any two connected vertices in the graph.

– Constraint (43) indicates that di,j has to be at most B− pi when yi,j = 1 and xi = 1.
Namely, vi is responsible for burning vj only if they are at an appropriate distance,
which depends on the position of vi in the burning sequence.

– Constraint (44) indicates that di,j has to be greater than B− pi when yi,j = 0 and
xi = 1. Namely, vi is not responsible for burning vj when the distance between
them is not appropriate.

– Notice that Constraints (43) and (44) are automatically satisfied by all vertices not
in the burning sequence. That is, vertices vi such that xi = 0.

– Together, Constraints (42)–(44) indicate that if d(vi, vj) ≤ B− pi, then yi,j = 1,
where vi is a vertex in the burning sequence; otherwise, yi,j = 0. In other words,
yi,j = 1 if vertex vi is at an appropriate distance for burning vj.

– As mentioned before, the undefined distance between vertices vi and vj in differ-
ent connected components must be replaced by n + 1. This way, constraint (43)
cannot be satisfied by xi = 1 and yi,j = 1. Namely, if vertex vi is in the optimal
burning sequence, then it cannot be responsible for burning a vertex vj at distance
n + 1 (because they are in different connected components). Moreover, notice that
xi = 1 and yi,j = 0 do satisfy Constraint (43) when the distance between vi and vj
is n + 1 because M ≥ n + 1 + ε. Take into account that b(G) ≤ B ≤ n.

– Constraint (45) indicates that all vertices have to be burned.

Expressions (35)–(52) define the CSP2. Thus, solving this problem with B = b(G)
means solving the GBP for an arbitrary graph G. This formulation can be implemented
and solved by off-the-shelf optimization software if the burning number b(G) is known.
However, knowing b(G) in advance for arbitrary graphs is not possible. One way to solve
this issue is by trying all n possible values of b(G) but at the expense of time. In order to
reduce the number of guesses from n to log n, a binary search can be performed.

Mathematics 2022, 10, 2777 11 of 20

3.2.3. Adding Binary Search

Algorithms 1 and 2 incorporate CSP1 and CSP2 into a binary search. The binary search
aims to explore at most log n possible values of b(G) until its exact value is reached. This
way, CSP1 and CSP2 are solved with such value, and the optimal solution to the problem is
returned. Lemmas 2 and 3 show the correctness of both procedures.

Algorithm 1 CSP1 + BS

Input: A graph G = (V, E), a lower bound L, and an upper bound U
Output: A burning sequence s

1: low = L
2: high = U
3: while low ≤ high do
4: B = b(high + low)/2c
5: s = Solution to the CSP1 over (G, B)
6: if s exists then
7: high = length(s)− 1
8: else
9: low = B + 1

10: end if
11: end while
12: return the last computed feasible solution s

Algorithm 2 CSP2 + BS

Input: A graph G = (V, E), a lower bound L, and an upper bound U
Output: A burning sequence s

1: D = All-pairs shortest paths of G
2: low = L
3: high = U
4: while low ≤ high do
5: B = b(high + low)/2c
6: s = Solution to the CSP2 over (G, D, B)
7: if s exists then
8: high = B− 1
9: else

10: low = B + 1
11: end if
12: end while
13: return the last computed feasible solution s

Lemma 2. If L ≤ b(G) ≤ U, Algorithm 1 (CSP1 + BS) returns the optimal burning
sequence of G.

Proof. CSP1 + BS performs a binary search over the ordered set of possible values of b(G),
which goes from L to U. At each iteration of the binary search, the CSP1 is solved (line 5); if
a burning sequence of length at most B is found (line 6), then a shorter burning sequence
may exist. Therefore, high is set to length(s)− 1 (line 7) because the sequence returned
by the CSP1 might have a length smaller than B. If a burning sequence of size B does not
exist (line 8), then a shorter burning sequence neither exists. Thus, low is set to B + 1 (line
9). This way, at the last iteration of the binary search, the value of B can be one of the
following: the largest that makes the problem unfeasible or the smallest that makes the
problem feasible. Since the returned solution is the last computed feasible one, it has to
be optimal.

Lemma 3. If L ≤ b(G) ≤ U, Algorithm 2 (CSP2 + BS) returns the optimal burning sequence of G.

Mathematics 2022, 10, 2777 12 of 20

Proof. The proof is very similar to the previous one. CSP2 + BS performs a binary search
over the ordered set of possible values of b(G), which goes from L to U. CSP2 + BS requires
the distance between every pair of vertices (line 1). These values can be obtained by
executing an appropriate polynomial-time algorithm, such as a Breadth-First Search-based
algorithm. At each iteration of the binary search, the CSP2 is solved (line 6); if a burning
sequence of length B is found (line 7), then a shorter burning sequence may exist. Therefore,
high is set to B− 1 (line 8). If a burning sequence of size B does not exist (line 9), then a
shorter burning sequence neither exists. Thus, low is set to B + 1 (line 10). This way, at the
last iteration of the binary search, the value of B can be one of the following: the largest
that makes the problem unfeasible or the smallest that makes the problem feasible. Since
the returned solution is the last computed feasible one, it has to be optimal.

4. Experimental Results

This section presents two sets of experiments. The first one aims to test the correct
implementation of the proposed formulations (Section 4.1); the second one empirically
compares them using random graphs (Section 4.2). We implemented the proposed math-
ematical formulations using Gurobi version 9.5.1 [27]. This off-the-shelf optimization
software executes optimization techniques such as simplex, branch-and-bound, branch-
and-cut, cutting planes, parallelism, and heuristics to find optimal solutions to mathemat-
ical formulations with linear and quadratic constraints. In all the experiments, we used
default Gurobi’s parameters, including Presolve = 2, Heuristics = 0.05, and MIPGap = 0.
Presolve = 2 generates an equivalent and smaller formulation mapped into the original
one; this usually improves the running time. Heuristics = 0.05 indicates that 5% of the
running time is spent by heuristic search. MIPGap = 0 guarantees that the formulation
is solved to optimality. All experiments were executed on an Asus F15 laptop with a
2.50 GHz Intel i5-10300H processor, 32 GB of RAM, and a Windows 11 operating system.

Section 4.1 shows the results obtained by applying the implemented formulations over
a set of graphs with a known burning number. This way, we provide inductive evidence of
their correct implementation. Section 4.2 presents an empirical performance comparison
among the formulations using random graphs.

4.1. Empirical Validation

In order to check the correct implementation of the proposed mathematical formu-
lations, we executed them over a set of graphs with a known burning number. These
graphs are paths, and a family of tight examples for the BFF algorithm, a recently published
approximation algorithm for the GBP [8]. Since setting tight lower and upper bounds
might help improve the running time, we set L = b(G)− 2 and U = b(G) + 2 for all tests.
Tables 1 and 2 show two running times for each formulation: to and tp. The time it takes
Gurobi to reach the optimal solution is denoted by to. The time it takes Gurobi to find the
optimal solution and guarantee it is optimal is denoted by tp. In other words, tp is the time
to proven optimality. We set a maximum running time of 2000 s; a reported value of >2000
means that an optimal solution could not be found within that time.

Tables 1 and 2 show that the ILP and CSP1 + BS could not be solved in less than
2000 s for most graphs. Regarding CSP2 + BS, it could solve all the problems within
2000 s. However, this is not evidence of any practical superiority of CSP2 + BS against the
other formulations. Recall that the primary goal of this subsection is to provide inductive
evidence of the correct implementation of the mathematical formulations. All experiments
that finished in less than 2000 s arrived to the known optimal solution. For a detailed
comparison of these formulations, we introduce the following section.

Mathematics 2022, 10, 2777 13 of 20

Table 1. Running time of the implemented mathematical formulations over a set of paths.

Paths Bounds ILP CSP1 + BS CSP2 + BS

|V | |E| ρ b(G) L U to tp to tp to tp

16 15 0.125 4 2 6 0.059 0.068 0.015 0.016 0.016 0.060
25 24 0.080 5 3 7 0.231 0.239 0.016 0.078 0.023 0.173
36 35 0.056 6 4 8 1.086 3.9 0.184 0.637 0.078 0.410
49 48 0.041 7 5 9 86.4 242.2 1.5 5.2 0.148 0.769
64 63 0.031 8 6 10 23.9 >2000 2.3 105.9 0.250 1.3
81 80 0.025 9 7 11 >2000 >2000 21.0 202.4 0.429 2.2
100 99 0.020 10 8 12 >2000 >2000 >2000 >2000 1.0 3.8
121 120 0.017 11 9 13 >2000 >2000 >2000 >2000 2.2 6.4
144 143 0.014 12 10 14 >2000 >2000 >2000 >2000 1.8 8.1
169 168 0.012 13 11 15 >2000 >2000 >2000 >2000 3.0 12.3
196 195 0.010 14 12 16 >2000 >2000 >2000 >2000 5.6 19.1
225 224 0.009 15 13 17 >2000 >2000 >2000 >2000 16.8 36.9
256 255 0.008 16 14 18 >2000 >2000 >2000 >2000 142.9 170.7
289 288 0.007 17 15 19 >2000 >2000 >2000 >2000 63.8 100.7
324 323 0.006 18 16 20 >2000 >2000 >2000 >2000 126.1 177.7
361 360 0.006 19 17 21 >2000 >2000 >2000 >2000 347.4 417.7

Table 2. Running time of the implemented mathematical formulations over a set of connected tight
examples for the BFF algorithm.

BFF’s Connected Tight Examples Bounds ILP CSP1 + BS CSP2 + BS

|V | |E| ρ b(G) L U to tp to tp to tp

6 5 0.333 2 1 4 0.009 0.012 0.001 0.004 0.002 0.014
19 18 0.105 3 1 5 0.016 0.016 0.001 0.011 0.012 0.080
40 39 0.050 4 2 6 0.110 0.110 0.001 0.042 0.056 0.354
69 68 0.029 5 3 7 0.662 0.662 0.110 0.188 0.221 1.2
106 105 0.189 6 4 8 6.0 6.0 0.701 0.874 0.629 3.1
151 150 0.013 7 5 9 31.0 31.0 4.9 5.4 1.3 6.8
204 203 0.010 8 6 10 449.8 449.8 4.5 6.7 2.9 13.5
265 264 0.008 9 7 11 >2000 >2000 1400 1400 5.8 24.9
334 333 0.006 10 8 12 >2000 >2000 1900 1900 11.5 44.5
411 410 0.005 11 9 13 >2000 >2000 >2000 >2000 21.1 75.3
496 495 0.004 12 10 14 >2000 >2000 >2000 >2000 40.1 139.1
589 588 0.003 13 11 15 >2000 >2000 >2000 >2000 68.2 232.4
690 689 0.003 14 12 16 >2000 >2000 >2000 >2000 102.1 336.2
799 798 0.003 15 13 17 >2000 >2000 >2000 >2000 172.8 528.8
916 915 0.002 16 14 18 >2000 >2000 >2000 >2000 256.3 799.7

1041 1040 0.002 17 15 19 >2000 >2000 >2000 >2000 349.1 1100

4.2. Empirical Performance Comparison

The results reported in this subsection are related to the following intuitive observa-
tions. The sparser (denser) a graph is, the larger (smaller) its burning number tends to be.
On the one hand, the densest possible graph of order n is the complete graph Kn, which has
b(Kn) = 2 (notice that any pair of vertices is enough to burn the whole graph.) On the other
hand, the sparsest possible graph of order n is the complement Kn of the complete graph
Kn, which has b(Kn) = n (each vertex can be burned only by itself.) From these observa-
tions, we notice the tendency: the sparser (denser) a graph is, its set of optimal solutions
tends to be smaller (larger). Therefore, denser connected graphs tend to be easier to solve
than sparser connected graphs. The experiments reported in this subsection confirm this
tendency. Specifically, we created four sets of connected graphs following the Erdős-Rényi
model (also known as random graphs) with parameter p ∈ {0.02, 0.023, 0.03, 0.04} [28]. We
selected these values through trial and error. In more detail, we tried several values p, and
we observed that values {0.02, 0.023, 0.03, 0.04} tend to generate graphs with burning num-

Mathematics 2022, 10, 2777 14 of 20

ber {8, 7, 6, 5}, respectively, (this applies to graphs of order 100.) We excluded disconnected
graphs because the Erdős-Rényi model tends to generate graphs with too many connected
components when p ≤ 0.02. The optimal burning sequence of such graphs is usually easy
to find by just picking one vertex from each component.

For each value {0.02, 0.023, 0.03, 0.04}, we created ten connected random graphs
of order one hundred. Then, we executed the implemented formulations over them.
Figures 3–6 show the obtained results. In these figures, each blue, orange, and green dot
represents the running time of the implemented ILP, CSP1 + BS, and CSP2 + BS over one
random graph. In the case of the ILP and CSP1 + BS, some dots do not appear because
they correspond to values larger than the maximum reported on the vertical axis. The
continuous line interpolates the mean of each set of ten dots. The shaded region is the
standard deviation around the mean. Regarding the ILP, we do not report its running time
over graphs G with b(G) equal to eight and seven because it showed an excessive running
time of thousands and hundreds of seconds, respectively. In all these figures, Subfigures (a)
and (b) report the time to optimality (to) and the time to proven optimality (tp), respectively.

From Figures 3 and 4, we can observe that the CSP2 + BS has a better performance
over graphs with a relatively large burning number (seven or more). Figures 5 and 6 show
that the CSP1 + BS is better suited for graphs with a relatively small burning number (six
or less). These results are consistent with those reported in Tables 1 and 2. Of course, there
can be exceptions to these empirical observations.

8 9 10 11 12 13
U

0

20

40

60

80

100

se
co

nd
s

CSP1+BS
CSP2+BS

(a)

8 9 10 11 12 13
U

0

20

40

60

80

100

se
co

nd
s

CSP1+BS
CSP2+BS

(b)

Figure 3. (a) Time to the optimal solution and (b) to proven optimality reported by Gurobi for the
CSP1 + BS and CSP2 + BS over 10 random graphs of order 100, p = 0.02, and b(G) = 8. The bounds
are L = 1 and U ∈ [b(G), d(4 · 100/3)1/2e+ 1].

7 8 9 10 11 12 13
U

0

1

2

3

4

5

6

7

8

se
co

nd
s

CSP1+BS
CSP2+BS

(a)

7 8 9 10 11 12 13
U

0

1

2

3

4

5

6

7

8

se
co

nd
s

CSP1+BS
CSP2+BS

(b)

Figure 4. (a) Time to the optimal solution and (b) to proven optimality reported by Gurobi for the
CSP1 + BS and CSP2 + BS over 10 random graphs of order 100, p = 0.023, and b(G) = 7. The bounds
are L = 1 and U ∈ [b(G), d(4 · 100/3)1/2e+ 1].

Mathematics 2022, 10, 2777 15 of 20

6 7 8 9 10 11 12 13
U

0

2

4

6

8

10

12

14

16

se
co

nd
s

ILP
CSP1+BS
CSP2+BS

(a)

6 7 8 9 10 11 12 13
U

0

2

4

6

8

10

12

14

16

se
co

nd
s

ILP
CSP1+BS
CSP2+BS

(b)

Figure 5. (a) Time to the optimal solution and (b) to proven optimality reported by Gurobi for the
ILP, CSP1 + BS, and CSP2 + BS over 10 random graphs of order 100, p = 0.03, and b(G) = 6. The
bounds are L = 1 and U ∈ [b(G), d(4 · 100/3)1/2e+ 1].

5 6 7 8 9 10 11 12 13
U

0

1

2

3

4

5

6

7

se
co

nd
s

ILP
CSP1+BS
CSP2+BS

(a)

5 6 7 8 9 10 11 12 13
U

0

1

2

3

4

5

6

7
se

co
nd

s
ILP
CSP1+BS
CSP2+BS

(b)

Figure 6. (a) Time to the optimal solution and (b) to proven optimality reported by Gurobi for the
ILP, CSP1 + BS, and CSP2 + BS over 10 random graphs of order 100, p = 0.04, and b(G) = 5. The
bounds are L = 1 and U ∈ [b(G), d(4 · 100/3)1/2e+ 1].

5. Computing Optimal Solutions

The previous section shows that the CSP2 + BS seems better suited for solving graphs
with a relatively large burning number. Nevertheless, CSP1 + BS seems better for solving
graphs with a relatively small burning number. In this section, we executed CSP1 + BS and
CSP2 + BS over synthetic and real-world benchmark graphs (See Table 3); most of these were
taken from the network repository [29] and the Stanford large network dataset collection
(SNAP) [30]. Since this experimentation aims to find optimal burning sequences, we set
the lower and upper bounds to the tightest known. To find the upper bound, we executed
three state-of-the-art heuristics: improved cutting corners heuristic (ICCH), backbone-
based greedy heuristic (BBGH), and component-based recursive heuristic (CBRH) [5]; their
authors kindly provided the implementation of these. We also executed the BFF and BFF+
approximation algorithms, where BFF+ returns the best possible solution BFF can find.
To set the lower bound, we exploited that all solutions generated by the BFF algorithm
have a length of at most 3 · b(G)− 2 [8]. Therefore, we computed the lower bound with
L = d(worst + 2)/3e, where worst is the worst solution BFF can return. Since b(G) is
unknown, the time reported is the time to proven optimality (tp).

By the previous set of experiments, it seems likely that CSP1 + BS would be very
inefficient over graphs with a burning number of seven or more. Therefore, we executed
CSP1 + BS over graphs with an upper bound on the burning number of six or less. Fur-
thermore, since CSP1 + BS has fewer memory requirements than CSP2 + BS, we could
execute the former over graphs of order up to 5908. Regarding CSP2 + BS, we executed it
over graphs with an upper bound on the burning number of at least seven and order at

Mathematics 2022, 10, 2777 16 of 20

most 1458 because Gurobi’s branch-and-bound algorithm exhausted all available memory
when executed over bigger graphs. This way, the results reported in Table 3 confirm the
optimality of most previously known solutions. Furthermore, the optimal solution of some
graphs is reported for the first time (ca-netscience, web-polblogs, DD68, DD199, DD497,
lattice2D, and tech-routers-rf). The TVshow graph could not be solved within ∼48 h using
CSP1 + BS; this goes along with the observation that CSP1 + BS does not seem adequate
for solving graphs with a relatively large burning number. From Table 3, we also observe
that synthetic graphs with a well-defined structure seem more challenging to solve. For
instance, lattice3D required 150,000 s (∼42 h) to be solved using CSP2 + BS. In order to find
optimal solutions for challenging graphs, we executed CSP1 + BS and CSP2 + BS over some
grid graphs (See Table 4). As before, we executed CSP1 + BS and CSP2 + BS over graphs
with a known upper bound of at most six and at least seven, respectively. From Table 4, we
can observe that the implemented formulations found twelve optimal solutions that the
state-of-the-art heuristics could not find.

Table 3. Optimal solutions found by CSP1 + BS and CSP2 + BS over some benchmark graphs. The
feasible solutions found by some state-of-the-art algorithms are reported too. Optimal solutions
reported for the first time are underlined.

Graphs Bounds tp BFF Heuristics

Name |V | |E| ρ b(G) L U CSP1 +
BS

CSP2 +
BS Worst Best ICCH BBGH CBRH

karate-club 34 78 0.139 3 3 3 0.015 - 5 3 3 3 4
chesapeake 39 170 0.229 3 2 3 0.023 - 4 3 3 3 3

dolphins 62 159 0.084 4 3 4 0.103 - 7 4 4 5 5
rt-retweet 96 117 0.026 5 4 5 0.125 - 9 5 5 5 5
polbooks 105 441 0.081 4 3 4 0.157 - 6 4 4 4 5
adjnoun 112 425 0.068 4 3 4 0.160 - 6 4 4 4 4

ia-infect-hyper 113 2196 0.347 3 2 3 0.350 - 4 3 3 3 3
C125-9 125 6963 0.898 3 2 3 0.924 - 3 3 3 3 3

ia-enron-only 143 623 0.061 4 3 4 0.350 - 7 5 5 4 4
c-fat200-1 200 1534 0.077 7 3 7 - 13.9 7 7 7 7 7
c-fat200-2 200 3235 0.163 5 3 5 21.7 - 5 5 5 5 5
c-fat200-5 200 8473 0.426 3 2 3 1.1 - 3 3 3 3 3
sphere3 258 1026 0.031 7 4 7 - 27.4 9 8 7 7 7
DD244 291 822 0.019 7 5 7 - 23.5 12 9 7 7 7

ca-netscience 379 914 0.013 6 5 7 - 46.1 11 8 7 7 7
infect-dublin 410 2765 0.033 5 4 5 28.2 - 8 5 5 5 5

c-fat500-1 500 4459 0.036 9 5 9 - 112.5 11 10 10 9 9
c-fat500-2 500 9139 0.073 7 4 7 - 120.3 8 7 7 7 7
c-fat500-5 500 23,191 0.186 5 3 5 297.3 - 5 5 5 5 5

bio-diseasome 516 1188 0.009 7 5 7 - 122.5 13 7 7 7 8
web-polblogs 643 2280 0.011 5 4 6 6.7 - 10 6 6 6 6

rt-twitter-copen 761 1029 0.004 7 5 7 - 805.7 13 7 7 7 7
DD68 775 2093 0.007 9 6 10 - 491.8 16 11 10 10 10

ia-crime-moreno 829 1475 0.004 7 4 7 - 1800 10 7 7 7 7
DD199 841 1902 0.005 12 8 14 - 672.5 21 16 14 14 14

soc-wiki-Vote 889 2914 0.007 6 5 6 21.6 - 11 6 6 6 6
DD497 903 2453 0.006 10 7 12 - 836.7 18 14 11 11 12

socfb-Reed98 962 18,812 0.041 4 3 4 6.7 - 7 4 4 4 4
lattice3D 1000 2700 0.005 10 6 10 - 150,000 14 11 10 10 11

bal_bin_tree_9 1023 1022 0.002 10 7 10 - 381.9 18 10 11 10 10
delaunay_n10 1024 3056 0.006 9 5 9 - 1100 13 10 10 9 10

Mathematics 2022, 10, 2777 17 of 20

Table 3. Cont.

Graphs Bounds tp BFF Heuristics

Name |V | |E| ρ b(G) L U CSP1 +
BS

CSP2 +
BS Worst Best ICCH BBGH CBRH

stufe 1036 1868 0.003 12 7 12 - 1300 18 14 13 12 13
lattice2D 1089 2112 0.004 13 8 14 - 2800 20 16 15 14 14

bal_ter_tree_6 1093 1092 0.002 7 5 7 - 260.1 13 7 9 7 7
email-univ 1133 5451 0.009 5 4 5 208.7 - 9 5 6 6 6

econ-mahindas 1258 7513 0.010 5 4 5 128.1 - 8 5 5 5 5
ia-fb-messages 1266 6451 0.008 5 4 5 55.2 - 9 5 5 5 5

bio-yeast 1458 1948 0.002 9 7 9 - 12, 000 17 9 9 9 9
tech-routers-rf 2113 6632 0.003 6 5 7 252.1 - 12 7 7 7 7

chameleon 2277 31,421 0.012 6 5 6 8.2 - 11 6 6 6 6
TVshow 3892 17,262 0.002 ? 7 10 - - 18 10 10 10 10

ego-facebook 4039 88,234 0.011 4 3 4 1800 - 7 5 4 4 4
squirrel 5201 198,493 0.015 6 4 6 170,000 - 10 6 6 6 6

politician 5908 41,729 0.002 7 5 7 21,000 - 13 7 7 7 7

Table 4. Optimal solutions found by CSP1 + BS and CSP2 + BS over some square grid graphs. The
feasible solutions found by some state-of-the-art algorithms are reported too. Optimal solutions
reported for the first time are underlined.

n× n Grids Bounds tp BFF Heuristics

n |V | |E| ρ b(G) L U CSP1 + BS CSP2 + BS Worst Best ICCH BBGH CBRH

3 9 12 0.333 3 2 3 0.001 - 4 3 3 3 3
4 16 24 0.200 4 2 4 0.031 - 4 4 4 4 4
5 25 40 0.133 4 3 4 0.047 - 5 4 4 4 5
6 36 60 0.095 5 3 5 0.235 - 6 5 5 5 5
7 49 84 0.071 5 3 5 0.539 - 7 5 5 5 6
8 64 112 0.056 6 3 6 9.1 - 7 6 6 6 6
9 81 144 0.044 6 4 6 11.3 - 8 6 6 6 6
10 100 180 0.036 6 4 7 - 2.5 9 7 7 7 7
11 121 220 0.030 7 4 7 - 5.2 10 7 7 7 7
12 144 264 0.026 7 4 7 - 7.2 10 8 8 7 8
13 169 312 0.022 7 5 8 - 7.5 11 8 8 8 8
14 196 364 0.019 8 5 8 - 14.5 11 9 9 8 8
15 225 420 0.017 8 5 9 - 15.4 12 9 9 9 9
16 256 480 0.015 8 5 9 - 17.2 12 10 9 9 9
17 289 544 0.013 9 5 9 - 35.7 12 10 10 9 10
18 324 612 0.012 9 5 9 - 46.2 13 11 10 9 10
19 361 684 0.011 9 5 10 - 65.5 13 11 10 10 10
20 400 760 0.010 10 6 10 - 108.0 14 11 11 10 11
21 441 840 0.009 10 6 10 - 119.1 14 12 11 10 11
22 484 924 0.008 10 6 11 - 200.1 15 12 11 11 11
23 529 1012 0.007 11 6 11 - 234.3 15 12 12 11 11
24 576 1104 0.007 11 6 11 - 332.9 16 13 12 11 12
25 625 1200 0.006 11 6 12 - 432.8 16 13 12 12 12
26 676 1300 0.006 11 7 12 - 807.4 17 13 13 12 12
27 729 1404 0.005 12 7 12 - 819.4 17 14 13 12 12
28 784 1512 0.005 12 7 12 - 746.3 18 14 13 12 12
29 841 1624 0.005 12 7 13 - 1800 18 14 13 13 13
30 900 1740 0.004 12 7 13 - 7500 19 15 14 13 13
31 961 1860 0.004 13 7 13 - 1600 19 15 14 13 13
32 1024 1984 0.004 13 8 13 - 1500 20 15 14 13 13
33 1089 2112 0.004 13 8 14 - 3000 20 16 15 14 14
34 1156 2244 0.003 13 8 14 - 6600 20 16 15 14 14
35 1225 2380 0.003 14 8 14 - 6800 21 16 15 14 15

Mathematics 2022, 10, 2777 18 of 20

6. Discussion

This paper introduces three novel mathematical formulations for the GBP: an ILP and
two CSPs (CSP1 and CSP2). Since CSP1 and CSP2 require the burning number in advance,
they are integrated into a binary search procedure (CSP1 + BS and CSP2 + BS); this way, the
issue of not knowing the burning number in advance is lessened. All these formulations
can be solved over arbitrary graphs thanks to off-the-shelf optimization software.

Section 4 shows a series of experiments that validate the correct implementation of the
proposed formulations. This same section presents an empirical performance comparison
among them using random graphs. From these experiments, we observe that CSP2 + BS
tends to be better suited for graphs with a relatively large burning number (we empirically
estimated this value as seven or more.) From these same experiments, we observe that
CSP1 + BS seems to be a better choice for solving graphs with a relatively small burning
number (we empirically estimated this value as six or less.) Of course, these observations
cannot be generalized. Thus, rigorous statistical analysis should be performed in the future.

In Section 5, we used CSP1 + BS and CSP2 + BS to compute the optimal solution for
some benchmark connected graphs of order at most 5908 (it is worth mentioning that, in all
experiments, the BNC holds.) From these, we found seven previously unknown optimal
solutions. We could not apply CSP2 + BS over graphs of order greater than 1458 because
the memory requirements grew beyond our hardware’s capacity. Regarding CSP1 + BS, it
solved graphs with a relatively small burning number and order at most 5908. The obtained
set of optimal solutions can be helpful as a benchmark dataset for comparing non-exact
algorithms for the GBP, i.e., approximation algorithms, heuristics, and metaheuristics.

Finally, as part of the reviewing process, a reviewer pointed to the possibility of
reducing the number of variables and constraints from CSP2 by removing variables xi and
yi,j. However, we believe such variables cannot be removed because they let us guarantee
that the solution has length B and that all vertices are burned. Nevertheless, we agree that
mathematical formulations with fewer variables and constraints might exist. Thus, we will
seek alternative mathematical formulations of the problem for future work.

Author Contributions: Conceptualization, J.G.-D., L.M.X.R.-H., J.C.P.-S. and S.E.P.-H.; methodology,
J.G.-D., L.M.X.R.-H., J.C.P.-S. and S.E.P.-H.; software, J.G.-D.; validation, J.G.-D., L.M.X.R.-H., J.C.P.-S.
and S.E.P.-H.; formal analysis, J.G.-D., L.M.X.R.-H., J.C.P.-S. and S.E.P.-H.; investigation, J.G.-D.,
L.M.X.R.-H., J.C.P.-S. and S.E.P.-H.; data curation, J.G.-D.; writing—original draft preparation, J.G.-D.;
writing—review and editing, J.G.-D., L.M.X.R.-H., J.C.P.-S., and S.E.P.-H. All authors have read and
agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data presented in this paper are openly available in https://github.
com/jesgadiaz/GBP (acccessed on 31 July 2022).

Acknowledgments: We thankfully acknowledge Gurobi for providing a free-of-charge academic
license for Gurobi version 9.5.1. We are grateful to anonymous reviewers whose questions, comments,
and suggestions helped improve an earlier version of this paper. We also acknowledge Consejo
Nacional de Ciencia y Tecnología (CONACYT) and Instituto Nacional de Astrofísica, Óptica y
Electrónica (INAOE) for providing the necessary resources for the development of this research. The
authors thankfully acknowledge the computer resources, technical expertise and support provided
by the Laboratorio Nacional de Supercómputo del Sureste de México, CONACYT member of the
network of national laboratories.

Conflicts of Interest: The authors declare no conflict of interest.

https://github.com/jesgadiaz/GBP
https://github.com/jesgadiaz/GBP

Mathematics 2022, 10, 2777 19 of 20

Abbreviations
The following abbreviations are used in this manuscript:

BBGH Backbone based greedy heuristic
BFF Burning farthest-first
BNC Burning number conjecture
BS Binary search
CBRH Component based recursive heuristic
CSP Constraint satisfaction problem
FP Firefighter problem
GBP Graph burning problem
ICCH Improved cutting corners heuristic
ILP Integer linear program
VKCP Vertex k-center problem

References
1. Bonato, A.; Janssen, J.; Roshanbin, E. Burning a graph as a model of social contagion. In International Workshop on Algorithms and

Models for the Web-Graph; Springer: Berlin/Heidelberg, Germany, 2014; pp. 13–22.
2. Bessy, S.; Bonato, A.; Janssen, J.; Rautenbach, D.; Roshanbin, E. Burning a graph is hard. Discret. Appl. Math. 2017, 232, 73–87.

[CrossRef]
3. Diestel, R. Graph Theory; Springer Graduate Texts in Mathematics; Springer: Berlin/Heidelberg, Germany, 2017.
4. Šimon, M.; Huraj, L.; Luptáková, I.D.; Pospíchal, J. Heuristics for spreading alarm throughout a network. Appl. Sci. 2019, 9, 3269.

[CrossRef]
5. Gautam, R.H.; Kare, A.S.; Surampudi, D.B. Faster heuristics for graph burning. Appl. Intell. 2021, 52, 1351–1361. [CrossRef]

[PubMed]
6. Gupta, A.T.; Lokhande, S.A.; Mondal, K. Burning grids and intervals. In Proceedings of the Algorithms and Discrete Applied

Mathematics, Rupnagar, India, 11–13 February 2021; pp. 66–79.
7. Bonato, A.; Kamali, S. Approximation algorithms for graph burning. In Proceedings of the International Conference on Theory

and Applications of Models of Computation, Kitakyushu, Japan, 13–16 April 2019; pp. 74–92.
8. García-Díaz, J.; Pérez-Sansalvador, J.C.; Rodríguez-Henríquez, L.M.X.; Cornejo-Acosta, J.A. Burning Graphs Through Farthest-

First Traversal. IEEE Access 2022, 10, 30395–30404. [CrossRef]
9. Vazirani, V.V. Approximation Algorithms; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2013.
10. Bonato, A.; English, S.; Kay, B.; Moghbel, D. Improved bounds for burning fence graphs. Graphs Comb. 2021, 37, 2761–2773.

[CrossRef]
11. Liu, H.; Zhang, R.; Hu, X. Burning number of theta graphs. Appl. Math. Comput. 2019 361, 246–257. [CrossRef]
12. Bonato, A.; Lidbetter, T. Bounds on the burning numbers of spiders and path-forests. Theor. Comput. Sci. 2019, 794, 12–19.

[CrossRef]
13. Liu, H.; Hu, X.; Hu, X. Burning number of caterpillars. Discret. Appl. Math. 2020, 284, 332–340.
14. Mitsche, D.; Prałat, P.; Roshanbin, E. Burning number of graph products. Theor. Comput. Sci. 2018, 746, 124–135. [CrossRef]
15. Sim, K.A.; Tan, T.S.; Wong, K.B. On the burning number of generalized petersen graphs. Bull. Malaysian Math. Sci. 2018,

41, 1657–1670. [CrossRef]
16. Bastide, P.; Bonamy, M.; Bonato, A.; Charbit, P.; Kamali, S.; Pierron, T.; Rabie, M. Improved Pyrotechnics: Closer to the Burning

Number Conjecture. Preprint. 2022. Available online: https://arxiv.org/abs/2110.10530 (accessed on 31 July 2022).
17. Gonzalez, T.F. Clustering to minimize the maximum intercluster distance. Theor. Comput. Sci. 1985, 38, 293–306. [CrossRef]
18. Hochbaum, D.S.; Shmoys, D.B. A best possible heuristic for the k-center problem. Math. Oper. Res. 1985, 10, 180–184. [CrossRef]
19. Garcia-Diaz, J.; Menchaca-Mendez, R.; Menchaca-Mendez, R.; Hernández, S.P.; Pérez-Sansalvador, J.C.; Lakouari, N. Approxi-

mation Algorithms for the Vertex K-Center Problem: Survey and Experimental Evaluation. IEEE Access 2019, 7, 109228–109245.
[CrossRef]

20. Cornejo Acosta, J.A.; García Díaz, J.; Menchaca-Méndez, R.; Menchaca-Méndez, R. Solving the Capacitated Vertex K-Center
Problem through the Minimum Capacitated Dominating Set Problem. Mathematics 2020, 8, 1551. [CrossRef]

21. Grandoni, F. A note on the complexity of minimum dominating set. J. Discret. Algorithms 2006, 4, 209–214. [CrossRef]
22. Hernández-Gómez, J.C.; Reyna-Hérnandez, G.; Romero-Valencia, J.; Rosario Cayetano, O. Transitivity on Minimum Dominating

Sets of Paths and Cycles. Symmetry 2020, 12, 2053. [CrossRef]
23. Hartnell, B. Firefighter! An application of domination. Presentation. In Proceedings of the 25th Manitoba Conference on

Combinatorial Mathematics and Computing, Winnipeg, MB, Canada, 29 September–1 October 1995.
24. Develin, M.; Hartke, S.G. Fire containment in grids of dimension three and higher. Discrete Appl. Math. 2007, 155, 2257–2268.

[CrossRef]

http://doi.org/10.1016/j.dam.2017.07.016
http://dx.doi.org/10.3390/app9163269
http://dx.doi.org/10.1007/s10489-021-02411-5
http://www.ncbi.nlm.nih.gov/pubmed/34764602
http://dx.doi.org/10.1109/ACCESS.2022.3159695
http://dx.doi.org/10.1007/s00373-021-02390-x
http://dx.doi.org/10.1016/j.amc.2019.05.031
http://dx.doi.org/10.1016/j.tcs.2018.05.035
http://dx.doi.org/10.1016/j.tcs.2018.06.036
http://dx.doi.org/10.1007/s40840-017-0585-6
https://arxiv.org/abs/2110.10530
http://dx.doi.org/10.1016/0304-3975(85)90224-5
http://dx.doi.org/10.1287/moor.10.2.180
http://dx.doi.org/10.1109/ACCESS.2019.2933875
http://dx.doi.org/10.3390/math8091551
http://dx.doi.org/10.1016/j.jda.2005.03.002
http://dx.doi.org/10.3390/sym12122053
http://dx.doi.org/10.1016/j.dam.2007.06.002

Mathematics 2022, 10, 2777 20 of 20

25. García-Martínez, C.; Blum, C.; Rodriguez, F.J.; Lozano, M. The firefighter problem: Empirical results on random graphs. Comput.
Oper. Res. 2015, 60, 55–66. [CrossRef]

26. Kozen, D.C. Depth-First and Breadth-First Search. In The Design and Analysis of Algorithms; Texts and Monographs in Computer
Science; Springer: New York, NY, USA, 1992. [CrossRef]

27. Gurobi Optimization. Gurobi Optimizer Reference Manual. 2022. Available online: http://www.gurobi.com/documentation/9.
5/refman (accessed on 31 July 2022).

28. Erdős, P.; Rényi, A. On the evolution of random graphs. Publ. Math. Inst. Hung. Acad. Sci. 1960, 5, 17–60.
29. Rossi, R.A.; Ahmed, N.K. The Network Data Repository with Interactive Graph Analytics and Visualization. AAAI. 2015.

Available online: http://networkrepository.com (accessed on 31 July 2022).
30. Leskovec, J.; Krevl, A. Snap Datasets: Stanford Large Network Dataset Collection. 2014. Available online: http://snap.stanford.

edu/data (accessed on 31 July 2022).

http://dx.doi.org/10.1016/j.cor.2015.02.004
http://dx.doi.org/10.1007/978-1-4612-4400-4_4
http://www.gurobi.com/documentation/9.5/refman
http://www.gurobi.com/documentation/9.5/refman
http://networkrepository.com
http://snap.stanford.edu/data
http://snap.stanford.edu/data

	Introduction
	Background
	Proposed Mathematical Formulations
	An Integer Linear Program
	Two Constraint Satisfaction Problems
	Constraint Satisfaction Problem 1
	Constraint Satisfaction Problem 2
	Adding Binary Search

	Experimental Results
	Empirical Validation
	Empirical Performance Comparison

	Computing Optimal Solutions
	Discussion
	References

