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Abstract: The paper studies the Lie symmetries of the nonlinear Fokker-Planck equation in one
dimension, which are associated to the weighted Kaniadakis entropy. In particular, the Lie symmetries
of the nonlinear diffusive equation, associated to the weighted Kaniadakis entropy, are found. The
MaxEnt problem associated to the weighted Kaniadakis entropy is given a complete solution, together
with the thermodynamic relations which extend the known ones from the non-weighted case. Several
different, but related, arguments point out a subtle dichotomous behavior of the Kaniadakis constant
k, distinguishing between the cases k ∈ (−1, 1) and k = ±1. By comparison, the Lie symmetries of
the NFPEs based on Tsallis q-entropies point out six “exceptional” cases, for: q = 1

2 , q = 3
2 , q = 4

3 ,
q = 7

3 , q = 2 and q = 3.
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1. Introduction

The nonlinear Fokker-Planck equation (NFPE) is an important parabolic partial differ-
ential equation (PDE), which is perhaps better known through some of its particular cases:
the heat equation and the nonlinear diffusion equation. Its roots and main applications
are in Statistical Mechanics, but many other domains benefit from its versatility to model
various phenomena, where a probability density function (PDF) of the velocity of a particle
evolves in time under the action of both deterministic and random fields of force. More
general details may be found in the monographs [1–4] and especially, in [5]. A list of recent
research papers concerning various applications of the NFPE includes, e.g., [6–16].

When exact general solutions of a PDE are not available, as is the case of the NFPE too,
one may look for indirect/qualitative information about them. A powerful method is the
search for symmetries. The Lie symmetries of the NFPE are prolongations of vector fields
on an open set of R3 and they span a Lie algebra, which provides geometric information
about the solutions of the NFPE and is invariant with respect to some specific group action.
The monograph of Olver [17] and the surveys [18,19], for example, offer a clear panorama
of the vast field of Lie symmetries in general. Early contributions to the study of the Lie
symmetries associated to the linear FPE and the NFPE, related to our paper, may be found
in [20–23].
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We point out, as a particular fundamental case, the NFPEs based on some entropy
functional, which model remarkable physical phenomenons in Statistical Mechanics. The
following papers are related to the NFPE associated to the Tsallis, Kaniadakis, Sharma–
Taneja–Mittal entropies [24–26] with references therein (see also the surveys [27,28]). In our
paper [29], we studied the Lie symmetries of an NFPE, based on a weighted Tsallis entropy,
as a generalization of the setting in [24]. This extension, from the non-weighted to the
weighted entropy, is motivated by the importance of integrating the quantitative, objective
and probabilistic concept of information with the qualitative, subjective and non-stochastic
concept of utility (see [30,31] and the more recent [27,32–38]).

Given a specific distribution of probability, an important optimization problem is to
maximize a given entropy functional, which is subject to some a priori constraints [39,40].
For many families of entropy functionals, this MaxEnt problem received (by a standard
method) a specific solution pME (e.g., [26,41–44]).

The interested reader may find, in our recent paper [29], a short historical review and
references about the emergence of the notions of NFPE, Lie symmetries, weighted entropy
and MaxEnt optimization problems.

1.1. The Content of the Paper

In Section 2, we fix the notations and the conventions concerning the NFPE and its Lie
symmetries, closely following [17,24,45].

In Section 3, we recall some examples of remarkable entropies (Tsallis, Kaniadakis) and
the procedure of weighting a given entropy functional. For a fixed PDF, a fixed potential
energy function and a fixed entropy functional, we remind the associated notions of the
energy average function, of the Lyapunov functional and of the current density.

The next three sections contain the main results of the paper. In Section 4, we calculate
the variation of the Lyapunov function based on a weighted Kaniadakis entropy. Starting
with its associated current density, we determine the corresponding NFPE. A formula
linking the drift function d, the diffusion function D and the so-called “drift” constant D
is established. We prove that the Lyapunov functional is non-increasing in time, and we
interpret the Bregman divergence as a “distance” function, which is measured through
Lyapunov values differences.

In Section 5, we use the Theorem 3 from our paper [29] in order to determine the Lie
symmetries of the NFPE associated to a weighted Kaniadakis entropy. We detail the case of
the classical (non-weighted) Kaniadakis entropy, and we point out a remarkable behavior
of the constant k: the cases k ∈ (−1, 1) and k = ±1 lead to completely different symmetry
patterns. We consider also an important particular case (the nonlinear diffusive equation)
and we recover, apart from its Lie symmetries enunciated in [45], a genuine new family
of symmetries, which fit into the classification from [25]. For all these old and new Lie
symmetries, we characterize the spanned Lie (sub)algebras.

In Section 6, we solve the MaxEnt problem associated to the weighted Kaniadakis
entropy, and we compare it to the non-weighted case. In this context, some new “weighted”
generalizations of the thermodynamic relations are also proven. The dichotomous behavior
of the Kaniadakis constant k is again highlighted in connection with the solvability of the
MaxEnt problem.

Section 7 provides a detailed comparison of the Lie symmetries from Section 5, those
in our paper [29] concerning the NFPE based on the weighted Tsallis entropy and the
interesting classification of Sinkala, for the NFPE based on the Sharma–Taneja–Mittal
(STM) entropy [25]. We point out two cases: with or without momentum convergence
restrictions for the STM entropies. Unexpectedly, six “exceptional” values of the Tsallis
entropy constant q emerge: q = 1

2 , q = 3
2 , q = 4

3 , q = 7
3 , q = 2 and q = 3. We quote

several papers where these values (or close ones) arose, both theoretically and empirically,
in various applications of the Tsallis entropy. It seems that these values act as “singular”
points in the “space of Tsallis entropies” and are able to signal the stochastic phenomena
whose apparent “stability” is determined by a hidden (maximal) “symmetry”. As this



Mathematics 2022, 10, 2776 3 of 22

topic is beyond the mainstream idea of the paper, we included it in Appendix A with some
challenging speculations.

1.2. Conventions

In the sequel, the integrals are always supposed to be correctly defined and to commute
with the partial derivatives. All the functions are supposed differentiable (“smooth”), even
if, eventually, a weaker assumption would be sufficient (as continuity or integrability).

2. Nonlinear Fokker-Planck Equations in One Dimension

We recall some notions and notations from [5]; for a detailed version, see also [29].
Denote by U an open subset of R2 and let p = p(x, t) be a time-dependent probability

density function (PDF) defined on R2. Consider a drift d = d(x, t, p) and a (non-negative)
diffusion coefficient D = D(x, t, p) defined on U × R. By definition,

∫ ∞
−∞ p(x, t)dx = 1,

p(x, t) ≥ 0. The associated NFPE in one (spatial) dimension is defined by the formula

∂

∂t
p(x, t) = − ∂

∂x
[d(x, t, p)p(x, t)] +

∂2

∂x2 [D(x, t, p)p(x, t)] , (1)

written also as
∆p(x, t) = 0 , (2)

where
∆ =

∂

∂t
+ (d+ dp I − 2Dx − 2Dxp I)

∂

∂x
−

−(D+Dp I)
∂2

∂x2 − (2Dp +Dpp I)(
∂

∂x
)2 + (dx −Dxx)I

is the nonlinear Fokker-Planck operator and I is the identity operator, i.e., I(p) = p.
Denote J = J(x, t, p) as the current function, which is defined by

J(x, t, p) := d(x, t, p)p(x, t)− ∂

∂x
[D(x, t, p)p(x, t)] .

Then, (1) and (2) are equivalent with

∂

∂t
p +

∂

∂x
J = 0 , (3)

which is called the continuity equation.
In particular, for d = d(x, t) and D = D(x, t), we obtain the linear Fokker-Planck

equation (LFPE)
pt = (−d+ 2Dx)px +Dpxx + (Dxx − dx)p . (4)

We fix now an NFPE (2), and we consider a family of linear differential operators of
the form [17]

L = ξ(x, t, p)∂x + η(x, t, p)∂t + φ(x, t, p)∂p ,

with (differentiable) coefficients η, ξ and φ defined on U ×R. We call L a Lie symmetry
operator for ∆ (or for the NFPE (2)) if there exists a (differentiable) function R = R(x, t, p)
on U ×R, satisfying the condition

[L, ∆] = R(x, t, p)∆ . (5)

A Lie symmetry operator L for ∆ maps solutions of (2) into solutions of (2). The set of
all these operators forms a (possible infinite dimensional) Lie algebra, containing significant
information about the symmetries of the solutions of the NFPE.

For the LFPE, the corresponding Lie symmetries were determined in [20–22]. The
papers [24,45] present the Lie symmetries for a NFPE which arises from the Sharma–Taneja–
Mittal entropy. In [26], the symmetries of a diffusive Fokker-Planck equation, associated to
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the Kaniadakis entropy, were determined. In [29], we studied the Lie symmetries of NFPEs
associated to the weighted Tsallis entropy. In the Section 5 of the present paper, we shall
make a similar study with respect to the weighted Kaniadakis entropy.

3. Entropies, Lyapunov Operators, Currents and Divergences

Let ρ = ρ(x) be a fixed arbitrary PDF and let ϕ = ϕ(x) be a fixed differentiable
function. We associate the (normalized) entropy, which is defined as the number

H[ρ] = −
∫
R

ρ(x)ϕ(ρ(x))dx . (6)

The notation H[ρ] is redundant; however, we shall use it anytime we shall need
to emphasize the functional dependence on ρ. A similar notation will occur for other
functionals, too.

Consider a fixed positive differentiable “weighting” function w = w(x). The associ-
ated w-weighted entropy is

Hw[ρ] = −
∫
R

w(x)ρ(x)ϕ(ρ(x))dx . (7)

Usually, both ϕ and w are subject to several additional constraints, which we shall
avoid in the sequel for the sake of simplicity. Details about and a more general setting for
entropy may be found in our paper [27]. The other notions recalled in this section are well
known (see, for example [24,26]).

We point out here that formally, we can drop the assumption of “positivity” for the
weighting function w; in this case, we shall say that (7) defines a weakly weighted entropy.
This approach leaves the mainstream path of classical theories, but it is still the subject of
recent interesting inquiries (e.g., [46], Remark 4.4.8). Moreover, we may include under the
“weakly” attribute those weights that depend on ρ too, i.e., w = w(x, ρ(x)) (see [47] and the
references therein).

Example 1. (i) When ϕ(x) := log(x), Formula (6) defines the Boltzmann–Gibbs–Shannon (BGS)
entropy.

(ii) Let us fix q ∈ R\{1}. The function

ϕT
{q}(x) :=

x1−q − 1
1− q

(8)

defines a Tsallis entropy; for q→ 1, we obtain the BGS entropy. The function ϕT
{q} is denoted also

by logT
{q}, and it is called the Tsallis q-logarithm. Its inverse function is the Tsallis q-exponential,

which is given by

expT
{q}(x) := [1 + (1− q)x]

1
1−q
+ .

(iii) Let us fix k ∈ [−1, 1]\{0}. The function

ϕK
{k}(x) :=

xk − x−k

2k
(9)

defines a Kaniadakis entropy (also known as a k-deformed entropy); for k→ 0, we obtain the BGS
entropy. The function ϕK

{k} is denoted also by logK
{k}, and it is called the Kaniadakis k-logarithm. Its

inverse function is the Kaniadakis k-exponential, which is given by

expK
{k}(x) := [kx +

√
1 + k2x2]

1
k .



Mathematics 2022, 10, 2776 5 of 22

We must point out that sometimes, in the literature, one encounters the hypothesis k ∈ (−1, 1)
instead of k ∈ [−1, 1]. This small difference is quite subtle and, in our opinion, it is not explained
enough. We shall detail more in Remark 4 (iii) and the Remark 5 (i).

(iv) Let n be a fixed non-negative integer and consider the two-parameter region R(n) of the
pairs of real numbers (| k |, r), satisfying the following two conditions:

− | k |≤ r ≤| k | i f 0 ≤| k |< 1
2(n + 1)

,

| k | − 1
n + 1

≤ r ≤ − | k | + 1
n + 1

i f
1

2(n + 1)
≤| k |< 1

n + 1
.

Fix two parameters k and r such that (| k |, r) ∈ R(n). The function

ϕSTM
{(k,r)}(x) := xr · xk − x−k

2k

defines a Sharma–Taneja–Mittal entropy (also known as a (k, r)-deformed entropy); for (k, r) →
(0, 0), we obtain the BGS entropy. The function ϕSTM

{(k,r)} is denoted also by logSTM
{(k,r)} and it is also

called the Sharma–Taneja–Mittal (k, r)-logarithm. Obviously, in the case r = 0, one recovers the
Kaniadakis k- logarithm and in the case r = ± | k |, one recovers the Tsallis q-logarithm, where
q = 1∓ 2 | k |. The region R(n) is required by the convergence conditions imposed to some
integrals in order that some n-momentum be finite [24].

For the n-momentum “asymptotic” limit n→ ∞, an STM entropy “converges” to a Tsallis
entropy. In Theorem 5, we shall point out another remarkable property of the Tsallis entropy, which
characterizes it within the class of STM entropies.

Remark 1. (i) Let ρ1 and ρ2 be two fixed PDFs, and let f : R→ R be a fixed convex differentiable
function. The associated Bregman divergence is the number defined by

D f (ρ1 ‖ ρ2) :=
∫
R
{ f (ρ1(x))− f (ρ2(x))− (ρ1(x)− ρ2(x)) f ′(ρ2(x))}dx . (10)

The w-weighted Bregman divergence Dw
f (ρ1 ‖ ρ2) can be defined accordingly. In [29], we

showed how the divergence may be interpreted as a weakly weighted entropy (with an arbitrary
weight, not necessary a positive one).

(ii) Consider a PDF ρ, which is defined on (0, ∞). Its geometric mean is [48,49]

GM[ρ] := exp
( ∫ ∞

0
ln(x)ρ(x)dx

)
.

Let H[ρ] be an entropy similar to that given in (6). Then, we can write

GM[ρ] := exp
(
− Hw[ρ]

)
where w(x) := ln(x)(ϕ(ρ(x)))−1. We conclude that the geometric mean is equivalent with a
weakly weighted entropy, as in (i).

(iii) From the Example 1 (iii), we see that the STM entropy may be considered a weakly
weighted Kaniadakis entropy, with weighting function w(x) := (ρ(x))r, as in (i) and (ii). In
this case, the weighting function is non-negative; hence, it almost satisfies the “strong” definition
from (7).

We also can write, successively,

ϕSTM
{(k,r)}(x) = xr−k · x2k − 1

2k
= xr−k · ϕT

{1−2k}(x) .
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This formula allows us to interpret the STM entropy as a weakly weighted Tsallis entropy with
weighting function w(x) := (ρ(x))r−k. This weighting function is non-negative, too.

We conclude that: weakly weighting the STM entropies does not provide a significant general-
ization beyond the cases of weakly weighted Tsallis entropies and/or weakly weighted Kaniadakis
entropies; any Tsallis entropy may be interpreted as a weakly weighted Kaniadakis entropy; any
Kaniadakis entropy may be interpreted as a weakly weighted Tsallis entropy; any weakly weighted
Tsallis entropy may be interpreted as a weakly weighted Kaniadakis entropy, and conversely. All
these correspondences are elementary.

We must point out also that weighted Tsallis entropies and weighted Kaniadakis entropies are
more general that the classical STM-entropies.

Let p = p(x, t) be a time-dependent PDF, as in Section 2. We fix a function V = V(x),
modeling the potential energy of the system. Using Formula (6), we obtain a function
H[p] = H[p](t). The associated time-dependent energy average function is defined by

U[p](t) :=
∫
R

V(x)p(x, t)dx (11)

Fix a positive real constant D, which contain information about the diffusion of the
system. We define the Lyapunov functional LH , by

LH [p] := U[p]− D · H[p] (12)

When LH [p] is non-positive, we called it the Lyapunov function associated to the
entropy function H[p] and to the “diffusion” constant D. The current density J = J(x, t),
associated to LH [p], is the function defined by

J(x, t) := −p(x, t)
∂

∂x

( δLH [p]
δp

)
(x, t) (13)

We can easily adapt the preceding formulas for weighted entropies also.
We finished here the first three sections with the preliminary part of the paper. In the

next three sections, our object of study will be the NFPE associated to J via the continuity
Equation (3). The weighting procedure will be applied to the Kaniadakis entropies only.

4. Generalized Statistical Mechanics Based on Weighted Kaniadakis Entropy

In this section, we fix a time-dependent PDF p = p(x, t), a time-dependent weighting
function w = w(x, t), a potential energy function V = V(x), a (“diffusion”) positive constant
D and a non-null real number k ∈ [−1, 1]. We associate the w-weighted Kaniadakis entropy
function HwK

k [p], based on (9); the Lyapunov function LwK
k [p], via Formulas (11) and (12);

and the associated current density JwK
k , which is defined in (13). We investigate the NFPE,

the properties of the Lyapunov functional and of the Bregman divergence, by analogy with
the study completed in our paper [29], which we based on a w-weighted Tsallis entropy
function. Therefore, sometimes, we shall give fewer details here and prefer to insist on some
comparisons between the two theories.

4.1. The NFPE Based on Weighted Kaniadakis Entropy

Theorem 1. Under the previous hypothesis, the variation of the Lyapunov functional satisfies the
following relation

δLwK
k [p]
δp

(x, t) = V(x) +
D
2k
· w(x, t) · [(k + 1)(p(x, t))k + (k− 1)(p(x, t))−k]

Proof. We calculate the variation of the Lyapunov functional LwK
k [p], with respect to

p, following the general procedure from [24,45] (see also [29] for the case of the Tsallis
entropy):
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δLwK
k [p]
δp

(x, t) =
δ

δp

( ∫
R

V(x)p(x, t)dx+

+D ·
∫
R

w(x, t) · p(x, t)
(p(x, t))k − p(x, t))−k

2k
dx
)

=

= V(x) + D · w(x, t) ·
(
(p(x, t))k − p(x, t))−k

2k
+

(p(x, t))k + (p(x, t))−k

2

)
.

We skip the variables and write

δLwK
k [p]
δp

= V +
D
2k
· w · [(k + 1) · pk + (k− 1) · p−k] .

Remark 2. (i) Let h(x) := − ∂
∂x V(x) be a drift force. From Theorem 1, the following relation

follows
∂

∂x

(
δLwK

k [p]
δp

)
= −h +

D
2k
· ∂w

∂x
· [(k + 1)pk + (k− 1)p−k]+

+
D
2
· w · [(k + 1)pk−1 − (k− 1)p−k−1]

∂p
∂x

.

(ii) We derive the associated current density JwK
k = JwK

k (x, t), as

JwK
k = h · p− D

2k
· ∂w

∂x
· [(k + 1)pk+1 + (k− 1)p−k+1]− (14)

−D
2
· w · [(k + 1)pk − (k− 1)p−k]

∂p
∂x

.

Using the continuity Equation (3), we obtain the NFPE for the general w-weighted Kaniadakis
entropy HwK

k , which is written in a condensed form as

pt + A · px + B · (px)
2 + E · pxx + G = 0 , (15)

with the coefficient functions A = A(x, t, p), B = B(x, t, p), E = E(x, t, p), G = G(x, t, p) given
by the following four formulas:

A = h− D
2k
· wx ·

{
(2k + 1)(k + 1)pk − (2k− 1)(k− 1) · p−k

}
(16)

B = −D
2
·
{

k(k + 1)pk−1 + k(k− 1)p−k−1
}
· w

E = −D
2
·
{
(k + 1)pk − (k− 1)p−k

}
· w

G = hx · p−
D
2k
·
{
(k + 1) · pk+1 + (k− 1)p−k+1

}
· wxx

In the particular case of the (classical, i.e., “non-weighted”) Kaniadakis entropy and for
h(x) := −x, the condition w = 1 implies that the previous coefficient functions become

A = h , B = −D
2
·
{

k(k + 1)pk−1 + k(k− 1)p−k−1
}

, (17)

E = −D
2
·
{
(k + 1)pk − (k− 1)p−k

}
, G = −p
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From these coefficients, we derive an explicit form of the general NFPE based on the classical
Kaniadakis entropy, which, in some particular cases, provides the NFPEs from the Formulas (19), (24)
and (29) in [26].

An even more particular case is provided by the (BGS) entropy: we require h(x) := −x,
w := 1 and k := 0. We obtain the coefficient functions:

A(x) = −x , B = 0 , E = −D , G(p) = −p . (18)

This is equivalent to Formula (24) in [24], corresponding to the linear FPE based on the
(classical) (BGS) entropy.

(iii) We compare the expressions of JwK
k in (14), and in Section 2, and we obtain a formula

involving d, D and D. From it, we can explicitly write d as a function of D and D, namely

d = Dx + h− D
2k
·
[
(k + 1)pk + (k− 1)p−k

]
wx+ (19)

+Dpx p−1 +Dp px −
D
2
· w ·

[
(k + 1)pk−1 − (k− 1)p−k−1

]
px .

This formula shows that the drift function, the diffusion function and the “diffusion” coefficient
are not independent. Moreover, it allows to derive each one from the other two, in a similar manner
with that detailed in [29], in the weighted Tsallis entropy setting.

Sometimes, we can obtain more useful details. For example, suppose that, in particular, the
following two sufficient condition for (19) holds:

d−Dx = h− D
2k
·
[
(k + 1)pk + (k− 1)p−k

]
wx ,

pDp +D =
D
2
·
[
(k + 1)pk − (k− 1)p−k

]
· w .

By integrating the second equation, we obtain

D(x, t, p) =
D
2
· w(x, t) ·

[
pk(x, t) + p−k(x, t)

]
+

c(x, t)
p(x, t)

. (20)

Here, c is an arbitrary function, which ensures that positivity of D > 0.
We derive (20) and we obtain Dx. Replacing it in the first equation of the system, it follows

d = h +
D
2
· wx ·

[
pk + p−k

]
+ (21)

+
{ kD

2
· w ·

[
pk−1 − p−k−1

]
− c · p−2

}
· px +

+ cx · p−1 − D
2k
·
[
(k + 1)pk + (k− 1)p−k

]
wx .

(v) In order to find the stationary state pst = pst(x, t), we impose the condition J(x, t) = 0,
so there exists a real constant C such that

V(x) + D · w(x, t) · logK
{k}(pst(x, t)) + D · w(x, t) · uK

{k}(pst(x, t)) = C , (22)

where

uK
{k}(y) :=

yk + y−k

2
.

We denote
IwK
k [p] :=

∫
R

w(x)p(x)dx .

Then, Formula (22) rewrites, successively, as
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U[pst]− D · HwK
k [pst] + D · IwK

k [pst] = C , (23)

and

HwK
k [pst] =

1
D

{
−C + U[pst] + D · IwK

k [pst]
}

.

There exists also the following slightly different variant (see [26,29]): from (22), we obtain

V(x) + D · λ · w(x, t) · logK
{k}(

pst(x, t)
α

) = C ,

where

α :=
(1− k

1 + k

) 1
2k , λ :=

√
1− k2

We multiply with pst(x, t) and integrate with respect to x. We obtain∫
R

V(x) · pst(x, t)dx + D · λ
∫
R

w(x, t) · logK
{k}
( pst(x, t)

α

)
dx = C

and the same final formula, via the identity

λlogK
{k}(

y
α
) = logK

{k}(y) + uK
{k}(y)

with y := pst(x, t).
(vi) An important particular form of the NFPE is the weighted k-diffusive equation, which is

also known as the weighted driftless NFPE. In this case, U = 0, V = 0, h = 0 and all the preceding
formulas in Section 4.1, including (14)–(23), can be rewritten accordingly. We shall use some of
these formulas in Remark 5 (iv).

4.2. Time-Dependency of the Lyapunov Function

We shall prove that the Lyapunov functional LwK
k is a non-increasing function with

respect to the time evolution of p(x, t). First, we differentiate in Formula (12), we use
(3) and (14), and we obtain

dLwK
k [p]
dt

(t) =

=
∫
R

∂

∂x

{
− h(x) · p(x, t) +

D
2k
· ∂w

∂x
(x, t) · [(k + 1)pk+1(x, t) + (k− 1)p−k+1(x, t)]+

+
D
2
· w(x, t) · [(k + 1)pk(x, t)− (k− 1)p−k(x, t)]

∂p
∂x

(x, t)
}
·

·
{

V(x) +
D
2k
· w(x, t) ·

[
(k + 1)(p(x, t))k + (k− 1)p(x, t))−k]

}
dx .

Integrating by parts, we obtain

dLwK
k [p]
dt

(t) = −
∫
R

{
− h(x) · p(x, t) +

D
2k
· ∂w

∂x
(x, t) · [(k + 1)pk+1(x, t)+

+(k− 1)p−k+1(x, t)] +
D
2
· w(x, t) · [(k + 1)pk(x, t)− (k− 1)p−k(x, t)]

∂p
∂x

(x, t)
}
·

· ∂

∂x

{
V(x) +

D
2k
· w(x, t) ·

[
(k + 1)(p(x, t))k + (k− 1)p(x, t))−k]

}
dx =

= −
∫
R

p(x, t)
{
− h(x) +

D
2k
· ∂w

∂x
(x, t) · [(k + 1)pk(x, t) + (k− 1)p−k(x, t)]+

+
D
2
· w(x, t) · [(k + 1)pk−1(x, t)− (k− 1)p−k−1(x, t)]

∂p
∂x

(x, t)
}2

dx
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The last integral is non-negative, hence

dLwK
k (t)
dt

≤ 0 .

4.3. Relation with Bregman Divergence

Fix a time-dependent PDF p = p(x, t), a non-null constant k ∈ [−1, 1] and a time-
independent weighting function w = w(x). The function f : R→ R, f (z) := z logK

{k}(z) is
convex. Denote pME = pME(x) the w-weighted Kaniadakis maximum entropy PDF (see
more details in Section 6, Formula (32))

pME(x) := α · expK
{k}

[
−γ + βV(x)

w(x) · λ

]
From f ′(z) = logK

{k}(z) + uK
{k}(z) we obtain

f ′(pME(x)) = λ logK
{k}
( pME(x, t)

α

)
= −γ + βV(x)

w(x)

Theorem 2. Let β > 0. Then, the w-weighted Bregman divergence satisfies the relation

Dw
q (p ‖ pME) = β ·

(
L̃wK

k [p]− L̃wK
k [pME]

)
(24)

where the Lyapunov functional L̃wK
k is constructed via (12), with D := 1

β .

Proof. From Section 2, we know that the w-weighted Bregman divergence writes

Dw
q (p ‖ pME)(t) =

∫
R

w(x)
[

p(x, t) logK
{k}(p(x, t))− pME(x) logK

{k}(pME(x))−

−
(

p(x, t)− pME(x)
)(
−γ + βV(x)

w(x)

)]
dx

We calculate

Dw
q (p ‖ pME)(t) =

∫
R

w(x)p(x, t) logK
{k}(p(x, t))dx−

∫
R

w(x)pME(x) logK
{k}(pME(x))dx+

+
∫
R

(
γ + βV(x)

)(
p(x, t)− pME(x)

)
dx

hence

Dw
q (p ‖ pME) = β ·U[p]− HwK

k [p]− β ·U[pME] + HwK
k [pME]

which ends the proof.

Remark 3. (i) From Theorem 2, we see that not only the divergence acts as a distance on the space
of the PDFs, but also that we can evaluate this distance in terms of differences of two values of some
Lyapunov functional. A similar behavior was already pointed out in our previous study, concerning
the NFPEs based on the Tsallis entropies [29].

(ii) Particular important cases of the results from this section include: (a) The Kaniadakis
entropy-based approach (for w := 1); (b) The weighted BGS approach (when k→ 0); (c) The BGS
case (for w := 1 and k→ 0).

5. The Lie Symmetries of the NFPE Based on the Weighted Kaniadakis Entropy

In this section, we consider the NFPE (15), associated to the w-weighted Kaniadakis
entropy, for which we try to determine the Lie symmetries by means of the algorithm
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described in [17]. At the beginning, the functions A, B, E and G will be arbitrary. Only
after determining the final system of equations, we shall replace these functions with their
values from (16) or in more particular cases. The Lie symmetries are vector fields

X = ξ(x, t, p)∂x + η(x, t, p)∂t + φ(x, t, p)∂p

where the coefficients η, ξ and φ were defined in Section 2. From now on, we suppose the
function E nowhere vanishes. In our paper [29], we proved that the unknown functions η,
ξ, φ are solutions of the following system of equations

ξ · Gx + η · Gt + φ · Gp + A · φx + φt + E · φxx − G · (φp − ηt) = 0 (25)

ξ · Ax + η · At + φ · Ap + A · (ηt − ξx) + 2B · φx + E · (2φxp − ξxx)− ξt = 0

ξ · Bx + η · Bt + φ · Bp + B · (φp + ηt − 2ξx) + E · φpp = 0

ξ · Ex + η · Et + φ · Ep + E · (ηt − 2ξx) = 0

Moreover, η = η(t) and ξ = ξ(x, t). This important property will be extensively used
in the sequel.

Theorem 3 ([29]). With the previous notations, consider the NFPE (15), with arbitrary coefficient
functions A, B, E, G, with a nowhere vanishing function E. Then:

(i) The Lie symmetries form the trivial Lie algebra, which is spanned by the null vector field.
(ii) If the functions A, B, E, G are time-independent, then the Lie symmetries form a Lie

algebra spanned by the vector field
X1 = ∂t (26)

(iii) If the functions B, E, G are x-independent and Ax = −1, then the Lie symmetries form a
Lie algebra spanned by the vector field

X2 = e−t∂x (27)

(iv) If the functions A, B, E, G are time-independent, the functions B, E, G are x-independent,
and Ax = −1, then, the Lie symmetries form a Lie algebra spanned by the vector fields

X1 = ∂t , X2 = e−t∂x (28)

(v) If A = −x, B = c1 p2α−1, E = c2 p2α, and G = c3 p, with α, c1, c2, and c3 as arbitrary
real constants, then the Lie symmetries form a Lie algebra spanned by the vector fields

X1 = ∂t , X2 = e−t∂x , X3 = αx∂x + p∂p (29)

Remark 4. (i) We emphasize that the Lie symmetries in Formulas (26)–(29) are general, i.e., they do
not depend on the w-weighted Kaniadakis entropy. For example, the Lie symmetries in (26) and (27)
were discovered for the NFPE based on the Sharma–Taneja–Mittal entropy (cf. [24]), for which the
Kaniadakis entropy is only a particular case.

(ii) The NFPE associated to the w-weighted Kaniadakis entropy has the Lie symmetries in a
Lie algebra, which is spanned by the vector fields

X = ξ∂x + η∂t + φ∂p ,

where η = η(t), ξ = ξ(x, t) and η, ξ, φ satisfy the PDEs system (28) and A, B, E, G are given in
Formula (16). In general, this Lie algebra is trivial.

The same situation happens for the particular case of a w-weighted k-diffusive NFPE.
We remark that for the Kaniadakis entropy and its avatars, the condition E 6= 0, from the

hypothesis, is fulfilled.
When considering particular cases of weights and/or coefficients A, B, E, G, the dimension of

the Lie algebra spanned by the Lie symmetries may (or may not) increase. Several examples will be
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given in the sequel, and a detailed comparison with the families of entropies studied in [25] will be
provided in Section 7.

(iii) In particular, for the classical Kaniadakis entropy (with k ∈ [−1, 1], k 6= 0), we have
w = 1 and the obvious Lie symmetries from the (2D non-commutative) Lie algebra spanned by the
vector fields:

X1 = ∂t , X2 = e−t∂x .

When k ∈ (−1, 1), these are all the Lie symmetries, as it follows from the last two equations
in (25), which lead to φ = 0. Replacing in (25), we obtain η constant and ξx = 0. We omit the
details, as the proof is very similar to that in (iv).

Suppose k = 1. Then, A = −x, B = −D, E = −Dp, G = −p. The system (25) admits the
two additional Lie symmetry vector fields

X3 = e−3t ·
(
− x · ∂x + ∂t + p · ∂p

)
, X4 = x∂x + 2p∂p .

The same result follows when k = −1.
We point out here an interesting connection: the same argument as in Section 7 can prove

that for the classical Kaniadakis entropy, with non-null k ∈ [−1, 1], the associated NFPE cannot
admit other Lie symmetries, apart from the previous depicted ones. If, moreover, we impose the
n-momentum convergence conditions from Example 1, (iv), then the only Lie symmetries are (26)
and (27).

In the Lie algebra spanned by X1, X2, X3, X4, the only non-null brackets are

[X1,X2] = −X2 , [X1,X3] = −3X3 , [X2,X4] = X2 .

We conclude that this Lie algebra is isomorphic with 2g2,1; we remark this decomposition by
using, for example, the basis X2, X4, X1 −X4, X3. We shall recover it again in (iv) and discuss
its sub-algebras there. We point out that this Lie algebra was found, in another formalism, in [25],
Case C, (iii), δ = 1

2 .
(iv) For the classical Kaniadakis entropy (with k ∈ [−1, 1], k 6= 0) and for w = 1, we consider

a special case, starting with the k-diffusive (i.e., driftless) NFPE [26]

pt(x, t) =
D
2
· ∂2

∂x2

{
p(x, t)k+1 + p(x, t)1−k

}
.

The system (25) rewrites as
φt + E · φxx = 0 , (30)

2B · φx + E · (2φxp − ξxx)− ξt = 0 ,

φ · Bp + B · (φp + ηt − 2ξx) + E · φpp = 0 ,

φ · Ep + E · (ηt − 2ξx) = 0 .

The functions η and ξ do not depend on the variable p; hence, the last equation implies(φ · Ep

E

)
p
= 0 .

We rewrite it as
φp · E · Ep + φ · E · Epp − φ · E2

p = 0 . (31)

In the last two Equations (30) and (31), we eliminate (ηt − 2ξx), we use the previous formula
and we obtain φpp = 0. Hence, there exist two real functions b1 = b1(x, t) and b2 = b2(x, t) such
that φ = b1 · p + b2. We replace E and φ in (31) by their explicit analytic forms and, after a short
calculation, we obtain

4k(k2 − 1)(b1 p + b2) + b2

{
(k + 1)2 p2k − (k− 1)2 p−2k

}
= 0 .
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I. Suppose k ∈ (−1, 1). It follows that b1 = b2 = 0; hence, we obtain φ = 0. Then, the
system (30) reduces to two equations:

E · ξxx + ξt = 0 , ηt − 2ξx = 0 .

Using again that η = η(t), we obtain ξxx = 0; hence, ξt = 0. In this case, the general
solution of (30) is

ξ(x, t, p) = a1x + a2 , η(x, t, p) = 2a1t + a3 , φ(x, t, p) = 0 ,

where a1, a2, a3 are real constants. We obtain the following generators of the Lie algebra of the Lie
symmetries:

X1 = ∂t , X2 = ∂x , X3 = x∂x + 2t · ∂t .

We recovered the Lie symmetries presented (without proof) in [26], Section 3.2, (41)–(43),
where the interested reader may find a discussion about their physical implications. We remark here
that the non-vanishing Lie brackets are only

[X1,X3] = 2X1 , [X2,X3] = X2 .

The vector fields X1,X2, andX3 span the Bianchi VI Lie algebra g3,4, which admits the two-
dimensional commutative Lie sub-algebra sp {X1,X2}. We conclude with the remark that surpris-
ingly, in this case, X1,X2,X3 do not depend on the Kaniadakis constant k ∈ (−1, 1).

II. Suppose k = 1. Then, b2 = 0, hence φ(x, t, p) = b1(x, t)p. Moreover, E = −Dp and
B = −D. Back in (30), we derive the following generators of Lie symmetries:

X1 = ∂t , X2 = ∂x , X3 = x∂x + 2t · ∂t , X4 = x∂x + 2p · ∂p .

The non-vanishing Lie brackets are only

[X1,X3] = 2X1 , [X2,X3] = X2 , [X2,X4] = X2 .

The vector fields X1,X2,X3, and X4 span a 4D Lie algebra, which is isomorphic with 2g2,1;
we remark this decomposition by using, for example, the basis X2, X4, X3 −X4, X1.

We remark the 2D commutative sub-algebras sp {X1,X2}, sp {X1,X4}, sp {X3,X4} and
the 2D non-commutative sub-algebras sp {X1,X3}, sp {X2,X3}, sp {X2,X4}.

The 3D non-commutative sub-algebras are: sp {X1,X2,X3}, isomorphic with the Bianchi
VI Lie algebra g3,4 ; sp {X1,X2,X4}, sp {X1,X3,X4}, sp {X2,X3,X4}, isomorphic with the
Bianchi III Lie algebra g2,1 ⊕ g1.

III. Suppose k = −1. This case is analogous to the preceding one, and we obtain the same Lie
symmetries.

(v) If, moreover, k→ 0, the classical Kaniadakis entropy “converges” to the BGS entropy. The
Lie symmetries for the (associated) linear FPE derived in [24], Section 4.1 and in [21,22], form the
Lie algebra spanned by the vector fields:

X1 = ∂t , X2 = e−t∂x , X3 = et
(

∂x −
1
D

xp∂p

)
, X4 = e−2t

(
x∂x − ∂t − p∂p

)
,

X5 = e2t
(

x∂x + ∂t −
1
D

x2 p∂p

)
, X6 = p∂p , X7 = p̃ · ∂p ,

where p̃ is an arbitrary solution of the linear FPE. In [29], we pointed out some remarkable 2D, 3D,
4D and 5D subalgebras of the Lie algebra spanned by the first six vector fields X1, . . . ,X6. (The
vector field X7 was omitted, because we wanted to avoid infinite dimensional Lie (sub)algebras.)

Corollary 1. Under the previous general hypothesis, consider the NFPE associated to the w-
weighted Kaniadakis entropy. Then: (i) If w = w(x), then the corresponding Lie symmetries are
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of the form (26). (ii) If w = w(t), then the corresponding Lie symmetries are of the form (27).
(iii) Suppose w = w(x, t). Then, the corresponding Lie symmetries are trivial.

Proof. The corolary follows straightforward from Theorem 3 (i)–(iii).

6. The MaxEnt Problem for the Weighted Kaniadakis Entropy

Fix a potential energy function V = V(x), a non-null constant k ∈ (−1, 1), and a real
number U0 > 0. Consider a PDF p = p(x), satisfying∫

R
V(x)p(x)dx = U0 (32)

and let HK
k [p] be its associated Kaniadakis entropy, based on (9). The following (MaxEnt)

optimization problem
max HK

k [p] (33)

has the solution
pME(x) = α · expK

{k}
[
− 1

λ
(γ + βV(x))

]
,

where β and γ represent the Lagrange multipliers associated to the optimization problem and

α =
(1− k

1 + k

) 1
2k , λ =

√
1− k2 .

(see [26] and references therein).
Fix, in addition, a weighting function w = w(x) and consider the “weighted” (MaxEnt)

optimization problem:
max HwK

k [p] , (34)

where p satisfies (32) and HwK
k [p] is the associated w-weighted Kaniadakis entropy, based

on (9).

Theorem 4. The optimization problem (34) has the solution

pME
w (x) = α · expK

{k}
[
− 1

λ
· γ + βV(x)

w(x)

]
, (35)

where the Lagrange multipliers β and γ follow from the constraints.

Proof. We follow the standard procedure, as in [50], §12.1.

Remark 5. (i) We point out the “exceptional values” k = 1 and k = −1, which forbid the existence
of PDFs with maximum entropy. Perhaps it is not a simple coincidence with the fact that, for
k = ±1, the Lie symmetries of the NFPEs show an apart behavior, cf. the Remark 4 (iv). This
might be a “shadow” of a deeper property of the Kaniadakis entropies family, and we mention here a
possible analogy with a similar fact concerning the Tsallis q-entropy (see [29]).

(ii) Under the previous hypothesis, we denote: the w-weighted Kaniadakis entropy Hw := HwK
k [pME

w ];
the mean force with respect to pME

w

Uw :=
∫
R

V(x) · pME
w (x)dx ;

the mean value of w with respect to pME
w

Ew :=
∫
R

w(x) · pME
w (x)dx ;

the w-weighted k-generalized free energy
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Fw := −γ + Ew

β
.

We obtain the w-weighted k-generalizations of the thermodynamic relations (which are similar
to the “non-weighted” ones in [26]):

Fw = Uw − 1
β

Hw ,
d

dβ
(βFw) = Uw .

All these previous notions depend on k, which we skipped in the previous formulas for the
sake of simplicity. For physical interpretations, see [26,45]. Compare with Formula (23), when
pst = pME, D = 1

β and C = − γ
β .

7. The Impact of Sinkala’s Classification on the Panorama of STM-Entropies

Sinkala made a careful study [25] of the Lie symmetries of the NFPE based on (k, r)-
STM entropies, for arbitrary real parameters k and r. He gave a classification for the cases
when there exist such symmetries apart from the generic ones in (26) and (27).

In the sequel, we shall correlate his classification with our findings from Section 6 and
from our previous paper on the Lie symmetries of the NFPE based on weighted Tsallis
entropies [29]. This comparison is justified also by the Remark 1 (iii), where we interpreted
the STM entropies as particular weighted Tsallis or Kaniadakis entropies.

In [25], Sinkala proves that the only (k, r)-STM entropies admitting additional Lie
symmetries, beyond (26) and (27), are given by following two cases:

(i) r = ±k , i.e., the (classical) Tsallis entropies;
(ii) r = −1± k, corresponding to some unnamed entropies. It is possible that these

STM entropies be already studied (independently, as non-weighted ones), but we did not
find any trace of them in the literature. Via our Remark 1 (iii), we see now that these ones
may be interpreted as weakly weighted w-Kaniadakis k-entropies, with w(x) = (p(x))−1±k,
or as weakly weighted w-Tsallis q-entropies, with w(x) = (p(x))−1 and q = 1∓ 2k.

7.1. The Case without Momentum Convergence Restrictions

In what follows, we refer to [25] for details concerning the classification of those STM
entropies which lead to NFPEs having more than two independent Lie symmetries (i.e.,
given by (26) and (27)). The parameters k and r restrict, providing the following cases A–C,
(i)–(iv) of specific families of entropies.

The (“exceptional”) case A.

(i) r = k, k = − 2
3 , (q = 7

3 Tsallis).
(ii) r = −k, k = 2

3 , (q = 7
3 Tsallis).

(iii) r = −1+ k, k = − 1
6 , (q = 4

3 weakly weighted Tsallis; weakly weighted Kaniadakis).
(iv) r = −1− k, k = 1

6 , (q = 4
3 weakly weighted Tsallis; weakly weighted Kaniadakis).

The Lie symmetries are spanned by (26), (27) and

X3 = e−2t/3
(

x∂x − ∂t − p∂p

)
, X4 = xet

(
x∂x − 3p∂p

)
, X5 = x∂x − ∂t −

3
2

p∂p. (36)

The (“exceptional”) case B.

(i) r = k, k = −1, (q = 3 Tsallis).
(ii) r = −k, k = 1, (q = 3 Tsallis).
(iii) r = −1 + k, k = − 1

2 , (q = 2 weakly weighted Tsallis; weakly weighted Kaniadakis).
(iv) r = −1− k, k = 1

2 , (q = 2 weakly weighted Tsallis; weakly weighted Kaniadakis).
The Lie symmetries are spanned by (26), (27) and

X3 = x∂x − ∂t − p∂p , X4 = tx∂x − t∂t − p
(

t +
1
2

)
∂p . (37)
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The (“generic”) case C.

(i) r = k, k /∈
{
− 1

2 ,− 2
3 ,−1

}
, (q = 1− 2k Tsallis, q /∈

{
2, 7

3 , 3
}

).

(ii) r = −k, k /∈
{

1
2 , 2

3 , 1
}

, (q = 1 + 2k Tsallis, q /∈
{

2, 7
3 , 3
}

).

(iii) r = −1 + k, k /∈
{
± 1

2 ,− 1
6

}
, (q = 1− 2k weakly weighted Tsallis, q /∈

{
2, 4

3

}
;

weakly weighted Kaniadakis).

(iv) r = −1− k, k /∈
{
± 1

2 , 1
6

}
, (q = 1 + 2k weakly weighted Tsallis, q /∈

{
2, 4

3

}
;

weakly weighted Kaniadakis).
The Lie symmetries are spanned by (26), (27) and

X3 = e−2(1+δ)t ·
(

x∂x − ∂t − p∂p

)
, X4 = x∂x − ∂t +

p
δ
· ∂p , (38)

where δ = k, for (i); δ = −k, for (ii); δ = k− 1
2 , for (iii); δ = −k− 1

2 , for (iv).

Remark 6. In the sequel, we shall compare the previous symmetries (36)–(38) with those found in
Section 5 and in our previous paper [29].

(A i) + (A ii) The vector fields X3 and X5 were considered in [29] and also via [24]. We
can directly check now that X4 is another solution of (5.28) + (4.17) in [29], so the maximal Lie
algebra is indeed the 5D one from [25]. Using the classification of low-dimensional Lie algebras
from [51], we identify it as g3,6 ⊕ g2,1, where the g3,6 is the Bianchi VIII Lie algebra, known also as
sl(2,R); an useful basis is X1 +X5, X2, X4, X3, X5. This maximal 5D Lie algebra includes, as a
4D sub-algebra, the Lie algebra 2g2,1, for the case when X4 is dropped.

The Lie symmetry obtained in this “exceptional” case reveals that something special distin-
guishes the respective Tsallis entropy from all the others. The case of the Tsallis entropy with
constant q = 7

3 must hide a specific property which, probably, is still waiting to be discovered. We
conjecture that this entropy corresponds to some (optimal) extremum case, where the “maximum
symmetry” produces “maximum stability”, as suggested also by [28,52]. It is possible that this
value be confounded with its approximations q = 2.3 or q = 2.4, which also appear to signal specific
remarkable Tsallis entropies (e.g., [53,54]).

(A iii) First approach. We obtain the (weakly) weighting function w(x) = (p(x))−
7
6 for a

Kaniadakis entropy with k = − 1
6 . The vector fields in (36) are not solutions of our system (25),

with coefficients A, B, E and G provided by (16); this is due to the fact that in (25), we considered
only weighting functions independent on p.

Second approach. We obtain the (weakly) weighting function w(x) = (p(x))−1 for a Tsallis
entropy constant q = 4

3 . The vector fields in (36) are not solutions of the system (5.28), with
coefficients A, B, E and G provided by (4.17), which are both formulas from our paper [29]. The
reason is the same as in the first approach.

The spanned Lie algebra obtained by these three different methods is the same as for (A i) and (A ii).
The “exceptional” Tsallis entropy corresponding to q = 4

3 was already detected as relevant in
applications, e.g., [55,56].

(A iv) We obtain the same symmetries as in (A iii) after a similar case-by-case analysis.
(B i) + (B ii) In [29], we considered only the vector field X3 via the example from [24]. We

must add the vector field X4 too, as proved in [25] and as it can be directly checked in (5.28) +
(4.17) from [29]. The maximal Lie algebra of symmetries, in this case, is 2g2,1, which includes, as
sub-algebra, the Lie algebra g2,1 ⊕ g1 found in [29]; a useful basis is X1 +X3, X2, X3, X4.

This “exceptional” Tsallis entropy, corresponding to the value q = 3, was already pointed
out in [29] and conjectured as a promising candidate for specific and (probably) important opti-
mal/singular applications. Several recent papers support this conjecture (e.g., [57–60]); a useful
basis is X1 +X3, X2, X3, X4.

(B iii) First approach. We obtain the (weakly) weighting function w(x) = (p(x))−
3
2 for a

Kaniadakis entropy with k = − 1
2 . The vector fields in (37) are not solutions of our system (25),

with coefficients A, B, E and G provided by (16); see (A iii).
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Second approach. We obtain the (weakly) weighting function w(x) = (p(x))−1 for a Tsallis
entropy constant q = 2 . The vector fields in (37) are not solutions of the system (5.28), with
coefficients A, B, E and G provided by (4.17), which are both formulas from our paper [29], see
(A iii).

The spanned Lie algebra obtained by these three different methods is the same as for (B i) and
(B ii).

The “exceptional” Tsallis entropy, corresponding to the value q = 2, was also already pointed
out in [29], and it was conjectured as a promising candidate for specific and (probably) important
optimal/singular applications. Several recent papers support this conjecture (e.g., [59–63]).

(B iv) We obtain the same symmetries as in (B iii) after a similar case-by-case analysis.
(C i) + (C ii) We have δ = 1−q

2 . The X3 and X4 vector fields were detected in [29], too (we
used other notations).

(C iii) Suppose first that r = 0. We obtain k = 1 and δ = 1
2 . In this case, the entropy is a

classical (i.e., non-weighted) Kaniadakis entropy. The Lie symmetries of (26)–(38) are exactly those
from our Remark 4 (iii), as we already pointed out.

Suppose now r 6= 0.
First approach. We obtain the (weakly) weighting function w(x) = (p(x))k−1 for a Kaniadakis

entropy and δ = 2k−1
2 . The vector fields in (38) are not solutions of our system (25), with coefficients

A, B, E and G provided by (16); see (A iii). The 4D spanned Lie algebra is 2g2,1 (see also Table 4
in [25]); a useful basis is X1 +X4, X2, X3, X4.

Second approach. We obtain the (weakly) weighting function w(x) = (p(x))−1 for a Tsallis
entropy constant q = 1− 2k and with δ = 2k−1

2 . The vector fields in (38) are not solutions of the
system (5.28), with coefficients A, B, E and G provided by (4.17), which are both formulas from our
paper [29]; see (A iii).

The spanned Lie algebra obtained by these three different methods is the same but using a
different basis and, hence, different structure constants.

(C iv) We obtain the same symmetries as in (C iii) after a similar case-by-case analysis.

7.2. The Case with Momentum Convergence Restrictions

We begin with a general result, which restricts dramatically the number of possible
STM entropies.

Theorem 5. Consider the family of (k, r)-STM entropies, as in Example 1 (iv), with momentum
convergence order n. If such an entropy admits additional Lie symmetries, beyond (26) and (27),

then it is a Tsallis q-entropy, for q ∈
(

n − 1
n + 1 , n + 2

n + 1

)
, where q 6= 1, for n > 0 and q 6= 1, 1

2 , 3
2 , for

n = 0.

Proof. Let k > 0. In the first case, i.e., for r = ±k, we obtain the (2k) Tsallis entropies.

Changing q := 1− 2 | k |, from the R(n) inequalities, we obtain q ∈
(

n − 1
n + 1 , n − 1

n + 1

)
. The

condition q 6= 1 is generic. When n = 0, the values 1
2 and 3

2 for q are prohibited due to the
restrictions for k in the Cases C (i) and C (ii).

In the second case, suppose r = −1− k. The intersection of this line with R(n) is void;
hence, this case does not provide a valid entropy.

Suppose r = −1 + k. If n > 0, then the intersection of this line with R(n) is void;
hence, this case does not provide a valid entropy, either.

If n = 0, we have two cases: r 6= 0, and a similar void intersection between a line and
R(n) occurs, r = 0, and we obtain k = 1. We obtained a contradiction, as (0, 1) lies outside
R(n).

The case k < 0 can be proven in a similar way.

Remark 7. The cases A (i) and A (ii) are not possible, because q = 7
3 lies outside the interval(

n − 1
n + 1 , n + 2

n + 1

)
. Then, the only possible families of Tsallis entropies correspond to the cases C (i) and

C (ii). The corresponding Lie symmetries were discussed in Section 7.1; they satisfy, in addition,
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the conditions provided by the restrictions imposed onto k, via q, namely: δ ∈
(
− n+2

2(n+1) , 1−n
2(n+1)

)
,

where δ 6= − 1
2 , if n > 0 and δ 6= − 1

2 ,− 1
4 ,− 3

4 , if n = 0.
(ii) From Theorem 5, in the case n = 0, we see the emergence of two more “exceptional” values:

q = 1
2 and q = 3

2 . These values also seem to correspond to specific remarkable cases arising from
applications and pointed out both theoretically and empirically (e.g., [53,64–66]).

(iii) If we impose that the n-momentum convergence condition holds, for every non-negative
integer n, then we obtain a “rigidity” result: when n→ ∞, the domain for q in the previous theorem

“shrinks” to the limit point 1, i.e., the respective q-Tsallis entropies “converge” to the BGS entropy.

8. Concluding Remarks

We determined the NFPE associated to a w-weighted Kaniadakis entropy (Formula (15)
and, equivalently, (16)+ (17)). The Lie symmetries of this equation are established in the
Corollary 1. In some particular important cases, we found some sub-algebras spanned
by the respective vector fields, by identifying their isomorphism classes in the Bianchi
classification (Remark 4 (iii), (iv)).

A future direction of study is toward a generalization of the system (25) and of
Theorem 3, for the case of p-dependent weakly weighting functions, i.e., for w = w(x, p(x)).
This setting will cover the cases (A iii,iv), (B iii,iv) and (C iii,iv), too.

We proved the associated Lyapunov function is non-negative and the Bregman diver-
gence may be interpreted as a distance function in terms of differences between values of
the Lyapunov function (Theorem 2). This behavior is similar to that remarked when using
the Tsallis entropy [29].

In Section 6, we found the solution for the maximum entropy problem associated to
the w-weighted Kaniadakis entropy (Theorem 4) and a w-weighted k-generalization for
some thermodynamic relations (Remark 5 (ii)).

In Section 7, we made a comparison study of the Lie symmetries studied by us, those
from our previous paper [29] and those from the paper of Sinkala [25]. One conclusion
strikes as unexpected: there exist “exceptional” values of the Tsallis parameter (i.e., q = 1

2 ,
q = 3

2 , q = 4
3 , q = 7

3 , q = 2 and q = 3) and of the Kaniadakis parameter (i.e., k = 1 and
k = −1), corresponding to cases when the symmetries are special. One of their common
features is that all are closely related to some “exceptional” entropy-related phenomena
reported in recent studies. The empirical analysis, the purely algebraic or analitic tools
were not enough to detect them; only the filter put through the NFPEs was able to highlight
them via the Lie symmetries, which are a very strong and sensitive tool. We point out that
we do not claim that these are all the possible “exceptional” values of the Tsallis entropy
parameter q; putting other filters might reveal also other values (see also the Appendix A).

Another common feature is that they come “in pairs”: q = 1
2 and q = 3

2 ; q = 4
3 and

q = 7
3 ; q = 2 and q = 3. For the Tsallis case, the “distance” between partners in a pair is the

same, namely 1.
However, there are also subtle differences. For instance, the values q = 1

2 and q = 3
2

appear in Theorem 5 are forbidden ones. Instead, the other four Tsallis “exceptional”
parameters appear as both forbidden and including values; the same properties have the
Kaniadakis parameters k = 1 and k = −1.

We believe that these “exceptional” parameter values are the key for answering the
“how” questions, arising in applications. A next level study, much more subtle, would be to
answer the “why” questions. In a future review [67], we shall explore the huge literature
concerning special/remarkable empirical values of the Tsallis and the Kaniadakis entropies
parameters, and we shall try to identify the role played by the “exceptional” ones we
described in the present paper.
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Appendix A

We make here some speculations as from where might have been coming the “excep-
tional” values of the Tsallis parameter q, namely: 1

2 , 1, 4
3 , 3

2 , 2, 7
3 , 3.

I. We remark that the respective seven numbers are proportional with 3, 6, 8, 9, 12, 14,
and 18. These positive integers are consecutive terms belonging to the fractal sequence
A083057 and to the sequence A185717, which are both found in the on-line Encyclopedia of
Integer Sequences at oeis.org. We code this pattern by CFHILNR, following the positions
of letters in the English alphabet.

Interestingly, the other preceding terms of A083057 (proportional with 1
3 , 0,− 1

6 ), and
the succeeding ones (proportional with 7

2 , 23
6 , 4, 13

3 , 9
2 , 5) (at least!) also appear in the litera-

ture as remarkable values for the Tsallis entropy constant q.
Honestly, we must admit that there exist, however, in the literature other interesting

values of the Tsallis entropy parameter which do not fit this pattern, e.g., q = 0.7, q = 0.8,
q = 0.9, . . . We postpone any further comment until [67] will be completed.

The following picture contains the graphics of the Tsallis logarithms, corresponding to
the previous seven “exceptional” values.
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We make here some speculations as from where might been coming the "exceptional" values of the Tsallis parameter

q, namely: 1
2 , 1, 4

3 , 3
2 , 2, 7

3 , 3.

I. We remark that the respective 7 numbers are proportional with 3, 6, 8, 9, 12, 14, 18. These positive integers are
consecutive terms belonging to the fractal sequence A083057 and to the sequence A185717, both found in the on-line
Encyclopedia of Integer Sequences at oeis.org. We code this pattern by CFHILNR, following the positions of letters in the
English alphabet.

Interestingly, the other preceding terms of A083057 (proportional with 1
3 , 0,− 1

6 ), and the succeeding ones (propor-
tional with 7

2 , 23
6 , 4, 13

3 , 9
2 , 5) (at least !) also appear in the literature as remarkable values for the Tsallis entropy constant

q.
Honestly, we must admit that there exist, however, in the literature other interesting values of the Tsallis entropy

parameter which do not fit this pattern, e.g. q = 0.7, q = 0.8, q = 0.9,... We postpone any further comment until [26] will
be completed.

The following picture contains the graphics of the Tsallis logarithms, corresponding to the previous seven "excep-
tional" values.

II. If in the sequence 3, 6, 8, 9, 12, 14, 18 we calculate the distances between two consecutive terms, we get 3, 2, 1, 3, 2, 4.
We code this pattern by CBACBD, following the positions of letters in the English alphabet. Modulo some inherent
approximations, this pattern appears in unexpected places. For example, in the visible spectrum, the colors span
wavelength intervals, whose widthness (from right to left, i.e. from red to violet) are proportional to CBACBD, as shown
in the next picture.
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II. If in the sequence 3, 6, 8, 9, 12, 14,and18, we calculate the distances between two
consecutive terms, we obtain 3, 2, 1, 3, 2, and4. We code this pattern by CBACBD, following
the positions of letters in the English alphabet. Modeling some inherent approximations,
this pattern appears in unexpected places. For example, in the visible spectrum, the colors
span wavelength intervals, whose widthness (from right to left, i.e., from red to violet) are
proportional to CBACBD, as shown in the next picture.

III. In the Mendeleev periodic table of elements, the pattern CFHILNR provides:
(3)—Lithium (“Alkaline metals”), (6)—Carbon (“Other nonmetals”), (8)—Oxygen (“Other
nonmetals”), (9)—Fluorine (“Halogens”), (12)—Magnesium (“Alkaline Earth metals”),
(14)—Silicon (“Metalloids”), (18)—Argon (“Noble gases”). It is interesting that carbon,
which is the basic element for life on Earth, corresponds to the singular Tsallis entropy
constant 1; excluding it, the remaining six values provide elements in six distinct groups. By
contrast, the following seven terms (21, 23, 24, 24, 26, 27, 30) in the fractal sequence A083057
give elements belonging to the (same) “Transition metals” group.

IV. In our paper, we worked with the Tsallis logarithm given in (8). In the literature,
there exists also an additive dual (and equivalent) framework, which is based on a Tsallis
logarithm of the form

xq′−1 − 1
q′ − 1

.

Replacing q′ := 2− q, we obtain seven transformed (“dual”) “exceptional” parameters:
3
2 , 1, 2

3 , 1
2 , 0,− 1

3 , and− 1. The first three are common with the previous list, as 1 is “auto-dual”
and 1

2 and 3
2 are “dual” to each other.

Even if the new values also appear as “singular” ones in several applications, we did
not succeed to establish for the new sequence any speculative link, which is similar to those
in I, II and III. It is possible that this epistemological asymmetry indicates that the two
(apparently equivalent) frameworks for the Tsallis logarithm are not “perfectly” equivalent,
and that there might be some subtle/hidden properties which differentiate them.

V. Further study may include the analogue multiplicative dual approach of Tsallis [60],
using the transformation q → 1

q . The algebraic theory of the Tsallis q-triplets (q, 2− q, 1
q )

was extended by means of more general Möbius transformations, depending on several
parameters [60], such as

q→ a− bq
b− (2b− a)q

.

All these algebraic constructions were introduced with the expectation to create some
order (and to decrease the “Entropy”) in the “Universe” of the Tsallis parameters. In our
(speculative) opinion, one must take into account also “exceptional” values of the Tsallis
entropy parameters, arising theoretically by algebraic and geometric invariants, as shown
in Section 7.
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