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Abstract

:

Many metaheuristic approaches have been developed to select effective features from different medical datasets in a feasible time. However, most of them cannot scale well to large medical datasets, where they fail to maximize the classification accuracy and simultaneously minimize the number of selected features. Therefore, this paper is devoted to developing an efficient binary version of the quantum-based avian navigation optimizer algorithm (QANA) named BQANA, utilizing the scalability of the QANA to effectively select the optimal feature subset from high-dimensional medical datasets using two different approaches. In the first approach, several binary versions of the QANA are developed using S-shaped, V-shaped, U-shaped, Z-shaped, and quadratic transfer functions to map the continuous solutions of the canonical QANA to binary ones. In the second approach, the QANA is mapped to binary space by converting each variable to 0 or 1 using a threshold. To evaluate the proposed algorithm, first, all binary versions of the QANA are assessed on different medical datasets with varied feature sizes, including Pima, HeartEW, Lymphography, SPECT Heart, PenglungEW, Parkinson, Colon, SRBCT, Leukemia, and Prostate tumor. The results show that the BQANA developed by the second approach is superior to other binary versions of the QANA to find the optimal feature subset from the medical datasets. Then, the BQANA was compared with nine well-known binary metaheuristic algorithms, and the results were statistically assessed using the Friedman test. The experimental and statistical results demonstrate that the proposed BQANA has merit for feature selection from medical datasets.
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1. Introduction


In recent years, artificial intelligence technologies have been used to solve various problems [1], which dictates the importance of storing data and information. With continued advances in science, a plethora of enormous datasets, including a large number of features, are being stored in different fields, such as business, text mining, biology, and medicine. Since medical datasets are often gathered for different purposes and from different sources, they may have challenges and complexities, such as structural and type heterogeneity, high dimensional, outliers, missing values, skewness, integration, and irrelevant and redundant features [2,3,4]. The existence of irrelevant and redundant features may degrade the accuracy of the classifier and bring additional computational costs [5]. To tackle this issue, many effective methods have been proposed to select effective features by reducing such disadvantageous features [6,7,8,9,10]. Feature selection (FS) is employed in a wide range of real-world applications, including disease diagnosis [11,12,13,14,15], text clustering [16,17], intrusion detection systems [18,19,20,21], e-mail spam detection [22,23,24,25], and genomic analysis [25,26,27,28,29].



The FS algorithms are broadly classified into filter-based, wrapper-based, and embedded-based methods [30,31,32]. The filter-based methods assess and rank features of datasets based on principle criteria such as distance, information, similarity, consistency, and statistical measures [33,34]. Although filter-based methods demand lower computational costs than other methods, they cannot provide satisfactory performance. The wrapper-based methods search for an optimal feature subset using a predetermined learning algorithm for evaluating the feature subsets. The advantages of both filter-based and wrapper-based methods are combined in embedded-based methods. These methods incorporate the search for an optimal feature subset as part of the classifier training process [32]. The wrapper-based methods can generally provide greater classification accuracy than other methods by using a machine-learning algorithm to assess possible solutions [6,35]. Since assessing 2N subsets of problem space with N features is an NP-hard issue, near-optimal subsets are discovered using approximate algorithms that heuristically search for an optimal subset [36,37,38].



Metaheuristic algorithms are a subset of approximate algorithms that have been used for solving many NP-hard problems in different fields of science, such as engineering design [39,40,41,42,43,44,45,46,47,48,49,50], task scheduling [51,52,53], engineering prediction [54,55,56,57,58], and optimal power flow [59,60,61,62,63,64] problems. When tackling the FS problem, metaheuristic algorithms have shown outstanding results in prior studies [65,66,67,68]. For instance, Emary et al. [69] introduced two versions of binary grey wolf optimizer (bGWO) to solve the FS problem as a wrapper-based method. The first approach was developed by performing stochastic crossover among the three best solutions, while in the second approach, the authors applied the S-shaped transfer function to convert continuous solutions of GWO to binary ones. Mafarja et al. [70] proposed a binary grasshopper optimization algorithm (BGOA) to tackle the feature selection problem within a wrapper-based framework by applying S-shaped and V-shaped transfer functions as the first mechanism. The second mechanism employs a new method that combines the finest solutions found so far. Furthermore, a mutation operator is used in the BGOA algorithm to improve the exploration phase.



Sindhu et al. [71] proposed an improved sine cosine algorithm (ISCA) that includes a feature selection elitism technique and a new best solution update method to select the best features and increase the classification accuracy. Dhiman et al. [72] developed eight binary versions of the emperor penguin optimizer to solve the FS problem by employing S-shaped and V-shaped transfer functions. In this study, 25 standard benchmark functions have been used to validate the results of the developed algorithms. The results revealed that the V4 transfer function provides better solutions than other transfer functions. A binary farmland fertility algorithm (BFFA) has been proposed by Naseri et al. [18] to tackle feature selection problems in intrusion detection systems using a V-shaped transfer function. Although many metaheuristic algorithms have been developed in the FS domain, most of them are not scalable enough to overcome small and large datasets.



Quantum-based avian navigation optimizer algorithm (QANA) [73] is a recently introduced evolutionary algorithm inspired by the navigation mechanism of migratory birds during long-distance aerial paths for solving continuous optimization problems. The QANA provides competitive results by employing several operators, including population partitioning, self-adaptive quantum orientation, a qubit-crossover, and two mutation strategies. Moreover, the gained information is shared among search agents using a V-echelon communication topology. The experimental evaluations reveal that QANA is scalable for solving high-dimensional problems. It is worth mentioning that when working with high-dimensional datasets, tackling optimization problems becomes particularly difficult due to the curse of dimensionality problems [74,75].



This paper aims to extend our earlier study [73] by using our proposed binary QANA (BQANA) to overcome the curse of dimensionality difficulties in the FS domain and generate high-quality solutions using two approaches. In the first approach, the canonical QANA is converted to binary using 20 different transfer functions from five categories of S-shaped [76], V-shaped [77], U-shaped [78], Z-shaped [79], and quadratic [80,81] to solve FS problem in medical datasets. The transfer functions are discussed in this paper, and then they are paired with the QANA to develop several binary QANA models. In the second approach, a threshold is assigned for each dimension to map the continuous solutions of QANA to binary and develop BQANA without any further computational cost. The effectiveness of the proposed approaches is investigated on 10 medical datasets with various scales. To validate the proposed algorithms, the results of the winner version of binary QANA named BQANA were compared with the results of nine well-known metaheuristic algorithms, including binary particle swarm optimization (BPSO) [82], ant colony optimization (ACO) [83], binary differential evolution (BDE) [84], binary bat algorithm (BBA) [85], feature selection based on whale optimization algorithm (FSWOA) [11], binary ant lion optimizer (BALO) [86], binary dragonfly algorithm (BDA) [87], quadratic binary Harris hawk optimization (QBHHO) [80], and binary atom search optimization (BASO) [88]. The convergence behavior, the average number of selected features, and the accuracy of the proposed BQANA and comparative algorithms were visualized and investigated for all datasets. Moreover, the BQANA is statistically assessed by the Friedman test to demonstrate the algorithm’s superiority. The main contributions of this study are summarized as follows.



	
Introducing binary approaches of quantum-based avian navigation optimizer algorithm (QANA) to select effective features from high-dimensional medical datasets.



	
The binary QANA variants have been developed by adapting the main components of the standard QANA.



	
Comparing the behavior of QANA with different transfer functions from five different categories, S-shaped, V-shaped, U-shaped, Z-shaped, and quadratic, to develop 20 versions of binary QANA based on the first approach.



	
Applying the second approach as a low-cost and effective method to develop the superior version of binary QANA named BQANA by assigning a threshold for each variable.



	
Dimensionality reduction, generating solutions with high accuracy and a minimum number of features are obtained by the second approach.



	
The experiments prove that the BQANA developed by the second approach provides superior results compared to the first approach and nine other comparative algorithms in terms of increasing classification accuracy and minimizing the number of features for 10 medical datasets with various scales.







2. Related Works


The Fs is an NP-hard problem with discrete search space, in which the number of potential solutions grows exponentially as the number of features grows. Hence, metaheuristic algorithms are known as powerful optimizers in the literature. Ant colony optimization (ACO) [89] is a discrete metaheuristic algorithm inspired by the behavior of some ants in nature that has been applied for solving FS problems in different fields such as text categorization [90], image feature selection [91], intrusion detection system [92], and email spam classification [93]. As most of the metaheuristic algorithms are proposed for continuous search spaces, many researchers applied metaheuristic algorithms to discover an optimal feature subset by converting the continuous solutions into a binary form using logical operators or different transfer functions [94]. Logical operators have been applied for producing binary solutions due to their low computational costs [95]. Boolean particle swarm optimization was first proposed by Marandi et al. [96] to solve antenna design by converting continuous particle swarm optimization (PSO) into a binary form using three Boolean operators. In [97], the authors proposed a binary form of the Jaya algorithm named Jayax using the xor logical operator and incorporating a local search module to boost the algorithm’s performance.



Many researchers apply different transfer functions to convert continuous values of optimizer algorithms into binary ones. The most well-known transfer functions used in the literature are S-shaped [76], V-shaped [77,98], U-shaped [78], Z-shaped [78], and quadratic [81] transfer functions. In 1997, Kennedy and Eberhart [76] introduced a binary version of the particle swarm optimization (BPSO) algorithm by applying the sigmoid transfer function to solve discrete optimization problems [82,99]. The sigmoid function is known as the S-shaped transfer function and has been applied to many other metaheuristic algorithms. Gong et al. [84] proposed binary differential evolution (BDE) algorithm to apply the differential evolution algorithm in discrete search space. To construct binary-adapted DE operators, DE operator templates are explicitly specified through the forma analysis. In [85] authors proposed a binary bat algorithm (BBA) for solving FS by applying the S-shaped transfer function to restrict the new search agent’s position to only binary values. A new binary algorithm named feature selection based on whale optimization algorithm (FSWOA) was proposed by Zamani et al. [11] to handle the dimensionality of medical data using the whale optimization algorithm (WOA). To map continuous solutions of WOA to binary ones, the authors applied the S-shaped transfer function. The binary dragonfly algorithm (BDA) is the binary version of the dragonfly algorithm proposed by Mirjalili [87] which mimics the static and dynamic swarming behaviors of dragonflies in nature. The exploration and exploitation of the algorithm are modeled by the social interaction of dragonflies in searching for foods, avoiding enemies, and navigating when swarming dynamically or statistically.



The V-shaped transfer function introduced by Rashdi et al. [77] is a symmetric transfer function initially used in binary gravity search algorithm (BGSA) to map continuous values of GSA into binary ones. Emary et al. [86] proposed a binary antlion optimizer (BALO) for finding optimal feature subsets by applying S-shaped and V-shaped transfer functions. The findings indicate that the developed binary algorithm based on V-shaped transfer functions outperforms the S-shaped transfer functions. In a comparative study, Mirjalili et al. [98] evaluated six variants of S-shaped and V-shaped transfer functions on the traditional BPSO algorithm. The results indicate that the newly presented V-shaped family of transfer functions significantly outperforms the original BPSO. Too et al. [88] proposed eight versions of the binary atom search optimization (BASO) algorithm to effectively select an optimal feature subset by applying S-shaped and V-shaped transfer functions. In comparison to other BASO versions, the results showed that BASO with S-shaped transfer function (S1) is highly capable of finding effective features.



Mirjalili et al. [68] proposed a new U-shaped transfer function for the PSO algorithm to convert continuous values of velocity to binary solutions. The obtained results reveal that the U-shaped transfer functions greatly enhance the performance of BPSO. The DEOSA proposed by Guha et al. [100] is a discrete combination of equilibrium optimizer and simulated annealing for selecting optimal features. This algorithm uses a U-shaped transfer function to convert continuous values into binary. Nadimi-Shahraki et al. [101] proposed an enhanced version of the whale optimization algorithm named E-WOA to solve continuous optimization problems using a pooling mechanism and three robust search strategies. To address the FS problem, the solutions of E-WOA are converted to binary form using a U-shaped (U2) transfer function.



The Z-shaped [79] and quadratic [81] transfer functions are two recently proposed transfer functions for mapping continuous solutions to binary ones. The quadratic binary Harris hawk optimization (QBHHO) [80] algorithm is a binary version of the Harris hawk optimization algorithm developed by applying quadratic transfer functions for converting continuous solutions to binary. Considering a threshold for each variable is another efficient method to map continuous solutions to binary ones. Hafez et al. [102] utilized the sine cosine algorithm (SCA) to address the FS problem by assigning a variable threshold (0.5) to convert solutions to binary form. In [103], the authors proposed a PSO-based FS algorithm with a variable-length representation called VLPSO. The results showed that the variable-length representation enhances the scalability of PSO. The algorithm uses a predefined threshold (0.6) to map solutions into binary form.




3. Quantum-Based Avian Navigation Optimizer Algorithm (QANA)


QANA is a recent population-based metaheuristic algorithm inspired by the navigation behavior of migratory birds during long-distance aerial routes. The QANA is modeled using multi-flock construction and quantum-based navigation which consists of two mutation strategies and a qubit-crossover operator to explore the search space effectively.



3.1. Multi-Flock Construction


Initially, the population of migratory birds is randomly divided into multi-flocks. Next, the migratory birds’ flight formation is mimicked in this algorithm to distribute the gained information among the search agents by adopting a V-echelon communication topology. Suppose V indicates a set of n members of the flock fq, which includes a header (H) and two subsets called right-line (R) and left-line (L) considered in a V-shaped formation. The migratory birds’ aerial maneuver using the V-echelon topology is depicted in Figure 1.




3.2. Quantum-Based Navigation (Movement Strategy)


The flocks use quantum-based navigation to explore the search space, which includes a success-based population distribution (SPD) policy, two mutation strategies including “DE/quantum/I” and “DE/quantum/II,” and a qubit-crossover operator. Each flock is dynamically allocated to one of these mutation techniques throughout the optimization process, depending on the SPD policy presented in Equation (1),


  S  R m   ( t )  =  (   (    ∑   i ∈  f m        ∑   j = 1  n   τ  i j    n   )  /  |   f m   |   )  × 100  



(1)




where fm is the set of flocks that used Mm in iteration t, and 𝜏ij is equal to 1 if Mm improved aj of the i-th flock in the set fm; otherwise, 𝜏ij is equal to 0.



Quantum mutation strategies, including DE/quantum/I and DE/quantum/II, are described by Equations (2) and (3), where xi (t) denotes the position of search agent ai in the current iteration t, xV_echelon (t) is the position of the search agent followed by ai, and xbest (t) is the location of the best search agent. xj ∈ STM (t) and xj ∈ LTM (t) are randomly picked from short-term memory (STM) and long-term memory (LTM), respectively. Equation (4) is used to calculate the trial vector vH (t + 1) as a leader in the V-echelon topology, where L and U are the lower and upper bounds of the search space and Si is the quantum orientation for avian ai, which is defined in [73], and it also uses parameter adaptation mechanism based on a historical record of successful parameter [104].


    v i   (  t + 1  )  =  x  b e s t    ( t )  +  S i   ( t )  ×  (   x   V  e c h e l o n      ( t )  −  x  j ∈ L T M    ( t )   )  +     S i   ( t )  ×  (   x   V  e c h e l o n      ( t )  −  x  b e s t    ( t )   )  +  S i   ( t )  ×  (   x  j ∈ L T M    ( t )  −  x  j ∈ S T M    ( t )   )    



(2)






    v i   (  t + 1  )  =  S i   ( t )  ×  (   x  b e s t    ( t )  −  x   V  e c h e l o n      ( t )   )  +     S i   ( t )  ×  (   x i   ( t )  −  x  j ∈ L T M    ( t )  −  x  j ∈ S T M    ( t )   )    



(3)






   v H   (  t + 1  )  =  S i   ( t )  ×  x  b e s t   +  (  L +  (  U − L  )  × r a n d  (  0 , 1  )   )   



(4)







To construct trial vector ui (t + 1), the mutant vector vi (t + 1) is crossed by its parent xi (t) using Equation (5), where |ψi⟩d is a qubit-crossover probability of the d-th dimension.


   u  i d    (  t + 1  )  =  {       x  i d    (  t + 1  )  ,        |   ψ i   ⟩   d  < r a n d             v  i d    (  t + 1  )  ,        |   ψ i   ⟩   d  ≥ r a n d        



(5)







In each iteration, Equation (6) computes a qubit-crossover |ψi⟩d for each dimension of the trial vector ui (t + 1), where the parameter |ψR⟩d is a random integer that serves as a coefficient for modifying the length of the vector |ψi⟩d in the Bloch sphere.


  |   ψ i   ⟩ d   = |   ψ R   ⟩ d   ×  (  c o s  (   θ 2   )   | 0 ⟩  +  e  i φ   s i n  (   θ 2   )   | 1 ⟩   )       θ , φ = r a n d ×  π 2   



(6)







Based on the avian navigator modeling given in the previous sections, the flowchart of the quantum-based avian navigation optimizer algorithm (QANA) is presented in Figure 2.





4. The Proposed Binary QANA


According to the previous study [73], QANA outperforms other well-known optimizers in various continuous search space benchmark tests. In comparison to its competitors, QANA outperforms them in terms of exploration and exploitation abilities. Hence, the main components of the standard QANA are utilized to develop binary QANA for solving the FS problem. To develop binary QANA, initially, solutions are randomly generated in the range [0, 1]. The iterative procedure is continued after initialization until the stopping condition (maximum number of iterations) is met. In each iteration, the positions of search agents are mapped to binary using the transfer function (first approach) or by assigning a threshold for each variable (second approach). In the first approach, 20 different transfer functions from five categories, S-shaped, V-shaped, U-shaped, Z-shaped, and quadratic, are applied to map the continuous solutions of the canonical QANA to binary ones. While in the second approach, the QANA is converted to binary by simply assigning a threshold for each dimension. Both approaches are described and investigated in more detail in the following subsections.



4.1. Binary QANA Development Using Different Transfer Functions


In accordance with the literature, the transfer function has a crucial role in mapping continuous solutions to discrete space. The output of a transfer function is in the range of [0, 1]. The value of the search agent’s position determines the probability of changing the solution of the previous iteration, where the transfer function has to provide a large enough probability of changing the previous solution for a higher value of the search agent’s position. On the other hand, the computed probability of changing the solution should also be low if the value is low. Based on the above discussion, choosing a suitable transfer function will enhance the algorithm’s performance in solving the FS problem. Hence, in this study, the four versions of each transfer function S-shaped, V-shaped, U-shaped, Z-shaped, and quadratic are discussed and applied to develop different variants of binary QANA.



4.1.1. Binary QANA Using S-Shaped Transfer Function (S-BQANA)


The S-shaped transfer function first used in BPSO [76] employs the sigmoid function (S2) to map continuous position into binary form based on Equation (7),


  T  F S   (   x i d   (  t + 1  )   )  = 1 / ( 1 +   exp   −  x i d   ( t )    )  



(7)




where    x i d   ( t )    is the position of the i-th search agent in the d-th dimension at the current iteration. The new position of the search agent is then updated using Equation (8), where r is a random number in [0, 1].


   b i d   (  t + 1  )  =  {     1 ,   i f    r < T  F s   (   x i d   (  t + 1  )   )      0 ,        i f    r ≥ T  F s   (   x i d   (  t + 1  )   )        



(8)







S2 and three other variants of S-shaped transfer functions are presented visually in Figure 3 and mathematically in Table 1. As shown in Figure 3, S1 sharply grows and hits saturation as the value of the position increases substantially higher than S2, while S3 and S4 saturations begin later than S2. Hence, among these four versions of the S-shaped transfer function, S1 generates the highest probability for the same value, while S4 returns the lowest value.



The S-shaped transfer function has certain flaws. In SI algorithms, if the value is 0, the next solution remains the same as the present position. To put it another way, the 0 value indicates that the new location should not be modified. However, with a chance of 0.5, the new position in the S-shaped transfer function may be modified to 0 or 1. Also, in the SI algorithms, there is no difference between large positive or negative values, as a large absolute position value implies that the present search agent’s location is insufficient and that a significant movement is necessary to attain the ideal position. A tiny absolute value also indicates that the present search agent’s location is near the ideal solution and that only a small distance is required to reach it. However, in S-shaped transfer functions, a positive value results in a higher likelihood (probability of 1), whereas a negative value results in a probability of 0 for the following particles’ location, which is in contrast with the natural movements of SI algorithms.




4.1.2. Binary QANA Using V-Shaped Transfer Function (V-BQANA)


The V-shaped transfer function (hyperbolic) is a symmetric function introduced by Rashdi et al. [77] to develop a binary version of the gravity search algorithm named BGSA. According to Equation (9), this function calculates the probability of changing the value of each dimension based on the position of each search agent in continuous search space,


  T  F v   (   x i d   (  t + 1  )   )  =  |  t a n h  (   x i d   ( t )   )   |   



(9)




where    x i d   ( t )    indicates the position value of the i-th search agent in the d-th dimension at the current iteration. As illustrated in Equation (10), the position updating rules of V-shaped transfer functions are quite different from S-shaped transfer functions,


   b i d   (  t + 1  )  =  {        (   b i d   ( t )   )    − 1   ,   i f     r < T  F v   (   x i d   (  t + 1  )   )       b i d   ( t )  ,   i f    r ≥ T  F v   (   x i d   (  t + 1  )   )        



(10)




where    b i d   ( t )    and    x i d   ( t )    represent the binary position and continuous position value of the i-th search agent in the d-th dimension at the current iteration,      (   b i d   ( t )   )    − 1     is the complement of    b i d   ( t )   , and r denotes a random value in [0, 1]. Based on this rule, if the value obtained from the transfer function is equal to or greater than r, the value of the d-th dimension will change to the complement of the current binary position as the continuous value is high enough to change the current position. In contrast, the binary position of the d-th dimension remains constant if the value obtained from the transfer function is less than r. As can be seen in Table 1, three new transfer functions have been introduced by implementing different mathematical equations. According to Figure 3, transfer functions V1, V2, V3, and V4 provide the highest probability of switching search agents’ positions, respectively.



Unlike the S-shaped transfer functions, V-shaped transfer functions do not require search agents to take 0 or 1 values, as they let search agents with low values remain at their current positions or switch to their complements if their value is high enough. Also, the V-shaped transfer functions solve the shortcomings of the S-shaped transfer functions by assigning 0 probability of changing the position of a search agent with zero value and considering the absolute value of the continuous position in the equations to avoid assigning a probability of 0 for search agents with negative values. Moreover, in another study, Mirjalili et al. [98] evaluated and compared different versions of sigmoid and hyperbolic functions, which showed the relative superiority of hyperbolic family functions in solving the FS problem.




4.1.3. Binary QANA Using U-Shaped Transfer Function (U-BQANA)


In a recent study, Mirjalili et al. [78] proposed a new U-shaped transfer function for the PSO algorithm to map continuous solutions to binary ones. This transfer function comes with two control parameters to modify the range of exploration and exploitation. As can be seen in Figure 3, similar to the V-shaped transfer function, U-shaped is a symmetric function, which means that it assigns 0 probability of changing the position of a search agent with 0 value. Also, as the absolute value of continuous position is considered in this transfer function, there are no differences between the positive and negative values. The mathematical formulation of the U-shaped transfer function is presented in Equations (11) and (12),


  T  F u   (   x i d   (  t + 1  )   )  = α  |     (   x i d   ( t )   )   β   |   



(11)






   b i d   (  t + 1  )  =  {        (   b i d   ( t )   )    − 1   ,   i f   r < T  F u   (   x i d   (  t + 1  )   )       b i d   ( t )  ,   i f    r ≥ T  F u   (   x i d   (  t + 1  )   )        



(12)




where α and β are two control parameters for determining the slope and saturation point of the U-shaped transfer function.    b i d    and    x i d    represent the binary and continuous positions of the i-th search agent in the d-th dimension, respectively. r is a uniform random value in [0, 1].



Table 1 and Figure 3 illustrate different versions of the U-shaped transfer function labeled U1, U2, U3, and U4 that were established using different values of control parameters. The α control parameter determines the U-shaped curve’s saturation point. In contrast, β modifies the exploration range of the transfer function by changing the width of the U-shaped transfer function’s basin. Hence, it is noticeable that U4 provides a higher exploration range than other variations. It is also noticeable that all U-shaped variants offer higher exploration than V-shaped ones.




4.1.4. Binary QANA Using Z-Shaped Transfer Function (Z-BQANA)


The Z-shaped transfer function proposed by Guo et al. [79] is a symmetric transfer function applied to denote the probability that an element of the position vector will change from 0 to 1 in the BPSO algorithm. Based on this transfer function, when the continuous position value is 0, the probability of change should be low because when the particle reaches the best value, the continuous position value should be lowered to 0, and the probability of the particle’s position change should be 0. The Z-shaped transfer function is defined mathematically based on Equations (13) and (14),


  T  F z   (   x i d   (  t + 1  )   )  =   1 −  a   x i d   (  t + 1  )       



(13)






   b i d   (  t + 1  )  =  {        (   b i d   ( t )   )    − 1   ,   i f   r < T  F z   (   x i d   (  t + 1  )   )       b i d   ( t )  ,   i f   r ≥ T  F z   (   x i d   (  t + 1  )   )        



(14)




where    b i d    and    x i d    represent the binary and continuous positions of the i-th search agent in the d-th dimension, respectively, and a denotes a positive integer. A collection of Z-shaped function families is generated by modifying the value of a, the formulas and figures of which are presented in Table 2 and Figure 4, respectively. The Z-shaped transfer function is an asymmetric mapping function, as seen in Figure 4. The asymmetric mapping function essentially fulfills the absolute value to calculate the mapping probability of the particle position vector variation, resulting in a quick convergence. The function’s slope varies when the parameter Dparticle = DFunction × 15 is changed. The lesser the slope of the function, the greater Dparticle = DFunction × 15. Hence, when the value remains constant, the probability of obtaining small changes in the location of the i-th particles is greater.




4.1.5. Binary QANA Using Quadratic Transfer Function (Q-BQANA)


The quadratic transfer function proposed by Rezaee Jordehi [81] is a recent transfer function used for converting continuous solutions of the PSO to binary ones based on Equations (15) and (16),


  T  F Q   (   x i d   (  t + 1  )   )  =  {        (     x i d   ( t )    0.5    x  m a x      )   2  ,   i f    x i d   ( t )  < 0.5    x  m a x         1 ,   i f    x i d   ( t )  ≥ 0.5    x  m a x           



(15)






   b i d   (  t + 1  )  =  {        (   b i d   ( t )   )    − 1   ,   i f   r < T  F Q   (   x i d   (  t + 1  )   )       b i d   ( t )  ,   i f   r ≥ T  F Q   (   x i d   (  t + 1  )   )        



(16)




where TFQ denotes the quadratic transfer function and    b i d    and    x i d    represent the binary and continuous positions of the i-th search agent in the d-th dimension, respectively. The variable r is a random number in [0, 1]. The three other variants of the quadratic transfer function [80] are presented mathematically in Table 2 and visualized in Figure 4.





4.2. Binary QANA Development Using Variable Threshold (BQANA)


The previous subsections introduced different variants of binary QANA based on five different categories of transfer functions. Although transfer functions are widely used in the literature of FS, they impose an additional computational cost. Furthermore, transfer functions cannot provide superior results for every metaheuristic algorithm, especially for high-dimensional datasets. On the other hand, the QANA proved to be an effective problem solver in solving high-dimensional problems as it provides adequate search space coverage [73]. It is expected that the BQANA developed based on the second approach can generate suitable candidates for solving the FS problem. Hence, this section proposes the superior version of binary QANA, named BQANA, by simply using a threshold for assigning continuous solutions of the QANA into binary. In this approach, the generated continuous solutions are converted to binary form based on Equation (17),


   b i d   (  t + 1  )  =  {      1 ,     i f      x i d   ( t )  > 0.5       0 ,     i f      x i d   ( t )  ≤ 0.5        



(17)




where    b i d    is the binary solution of the i-th search agent in the d-th dimension,    x i d   ( t )    denotes the continuous position of the i-th search agent in the d-th dimension at iteration t. The general procedure of selecting effective features with BQANA is illustrated in Figure 5, where the algorithm receives the dataset with all features as input and returns an optimal feature subset as output.





5. Experimental Assessment


In this section, the performance of the proposed binary QANA approaches for solving the FS problem is experimentally assessed on 10 medical datasets of various sizes, which are described in Table 3. Also, the parameters of the algorithms used in this experiment are shown in Table 4. In the first approach, the canonical QANA is converted to binary using 20 different transfer functions from five categories of S-shaped [76], V-shaped [77], U-shaped [78], Z-shaped [79], and quadratic [80,81] to solve FS problem. The comparison results related to different variants of the first approach are tabulated in Table A1, Table A2, Table A3, Table A4 and Table A5. In the second approach, the QANA is converted to binary by assigning a threshold for each dimension to map the continuous solutions into binary without further computational cost. To select the best algorithms from the first approach, one algorithm is considered representative of each transfer function category. Then, the five selected algorithms are compared against the BQANA developed based on the second approach in Table 5. Ultimately, Table 6 presents a comparison between the proposed BQANA and nine well-known metaheuristic algorithms introduced in the literature, including binary particle swarm optimization (BPSO) [82], ant colony optimization (ACO) [83], binary deferential evolution (BDE) [84], binary bat algorithm (BBA) [85], feature selection based on whale optimization algorithm (FSWOA) [11], binary ant lion optimizer (BALO) [86], binary dragonfly algorithm (BDA) [87], quadratic binary Harris hawk optimization (QBHHO) [80], and binary atom search optimization (BASO) [88]. In Table 5, Table 6, Table A1, Table A2, Table A3, Table A4 and Table A5, the bold values indicate the winning algorithms, and at the end of each table, the overall comparisons are shown based on the numbers of the wins (W), ties (T), and losses (L).



The comparison tables show the average fitness, minimum fitness, average classification accuracy, maximum classification accuracy, average number of selected features, and minimum number of selected features obtained by each algorithm. The average number of selected features by each algorithm from different datasets with various sizes is visualized in Figure 6 and Figure 7. Also, as classification accuracy is the most important criterion in medical datasets, the boxplot results of 10 different algorithms are exhibited in Figure 8. Furthermore, the convergence curves of fitness values obtained during the optimization process are visualized in Figure 9. Ultimately, the nonparametric Friedman test [105] was used to rank the significance of the algorithms based on their performance in minimizing the fitness, as is shown in Table 7 and Figure 10.



5.1. Medical Datasets Description


In this study, 10 medical benchmark datasets, mostly from the UCI machine learning repository, are utilized to evaluate the performance of the proposed BQANA and comparative algorithms in solving the FS problem. The benchmark datasets utilized in the experimental evaluation of this study are on an ordinal scale, as common in the literature. Datasets with non-ordinal features can be encoded in the pre-processing stage [106]. Table 3 provides the specifics of the utilized datasets in terms of the number of samples, total number of features, number of classes, and size that is considered small if Nf < 300, medium if 300 ≤ Nf < 1000, and considered large if Nf ≥ 1000, where Nf is the number of features. To avoid overfitting problems, the K-fold cross-validation method divides datasets into k folds where kfold = 10. In this method, the classifier uses one fold as the testing set and k − 1 folds as the training sets.



The Pima Indian Diabetes dataset aims to diagnose diabetes based on medical examination of females at least 21 years old and being tested for diabetes [107]. The HeartEW dataset [108] predicts the absence or presence of heart disease based on data gathered from 270 samples, 120 samples with a heart problem, and the remaining are healthy. The Lymphography dataset [108] has 18 predictor features and 148 cases, with four distinct values for the class label. The aim of diagnosing cardiac single proton emission computed tomography (SPECT) heart dataset is to discriminate between the normal and abnormal function of patients’ hearts using 267 image sets. The PenglungEW is a medium dataset consisting of 73 samples and 325 features with seven different classes. The Parkinson’s dataset describes diagnosing healthy persons from those with Parkinson’s disease. This dataset is built up of various biological voice measurements with 22 features. The Colon dataset aims to classify tissues as cancerous or normal based on data gathered from 62 colon tissue samples with 2000 genes [109]. There are 83 samples in the small round blue-cell tumor (SRBCT) dataset, each containing 2308 genes. The four classes of this dataset are the Ewing family of tumors (EWS), Burkitt lymphoma (BL) tumors, rhabdomyosarcoma (RMS) tumors, and neuroblastoma (NB) tumors [110]. The data for the Leukemia dataset came from publicly accessible microarray gene data [111]. The bone marrow expressions of 72 samples with 7128 genes are included. The dataset contains two different kinds of Leukemia classifications. The prostate tumor [112] is the largest dataset used in our experiments that contains 10,509 genes from 52 prostate cancers and 50 non-tumor prostate tissues.




5.2. Parameter Settings


In this study, the error rate is calculated using the k-nearest neighbor (KNN) algorithm with Euclidean distance and k = 5 to evaluate the effectiveness of selected feature subsets. The objectives of this study are evaluated by a fitness function presented in Equation (18), where CE denotes the classification error, α is the significance of classification quality, Nsf and Ntf are the numbers of selected features, and the total features of the dataset, respectively. As classification accuracy is the most important factor for medical datasets, we considered α = 0.99 for this study.


  F i t n e s s = α × C E +  (  1 − α  )     N  s f      N  t f      



(18)







To verify that the comparisons are accurate and fair, all experiments are conducted 20 times independently on a laptop with an Intel Core i7-10750H CPU and 24.0 GB of RAM using MATLAB R2022a. The maximum number of iterations (MaxIt) and the population size (N) were set to 300 and 20, respectively. Furthermore, the competing algorithms’ parameters were adjusted to the same values as the stated settings in their works, shown in Table 4.





6. Discussion


Table A1, Table A2, Table A3, Table A4 and Table A5 show the comparison results of applying different transfer functions to develop different binary versions of the QANA based on the first approach. The results indicate that S4, V2, U4, Z1, and Q3 transfer functions provide superior results compared to other family members. Table 5 compares the results of five selected algorithms developed by the first approach with the BQANA developed based on the second approach. Clearly, the BQANA developed using the second approach overcomes the binary algorithms belonging to the first approach. Table 6 further investigates the proposed BQANA’s effectiveness by comparing it with nine well-known optimization algorithms of the feature selection domain. The results show that the BQANA achieves superior results in terms of average fitness for most of the datasets. Regarding the BQANA’s results shown in Figure 6, it has an average performance in minimizing the number of features, while turning to Figure 7, it is clear that the BQANA and the QBHHO provide the minimum number of features for most of the datasets among the competitors. The boxplots in Figure 8 illustrate the spread of the classification accuracy distribution obtained by each algorithm, in which the BQANA is predominantly the superior algorithm in terms of obtaining the highest accuracy and normal distribution.



Convergence curves plotted in Figure 9 generally suggest that the BQANA has the fastest convergence toward optimum solutions compared to comparative algorithms for most cases. Furthermore, it is noticeable that the BQANA consistently improves the solutions until the final iterations. Overall, the BQANA is fairly scalable as it can find better feature subsets for different scales of medical datasets by maintaining a balance between exploration and exploitation. Based on the results of the Friedman test reported in Table 7, the BQANA is superior to comparative algorithms in feature selection from different scales of medical data. For further statistical evaluation, Figure 10 provides the exploratory data analysis in a radar chart format. It is noticeable in the radar chart that the BQANA surrounds the center of the radar chart for most of the datasets, which shows the superiority of the BQANA over the comparative algorithms.




7. Conclusions


The advancement of information storage technologies in medical science has resulted in the generation of massive amounts of raw datasets with many irrelevant or redundant features. Selecting desirable features will reduce the computational costs and improve the algorithms’ accuracy in the data-driven decision-maker software. Although many metaheuristic algorithms have been developed to select effective features, a few can maintain their performance when the number of features increases. This paper introduces an efficient binary version of the quantum-based avian navigation optimizer algorithm (QANA), called BQANA, to select effective features from various scales of medical datasets. The study consists of two approaches for mapping continuous solutions of QANA into binary. In the first approach, 20 different transfer functions from five distinct categories, S-shaped, V-shaped, U-shaped, Z-shaped, and quadratic, were applied to develop different variants of the binary QANA. According to the results, transfer functions cannot generate optimal binary solutions for every metaheuristic algorithm in the FS domain. Moreover, using transfer functions imposes additional computational costs on the optimization algorithms.



In the second approach, a simple threshold with minimum computational costs is used to assign continuous QANA solutions into binary ones to develop the BQANA. All variants were experimentally evaluated on 10 medical datasets to identify the winner variant. The experimental results reveal that the BQANA developed by the second approach generates better solutions than the other variants. Then, the results of the BQANA were compared with results obtained from nine well-known metaheuristic algorithms: BPSO, ACO, BDE, BBA, FSWOA, BALO, BDA, QBHHO, and BASO. Furthermore, the Friedman test was applied to rank the algorithms based on their performance. The experimental results and statistical analysis revealed that the BQANA developed by the second approach outperforms comparative algorithms in selecting effective feature subsets from different scales of medical datasets. In the future, the BQANA can be enhanced by improving its search strategy and using novel and more effective transfer functions. Moreover, the BQANA can be applied to solve real-world applications and other discreet problems such as nurse scheduling.
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Appendix A


Table A1, Table A2, Table A3, Table A4 and Table A5 present the comparison results between different versions of binary QANA developed by the first approach in each transfer function family.
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Table A1. The comparison results between different versions of S-BQANA.






Table A1. The comparison results between different versions of S-BQANA.





	
Datasets

	
Metrics

	
S1

	
S2

	
S3

	
S4






	
Pima

	
Fitness

	
Avg

	
0.2353

	
0.2357

	
0.2374

	
0.2386




	
Min

	
0.2318

	
0.2305

	
0.2318

	
0.2343




	
Accuracy

	
Avg

	
76.8744

	
76.7920

	
76.6131

	
76.5053




	
Max

	
77.2180

	
77.3445

	
77.2215

	
76.9617




	
HeartEW

	
Fitness

	
Avg

	
0.1479

	
0.1504

	
0.1510

	
0.1493




	
Min

	
0.1382

	
0.1418

	
0.1424

	
0.1395




	
Accuracy

	
Avg

	
85.5926

	
85.3148

	
85.1481

	
85.3333




	
Max

	
86.6667

	
86.2963

	
85.9259

	
86.2963




	
Lymphography

	
Fitness

	
Avg

	
0.1314

	
0.1332

	
0.1361

	
0.1434




	
Min

	
0.1204

	
0.1218

	
0.1136

	
0.1324




	
Accuracy

	
Avg

	
87.3667

	
87.1405

	
86.8190

	
86.0595




	
Max

	
88.5714

	
88.4286

	
89.1429

	
87.1905




	
SPECT Heart

	
Fitness

	
Avg

	
0.2496

	
0.2504

	
0.2462

	
0.2503




	
Min

	
0.2390

	
0.2359

	
0.2321

	
0.2415




	
Accuracy

	
Avg

	
75.3540

	
75.2158

	
75.6211

	
75.1709




	
Max

	
76.4530

	
76.7236

	
77.1510

	
76.0969




	
PenglungEW

	
Fitness

	
Avg

	
0.1084

	
0.1042

	
0.1035

	
0.1014




	
Min

	
0.0984

	
0.0948

	
0.0973

	
0.0830




	
Accuracy

	
Avg

	
89.7589

	
90.0804

	
90.1071

	
90.2946




	
Max

	
90.7143

	
91.0714

	
90.7143

	
92.1429




	
Parkinson

	
Fitness

	
Avg

	
0.2538

	
0.2489

	
0.2437

	
0.2341




	
Min

	
0.2453

	
0.2357

	
0.2191

	
0.2160




	
Accuracy

	
Avg

	
75.1071

	
75.4697

	
75.9318

	
76.8834




	
Max

	
75.9281

	
76.8491

	
78.4175

	
78.7018




	
Colon

	
Fitness

	
Avg

	
0.1088

	
0.1034

	
0.1034

	
0.1012




	
Min

	
0.0998

	
0.0978

	
0.0978

	
0.0949




	
Accuracy

	
Avg

	
89.7381

	
90.1905

	
90.1310

	
90.3214




	
Max

	
90.7143

	
90.7143

	
90.7143

	
90.9524




	
SRBCT

	
Fitness

	
Avg

	
0.0211

	
0.0168

	
0.0165

	
0.0129




	
Min

	
0.0059

	
0.0060

	
0.0055

	
0.0053




	
Accuracy

	
Avg

	
98.5764

	
98.9306

	
98.8889

	
99.2361




	
Max

	
100.00

	
100.00

	
100.00

	
100.00




	
Leukemia

	
Fitness

	
Avg

	
0.1048

	
0.1044

	
0.1021

	
0.1010




	
Min

	
0.0820

	
0.0980

	
0.0973

	
0.0884




	
Accuracy

	
Avg

	
90.1250

	
90.0804

	
90.2500

	
90.3393




	
Max

	
92.3214

	
90.7143

	
90.7143

	
91.6071




	
Prostate Tumor

	
Fitness

	
Avg

	
0.1203

	
0.1199

	
0.1227

	
0.1219




	
Min

	
0.1050

	
0.1106

	
0.1110

	
0.1044




	
Accuracy

	
Avg

	
88.5909

	
88.5227

	
88.1727

	
88.2318




	
Max

	
90.1818

	
89.4545

	
89.3636

	
90.0000




	
Overall Results

	
W|T|L

	
2|0|8

	
1|0|9

	
1|0|9

	
4|0|6
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Table A2. The comparison results between different versions of V-BQANA.






Table A2. The comparison results between different versions of V-BQANA.





	
Datasets

	
Metrics

	
V1

	
V2

	
V3

	
V4






	
Pima

	
Fitness

	
Avg

	
0.2386

	
0.2389

	
0.2390

	
0.2382




	
Min

	
0.2330

	
0.2332

	
0.2344

	
0.2343




	
Accuracy

	
Avg

	
76.4616

	
76.4863

	
76.4431

	
76.5175




	
Max

	
77.0933

	
76.9532

	
76.8319

	
76.9600




	
HeartEW

	
Fitness

	
Avg

	
0.1518

	
0.1513

	
0.1513

	
0.1521




	
Min

	
0.1411

	
0.1432

	
0.1424

	
0.1439




	
Accuracy

	
Avg

	
85.0926

	
85.1111

	
85.1111

	
85.0370




	
Max

	
86.2963

	
85.9259

	
85.9259

	
85.9259




	
Lymphography

	
Fitness

	
Avg

	
0.1422

	
0.1425

	
0.1457

	
0.1412




	
Min

	
0.1263

	
0.1247

	
0.1382

	
0.1252




	
Accuracy

	
Avg

	
86.1524

	
86.1048

	
85.7857

	
86.2667




	
Max

	
87.8571

	
87.9048

	
86.5238

	
87.9048




	
SPECT Heart

	
Fitness

	
Avg

	
0.2468

	
0.2457

	
0.2499

	
0.2465




	
Min

	
0.2225

	
0.2306

	
0.2341

	
0.2188




	
Accuracy

	
Avg

	
75.4964

	
75.6019

	
75.1952

	
75.5306




	
Max

	
77.9345

	
77.1652

	
76.7236

	
78.2621




	
PenglungEW

	
Fitness

	
Avg

	
0.1030

	
0.0993

	
0.1001

	
0.0998




	
Min

	
0.0946

	
0.0842

	
0.0857

	
0.0825




	
Accuracy

	
Avg

	
90.0536

	
90.4286

	
90.3839

	
90.4196




	
Max

	
90.8929

	
91.9643

	
91.7857

	
92.1429




	
Parkinson

	
Fitness

	
Avg

	
0.2115

	
0.2200

	
0.2148

	
0.2160




	
Min

	
0.1805

	
0.1882

	
0.1831

	
0.1908




	
Accuracy

	
Avg

	
78.9557

	
78.1005

	
78.6849

	
78.6106




	
Max

	
82.0000

	
81.4895

	
81.7491

	
81.0912




	
Colon

	
Fitness

	
Avg

	
0.1008

	
0.0994

	
0.1030

	
0.1022




	
Min

	
0.0849

	
0.0852

	
0.0874

	
0.0970




	
Accuracy

	
Avg

	
90.2976

	
90.4286

	
90.0714

	
90.1429




	
Max

	
91.9048

	
91.9048

	
91.6667

	
90.4762




	
SRBCT

	
Fitness

	
Avg

	
0.0135

	
0.0120

	
0.0121

	
0.0097




	
Min

	
0.0031

	
0.0038

	
0.0030

	
0.0026




	
Accuracy

	
Avg

	
99.0694

	
99.2222

	
99.2083

	
99.4236




	
Max

	
100.00

	
100.00

	
100.00

	
100.00




	
Leukemia

	
Fitness

	
Avg

	
0.0974

	
0.1000

	
0.0982

	
0.0977




	
Min

	
0.0837

	
0.0827

	
0.0570

	
0.0757




	
Accuracy

	
Avg

	
90.6071

	
90.3661

	
90.5179

	
90.5804




	
Max

	
91.7857

	
92.1429

	
94.4643

	
92.8571




	
Prostate Tumor

	
Fitness

	
Avg

	
0.1206

	
0.1201

	
0.1152

	
0.1175




	
Min

	
0.1030

	
0.1074

	
0.0876

	
0.1004




	
Accuracy

	
Avg

	
88.2909

	
88.2864

	
88.7591

	
88.5864




	
Max

	
90.0909

	
89.5455

	
91.4545

	
90.3636




	
Overall Results

	
W|T|L

	
2|0|8

	
3|1|6

	
1|1|8

	
3|0|7











[image: Table] 





Table A3. The comparison results between different versions of U-BQANA.






Table A3. The comparison results between different versions of U-BQANA.





	
Datasets

	
Metrics

	
U1

	
U2

	
U3

	
U4






	
Pima

	
Fitness

	
Avg

	
0.2399

	
0.2386

	
0.2377

	
0.2393




	
Min

	
0.2345

	
0.2331

	
0.2292

	
0.2318




	
Accuracy

	
Avg

	
76.3406

	
76.4590

	
76.5948

	
76.3969




	
Max

	
76.8267

	
77.0813

	
77.4812

	
77.0933




	
HeartEW

	
Fitness

	
Avg

	
0.1513

	
0.1514

	
0.1514

	
0.1493




	
Min

	
0.1432

	
0.1418

	
0.1453

	
0.1432




	
Accuracy

	
Avg

	
85.1481

	
85.1296

	
85.0926

	
85.2778




	
Max

	
85.9259

	
86.2963

	
85.5556

	
85.9259




	
Lymphography

	
Fitness

	
Avg

	
0.1415

	
0.1423

	
0.1419

	
0.1423




	
Min

	
0.1267

	
0.1258

	
0.1252

	
0.1258




	
Accuracy

	
Avg

	
86.2024

	
86.1524

	
86.1476

	
86.1690




	
Max

	
87.7619

	
87.8571

	
87.8571

	
87.8571




	
SPECT Heart

	
Fitness

	
Avg

	
0.2474

	
0.2481

	
0.2466

	
0.2468




	
Min

	
0.2326

	
0.2328

	
0.2374

	
0.2260




	
Accuracy

	
Avg

	
75.4444

	
75.3490

	
75.5221

	
75.4623




	
Max

	
76.7806

	
76.8519

	
76.4815

	
77.5356




	
PenglungEW

	
Fitness

	
Avg

	
0.0994

	
0.1004

	
0.0991

	
0.1000




	
Min

	
0.0827

	
0.0880

	
0.0833

	
0.0935




	
Accuracy

	
Avg

	
90.4286

	
90.3304

	
90.4375

	
90.3393




	
Max

	
92.1429

	
91.6071

	
91.9643

	
90.8929




	
Parkinson

	
Fitness

	
Avg

	
0.2163

	
0.2102

	
0.2082

	
0.2011




	
Min

	
0.2003

	
0.1903

	
0.1955

	
0.1865




	
Accuracy

	
Avg

	
78.4618

	
79.0351

	
79.2160

	
79.9472




	
Max

	
80.0456

	
80.9509

	
80.3982

	
81.4877




	
Colon

	
Fitness

	
Avg

	
0.1003

	
0.1004

	
0.0975

	
0.0995




	
Min

	
0.0945

	
0.0851

	
0.0826

	
0.0916




	
Accuracy

	
Avg

	
90.3571

	
90.3333

	
90.6310

	
90.4167




	
Max

	
90.9524

	
91.9048

	
92.1429

	
91.1905




	
SRBCT

	
Fitness

	
Avg

	
0.0112

	
0.0110

	
0.0084

	
0.0101




	
Min

	
0.0014

	
0.0035

	
0.0005

	
0.0021




	
Accuracy

	
Avg

	
99.2361

	
99.3125

	
99.4931

	
99.3819




	
Max

	
100.00

	
100.00

	
100.00

	
100.00




	
Leukemia

	
Fitness

	
Avg

	
0.0986

	
0.1001

	
0.0976

	
0.0960




	
Min

	
0.0863

	
0.0880

	
0.0827

	
0.0690




	
Accuracy

	
Avg

	
90.4821

	
90.3214

	
90.5804

	
90.7143




	
Max

	
91.7857

	
91.6071

	
91.7857

	
93.3929




	
Prostate Tumor

	
Fitness

	
Avg

	
0.1164

	
0.1169

	
0.1186

	
0.1147




	
Min

	
0.0982

	
0.0972

	
0.0977

	
0.0984




	
Accuracy

	
Avg

	
88.6045

	
88.5455

	
88.4136

	
88.7136




	
Max

	
90.2727

	
90.4545

	
90.3636

	
90.0909




	
Overall Results

	
W|T|L

	
1|0|9

	
0|0|10

	
3|0|7

	
5|0|5
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Table A4. The comparison results between different versions of Z-BQANA.






Table A4. The comparison results between different versions of Z-BQANA.





	
Datasets

	
Metrics

	
Z1

	
Z2

	
Z3

	
Z4






	
Pima

	
Fitness

	
Avg

	
0.2350

	
0.2350

	
0.2345

	
0.2331




	
Min

	
0.2281

	
0.2279

	
0.2319

	
0.2305




	
Accuracy

	
Avg

	
76.8837

	
76.9140

	
76.9554

	
77.0729




	
Max

	
77.4675

	
77.4846

	
77.2283

	
77.4778




	
HeartEW

	
Fitness

	
Avg

	
0.1496

	
0.1472

	
0.1435

	
0.1465




	
Min

	
0.1395

	
0.1382

	
0.1387

	
0.1380




	
Accuracy

	
Avg

	
85.4074

	
85.6852

	
85.9630

	
85.7222




	
Max

	
86.2963

	
86.6667

	
86.2963

	
86.6667




	
Lymphography

	
Fitness

	
Avg

	
0.1273

	
0.1366

	
0.1313

	
0.1328




	
Min

	
0.1049

	
0.1138

	
0.1132

	
0.1120




	
Accuracy

	
Avg

	
87.7024

	
86.8548

	
87.4071

	
87.1881




	
Max

	
89.9048

	
89.2381

	
89.2381

	
89.1905




	
SPECT Heart

	
Fitness

	
Avg

	
0.2450

	
0.2491

	
0.2411

	
0.2411




	
Min

	
0.2288

	
0.2285

	
0.2167

	
0.2161




	
Accuracy

	
Avg

	
75.7543

	
75.3796

	
76.1197

	
76.1830




	
Max

	
77.2080

	
77.2365

	
78.6182

	
78.6325




	
PenglungEW

	
Fitness

	
Avg

	
0.1012

	
0.1002

	
0.0992

	
0.0985




	
Min

	
0.0805

	
0.0804

	
0.0811

	
0.0848




	
Accuracy

	
Avg

	
90.3929

	
90.5089

	
90.6339

	
90.6875




	
Max

	
92.3214

	
92.3214

	
92.3214

	
91.9643




	
Parkinson

	
Fitness

	
Avg

	
0.2308

	
0.2369

	
0.2355

	
0.2363




	
Min

	
0.1949

	
0.2082

	
0.1931

	
0.1935




	
Accuracy

	
Avg

	
77.2476

	
76.6975

	
76.7999

	
76.7173




	
Max

	
80.8175

	
79.5018

	
80.9579

	
80.9421




	
Colon

	
Fitness

	
Avg

	
0.1007

	
0.0995

	
0.1019

	
0.1006




	
Min

	
0.0874

	
0.0781

	
0.0827

	
0.0855




	
Accuracy

	
Avg

	
90.4405

	
90.4762

	
90.3452

	
90.4524




	
Max

	
91.6667

	
92.6190

	
92.1429

	
92.1429




	
SRBCT

	
Fitness

	
Avg

	
0.0116

	
0.0115

	
0.0132

	
0.0152




	
Min

	
0.0045

	
0.0044

	
0.0041

	
0.0038




	
Accuracy

	
Avg

	
99.3750

	
99.3750

	
99.2431

	
99.0347




	
Max

	
100.00

	
100.00

	
100.00

	
100.00




	
Leukemia

	
Fitness

	
Avg

	
0.0969

	
0.1003

	
0.0984

	
0.0983




	
Min

	
0.0825

	
0.0830

	
0.0716

	
0.0836




	
Accuracy

	
Avg

	
90.8304

	
90.4732

	
90.6964

	
90.6875




	
Max

	
92.1429

	
92.1429

	
93.2143

	
91.9643




	
Prostate Tumor

	
Fitness

	
Avg

	
0.1195

	
0.1178

	
0.1146

	
0.1178




	
Min

	
0.1014

	
0.1004

	
0.1004

	
0.1005




	
Accuracy

	
Avg

	
88.5409

	
88.7182

	
89.0364

	
88.6864




	
Max

	
90.2727

	
90.3636

	
90.3636

	
90.3636




	
Overall Results

	
W|T|L

	
3|0|7

	
2|0|8

	
2|1|8

	
2|1|7
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Table A5. The comparison results between different versions of Q-BQANA.
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Datasets

	
Metrics

	
Q1

	
Q2

	
Q3

	
Q4






	
Pima

	
Fitness

	
Avg

	
0.2392

	
0.2390

	
0.2380

	
0.2385




	
Min

	
0.2331

	
0.2318

	
0.2319

	
0.2344




	
Accuracy

	
Avg

	
76.4142

	
76.4458

	
76.4997

	
76.4923




	
Max

	
76.9549

	
77.0933

	
77.0762

	
76.8267




	
HeartEW

	
Fitness

	
Avg

	
0.1522

	
0.1528

	
0.1509

	
0.1540




	
Min

	
0.1468

	
0.1395

	
0.1416

	
0.1468




	
Accuracy

	
Avg

	
85.0556

	
84.9815

	
85.0741

	
84.8333




	
Max

	
85.5556

	
86.2963

	
85.9259

	
85.5556




	
Lymphography

	
Fitness

	
Avg

	
0.1438

	
0.1416

	
0.1432

	
0.1428




	
Min

	
0.1316

	
0.1252

	
0.1303

	
0.1202




	
Accuracy

	
Avg

	
85.9619

	
86.1524

	
85.9952

	
86.1143




	
Max

	
87.1429

	
87.8571

	
87.2857

	
88.4762




	
SPECT Heart

	
Fitness

	
Avg

	
0.2474

	
0.2441

	
0.2453

	
0.2464




	
Min

	
0.2287

	
0.2112

	
0.2326

	
0.2347




	
Accuracy

	
Avg

	
75.4345

	
75.6916

	
75.5648

	
75.5221




	
Max

	
77.1795

	
79.0313

	
76.8234

	
76.7949




	
PenglungEW

	
Fitness

	
Avg

	
0.1015

	
0.0982

	
0.0977

	
0.0991




	
Min

	
0.0958

	
0.0684

	
0.0828

	
0.0829




	
Accuracy

	
Avg

	
90.2054

	
90.4821

	
90.5357

	
90.4821




	
Max

	
90.7143

	
93.5714

	
91.9643

	
92.1429




	
Parkinson

	
Fitness

	
Avg

	
0.2256

	
0.2109

	
0.2049

	
0.2188




	
Min

	
0.1948

	
0.1888

	
0.1838

	
0.1998




	
Accuracy

	
Avg

	
77.6659

	
78.9870

	
79.6068

	
78.3081




	
Max

	
80.8175

	
81.2193

	
81.7456

	
80.0281




	
Colon

	
Fitness

	
Avg

	
0.1008

	
0.0994

	
0.0947

	
0.1017




	
Min

	
0.0829

	
0.0783

	
0.0809

	
0.0943




	
Accuracy

	
Avg

	
90.2738

	
90.3571

	
90.7976

	
90.2262




	
Max

	
92.1429

	
92.3810

	
92.1429

	
90.9524




	
SRBCT

	
Fitness

	
Avg

	
0.0130

	
0.0060

	
0.0047

	
0.0089




	
Min

	
0.0026

	
0.0021

	
0.0018

	
0.0024




	
Accuracy

	
Avg

	
99.1389

	
99.7153

	
99.8333

	
99.5417




	
Max

	
100.00

	
100.00

	
100.00

	
100.00




	
Leukemia

	
Fitness

	
Avg

	
0.1009

	
0.0969

	
0.0915

	
0.0970




	
Min

	
0.0875

	
0.0844

	
0.0702

	
0.0844




	
Accuracy

	
Avg

	
90.2946

	
90.6071

	
91.0714

	
90.6696




	
Max

	
91.6071

	
91.7857

	
93.2143

	
91.7857




	
Prostate Tumor

	
Fitness

	
Avg

	
0.1176

	
0.1126

	
0.1113

	
0.1201




	
Min

	
0.1032

	
0.0999

	
0.0882

	
0.1040




	
Accuracy

	
Avg

	
88.5773

	
88.9864

	
89.0818

	
88.3364




	
Max

	
90.0909

	
90.1818

	
91.2727

	
90.0000




	
Overall Results

	
W|T|L

	
1|0|9

	
2|0|8

	
6|0|4

	
1|0|9
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Figure 1. The V-shaped formation consists of a header (H), left-line (L), and right-line (R) [73]. 
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Figure 2. Flowchart of the QANA. 
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Figure 3. The S-shaped, V-shaped, and U-shaped transfer functions. 






Figure 3. The S-shaped, V-shaped, and U-shaped transfer functions.



[image: Mathematics 10 02770 g003]







[image: Mathematics 10 02770 g004 550] 





Figure 4. The Z-shaped and quadratic transfer functions. 
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Figure 5. Flowchart of the proposed BQANA using a variable threshold. 
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Figure 6. The average number of features selected by BQANA and comparative algorithms on small datasets. 
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Figure 7. The average number of features selected by BQANA and comparative algorithms on medium and large datasets. 
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Figure 8. Boxplot of accuracy rate obtained by BQANA and comparative algorithms. 
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Figure 9. Convergence behavior of the BQANA and comparative algorithms. 
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Figure 10. The rank of BQANA and comparative algorithms for feature selection problems. 
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Table 1. The formulation of S-shaped, V-shaped, and U-shaped family transfer functions.
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	No.
	S-Shaped Transfer Functions
	No.
	V-Shaped Transfer Functions
	No.
	U-Shaped Transfer Functions





	S1
	   T  F S   ( x )  = 1 / ( 1 +   exp   − 2 x   )   
	V1
	   T  F V   ( x )  =  |  e r f  (     π   2  x  )   |    
	U1
	   T  F U   ( x )  = α  |   x  1.5    |    



	S2
	   T  F S   ( x )  = 1 / ( 1 +   exp   − x   )   
	V2
	   T  F V   ( x )  =  |  t a n   h  ( x )   |    
	U2
	   T  F U   ( x )  = α  |   x 2   |    



	S3
	   T  F S   ( x )  = 1 / ( 1 +   exp   − x / 2   )   
	V3
	   T  F V   ( x )  =  |   ( x )  /   1 +  x 2     |    
	U3
	   T  F U   ( x )  = α  |   x 3   |    



	S4
	   T  F S   ( x )  = 1 / ( 1 +   exp   − x / 3   )   
	V4
	   T  F V   ( x )  =  |   2 π  a r c t a n  (   π 2  x  )   |    
	U4
	   T  F U   ( x )  = α  |   x 4   |    
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Table 2. The formulation of Z-shaped and quadratic family transfer functions.
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	No.
	Z-Shaped Transfer Functions
	No.
	Quadratic Transfer Functions





	Z1
	   T  F Z   ( x )  =   1 −  2 x      
	Q1
	   T  F Q   ( x )  =  {       |   x   (  0.5    x  m a x      )     |  ,                   i f   x < 0.5    x  m a x           1                       ,                   i f   x ≥ 0.5    x  m a x             



	Z2
	   T  F Z   ( x )  =   1 −  5 x      
	Q2
	   T  F Q   ( x )  =  {         (   x   (  0.5    x  m a x      )     )   2  ,                   i f   x < 0.5    x  m a x           1                         ,                   i f   x ≥ 0.5    x  m a x             



	Z3
	   T  F Z   ( x )  =   1 −  8 x      
	Q3
	   T  F Q   ( x )  =  {         (   x   (  0.5    x  m a x      )     )   3  ,                   i f   x < 0.5    x  m a x           1                         ,                   i f   x ≥ 0.5    x  m a x             



	Z4
	   T  F Z   ( x )  =   1 −   20  x      
	Q4
	   T  F Q   ( x )  =  {         (   x   (  0.5    x  m a x      )     )     1 2    ,                   i f   x < 0.5    x  m a x           1                       ,                     i f   x ≥ 0.5    x  m a x             
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Table 3. Datasets specifications.
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	No.
	Medical Datasets
	No. Samples
	No. Features
	Classes
	Size





	1
	Pima
	768
	8
	2
	Small



	2
	HeartEw
	270
	13
	2
	Small



	3
	Lymphography
	148
	18
	4
	Small



	4
	SPECT Heart
	267
	22
	2
	Small



	5
	PenglungEW
	73
	325
	7
	Medium



	6
	Parkinson
	756
	754
	2
	Medium



	7
	Colon
	62
	2000
	2
	Large



	8
	SRBCT
	83
	2308
	4
	Large



	9
	Leukemia
	72
	7129
	4
	Large



	10
	Prostate tumor
	102
	10509
	2
	Large
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Table 4. Parameters of the algorithms.
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	Algorithm
	Parameter Settings





	BPSO
	c1 = c2 = 2, w = [0.9 to 0.4].



	ACO
	τ = 1, α = 1, ρ = 0.2, β = 0.1, η = 1.



	BDE
	Cr = 0.9.



	BBA
	A = 0.9, r = 0.9, Qmin = 0, Qmax = 2.



	FSWOA
	a is linearly decreased from 2 to 0, a2 = is linearly decreased from −1 to −2, b = 1.



	BALO
	V-shaped transfer function.



	BDA
	Dmax = 6.



	QBHHO
	β = 1.5, Q4 transfer function, and xmax = 5.



	BASO
	α = 50, β = 0.2.



	BQANA
	The number of flocks (k) = 2, LTM size (K′) = 2, and STM size (K″) = 10.
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Table 5. The comparison between the BQANA and winners of each family.
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Datasets

	
Metrics

	
S4

	
V2

	
U4

	
Z1

	
Q3

	
BQANA






	
Pima

	
Fitness

	
Avg

	
0.2386

	
0.2389

	
0.2393

	
0.2350

	
0.2380

	
0.2316




	
Min

	
0.2343

	
0.2332

	
0.2318

	
0.2281

	
0.2319

	
0.2291




	
Accuracy

	
Avg

	
76.5053

	
76.4863

	
76.3969

	
76.8837

	
76.4997

	
77.2076




	
Max

	
76.9617

	
76.9532

	
77.0933

	
77.4675

	
77.0762

	
77.4863




	
HeartEW

	
Fitness

	
Avg

	
0.1493

	
0.1513

	
0.1493

	
0.1496

	
0.1509

	
0.1384




	
Min

	
0.1395

	
0.1432

	
0.1432

	
0.1395

	
0.1416

	
0.1329




	
Accuracy

	
Avg

	
85.3333

	
85.1111

	
85.2778

	
85.4074

	
85.0741

	
86.4259




	
Max

	
86.2963

	
85.9259

	
85.9259

	
86.2963

	
85.9259

	
87.0370




	
Lymphography

	
Fitness

	
Avg

	
0.1434

	
0.1425

	
0.1423

	
0.1273

	
0.1432

	
0.1128




	
Min

	
0.1324

	
0.1247

	
0.1258

	
0.1049

	
0.1303

	
0.1008




	
Accuracy

	
Avg

	
86.0595

	
86.1048

	
86.1690

	
87.7024

	
85.9952

	
89.1310




	
Max

	
87.1905

	
87.9048

	
87.8571

	
89.9048

	
87.2857

	
90.3810




	
SPECT Heart

	
Fitness

	
Avg

	
0.2503

	
0.2457

	
0.2468

	
0.2450

	
0.2453

	
0.2231




	
Min

	
0.2415

	
0.2306

	
0.2260

	
0.2288

	
0.2326

	
0.2038




	
Accuracy

	
Avg

	
75.1709

	
75.6019

	
75.4623

	
75.7543

	
75.5648

	
77.8725




	
Max

	
76.0969

	
77.1652

	
77.5356

	
77.2080

	
76.8234

	
79.7863




	
PenglungEW

	
Fitness

	
Avg

	
0.1014

	
0.0993

	
0.1000

	
0.1012

	
0.0977

	
0.0765




	
Min

	
0.0830

	
0.0842

	
0.0935

	
0.0805

	
0.0828

	
0.0545




	
Accuracy

	
Avg

	
90.2946

	
90.4286

	
90.3393

	
90.3929

	
90.5357

	
92.6429




	
Max

	
92.1429

	
91.9643

	
90.8929

	
92.3214

	
91.9643

	
94.8214




	
Parkinson

	
Fitness

	
Avg

	
0.2341

	
0.2200

	
0.2011

	
0.2308

	
0.2049

	
0.1604




	
Min

	
0.2160

	
0.1882

	
0.1865

	
0.1949

	
0.1838

	
0.1279




	
Accuracy

	
Avg

	
76.8834

	
78.1005

	
79.9472

	
77.2476

	
79.6068

	
83.9765




	
Max

	
78.7018

	
81.4895

	
81.4877

	
80.8175

	
81.7456

	
87.1807




	
Colon

	
Fitness

	
Avg

	
0.1012

	
0.0994

	
0.0995

	
0.1007

	
0.0947

	
0.0775




	
Min

	
0.0949

	
0.0852

	
0.0916

	
0.0874

	
0.0809

	
0.0481




	
Accuracy

	
Avg

	
90.3214

	
90.4286

	
90.4167

	
90.4405

	
90.7976

	
92.5000




	
Max

	
90.9524

	
91.9048

	
91.1905

	
91.6667

	
92.1429

	
95.2381




	
SRBCT

	
Fitness

	
Avg

	
0.0129

	
0.0120

	
0.0101

	
0.0116

	
0.0047

	
0.0040




	
Min

	
0.0053

	
0.0038

	
0.0021

	
0.0045

	
0.0018

	
0.0003




	
Accuracy

	
Avg

	
99.2361

	
99.2222

	
99.3819

	
99.3750

	
99.8333

	
99.8333




	
Max

	
100.00

	
100.00

	
100.00

	
100.00

	
100.00

	
100.00




	
Leukemia

	
Fitness

	
Avg

	
0.1010

	
0.1000

	
0.0960

	
0.0969

	
0.0915

	
0.0638




	
Min

	
0.0884

	
0.0827

	
0.0690

	
0.0825

	
0.0702

	
0.0426




	
Accuracy

	
Avg

	
90.3393

	
90.3661

	
90.7143

	
90.8304

	
91.0714

	
93.9196




	
Max

	
91.6071

	
92.1429

	
93.3929

	
92.1429

	
93.2143

	
96.2500




	
Prostate Tumor

	
Fitness

	
Avg

	
0.1219

	
0.1201

	
0.1147

	
0.1195

	
0.1113

	
0.0534




	
Min

	
0.1044

	
0.1074

	
0.0984

	
0.1014

	
0.0882

	
0.0199




	
Accuracy

	
Avg

	
88.2318

	
88.2864

	
88.7136

	
88.5409

	
89.0818

	
94.7773




	
Max

	
90.0000

	
89.5455

	
90.0909

	
90.2727

	
91.2727

	
98.0000




	
Overall Results

	
W|T|L

	
0|0|10

	
0|0|10

	
0|0|10

	
0|0|10

	
0|0|10

	
10|0|0
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Table 6. The comparison between the BQANA and comparative algorithms.
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Datasets

	
Metrics

	
BPSO

	
ACO

	
BDE

	
BBA

	
FSWOA

	
BALO

	
BDA

	
QBHHO

	
BASO

	
BQANA






	
Pima

	
Fitness

	
Avg

	
0.2329

	
0.2380

	
0.2324

	
0.2327

	
0.2374

	
0.2323

	
0.2317

	
0.2337

	
0.2353

	
0.2316




	
Min

	
0.2304

	
0.2317

	
0.2292

	
0.2267

	
0.2266

	
0.2499

	
0.2280

	
0.2266

	
0.2243

	
0.2291




	
Accuracy

	
Avg

	
77.0224

	
76.519

	
77.2101

	
77.0195

	
76.6752

	
77.0936

	
77.1855

	
76.9329

	
76.7359

	
77.2076




	
Max

	
77.3599

	
77.211

	
77.4812

	
77.6094

	
77.0796

	
77.6196

	
77.4744

	
77.6145

	
77.8520

	
77.4863




	
No. features

	
Avg

	
4.300

	
4.400

	
5.400

	
4.450

	
5.200

	
4.450

	
4.450

	
4.250

	
4.000

	
4.750




	
Min

	
4.000

	
4.000

	
4.000

	
4.000

	
4.000

	
4.000

	
4.000

	
4.000

	
2.000

	
4.000




	
HeartEW

	
Fitness

	
Avg

	
0.1414

	
0.1489

	
0.1390

	
0.1408

	
0.1548

	
0.1407

	
0.1386

	
0.1417

	
0.1426

	
0.1384




	
Min

	
0.1358

	
0.1395

	
0.1308

	
0.1358

	
0.1468

	
0.1358

	
0.1308

	
0.1351

	
0.1380

	
0.1329




	
Accuracy

	
Avg

	
86.1296

	
85.333

	
86.5370

	
86.1481

	
84.9074

	
86.1852

	
86.426

	
86.0370

	
85.9074

	
86.4259




	
Max

	
86.6667

	
86.296

	
87.4074

	
86.6667

	
85.5556

	
86.6667

	
87.407

	
86.6667

	
86.6667

	
87.0370




	
No. features

	
Avg

	
5.300

	
4.150

	
7.450

	
4.950

	
7.050

	
5.150

	
5.450

	
4.450

	
4.000

	
5.250




	
Min

	
3.000

	
3.000

	
5.000

	
3.000

	
4.000

	
3.000

	
4.000

	
3.000

	
3.000

	
3.000




	
lymphography

	
Fitness

	
Avg

	
0.1194

	
0.1450

	
0.1246

	
0.1524

	
0.1380

	
0.1146

	
0.1154

	
0.1266

	
0.1275

	
0.1128




	
Min

	
0.1046

	
0.1303

	
0.1050

	
0.1375

	
0.1252

	
0.1055

	
0.1054

	
0.1130

	
0.1135

	
0.1008




	
Accuracy

	
Avg

	
88.4929

	
85.900

	
88.1000

	
85.0714

	
86.6905

	
88.9476

	
88.871

	
87.6500

	
87.7167

	
89.1310




	
Max

	
90.0000

	
87.286

	
90.0000

	
86.6190

	
87.9524

	
89.9048

	
89.952

	
89.0952

	
89.0952

	
90.3810




	
No. features

	
Avg

	
9.650

	
9.600

	
12.150

	
8.150

	
11.300

	
9.350

	
9.450

	
7.650

	
10.600

	
9.400




	
Min

	
6.000

	
5.000

	
10.000

	
5.000

	
9.000

	
6.000

	
7.000

	
6.000

	
6.000

	
6.000




	
SPECT Heart

	
Fitness

	
Avg

	
0.2291

	
0.2488

	
0.2298

	
0.2339

	
0.2574

	
0.2209

	
0.2230

	
0.2308

	
0.2354

	
0.2231




	
Min

	
0.2091

	
0.2348

	
0.1994

	
0.2226

	
0.2458

	
0.2069

	
0.2012

	
0.2150

	
0.2219

	
0.2038




	
Accuracy

	
Avg

	
77.2877

	
75.234

	
77.3440

	
76.6254

	
74.6197

	
78.1346

	
77.900

	
76.9708

	
76.5021

	
77.8725




	
Max

	
79.3875

	
76.695

	
80.2279

	
77.9772

	
75.7265

	
79.4729

	
80.185

	
78.6467

	
77.9060

	
79.7863




	
No. features

	
Avg

	
9.150

	
7.800

	
12.050

	
9.450

	
13.500

	
9.650

	
9.200

	
6.100

	
6.200

	
8.850




	
Min

	
6.000

	
2.000

	
6.000

	
4.000

	
10.000

	
7.000

	
4.000

	
2.000

	
2.000

	
2.000




	
PenglungEW

	
Fitness

	
Avg

	
0.0895

	
0.0977

	
0.0936

	
0.0915

	
0.1093

	
0.0898

	
0.0826

	
0.0843

	
0.0895

	
0.0765




	
Min

	
0.0807

	
0.0816

	
0.0735

	
0.0832

	
0.0878

	
0.0803

	
0.0681

	
0.0695

	
0.0746

	
0.0545




	
Accuracy

	
Avg

	
91.4554

	
90.446

	
91.3304

	
91.2143

	
89.6607

	
91.7321

	
92.143

	
91.7411

	
91.2500

	
92.6429




	
Max

	
92.3214

	
91.964

	
93.2143

	
91.9643

	
91.7857

	
93.3929

	
93.571

	
93.2143

	
93.0357

	
94.8214




	
No. features

	
Avg

	
158.650

	
98.650

	
252.750

	
148.400

	
225.950

	
159.550

	
155.15

	
80.950

	
94.400

	
120.650




	
Min

	
139.000

	
34.000

	
204.000

	
118.000

	
212.000

	
143.000

	
131.00

	
28.000

	
38.000

	
47.000




	
Parkinson

	
Fitness

	
Avg

	
0.2033

	
0.1813

	
0.2512

	
0.2217

	
0.2541

	
0.1953

	
0.1938

	
0.1673

	
0.1703

	
0.1604




	
Min

	
0.1754

	
0.1628

	
0.2429

	
0.1768

	
0.2500

	
0.1556

	
0.1549

	
0.1546

	
0.1489

	
0.1279




	
Accuracy

	
Avg

	
79.9612

	
81.813

	
75.3543

	
78.0702

	
75.0166

	
80.7618

	
80.902

	
83.1542

	
82.9234

	
83.9765




	
Max

	
82.8018

	
83.595

	
76.3228

	
82.5474

	
75.3912

	
84.7895

	
84.795

	
84.4123

	
85.0386

	
87.1807




	
No. features

	
Avg

	
367.450

	
90.550

	
540.100

	
355.000

	
511.650

	
365.650

	
358.40

	
37.450

	
96.550

	
130.100




	
Min

	
331.000

	
7.000

	
402.000

	
299.000

	
184.000

	
325.000

	
332.00

	
8.000

	
46.000

	
16.000




	
Colon

	
Fitness

	
Avg

	
0.0892

	
0.0983

	
0.1020

	
0.0913

	
0.1098

	
0.0898

	
0.0925

	
0.0821

	
0.0905

	
0.0775




	
Min

	
0.0710

	
0.0795

	
0.0882

	
0.0684

	
0.0969

	
0.0803

	
0.0776

	
0.0501

	
0.0625

	
0.0481




	
Accuracy

	
Avg

	
91.4881

	
90.381

	
90.5357

	
91.2381

	
89.6071

	
91.4286

	
91.143
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93.3333

	
92.143
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93.5714

	
90.7143

	
92.3810
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95.2381




	
No. features

	
Avg

	
993.050

	
534.15

	
1651.50
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1386.20
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954.20

	
431.900

	
422.950

	
644.300




	
Min

	
963.000

	
36.000

	
1355.00

	
636.000

	
989.000

	
939.000

	
848.00

	
117.000

	
164.000

	
80.000




	
SRBCT

	
Fitness

	
Avg

	
0.0048

	
0.0061

	
0.0097

	
0.0064

	
0.0241

	
0.0047

	
0.0052

	
0.0006

	
0.0012

	
0.0040




	
Min

	
0.0046

	
0.0010

	
0.0057

	
0.0025

	
0.0179

	
0.0042

	
0.0039

	
0.0002

	
0.0009

	
0.0003




	
Accuracy

	
Avg

	
100.000

	
99.604

	
99.7153

	
99.7222

	
98.2500

	
100.000

	
99.938

	
100.000

	
100.000

	
99.8333




	
Max

	
100.000

	
100.00

	
100.000

	
100.000

	
98.8889

	
100.000

	
100.00

	
100.000

	
100.000

	
100.000




	
No. features

	
Avg

	
1102.00

	
483.35

	
1597.20

	
957.900

	
1568.70

	
1077.80

	
1048.0

	
132.450

	
277.850

	
551.850




	
Min

	
1068.00

	
138.00

	
1327.00

	
566.000

	
979.000

	
972.000

	
4.000

	
57.000

	
208.000

	
77.000




	
Leukemia

	
Fitness

	
Avg

	
0.0844

	
0.0925

	
0.0937

	
0.0893

	
0.1105

	
0.0802

	
0.0768

	
0.0706

	
0.0744

	
0.0638




	
Min

	
0.0739

	
0.0708

	
0.0766

	
0.0700

	
0.1007
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93.0357
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93.3929
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94.4643

	
95.7143

	
96.2500




	
No. features

	
Avg

	
3552.30

	
1706.9

	
5421.20

	
3270.30

	
5003.65

	
3532.25

	
3451.6

	
1073.15

	
1385.95

	
2546.800




	
Min

	
3496.00

	
68.000

	
4057.00

	
2251.00

	
4723.00

	
3451.00

	
3108.0

	
315.000

	
737.000

	
536.000




	
Prostate Tumor

	
Fitness

	
Avg

	
0.1026

	
0.0997

	
0.1024
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0.1263
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90.000

	
90.4864

	
89.8182

	
87.9545

	
90.4364

	
90.300

	
94.3500

	
91.2409

	
94.7773




	
Max

	
91.1818

	
93.182

	
92.2727

	
91.3636

	
89.2727

	
92.2727

	
92.364

	
97.0909

	
93.0000

	
98.0000




	
No. features

	
Avg

	
5238.15

	
786.25

	
8669.55

	
4655.00

	
7425.75

	
5247.40

	
5129.7

	
206.250

	
1342.50

	
1833.300




	
Min

	
5157.00

	
83.000

	
6645.00

	
2420.00

	
7230.00

	
5138.00

	
4809.0

	
65.000

	
1012.00

	
82.000




	
Overall Results

	
W|T|L

	
0|0|10

	
0|0|10

	
0|0|10
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0|0|10

	
1|0|9
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1|0|9

	
0|0|10

	
8|0|2
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Table 7. The Friedman test for the fitness obtained by each algorithm.






Table 7. The Friedman test for the fitness obtained by each algorithm.





	Datasets
	BPSO
	ACO
	BDE
	BBA
	FSWOA
	BALO
	BDA
	QBHHO
	BASO
	BQANA





	Pima
	5.73
	9.70
	3.65
	5.18
	8.90
	4.33
	2.85
	6.85
	5.90
	1.93



	HeartEw
	5.97
	8.95
	2.92
	4.57
	10.00
	4.82
	2.20
	6.30
	7.25
	2.00



	Lymphography
	3.95
	9.05
	5.35
	9.95
	7.90
	2.63
	2.65
	6.00
	6.05
	1.48



	SPECT Heart
	4.35
	9.00
	4.85
	6.95
	10.00
	1.85
	2.45
	4.95
	7.80
	2.80



	PenglungEW
	5.45
	8.55
	7.90
	6.95
	10.00
	4.35
	2.95
	2.90
	4.85
	1.10



	Parkinson
	6.35
	5.15
	9.10
	7.65
	9.90
	5.10
	5.65
	2.10
	2.80
	1.20



	Colon
	4.55
	8.05
	8.90
	5.95
	10.00
	4.75
	5.45
	2.00
	4.35
	1.00



	SRBCT
	6.85
	5.20
	8.85
	5.65
	9.95
	6.30
	5.85
	1.00
	2.30
	3.05



	Leukemia
	6.25
	7.90
	8.75
	6.90
	10.00
	5.00
	3.05
	2.00
	3.75
	1.40



	Prostate Tumor
	6.80
	5.65
	6.90
	7.85
	10.00
	5.50
	6.15
	1.65
	3.15
	1.35



	Average rank
	5.62
	7.72
	6.71
	6.76
	9.66
	4.46
	3.92
	3.57
	4.82
	1.73



	Overall rank
	6
	9
	7
	8
	10
	4
	3
	2
	5
	1
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