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Abstract: In simple graphs, DP-coloring is a generalization of list coloring and thus many results of
DP-coloring generalize those of list coloring. Xu and Wu proved that every planar graph without
5-cycles adjacent simultaneously to 3-cycles and 4-cycles is 4-choosable. Later, Sittitrai and Nakprasit
showed that if a planar graph has no pairwise adjacent 3-, 4-, and 5-cycles, then it is DP-4-colorable,
which is a generalization of the result of Xu and Wu. In this paper, we extend the results on 3-, 4-,
5-, and 6-cycles by showing that every planar graph without 6-cycles simultaneously adjacent to
3-cycles, 4-cycles, and 5-cycles is DP-4-colorable, which is also a generalization of previous studies
as follows: every planar graph G is DP-4-colorable if G has no 6-cycles adjacent to i-cycles where
i ∈ {3, 4, 5}.
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1. Introduction

The concept of list coloring was introduced independently by Vizing [1] and Erdős
et al. [2]. A k-list assignment L of a graph G assigns for each vertex v in G a list L(v) of k
colors. An L-coloring is a proper coloring c such that c(v) ∈ L(v) for each v in V(G). A
graph G is L-colorable if G has an L-coloring. If G is L-colorable for any k-list assignment L,
then G is said to be k-choosable.

DP-coloring is a generalization of list coloring. Dvořák and Postle [3] introduced the
concept of DP-coloring and they called it correspondence coloring. Later on, it is called
DP-coloring by Bernshteyn et al. [4].

Assume L is an assignment of a graph G. H is a cover of G if it admits all the following
properties:

(i) Its vertex set V(H) is
⋃

v∈V(G)({v} × L(v)) = {(v, c) : v ∈ V(G), c ∈ L(v)};
(ii) H[{v} × L(v)] is a complete graph for every v ∈ V(G);
(iii) The set EH({u} × L(u), {v} × L(v)) is a matching (empty matching is allowable) for

each uv ∈ E(G).
(iv) If uv /∈ E(G), then there are no edges of H connect {u} × L(u) and {v} × L(v).

An independent set in a cover H of a graph G with size |V(G)| is called an (H, L)-
coloring of G. If every cover H with any k-assignment L of a graph G admits an (H, L)-
coloring for G, then we say that G is DP-k-colorable. The minimum k in which a graph G is
DP-k-colorable is called the DP-chromatic number of G and denoted by χDP(G).

If edges on H are defined to match exactly identical colors between L(u) and L(v)
for each uv ∈ E(G), then G admits an (H, L)-coloring is equivalent to G is L-colorable.
Consequently, DP-coloring is a generalization of list coloring. Furthermore, this implies
that χDP(G) ≥ χl(G).
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Dvořák and Postle [3] proved that for every planar graph G, χDP(G) ≤ 5, which
extends a seminal result by Thomassen [5] on list coloring. Meanwhile, Voigt [6] constructed
an example of a non-4-choosable planar graph (and thus, not DP-4-colorable). It motivates
the investigation to obtain sufficient conditions for being DP-4-colorable of planar graphs.
Kim and Ozeki [7] proved that every planar graph is DP-4-colorable if it does not contain k-
cycles for each k = 3, 4, 5, 6. Kim et al. [8] proved that every planar graph is DP-4-colorable
if it contains neither 7-cycles nor butterflies. In [9], Kim and Yu proved that every planar
graph is DP-4-colorable if it does not contain triangles adjacent to 4-cycles, which extends
the result on 3- and 4-cycles. In 2019, Liu and Li [10] improved the previous result of Kim
and Yu [9] by relaxing the condition of one triangle into two triangles. Chen et al. [11]
showed that every planar graph that contains no 4-cycles adjacent to k-cycles where k = 5, 6
is DP-4-colorable. Liu et al. [12] extended the result of Kim and Ozeki [7] on 3-, 5-, and
6-cycles by proving that every planar graph contains no k-cycles adjacent to triangles is
DP-4-colorable. Xu and Wu [13] proved that every planar graph, which contains no 5-cycles
adjacent simultaneously to 3-cycles and 4-cycles is 4-choosable. Recently, Sittitrai and
Nakprasit [14] showed that every planar graph that contains no pairwise adjacent 3-, 4-,
and 5-cycle is DP-4-colorable which generalizes the result of Xu and Wu [13].

In this work, the results on 3-, 4-, 5-, and 6-cycles are extended by the result on
Theorem 1, which generalizes the aforementioned results by Chen et al. [11] and Liu
et al. [12].

Theorem 1. Every planar graph without 6-cycles simultaneously adjacent to 3-cycles, 4-cycles,
and 5-cycles is DP-4-colorable.

Then we have the following two Corollaries. Moreover, some results on [11,12] are
some part of Corollary 1 for i = 4 and i = 3, respectively.

Corollary 1. Every planar graph without 6-cycles adjacent to i-cycles is DP-4-colorable for each
i ∈ {3, 4, 5}.

Corollary 2. Every planar graph without 6-cycles simultaneously adjacent to i-cycles and j-cycles
is DP-4-colorable for each i, j ∈ {3, 4, 5} and i 6= j.

2. Preliminaries

First, some notations and definitions are introduced in this section. Let G be a plane
graph. The vertex set, edge set, and face set of the graph G are denoted, respectively, by
V(G), E(G), and F(G). We use B( f ) to denote the boundary of a face f . Two faces f and g
are adjacent if B( f ) and B(g) are adjacent. A wheel Wn is a graph of n vertices formed by
connecting all vertices of an (n− 1)-cycle (these vertices are called external vertices) to a
single vertex (hub). A k-vertex, k+-vertex, and k−-vertex is a vertex of degree k, at least k,
and at most k, respectively. Similar notation is applied to cycles and faces.

Note that some faces may appear several times in the order. If a face is incident to at
least two 5+-vertices (respectively, exactly one 5+-vertex, no 5+-vertices), it is called rich
(semi-rich, poor, respectively).

A semi-rich 5-face is a proper semi-rich 5-face if each incident edge with two endpoints
of degree 4 is on the boundary of a 3-face, otherwise it is called an improper semi-rich 5-face.

A bounded face is an extreme face if it has a vertex incident to the unbounded face. An
inner face is a bounded face but is not an extreme face.

An edge uv is a chord in an embedding cycle C if u, v ∈ V(C) but uv is not in E(C).
If a chord is inside C, then it is called an internal chord, otherwise it is called an external
chord. A graph C(m, n) is obtained from a cycle x1x2 . . . xm+n−2 with an internal chord x1xm.
For example, cycles uvw and vwxyz form C(3, 5). A graph C(l, m, n) is obtained from a
cycle x1x2 . . . xl+m+n−4 with internal chords x1xl and x1xl+m−2. The previous definition can
be extended similarly to a graph C(m, n, p, q). The graphs int(C) and ext(C) are induced
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by vertices inside and outside a cycle C, respectively. A separating cycle C is a cycle with
non-empty int(C) and ext(C).

Let A denote the family of planar graphs without 6−cycle simultaneously adjacent 3-,
4-, and 5-cycle.

To prove that every planar graph without 6-cycles simultaneously adjacent to 3-cycles,
4-cycles, and 5-cycles is DP-4-colorable, we prove a stronger result as follows.

Theorem 2. If G ∈ A with a precolored 3-cycle, then the precoloring can be extended to be a
DP-4-coloring of G.

3. Structures

Let G be a minimal counterexample to Theorem 2 with respect to the order |V(G)|.
Then, (i) G ∈ A and (ii) G is a minimal graph with a precoloring of a 3-cycle that cannot
be extended to be a DP-4-coloring in G. Some tools in [14] are used to deal with graphs
satisfying (ii). We assume that G contains a 3-cycle since every planar graph without
3-cycles is DP-4-colorable [9].

Thus we let C0 be a 3-cycle in G that is precolored.

Lemma 1 (Lemma 3.1 in [14]). G has no separating 3-cycles (See the proof in Lemma A1).

It follows from Lemma 1 that we may assume C0 to be the boundary of the unbounded
face of G.

Lemma 2 (Lemma 3.3 in [14]). Each vertex in int(C0) has degree at least four (See the proof in
Lemma A3).

Lemma 3. The following statements hold.

(i) A bounded 6−-face has its boundary as a cycle.
(ii) If a bounded k1-face f and a bounded k2-face g with k1 + k2 ≤ 8 are adjacent, then B( f ) ∪

B(g) = C(k1, k2).
(iii) Let a bounded 3-face f and a bounded 4-face g be adjacent. If f or g is adjacent to a bounded

3-face h, then B( f ) ∪ B(g) ∪ B(h) is a 6-cycle with two internal chords.

Proof.

(i) Clearly, a boundary of a 5−-face is a cycle. Consider a bounded 6-face f . A boundary
closed walk is in a form of uvwxywu if B( f ) is not a cycle. By Lemma 2, u or x
has degree at least 4. It follows that uvw or xyw is a separating 3-cycle, contrary to
Lemma 1.

(ii) It suffices to show that B( f ) and B(g) share exactly two vertices.
If B( f ) = uvw, B(g) = vwx and u = x, then f or g is the unbounded face, a contradiction.
If B( f ) = uvw, B(g) = vwxy and u = x or y, then d(w) = 2 or d(v) = 2, which
contradicts Lemma 2.
If B( f ) = uvw, B(g) = vwxyz and u = x or z, then d(w) = 2 or d(v) = 2, which
contradicts Lemma 2. If B( f ) = uvw, B(g) = vwxyz and u = y, then vyz or wxy is a
separating 3-cycle, which contradicts Lemma 1.
If B( f ) = stuv, B(g) = uvwx and s = w, then d(v) = 2, which contradicts Lemma 2.
If B( f ) = stuv, B(g) = uvwx and s = x, then utx or vwx is a separating 3-cycle, which
contradicts Lemma 1. The remaining cases are similar.

(iii) Lemma 3 (ii) yields that B( f ) ∪ B(g) is a 5-cycle with one chord. Similar to the proof
of Lemma 3 (ii), one can show that B(h) and B( f ) ∪ B(g) share exactly two vertices.
This yields a desired result.
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Lemma 4. If C is a 6-cycle and has a triangular chord, then C has only one chord. Moreover, every
6-cycle has at most one internal chord.

Proof. Let C be a 6-cycle tuvxyz and let tv be its triangular chord. Suppose to the contrary
that C has at least two chords. Since C is adjacent to a 3-cycle tuv and a 5-cycle uvxyz, it
suffices to show that C is adjacent to a 4-cycle. By symmetry, we assume another chord e of
C is ux, uy, tx, ty, or xz.

If e = ux, then C is adjacent to a 4-cycle tuxv.
If e = uy, then C is adjacent to a 4-cycle uvxy.
If e = tx, then C is adjacent to a 4-cycle tuvx.
If e = ty, then C is adjacent to a 4-cycle vxyt.
If e = xz, then C is adjacent to a 4-cycle tvxz.
Thus, C has exactly one chord. Note that C has a triangular chord if C has at least two

internal chords. It follows that every 6-cycle has at most one internal chord.

A cluster in a plane graph G is a subgraph of G consisting of 3-cycles from a minimal
set of bounded 3-faces such that they are not adjacent to other bounded 3-faces outside the
set. A k-cluster is formed by k bounded 3-faces. An adjacent face of an i-cluster Hi is a face
that is adjacent to some bounded 3-face in Hi. Since G ∈ A, one can observe that every
cluster in G is a 4−-cluster where a 4-cluster is isomorphic to W5.

Lemma 5. The following statements hold.

(i) If a 4-face f is adjacent to an inner 3-face g, then f is not adjacent to other inner 3-faces and f
is not adjacent to any 4-faces.

(ii) If an inner 3-face f is adjacent to a 5-face g, then f and g are not adjacent to any 4-faces.
(iii) Every adjacent face of a 2-cluster is a 6+-face or the unbounded 3-face D.
(iv) Every adjacent face of a 3+-cluster is a 7+-face or the unbounded 3-face D.

Proof.

(i) Let f be a 4-face adjacent to an inner 3-face g and another face h.
Suppose to the contrary that h is an inner 3-face or a 4-face.
If h is an inner 3-face, then B( f ) ∪ B(g) ∪ B(h) is a 6-cycle with two internal chords by
Lemma 3 (iii), contrary to Lemma 4.
If h is a 4-face, then Lemma 3 (ii) yields a 6-cycle from B( f ) ∪ B(h), which is adjacent
to a 5-cycle from B( f ) ∪ B(g), a 4-cycle from B( f ), and a 3-cycle from B(g), contrary
to G ∈ A.

(ii) Let an inner 3-face f and a 5-face g be adjacent. Lemma 3 (ii) yields that B( f ) ∪ B(g)
contains a 6-cycle. Thus, f or g is not adjacent to any 4-faces since G ∈ A.

(iii) Let f and g be bounded 3-faces in a 2-cluster H2 and let h be a bounded face adjacent
to f . By the definition, h is not a bounded 3-face.
If h is a 4-face, then Lemma 3 (iii) yields that B( f ) ∪ B(h) ∪ B(g) contains a 6-cycle
with two internal chords, contrary to Lemma 4.
If h is a 5-face, then it follows from Lemmas 3 (i) and (ii) that a 6-cycle from B( f )∪ B(h)
is adjacent to a 5-cycle from B(h), a 4-cycle from B( f ) ∪ B(g), and 3-cycle from B( f ),
contrary to G ∈ A.
Thus, h is a 6+-face or the unbounded face.

(iv) Let f1, f2, and f3 be the bounded 3-faces of 3+-cluster H3 in a consecutive order.
By similar arguments as in the proof of (iii), it follows that H3 cannot be adjacent to a
bounded 5−-face.
Let H3 be adjacent to a 6-face f4. By Lemma 3 (ii) and an argument similar to its
proof, one can show that H3 is a 5-cycle with two chords. Since B( f4) is a 6-cycle by
Lemma 3 (i), we have a 6-cycle adjacent to a 3-, a 4-, and a 5-cycle in H3, contrary to
G ∈ A.
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If H3 is adjacent to a 6-face f4, then by Lemma 3 (ii), a 6-cycle B( f4) is adjacent to a 3-,
a 4-, and a 5-cycle, which are in H3, contrary to G ∈ A.

For Corollary 3 (i), it is proved by the fact that every 5+-vertex is not adjacent to
four consecutive bounded 3-faces. Thus, each 5+-vertex has at least two 4+-faces. For
Corollary 3 (ii), it is proved by Lemmas 5 (iii) and (iv) that each 3-face in H+

2 is not adjacent
to a 5-face. Thus, each 5+-vertex has at least three 4+-faces.

Corollary 3. Let v be a k-vertex in G where v /∈ V(C0) and k ≥ 5. It follows that:

(i) v is incident to at most k− 2 bounded 3-faces;
(ii) v is incident to at most k− 3 bounded 3-faces, if v has an incident 5-face.

Proof. If v is incident to k− 1 bounded 3-faces, then there are four consecutive bounded
faces forming a 4-cluster that is not a wheel, contrary to G ∈ A. This proves (i). It follows
from Lemmas 5 (iii) and (iv) that each 3-face in a 2+-cluster is not adjacent to a 5-face.
Thus, each 5+-vertex incident to a 5-face must be incident to at least three 4+-faces. This
proves (ii).

Lemma 6 (Lemma 3.6 in [14]). C(l1, . . . , lk) is defined to be a cycle C = x1 . . . xm with k internal
chords such that x1 is their common endpoint and V(C) ∩V(C0) = ∅. Suppose x2 or xm is not
the endpoint of any chords in C. If d(x1) ≤ k + 3, then some i ∈ {2, 3, . . . , m} satisfies d(xi) ≥ 5
(See the proof in Lemma A4).

Lemma 7. Let a 4-vertex v be incident to bounded faces f1, . . . , f4 in cyclic order and let F =
B( f1) ∪ B( f2), where V(F) ∩ V(C0) = ∅. If (d( f1), d( f2)) = (3, 3) or (3, 5), then there is a
vertex w ∈ V(F)− {v} such that d(w) ≥ 5.

Proof. If (d( f1), d( f2)) = (3, 3), it follows from Lemma 3 (ii) that F = C(3, 3). Moreover, F
has exactly one chord, otherwise there is a separating 3-cycle, which contradicts Lemma 1.

If (d( f1), d( f2)) = (3, 5), it follows from Lemma 3 (ii) that F = C(3, 5). Moreover, F
has exactly one chord by Lemma 4.

The proof is complete by Lemma 6.

Lemma 8. Let v be a 5-vertex with incident bounded faces f1, . . . , f5 in a cyclic order. Let
F = B1 ∪ B2 ∪ B3 where Bi denote B( fi) and V(F) ∩ V(C0) = ∅. If (d( f1), d( f2), d( f3)) =
(5, 3, 5), then there exists w ∈ V(F)− {v} such that d(w) ≥ 5.

Proof. Let B1 = x1x2x3x4x5, B2 = x1x5x6, and B3 = x1x6x7x8x9, where x1 = v. It follows
from Lemma 3 (ii) that B1 ∪ B2 is a C(3, 5) and B2 ∪ B3 is a C(3, 5). Suppose to the contrary
that F is not a C(5, 3, 5). Then, there is i ∈ {2, 3, 4} and j ∈ {7, 8, 9} such that xi = xj. If
i = 2, then a 6-cylcle x1x5x6x7x8x9 has a triangular chord x1x6 and a chord x1xj, contrary
to Lemma 4. If i = 2, then a 6-cylcle x1x5x6x7x8x9, has a triangular chord x1x6 and a chord
x5xj, contrary to Lemma 4.

Suppose that i = 3. Note that a 6-cycle C = x1x5x6x7x8x9 is adjacent to a 3-cycle
x1x5x6 and a 5-cycle x1x6x7x8x9. It suffices to show that C is adjacent to a 4-cycle to get
a contradiction. If x3 = x7, then C is adjacent to a 4-cycle x1x2x7x6. If x3 = x8, then C is
adjacent to a 4-cycle x1x2x8x9. If x3 = x9, then C is adjacent to a 4-cycle x1x5x4x9.

Thus, F = C(5, 3, 5). By Lemma 6, it remains to show that x2 or xm is not an endpoint
to a chord in C, say x1x2 . . . x9. Suppose C has a chord e = x2xi, otherwise the desired
condition is obtained. If x2x9 ∈ E(G), then we have separating 3-cycle x1x2x9, contrary to
Lemma 1. By Lemma 4, we have i /∈ {4, 5, 6}. Then, xi = x7 or x8. By Lemma 4, x9 is not
adjacent to x6 or x7. Thus, a chord of C′ cannot have x9 as its endpoint.
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Corollary 4. Let v be a 4-vertex incident to bounded faces f1, . . . , f4 in cyclic order, where f1 is an
inner 5-face, f2 is an inner 3-face, f3 is an inner 5-face, and f4 is an arbitrary face. If f3 is a poor
5-face, then f1 is a rich 5-face or an improper semi-rich 5-face.

Proof. Let B1 = x1x2x3x4x5, B2 = x1x5x6, and B3 = x1x6x7x8x9, where x1 = v. Let f3 be
a poor 5-face. Then, x1, x6, x7, x8, and x9 are 4-vertices. By Lemma 7, x5 is a 5+-vertex. If
x2, x3, or x4 is a 5+-vertex, then f1 is a rich 5-face. Now suppose that x2, x3, and x4 are
4-vertices. If f4 is a not a 3-face, then f1 is an improper semi-rich 5-face. If f4 is a 3-face,
then x2 is a 5+-vertex by considering f1 and f4 into Lemma 7, a contradiction.

4. Discharging Process

In this section, we use the discharging procedure to get a contradiction and complete
the proof of Theorem 2.

For each vertex and bounded face x ∈ V(G) ∪ F(G), let an initial charge of x be
µ(x) = d(x)− 4 and let µ(D) = d(D) + 4 = 7 where D is the unbounded face. By Euler’s
Formula, ∑x∈V∪F µ(x) = 0. Let µ∗(x) be the charge after the discharge procedure of
x ∈ V ∪ F. To get a contradiction, we prove that µ∗(x) ≥ 0 for each x ∈ V(G) ∪ F(G) and
µ∗(D) > 0.

Let w(x → f ) be the transferred charge from x to a face f where x is a vertex or a face.
The discharging rules:
(R1) Let v be a 5-vertex where v /∈ V(C0) and f be an incident 3-face of v.

w(v→ f ) =



1
2 , if v is incident to some 5-faces,
1
7 , if v is not incident to any 5-faces and

f is not adjacent to any incident 3-faces of v,
3
7 , if v is not incident to any 5-faces and

f is adjacent to exactly one incident 3-face of v.
(R2) Let v be a 6+-vertex where v /∈ V(C0) and f be an incident 3-face of v.

w(v→ f ) =

{
2
3 , if v is incident to some 5-faces,
1
2 , if v is not incident to any 5-faces.

Let g be a k-face with k incident vertices, say v1, v2, . . . , vk in cyclic order, and with k
adjacent faces, say f1, f2, . . . , fk in cyclic order. Let fi be incident to vi and vi+1 (i is taken
modulo k).

(R3) Let g be a 4-face.
w(g→ fi) =

1
3 if fi is an inner 3-face.

(R4) Let g be a 5-face.
w(g→ fi) =

1
5 if fi is a 4-face.

• Let g be an inner poor 5-face.
w(g→ fi) =

1
5 if fi is an inner 3-face.

• Let g be an inner proper semi-rich 5-face.
w(g→ fi) =

1
3 if fi is an inner 3-face where both vi and vi+1 are 4-vertices.

• Let g be an inner rich 5-face or an inner improper semi-rich 5-face.

w(g→ fi) =

{
1
6 , if fi is an inner 3-face where exactly one of vi and vi+1 is a 4-vertex.
1
3 , if fi is an inner 3-face where both vi and vi+1 are 4-vertices.

• Let g be an extreme 5-face.
w(g→ fi) =

2
3 if fi is an inner 3-face.

(R5) Let g be a k-face where k ≥ 6.
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w(g→ fi) =

{
θ( fi) + χ( fi+1)θ( fi+1) + χ( fi−1)θ( fi−1), if fi is a 4−-face,
0, otherwise.

where

χ( fi) =

{
1
2 , if fi is not a 4−-face,
0, otherwise.

and θ( fi) =
d(g)−4

d(g) for each i ∈ {1, 2, . . . , n}.
(R6) The unbounded face D incident to a vertex v receives charge µ(v) from v but

gives 1 to each of its intersecting 3-faces and 5-faces.
It follows from (R6) that µ∗(v) = 0 for every v ∈ V(C0). By this, we consider only a

vertex v such that v /∈ V(C0).

CASE 1: v is a 5-vertex.

• v is incident to some 5-faces.
Then, v has at most two incident 3-faces by Corollary 3. Thus, µ∗(v) ≥ µ(v)− 2× 1

2 =
0 by (R1).

• v is not incident to any 5-faces.
It follows from Corollary 3 that v is incident to at most three 3-faces. Then, v has at
most two incident 3-faces, which are adjacent to exactly one incident 3-face of v. Thus,
µ∗(v) ≥ µ(v)− 2× 3

7 −
1
7 = 0 by (R1).

CASE 2: v is a 6+-vertex.

• v is incident to some 5-faces.
It follows from Corollary 3 that v is incident to not more than d(v)− 3 of 3-faces. Thus,
µ∗(v) ≥ µ(v)− (d(v)− 3)× 2

3 = (d(v)− 4)− ( 2d(v)
3 − 2) = d(v)

3 − 2 ≥ 0 by (R2) and
d(v) ≥ 6.

• v is not incident to any 5-faces.
It follows from Corollary 3 that v is incident to at most d(v)− 2 3-faces. Thus, µ∗(v) ≥
µ(v)− (d(v)− 2)× 1

2 = (d(v)− 4)− ( d(v)
2 − 1) = d(v)

2 − 3 ≥ 0 by (R2) and d(v) ≥ 6.

For a 3-face in an i-cluster Hi, we consider the total of charges in the same cluster. That
is µ(Hi) = −i and we show that µ∗(Hi) ≥ 0 instead.

CASE 3: f is a 3-face in an i-cluster, say Hi where |V(Hi) ∩V(C0)| ≥ 1.

• If |V(H1) ∩V(C0)| ≥ 1, then µ∗(H1) ≥ µ(H1) + 1 = 0 by (R6).
• If |V(H2) ∩ V(C0)| = 1, then each adjacent face of H2 is a 6+-face by Lemma 5 (iii).

Thus, µ∗(H2) ≥ µ(H2) + 1 + 4× 1
3 > 0 by (R5) and (R6).

• If |V(H2) ∩V(C0)| ≥ 2, then each 3-face in H2 is an extreme 3-face. Thus, µ∗(H2) ≥
µ(H2) + 2× 1 = 0 by (R6).

• If |V(H3) ∩ V(C0)| = 1, then each adjacent face of H3 is a 7+-face by Lemma 5 (iv).
Thus, µ∗(H3) ≥ µ(H3) + 1 + 5× 3

7 > 0 by (R5) and (R6).
• If |V(H3) ∩V(C0)| = 2, then H3 is adjacent to at least four 7+-faces by Lemma 5 (iv).

Moreover, there are at least two extreme 3-faces in H3. Thus, µ∗(H3) ≥ µ(H3) + 2 +
4× 3

7 > 0 by (R5) and (R6).
• If |V(H3) ∩V(C0)| = 3, then each 3-face in H3 is an extreme 3-face. Thus, µ∗(H3) ≥

µ(H3) + 3× 1 = 0 by (R6).
• If |V(H4) ∩V(C0)| = 1, then there are two extreme 3-faces in H4 and each adjacent

face of H4 is a 7+-face by Lemma 5 (iv). If each vertex in V(H4)−V(C0) is a 4-vertex,
we have µ∗(H4) ≥ µ(H4) + 2 + 2× 9

14 + 2× 6
7 > 0 by (R5) and (R6). Otherwise,

there is a vertex in V(H4)−V(C0), which is not a 4-vertex, then we have µ∗(H4) ≥
µ(H4) + 2 + 6× 3

7 > 0 by (R1), (R2), (R5), and (R6).
• If |V(H4) ∩V(C0)| = 2, then there are at least three extreme 3-faces in H4. Moreover,

H3 is adjacent to at least three 7+-faces by Lemma 5 (iv). Thus, µ∗(H4) ≥ µ(H4) + 3×
1 + 3× 3

7 > 0 by (R5) and (R6).
• If |V(H4) ∩V(C0)| = 3, then each 3-face in H4 is an extreme 3-face. Thus, µ∗(H4) ≥

µ(H4) + 4× 1 = 0 by (R6).
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CASE 4: f is an inner 3-face in a 1-cluster.
Let v1, v2, v3 be three incident vertices in cyclic order and f1, f2, f3 be three adjacent

faces in cyclic order. Moreover, let fi be incident to vi and vi+1 (i is taken modulo 3) (See
Figure 1).

Subcase 4.1: f is not adjacent to any 5-faces.
Thus, µ∗( f ) ≥ µ( f ) + 3× 1

3 = 0 by (R3) and (R5).
Next, we consider that f is adjacent to some 5-faces in Subcases 4.2 to 4.5. It follows

from Lemma 5 (ii) and the assumption of Case 4 that f is not adjacent to a 4−-faces.
Subcase 4.2: An inner 3-face f is adjacent to some extreme 5-faces.

Figure 1. The configuration in CASE 4.

WLOG, let f1 be an extreme 5-face. Then, w( f1 → f ) = 2
3 by (R4).

• fi is not an inner 5-face where i = 2 or 3.
Then, fi is an extreme 5-face or a 6+-face. Thus, w( fi → f ) ≥ 1

3 by (R4) and (R5).
Therefore, µ∗( f ) ≥ µ( f ) + 2

3 + 1
3 = 0.

• f2 and f3 are inner 5-faces.
- If vi is a 5+-vertex for some i ∈ {1, 2, 3}, then w(vi → f ) = 1

2 by (R1) and (R2). Thus,
µ∗( f ) ≥ µ( f ) + 2

3 + 1
2 > 0.

- If vi is a 4-vertex for each i ∈ {1, 2, 3}, then w( f2 → f ) ≥ 1
5 and w( f3 → f ) ≥ 1

5 by
(R4). Thus, µ∗( f ) ≥ µ( f ) + 2

3 + 2× 1
5 > 0.

We now consider the cases that each adjacent 5-face of f is not an extreme 5-face.
Subcase 4.3: f is a poor 3-face.
It follows from Lemma 7 that fi is not a poor 5-face for each i ∈ {1, 2, 3}. Thus,

µ∗( f ) ≥ µ( f ) + 3× 1
3 = 0 by (R4) and (R5).

Subcase 4.4: f is a semi-rich 3-face.
Let v1 be a 5+-vertex. By symmetry, we only consider two following cases.

• f2 is a poor 5-face.
Then w( f2 → f ) ≥ 1

5 by (R4). Note that if fi is an improper semi-rich 5-face, a rich
5-face, or a 6+-face where i ∈ {1, 3}, then w( fi → f ) ≥ 1

6 by (R4) and (R5).
- If fi is a 5-face for i = 1 or 3, then fi is an improper semi-rich 5-face or a rich 5-face
by Corollary 4. It follows that w(v1 → f ) ≥ 1

2 by (R1) and (R2). Thus, µ∗( f ) ≥
µ( f ) + 2× 1

6 + 1
5 + 1

2 > 0.
- If f1 and f3 are 6+-faces, then w(v1 → f ) ≥ 1

7 by (R1) and (R2). Thus, µ∗( f ) ≥
µ( f ) + 2× 1

3 + 1
5 + 1

7 > 0.
• f2 is a 5+-face but not a poor 5-face.

Then w( f2 → f ) ≥ 1
3 by (R4) and (R5). If f1 and f3 are 6+-faces, then µ∗( f ) ≥

µ( f ) + 3× 1
3 = 0 by (R5). If v1 is a 6+-vertex and f1 or f3 is a 5-face, then µ∗( f ) ≥

µ( f ) + 1
3 + 2

3 = 0 by (R2). Thus, it remains to check the case that f1 or f3 is a 5-face
and v1 is a 5-vertex. Note that w(v1 → f ) ≥ 1

2 by (R1).
- If f1 and f3 are 5-faces, then fi is a rich 5-face for i = 1 or 3 by Lemma 8. It follows
that w( fi → f ) = 1

6 by (R4). Thus, µ∗( f ) ≥ µ( f ) + 1
3 + 1

2 + 1
6 = 0.
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- If f1 is a 5-face and f3 is a 6+-face, then w( f3 → f ) ≥ 1
3 by (R5). Thus, µ∗( f ) ≥

µ( f ) + 2× 1
3 + 1

2 = 0.

Subcase 4.5: f is an inner rich 3-face.
Let v1 and v2 be 5+-vertices. Recall that f1, f2, and f3 are inner 5+-faces and at least

one of them is a 5-face. By symmetry, we only consider two following cases.

• f1 is a 5-face or f2 and f3 are 5-faces.
That makes v1 and v2 incident to some 5-faces. Then, w(v1 → f ) ≥ 1

2 and w(v2 →
f ) ≥ 1

2 by (R1) and (R2). Thus, µ∗( f ) ≥ µ( f ) + 2× 1
2 = 0.

• f1 is a 6+-face and either f2 or f3 is a 6+-face.
WLOG, let f2 be a 5-face. That makes v2 incident to some 5-faces. Then w( f1 → f ) ≥ 1

3
and w( f3 → f ) ≥ 1

3 by (R5) and w(v2 → f ) ≥ 1
2 by (R1) and (R2). Thus, µ∗( f ) ≥

µ( f ) + 2× 1
3 + 1

2 > 0.

CASE 5: f is a 3-face in a 2-cluster H2 where |V(H2) ∩V(D)| = 0.
Let H2 be a 4-cycle v1v2v3v4 with a chord v1v3. Let f1, f2, f3, f4 be four adjacent faces

of H2 in cyclic order. Moreover, let fi be incident to vi and vi+1 (i is taken modulo 4) (See
Figure 2). It follows from Lemma 5 (iii) that f1, f2, f3, and f4 are 6+-faces. By symmetry, we
only consider two following cases.

• v1 and v3 are 4-vertices.
Then w( fi → H2) ≥ 1

2 for i ∈ {1, 2, 3, 4} by (R5). Thus, µ∗(H2) ≥ µ(H2) + 4× 1
2 = 0.

• v1 is a 5+-vertex and v3 is a 4+-vertex.
Then w(v1 → H2) ≥ 2× 3

7 by (R1) and (R2), and w( fi → H2) ≥ 1
3 for i ∈ {1, 2, 3, 4}

by (R5). Thus, µ∗(H2) ≥ µ(H2) + 4× 1
3 + 2× 3

7 > 0.

Figure 2. The configuration in CASE 5.

CASE 6: f is a 3-face in a 3-cluster H3 where |V(H3) ∩V(D)| = 0.
Let H3 be a 5-cycle v1v2v3v4v5 with two chords v1v3 and v1v4. Let f1, f2, f3, f4, f5 be

five adjacent faces of H3 in cyclic order. Moreover, let fi be incident to vi and vi+1 (i is
taken modulo 5). Note that f1 and f5 may be the same face (See Figure 3). It follows from
Lemma 5 (iv) that f1, f2, f3, f4, and f5 are 7+-faces. By symmetry, we only consider the two
following cases.

• v3 and v4 are 4-vertices.
Then w( f1 → H3) ≥ 3

7 and w( f5 → H3) ≥ 3
7 by (R5), w( f2 → H3) ≥ 9

14 and
w( f4 → H3) ≥ 9

14 by (R5), and w( f3 → H3) = 6
7 by (R5). Thus, µ∗(H3) ≥ µ(H3) +

2× 3
7 + 2× 9

14 + 6
7 = 0.

• v3 is a 5+-vertex and v4 is a 4+-vertex.
Then w(v3 → H3) ≥ 2× 3

7 by (R1) and (R2), and w( fi → H3) ≥ 3
7 for i ∈ {1, 2, 3, 4, 5}

by (R5). Thus, µ∗(H3) ≥ µ(H3) + 7× 3
7 = 0.

CASE 7: f is a 3-face in a 4-cluster H4 where |V(H4) ∩V(D)| = 0.
Let H4 be the wheel W5 where v5 is a hub and v1,v2, v3, and v4 are external vertices in

cyclic order. Let f1, f2, f3, f4 be four adjacent faces of H4 in cyclic order. Moreover, let fi
be incident to vi and vi+1 (i is taken modulo 4) (See Figure 4). By Lemma 5 (iv), f1, f2, f3,
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and f4 are 7+-faces. Moreover, at least two vertices in {v1, v2, v3, v4} are 5+-vertices by
Lemma 7. By symmetry, we only consider the three following cases.

• v1 and v2 are 5+-vertices and v3 and v4 are 4-vertices.
Then w( f1 → H4) ≥ 3

7 , w( f2 → H4) ≥ 9
14 , w( f4 → H4) ≥ 9

14 , w( f3 → H4) = 6
7

by (R5), w(v1 → H4) ≥ 2× 3
7 and w(v2 → H4) ≥ 2× 3

7 by (R1) and (R2). Thus,
µ∗(H4) ≥ µ(H4) + 2× 9

14 + 6
7 + 5× 3

7 > 0.
• v1 and v3 are 5+-vertices and v2 and v4 are 4-vertices.

Then w( fi → H4) ≥ 9
14 for i ∈ {1, 2, 3, 4} by (R5), and w(v1 → H4) ≥ 2× 3

7 and
w(v3 → H4) ≥ 2× 3

7 by (R1) and (R2). Thus, µ∗(H4) ≥ µ(H4) + 4× 9
14 + 4× 3

7 > 0.
• v1, v2, and v3 are 5+-vertices and v4 is a 4+-vertex.

Then w( fi → H4) ≥ 3
7 for i ∈ {1, 2, 3, 4} by (R5) and w(vi → H4) ≥ 2 × 3

7 for
i ∈ {1, 2, 3} by (R1) and (R2). Thus, µ∗(H4) ≥ µ(H4) + 10× 3

7 > 0.

Figure 3. The configuration in CASE 6.

Figure 4. The configuration in CASE 7.

CASE 8: f is a 4-face adjacent to an inner 3-face, say h.
Since h is an inner 3-face, we have |B( f ) ∩ B(D)| ≤ 2 where D is the unbounded

3-face. Consequently, there are at least two adjacent faces of f , which are not h and D.
Moreover, they are 5+-faces by Lemma 5 (i). Thus µ∗( f ) ≥ µ( f )− 1

3 + 2× 1
5 > 0 by (R3),

(R4), and (R5).
CASE 9: f is a 5-face.

• Let f be adjacent to some 4-faces.
Then f is not adjacent to any 3-faces by Lemma 5 (ii). Thus, µ∗( f ) ≥ µ( f )− 5× 1

5 = 0
by (R4).

• Let f be an inner poor 5-face.
Then µ∗( f ) ≥ µ( f )− 5× 1

5 = 0 by (R4).
• Let f be an inner semi-rich 5-face.

- If f is a proper semi-rich 5-face, then B( f ) has three edges with two 4-endpoints.
Thus, µ∗( f ) ≥ µ( f )− 3× 1

3 = 0 by (R4).
- If f an improper semi-rich 5-face, then B( f ) has at most two edges with two 4-
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endpoints and at most two edges with exactly one 5+-endpoint. Thus, µ∗( f ) ≥
µ( f )− 2× 1

3 − 2× 1
6 = 0 by (R4).

• Let f be an inner rich 5-face.
Then f has at least two incident 5+-vertices.
If two incident 5+-vertices are not adjacent in B( f ), then B( f ) has at most one edge
with two 4-endpoints. Thus, µ∗( f ) ≥ µ( f )− 1

3 − 4× 1
6 = 0 by (R4). It remains to

consider the case that f has exactly two incident 5+-vertices and they are adjacent in
B( f ). Then B( f ) has two edges with two 4-endpoints and two edges with exactly one
5+-endpoint. Thus, µ∗( f ) ≥ µ( f )− 2× 1

3 − 2× 1
6 = 0 by (R4).

• Let f be an extreme 5-face.
Then f has at most an adjacent inner 3-face. Thus, µ∗( f ) ≥ µ( f ) + 1− 3× 2

3 = 0 by
(R4) and (R6).

CASE 10: f is an m-face where m ≥ 6.
Then, by (R5) we have w( f → fi) ≤ (1− 2χ( fi))θ( fi)+χ( fi+1)θ( fi+1)+χ( fi−1)θ( fi−1).

µ∗( f ) = µ( f )−
m

∑
i=1

w( f → fi)

≥ µ( f )−
m

∑
i=1

((1− 2χ( fi))θ( fi) + χ( fi+1)θ( fi+1) + χ( fi−1)θ( fi−1))

= µ( f )−
m

∑
i=1

(θ( fi)− 2χ( fi)θ( fi) + 2χ( fi)θ( fi))

= m− 4−m(
m− 4

m
)

= 0.

CASE 11: The unbounded face D.
Let the number of intersecting 3-faces and 5-faces of D be denoted by f ′. Let

E(C0, V(G)− C0) denote the set of edges between V(G)− C0 and C0 where this set has
size e(C0, V(G)− C0). Then by (R6),

µ∗(D) = 3 + 4 + ∑
v∈C0

(d(v)− 4)− f ′

= 1 + ∑
v∈C0

(d(v)− 2)− f ′

= 1 + e(C0, V(G)− C0)− f ′.

So we may consider that D sends charge 1 to each edge e ∈ E(C0, V(G)− C0). So each
intersecting 3-face and 5-face contains at least two edges in E(C0, V(G)− C0). It follows
that e(C0, V(G)− C0)− f ′ ≥ 0. Thus, µ∗(D) > 0.

This completes the proof.

5. Conclusions

We prove that every planar graph without 6-cycles simultaneously adjacent to 3-cycles,
4-cycles, and 5-cycles is DP-4-colorable. This result is a special case of two following
open problems.

1. Every planar graph without i-cycles simultaneously adjacent to j-cycles, k-cycles,
and l-cycles is DP-4-colorable for {i, j, k, l} = {3, 4, 5, 6}.

2. Every planar graph without 3-, 4-, 5-, and 6-cycles that are pairwise adjacent is
DP-4-colorable.
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Appendix A

Lemma A1 ([14]). G has no separating 3-cycles.

Proof. Suppose to the contrary that G contains C0, which is a separating 3-cycle. Consider
a 3-cycle C, which is precolored. Note that C and C0 may be different. By symmetry, one
may assume V(C) ⊆ V(C0) ∪ int(C0). By minimality, a precoloring can be extended from
C to V(C0) ∪ int(C0). After C0 is colored, one can extend the coloring of C0 to ext(C0). In
this way, we obtain a DP-4-coloring of G, a contradiction.

To prove Lemmas A3 and A4, Ref. [14] gave the definition of residual list assignment
and Lemma A2 as follows.

Let G be a graph with a list assignment L and let H be its cover. Let F be an induced
subgraph of G and G′ = G− F. A restriction of L on G′ is a list assignment, say L′ such that
L′(u) = L(u) for every vertex u in G′.

If a graph H′ = H[{{v} × L(v) : v ∈ V(G′)}], then we say H′ is a restriction of H
on G′. Assume G′ has an (H′, L′)-coloring such that I′ is an independent set in H′ with
|I′| = |V(G)| − |V(F)|.

Define a residual list assignment L∗ of F to be

L∗(x) = L(x)−
⋃

ux∈E(G)

{c′ ∈ L(x) : (u, c)(x, c′) ∈ E(H) and (u, c) ∈ I′}

for every x ∈ V(F).
Define residual cover H∗ to be H[{{x} × L∗(x) : x ∈ V(F)}].

Lemma A2. Let I′ be an (H′, L′)-coloring of G′. It follows that a residual cover H∗ becomes a cover
of F with a list assignment L∗. Additionallay, F is (H∗, L∗)-colorable implies G is (H, L)-colorable.

Proof. The first part follows immediately from the definitions of a cover and a residual cover.
Suppose that F is (H∗, L∗)-colorable. Consequently, H∗ has an independent set I∗ with

the size |I∗| = |F|. The definition of residual cover implies that no edges connect between
H∗ and I′. Furthermore, I′ and I∗ are disjoint. Put them together, we have I = I′ ∪ I∗ is
an independent set of H such that |I| = (|V(G)| − |V(F)|) + |V(F)| = |V(G)|. So we can
conclude that G is (H, L)-colorable as desired.
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Lemma A3 ([14]). Each vertex in int(C0) has degree of at least four.

Proof. Suppose otherwise that G has a vertex v of degree less than 4. Let L be a 4-assignment
in G and H be a cover of G in which G has no (H, L)-coloring. By minimality, we have
G′ = G − x with an (H′, L′)-coloring where L′ (respectively, H′) is a restriction of L
(respectively, H) on G′. Thus, there is an independent set I′ with |I′| = |G′| in H′. Let L∗ be
a residual list assignment. Since d(x) ≤ 3 and |L(v)| = 4, it follows that |L∗(v)| ≥ 1. It is
obvious that {(v, c)} with c ∈ L∗(v) is an independent set in G[{v}]. It follows that G[{v}]
is (H∗, L∗)-colorable. Lemma A2 yields that G is (H, L)-colorable. This contradiction
completes the proof.

Lemma A4. Assume C(l1, . . . , lk) is a cycle C = v1 . . . vm with k internal chords that share
an endpoint v1 with V(C) ∩ V(C0) = ∅. Suppose vm is not an endpoint of a chords in C. If
d(v1) ≤ k + 3, then there exists vi ∈ V(C)− {v1} such that d(vi) ≥ 5.

Proof. Let vm be not an endpoint of a chord in C. Suppose otherwise that d(vi) ≤ 4 for
each vi ∈ V(C)− {v1}. Assume G has a 4-assignment L with a cover H in which G has no
(H, L)-coloring. By minimality, G′ = G− {v1, . . . , vm} has an (H′, L′)-coloring where L′

(respectively, H′) is a restriction of L (respectively, H) in G′. Thus an independent set I′ in
H′ with |I′| = |G′| exists.

Let L∗ be a residual list assignment on F. From |L(v)| = 4 for every v ∈ V(G), it
follows that |L∗(v1)| ≥ 3 and |L∗(v)| ≥ 3 for each vertex v ∈ V(C) such that v1v is an
edge whereas |L∗(vi)| ≥ 2 for each remaining vertex vi in V(C). Assume H∗ is a residual
cover of F. Recall that vm is not an endpoint of a chord in C. It follows that there exists
a color c in L∗(v1) with |L∗(vm)− {c′ : (v1, c)(vm, c′) ∈ E(H∗)}| ≥ 2. Greedily coloring
v2, v3, . . . , vm sequently, we have an independent set I∗ where its size |I∗| = m = |F|. It
follows that F is (H∗, L∗)-colorable. By Lemma A2, we have G is (H, L)-colorable, which is
a contradiction.
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