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Abstract: By applying the Lie symmetry method, group-invariant solutions are constructed for
axially loaded Euler beams. The corresponding mathematical models of the beams are formulated.
After introducing the infinitesimal transformations, the determining equations of Lie symmetry are
proposed via Lie point transformations acting on the original equations. The infinitesimal generators
of symmetries of the systems are presented with Maple. The corresponding vector fields are given to
span the subalgebra of the systems. Conserved vectors are derived by using two methods, namely,
the multipliers method and Noether’s theorem. Noether conserved quantities are obtained using
the structure equation, satisfied by the gauge functions. The fluxes of the conservation laws could
also be proposed with the multipliers. The relations between them are discussed. Furthermore, the
original equations of the systems could be transformed into ODEs and the exact explicit solutions
are provided.
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1. Introduction

In geometrical terms, the Lie symmetry group is a fundamental coordinate-free struc-
ture of differential equations. In the field of analytical mechanics, the Lie group is applied to
dynamical systems expressed by both ordinary differential equations (ODEs) and partial
differential equations (PDEs). In particular, the use and importance of symmetries and
conservation laws for constrained ordinary differential systems have been studied deeply in
the last few decades [1–7]. A considerable number of mathematicians have used PDEs to
describe many complex nonlinear phenomena in the fields of electromagnetism, fluid me-
chanics, astrophysics, condensed matter physics, etc. These PDE mathematical models are
significant because these equations describe multiple behaviors in various sciences. The Lie
symmetry group of a system of differential equations can transform solutions of the system
into other solutions. This method is the most powerful, general and systematic approach
for finding exact solutions for these PDEs. Sil and Rajasekhar performed the classification
of nonlocal symmetries and obtained some implicit solutions and one arbitrary family of
solutions for the system of nonlinear partial differential equations [8]. Ref. [9] concerned
the generalized cylindrical KdV equation and provided exact solutions in a general case.
Yadav and Arora investigated the (3 + 1)-dimensional nonlinear wave equation in a liquid
with gas bubbles and obtained the exact solutions of the (3 + 1)-dimensional nonlinear
wave equation [10]. The Lie symmetry method can also be used in fields of mathematical
physics and engineering sciences, such as fluid dynamics [11,12], fluid engineering [13], geo-
physics [14], etc. Symmetry reductions and group-invariant solutions can be obtained while
the Lie group analysis is performed for nonlinear equations. The systematic methods were
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proposed in [2,15] and the references therein. The Lie group classification of these equations
was performed, and Lie point symmetries were presented via variational principles.

There are several analytical methods for finding the solutions to these kinds of equa-
tions, such as the Noether theorem, the extended Noether theorem and the multipliers
method. For variational symmetries, the Lagrangians and symmetries are used to derive
conservation laws in Lagrangian variables by means of Noether’s theorem. The Noether
theorem, when applied to differential equation systems, has a Lagrangian formulation for
a suitable Lagrangian function. Some new results and details can be found in Bluman,
Cheviakov and Anco’s book [16] (see references therein). However, there are differential
equations that do not admit to a Lagrangian formulation. In such cases, the extended
Noether theorem can construct conservation laws of Euler–Lagrange-type equations via
Noether-type symmetry operators associated with partial Lagrangians. Anco and Wang
obtained an explicit formula to find symmetry recursion operators for partial differential
equations from new results connecting variational integrating factors and nonvariational
symmetries [17]. In addition, the multipliers method is also a way of obtaining diver-
gence conservation laws in cases when a system does not directly have a usual Lagrangian
(see [16] and the references therein). For these three methods, the Noether theorem is the
main way of obtaining the conservation laws of variational symmetries, and the extended
Noether theorem and the multipliers method can propose the laws, although these systems
are nonvariational.

The mathematical model of the axially loaded Euler beam is a fourth-order PDE.
Studies of the Euler beam are the basis of analytical solutions, the dynamic response and
applications of models of various beams [18,19]. For fourth-order beam models in the litera-
ture up to the year 2000, the Lie group approach to the beam has been studied in analytical
solutions using symmetry reduction [20–22] and integrability through symmetries [23–25].
In Ref. [22], closed solutions of equations describing nonuniform axially loaded beams
were obtained using the Lie symmetry method. The solutions were directly obtained from
the simpler form of the governing equation, which was based on the preferred coordinate
transformation. The current paper focuses on symmetry reduction and conservation laws.
Our model is a special case of a nonuniform beam. The symmetry reduction for the systems
is the subversion of more general solutions given in [22]. However, different from the for-
mer, the conservation laws and relations between symmetries and conserved quantities are
discussed in this paper. For axially loaded beams, these conserved quantities are of major
importance and can reveal the inner physical meanings of dynamical systems. Ref. [26]
also constructed the exact solutions of fourth-order diffusion equations by using the Lie
symmetry method. Although it did not refer to the conservation laws, it was of significant
reference for the symmetry reduction of the fourth-order Euler beam.

The exact solution of a fourth-order partial differential equation is an open question.
Some models even have no closed solutions. The Lie group method can reduce the order
of the PDE or transform the PDE into ODEs by using the coordinate transformations.
Reduced systems of determining equations are normally much simpler and are integrated
automatically or even by hand. Therefore, solutions of the systems can be obtained easily
using the Lie group method. The Lie group can be simpler than the classic way of obtaining
the exact solutions.

In previous works on the axially loaded beam, researchers focused on searching closed-
form solutions using Lie symmetry reductions. One may work out the Lie determining
equations of the systems by hand. However, with an increasing degree of equations,
construction by hand becomes harder and harder, and even impossible. In this paper, we
applied the Maple procedures to the simpler beams model and produced a simpler way to
solve it. For the mathematical model of the axially loaded beam, some references studied
the conservation laws using the multipliers method. However, the relations between the
symmetry vector fields and the conservation laws did not receive much consideration. In
this paper, we gave forms of conserved quantities. The relations between the Noether
symmetry method and the multipliers method are also proposed. Although this model
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is simpler, it might propose a way of studying the relations between symmetries and
conservation laws for flexible mathematical models, such as nonuniform Euler beams,
axially moving systems, etc.

Based on the symmetry reduction theory, we also reduce the PDE of the beam to ODE
forms and produce the corresponding exact solutions in this paper. In particular, in terms
of finding conserved quantities, we derive the conservation laws directly from the original
fourth partial equation of the system. It is different from those of previous works [21,23–25].
In those previous works, the conservation laws of the reduced Equation (ODE) rather than
the system itself were discussed. Although reference [23] obtained the conservation laws
from an original equation, it considered the case of the centripetal force distribution of
the beam, which was the scalar lower-order ordinary difference equation. Therefore, we
directly derive the conservation laws of the original equation of the fourth axially loaded
Euler beam by using two different methods: the Noether theorem and the multipliers
method. Some of these conservation laws have the same form, but some of them do not.
They all reveal the inner physical properties of the system under certain conditions.

This paper is organized as follows: The introduction is presented in the first section.
In Section 2, the kinetic analysis and problem formulations are reviewed and the equation
is considered. In Section 3, the Lie symmetry group of the axially loaded Euler beam is
presented. In Section 4, the conservation laws for the axially loaded Euler beam are obtained
by using the Noether theorem and the multipliers method. In Section 5, we consider the
symmetry reductions by using the Lie group method and provide exact explicit solutions.
Finally, the conclusions of this paper are presented in the last section.

2. The Dynamic Equation of the Axially Loaded Euler Beam

Consider that a uniform beam has small-amplitude vibrations in the transverse di-
rections between two boundaries. It is loaded by an axial force P0. The large deformation
of the rod is not considered. The span between the two boundaries is denoted by l. The
fixed axial coordinate x measures the distance from the left boundary. Only the bending
vibration described by the transverse displacement u (x, t) is considered, where u (x, t) is
the transversal displacement at time t and position x. The analysis diagram for the micro-
section dx with the transverse shear force Q (x, t) and the bending moment M (x, t) is shown
in Figure 1.

Figure 1. Force analysis diagram of microsection.

The force balance equation in the transverse directions is

ρAdx
∂2u
∂t2 − P0

∂2u
∂x2 dx− ∂Q

∂x
dx = 0, (1)

in which ρ is the linear mass density, A is the area of the cross-section of the beam. The
torque equilibrium equation is

Qdx− ∂M
∂x

dx = 0. (2)

For a slender beam, the linear moment–curvature relationship is

M = −EI
∂2u
∂x2 , (3)
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in which E is the elastic modulus, I is the area moment of inertia and EI is the flexural
rigidity. These equations can be investigated algebraically for E, I, ρ and P0 as some given
constants or functions. From Equations (1) to (3), the transverse motion of the axially
loaded beam is

EI
∂4u
∂x4 − P0

∂2u
∂x2 + ρA

∂2u
∂t2 = 0. (4)

Equation (4) can be cast into the dimensionless form

uxxxx + utt −Φuxx = 0, (5)

where the subscript x or t denotes the partial differentiation with respect to x or t, and the
dimensionless variables and parameters are

u↔ u
l

, t↔ t

√
EI

ρAl4 , x ↔ x
l

, Φ↔ P0l2

EI
.

In this paper, the Lie symmetry and conserved quantities of the transverse vibration
of the axially loaded beam were the main focus.

3. Lie Symmetry of the Axially Loaded Euler Beam

Lie symmetry is a kind of invariance of differential equations under infinitesimal
transformations of coordinates. The Lie algebra of the symmetry group is realized using
vector fields and prolonged vector fields. Readers can consult the proper references,
e.g., Refs. [2,3,15] or [17], for the general method of Lie symmetry of differential equations.
Readers can also read the details in Appendix A.

Based on the general method of Lie symmetry in Appendix A, the application of the
Lie symmetry analysis of the axially loaded beam (5) is as follows.

For the Equation (5), M = R2 × R, that is x1 = t, x2 = x, u1 = u and the fourth
prolongation of the vector field X can be constructed as

prX(4)
i = Xi + ηtt ∂

∂utt
+ ηxx ∂

∂uxx
+ ηxxxx ∂

∂uxxxx
, (6)

where

ηt = Dt(η)− uxDt(ξ)− utDt(τ), ηtt = Dt(ηt)− uxtDt(ξ)− uttDt(τ),
ηx = Dx(η)− uxDx(ξ)− utDx(τ), ηxx = Dx(ηx)− uxxDx(ξ)− uxtDx(τ),
ηxxx = Dx(ηxx)− uxxxDx(ξ)− uxxtDx(τ), ηxxxx = Dx(ηxxx)− uxxxxDx(ξ)− uxxxtDx(τ).

By introducing the infinitesimal transformations and the extended vector (6), the
invariance of Equation (5) under the infinitesimal transformations leads to the satisfaction
of the determining equation

prX(4)(uxxxx + utt −Φuxx)|uxxxx+utt−Φuxx=0 = 0. (7)

Suppose a beam with a square section has a side length a = 0.01 m, a modulus of
elasticity E = 2.1× 1011 Pa and a density ρ = 7850 kg/m3. Let the tension be P0 = 1750 N
and the cross-sectional area of the square section of the beam be A = 1× 10−4 m2; therefore,
coefficient Φ = 10. The determining Equation (7), thus, involves t, x and u, as well as ξ1, ξ2
and η and their partial derivatives with respect to t and x. This results in solving a large
number of equations for the coefficient functions ξ1, ξ2 and η for the infinitesimal generator.
In most instances, these determining equations can be solved with the elementary method,
and the general solution determines the most general infinitesimal symmetry of the system.
In this paper, the symmetry operators were obtained in Maple. In general, the low-order
differential equations can be solved with the determine() provided by liesymm, an embedded
software package in the Maple system [27]. The solution of symmetric equations of higher-
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order nonlinear partial differential equations can be obtained by means of some standard
software packages, such as PDEtools [28], SADE [29], GeM [30], etc.

Equating the coefficients of the various monomials in the partial derivatives of u, such
as [ut, uttt, utttt, utttx, uttx, uttxx, utx, utxx, utxxx, ux, uxx, uxxx, uxxxx], the determining equa-
tions for the symmetry group system (5) can be obtained in the Maple system [28]. After
simplifying and reducing, the overdetermined system of symmetry determining equations
can be rewritten as

ηxxxx = 10ηxx − ηtt, ηux = 0, ηut = 0, ηuu = 0,
ξ1,x = 0, ξ2,x = 0, ξ1,t = 0, ξ2,t = 0, ξ1,u = 0, ξ2,u = 0. (8)

For the generators ξ1,x = 0, ξ1,t = 0 and ξ1,u = 0 we had ξ1 = c1; for ξ2,x = 0, ξ2,t = 0
and ξ2,u = 0 we had ξ2 = c2; and the conditions ηux = 0, ηut = 0 and ηuu = 0 produced
η = c3u + V(t, x). All coefficient functions of the infinitesimal generator were obtained
as follows:

ξ1 = c1, ξ2 = c2, η = c3u + ς(t, x).

Therefore, the infinitesimal generators admitted by the Euler beam equation of motion
had the following form:

Xi = c1∂x + c2∂t + (c3u + ς(t, x))∂u,

where c1, c2 and c3 are arbitrary constants and ς(t, x) satisfies ςxxxx + ςtt − 10ςxx = 0 for
Equation (5). The solutions of (8) are given by the span of the operators

X1 = ∂x, (9)

X2 = ∂t, (10)

X3 = u∂u, (11)

and the infinite-dimensional subalgebra

Xς = ς(x, t)∂u, (12)

where ς is an arbitrary solution of the equation of the axially loaded beam, i.e., satisfy-
ing ςxxxx + ςtt − 10ςxx = 0. These are the elementary symmetries, which exist for any
linear PDE.

It is easy to check that {X1, X2, X3} is closed under the Lie bracket. For Equation (5),
we had

[X1, X1] = [X2, X2] = [X3, X3],
[X1, X2] = −[X2, X1] = [X1, X3] = −[X3, X1] = [X2, X3] = −[X3, X2] = 0,

and

[X1, Xς] = −[Xς, X1] = ςx∂u = Xςx , [X2, Xς] = −[Xς, X2] = ςt∂u = Xςt ,
[X3, Xς] = −[Xς, X3] = −ς∂u = −Xς, [Xς, Xς] = 0.

Therefore, we can see that the generators of the invariant group

Xi = ξ1(t, x, u)
∂

∂t
+ ξ2(t, x, u)

∂

∂x
+ η(t, x, u)

∂

∂u

of (7) construct an infinite-dimensional Lie algebra, which includes a three-dimensional
subalgebra spanned by the basis {X1, X2, X3}, respectively.
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Furthermore, for equaiton (5), the one-parameter groups Gi generated by Xi(i = 1, 2 , 3)
are given in the following:

G1 : (x, t, u)→ (x + ε, t, u),
G2 : (x, t, u)→ (x, t + ε, u),
G3 : (x, t, u)→ (x, t, eεu),
Gς : (x, t, u)→ (x, t, u + ες(x, t)).

From the table above, we observed that G1 is a spatial translation, G2 is a time transla-
tion and G3 is a scaling of dependent variables.

4. Conservation Laws

Local conservation laws of systems of partial differential equations can mainly apply to
the following aspects. Firstly, they can serve as mathematical expressions for fundamental
physical principles. Secondly, they can be used in the analysis and stability of systems
governed by PDEs. Thirdly, a conserved quantity is an important general structure and it
can be used to construct structure-preserving numerical schemes in the development of
numerical methods.

There are two main ways to construct conservation laws for general mechanical sys-
tems. One is the Noether theorem, and the other is the multipliers method, which is also
called the direct method. The Noether theorem is the most well-known systematic method
used for self-adjoint (variational) systems [1]. The other is called the direct method (multi-
pliers method), which is a relatively powerful method for constructing local conservation
laws. It involves integrations and arbitrary functions. In this paper, the conservation laws
of system (5) could be obtained with the Noether theorem and the multipliers method.

4.1. The Noether Theorem

Noether symmetry is an invariance of the Hamilton action under the infinitesimal
transformations of coordinates. A Noether symmetry can lead to a conserved quantity
according to the Noether theorem. The study of the Noether theorem can be seen in
references [2,3,15,17,31]. Readers can also refer to Appendix B. In the following, the
Noether theorem was applied directly to the axially loaded beam (5).

The German mathematician Noether proposed the Noether theorem. Therefore, for
Equation (5) of the axially loaded beam, the Lagrangian of the system can be

L = 5u2
x + uxxxux +

1
2

u2
xx +

1
2

uutt. (13)

Lie operators (9) and (10), satisfied with identity (A14) in Appendix B with B1 = B2 = 0,
are strict Noether symmetries. The scaling symmetry (11) does not preserve the action and,
hence, is nonvariational, with no corresponding conservation law. It is simple to check
that X1(L) + L{Dt(1) + Dx(0)} = 0 and X2(L) + L{Dt(1) + Dx(0)} = 0, where D is the
total differentiation operator. A conserved flow of T =

(
T1, T2) is a vector along which the

conservation law
DtT1 + DxT2 = 0. (14)

The divergence expressions (A15) corresponding to symmetries (9) and (10) are
given by

X1 =
∂

∂x
, Dt

(
−1

2
utux +

1
2

uuxt

)
+ Dx

(
5u2

x − uxxxux +
1
2

u2
xx −

1
2

uutt

)
= 0, (15)

X2 =
∂

∂t
, Dt

(
5u2

x + uxxxux +
1
2

u2
xx −

1
2

u2
t

)
+ Dx(10uxut − uxxxut − uxxtux) = 0. (16)
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Moreover, Equation (5) is the Euler–Lagrange equation for the Lagrangian

L = 5u2
x +

1
2

u2
xx −

1
2

u2
t . (17)

Operators (9) and (10) are the strict Noether symmetries of the standard Lagrangian
(17). The conservation laws are

X1 =
∂

∂x
, T1 = uxut, T2 = −5u2

x −
1
2

u2
t + uxuxxx −

1
2

u2
xx, (18)

X2 =
∂

∂t
, T1 = L + u2

t = 5u2
x +

1
2

u2
xx +

1
2

u2
t , T2 = −10u2

x + uxuxx − u2
xx. (19)

For the axially loaded Euler beam, generator X = ∂t generates the time translation
group G2, and conservation laws (16) and (19) correspond to the generalized energy for each
Lagrangian function. The invariance of the spatial transformation generator X = ∂x implies
the generalized momentums (15) and (18). With ψ = ux representing the rotation of the
cross-section of the beam, M = −uxx denoting the bending moment for the dimensionless
form (5), Q = Mx = −uxxx denoting the transverse shear force and H = uxut denoting the
wave momentum, the resulting conservation law (15) was found to be

Dt

(
−1

2
H − 1

2
uM

)
+ Dx

(
5ψ2 −Qψ +

1
2

M2 − 1
2

uutt

)
= 0. (20)

Expressions (16), (18) and (19) can also be described in the same way. In this point,
the conservation laws can also show various balances of bending moment, shear force
and loading.

4.2. The Multipliers Method

According to the direct method, one seeks multipliers, such that the linear combination
of PDEs of a given system with these multipliers yields a divergence expression. Once
local conservation law multipliers have been found, one needs to reconstruct the fluxes
of the conservation laws. The study of the multipliers method can be seen in [2,16] and
the references therein. The method is also presented in Appendix C. In the following, the
multipliers method was applied directly to the axially loaded beam (5).

For Equation (5), the form of the multiplier is Λ[U]. The determining Equations (A19)
in Appendix C yield the multipliers Λ(1) = ux and Λ(2) = uxxx. We now determined the
corresponding density–flux pairs.

For the multiplier Λ(1) = ux, one obviously has

Λσ[U]Fα[U] ≡ ux(Dt[ut] + Dx[uxxx − ux]), (21)

since Equation (5) is in the divergence form as it stands

Dt

(
−uutx

2
+

utux

2

)
+ Dx

(
−5u2

x + uxxxux −
u2

xx
2

+
uutt

2

)
= 0. (22)

Similarly, for the multiplier Λ(2) = uxxx, one finds the corresponding conservation law

Dt

(
−uutxxx

2
+

utuxxx

2

)
+ Dx

(
u2

xxx
2

+
uuttxx

2
− uxuttx

2
+

uxxutt

2
− 5u2

xx

)
= 0. (23)

The solution Λ(υ) = υ(x, t), ξ(t, x, u) = 0, where υ satisfies υxxxx + υtt − 10υxx = 0,
produces linear conservation laws, which exist for any linear PDE.

As mentioned in Refs. [2,32,33], two conserved densities T may look different, but may
be physically equivalent. For example, suppose the equation of the system is described as
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Fα

[
x, u, u(1), u(2), . . . , u(k)

]
= 0, α = 1, . . . s; if Div (Tt-Tx)|Fα = 0 = 0 is a trivial conservation

law, then the two conservation laws Div Tt = 0 and Div Tx = 0 are equivalent. For the multi-
pliers method, the equivalence class of the conservation law Div Ti

∣∣uxxxx + utt − 10uxx = 0
is characterized uniquely by the function Λσ. Different choices of multipliers Λσ can yield
fluxes of equivalent conservation laws.

5. The Similarity Reductions and Exact Solutions

In this section, we considered the similarity reductions and exact solutions for system (5).
(i) For generator X1, the corresponding symmetry group G1 is a spatial translation, and

the invariance under X1 corresponds to the spatially uniform solution. It is of little physical
interest for the reduction of the system. It yields the characteristic equation dx

1 = dt
0 = du

0 ,
where we had u = f(ξ) and ξ = t. Equation (5) was reduced to the following ODE

f ′′ = 0, (24)

which has the solution f = c1t + c2, where c1 and c2 are arbitrary constants. It is a trivial
solution for Equation (5).

(ii) For generator X2, the corresponding symmetry group G2 is a time translation, the
invariance under X2 corresponds to static (time-independent) solutions, which describe
the equilibrium solutions. We had u = f(ξ), where ξ = x. Equation (5) was reduced to the
following ODE

f ′′′′ −Φ f ′′ = 0, (25)

where f ′ = d f
dξ , the coefficient Φ↔ P0

EI > 0 . Equation (25) is a linear fourth-order ODE.

When solving this equation, we obtained f (ξ) = c1 + c2ξ + c3e
√

P0
EI ξ + c4e−

√
P0
EI ξ . The

solution of Equation (5) was

u(x, t) = c1 + c2x + c3e
√

P0
EI x + c4e−

√
P0
EI x, (26)

where ci(i = 1, . . . , 4) are arbitrary constants.
(iii) For generator X3, the corresponding symmetry group G3 reflects the linearity of

the equation for the axially loaded Euler beam. X3 is a scaling of dependent variables,
and the invariance under X3 corresponds to the static (time-independent) solutions, which
describe the equilibrium solutions. We could only obtain a trivial solution u(x, t) = c, where
c is a constant.

(iv) For the linear combination X1 + aX3 here, and in what follows, we assumed
a 6= 0 was an arbitrary constant. From the characteristic equation, we obtained the solution
u = eax f (ξ), where ξ = t. Equation (5) was reduced to the following ODE

f ′′ +
(

a4 − P0

EI
a2
)

f = 0, (27)

which has the solution f (ξ) = c1 sin
(

a
√

a2 − P0
EI ξ

)
+ c2 cos

(
a
√

a2 − P0
EI ξ

)
. Thus, the

solution of Equation (5) was

u(x, t) = eax

(
c1 sin

(
a

√
a2 − P0

EI
t

)
+ c2 cos

(
a

√
a2 − P0

EI
t

))
, (28)

where ci(i = 1, . . . , 4) are arbitrary constants.
(v) For the linear combination X2 + aX3, we had u = eat f (ξ), where ξ = x.

Equation (5) was reduced to the following ODE

f ′′′′ − P0

EI
f ′′ + a2 f = 0, (29)
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which had the solution

f (ξ) = c1e−

√
2

P0
EI −2

√
(

P0
EI )

2
−4a2ξ

2 + c2e

√
2

P0
EI −2

√
(

P0
EI )

2
−4a2ξ

2

+c3e−

√
2

P0
EI +2

√
(

P0
EI )

2
−4a2ξ

2 + c4e

√
2

P0
EI +2

√
(

P0
EI )

2
−4a2ξ

2 .

(30)

The solution of Equation (5) was

u(x, t) = c1eat−

√
2

P0
EI −2

√
(

P0
EI )

2
−4a2x

2 + c2eat+

√
2

P0
EI −2

√
(

P0
EI )

2
−4a2x

2

+c3eat−

√
2

P0
EI +2

√
(

P0
EI )

2
−4a2x

2 + c4eat+

√
2

P0
EI +2

√
(

P0
EI )

2
−4a2x

2 .

(31)

where ci(i = 1, . . . , 4) are arbitrary constants. These constants can be obtained when the
exact solutions are required to satisfy some specific boundary conditions.

(vi) In this part, the most important case of combination aX1 + X2 was considered.
This solution shows the explicit traveling wave solution. The process is as follows:

For generator aX1 + X2, it yields the characteristic equation dx
a = dt

1 = du
0 , where we

had u = f(ξ) and ξ = x− at. Equation (5) was reduced to the following ODE

f ′′′′ +
(

a2 − P0

EI

)
f ′′ = 0, (32)

which had the solution f (ξ) = c1 + c2ξ + c3e
√

a2− P0
EI ξ + c4e−

√
a2− P0

EI ξ . The solution of
Equation (5) is

u(x, t) = c1 + c2(x− at) + c3e
√

a2− P0
EI (x−at) + c4e−

√
a2− P0

EI (x−at), (33)

where ci(i = 1, . . . , 4) are arbitrary constants. The constants can be obtained under specific
boundary conditions.

6. Conclusions

In this paper, the exact solutions of the mathematical model of axially loaded Euler
beams were found by applying the Lie group method to the system. The essential feature
(symmetry) was constructed using the Lie determining equation with the help of the
Maple symbol calculation procedure. Based on the symmetrical vector fields, the original
equations were transformed into ODEs with the symmetry reduction method. Some special,
exact solutions were provided for the original equations of the axially loaded beams (which
included the traveling wave solution).

Based on the symmetry operators, some conservation laws were obtained with the
Noether theorem, and the multipliers method could propose conservation laws as well. In
view of the form of conservation, the multipliers could have Noether conserved quantities.
There were also some new conserved quantities, which were different from the former ones.
Moreover, the physical meaning of the conservations were given for this model.
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Appendix A

General method of Lie symmetry
For a system of the differential equation

Fα

[
x, u, u(1), u(2), . . . , u(k)

]
= 0, α = 1, . . . s (A1)

of arbitrary order k, with m independent variables x = (x1, x2, . . . , xm) ∈ Rm, n dependent
variables u = (u1, u2, . . . , un) ∈ Rn and the partial derivatives denoted by ui

l = ∂ul(x)/∂xi;

u(1) =
{

u1
1(x), · · · , u1

n(x), · · · , um
1 (x), · · · , um

n (x)
}

=
{

ul
i

}
=
{

∂ul/∂xi

}
denotes the set of all first-order partial derivatives

u(2) =
{

ul
i1i2

}
=
{

∂2ul/∂xi1 ∂xi2

}
,

u(3) =
{

ul
i1i2i3

}
=
{

∂3ul/∂xi1 ∂xi2 ∂xi3

}
,

u(p) =
{

ul
i1 ...ip

∣∣∣l = 1, . . . , m; i1, . . . , ip = 1, . . . , n
}

=
{

∂pul/∂xi1 · · · ∂xip

∣∣∣l = 1, . . . , m; i1, . . . , ip = 1, . . . , n
}

denotes the set of all partial derivatives of order p. The expression u(k) stands for the vector
whose components are the partial derivatives up to order k of all ul .

A symmetry group of the system is a local group of transformation Gr in Z acting on
the open subset M ⊂ X × U, X ∈ Rm, U ∈ Rn. The group transformations, parameterized
by ε, have the form

xi = ΛG(x, u, ε), ul = ΩG(x, u, ε) (A2)

where the functions ΛG and ΩG are to be determined. A one-parameter Lie group G can
be completely recovered from the knowledge of the linear terms in the Taylor series of ΛG
and ΩG,

xi(ε) = xi + ε
(

∂ΛG
∂ε |ε→0

)
+ O(ε2),

ul(ε) = ul + ε
(

∂ΩG
∂ε |ε→0

)
+ O(ε2),

(A3)

since ε→ 0 forms the identity of the group. The infinitesimals are defined by the
new functions:

ξi(x, u) =
∂ΛG

∂ε
|ε→0 , ηl(x, u) =

∂ΩG
∂ε
|ε→0 . (A4)

Then, Equations (A3) become

xi(ε) = xi + εξi(x, u) + O(ε2), ul(ε) = ul + εηl(x, u) + O(ε2), (A5)

where x(0) = x, u(0) = u. Instead of considering Lie group G, one concentrates on its Lie
algebra g, realized by vector fields of the form

Xi = ξi(x, u)
∂

∂xi
+ ηl(x, u)

∂

∂ul . (A6)
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To determine the coefficients ξi(x, u) and ηl(x, u), one has to construct the kth prolon-
gation pr(k)Xi of the vector field X = (X1, X2, . . . , Xm) given by

pr(k)Xi = Xi + η
(1)l
i (x, u, u(1))

∂

∂ul
i
+ · · ·+ η

(k)l
i1 ...ik

(x, u, u(1), u(2), · · · , u(k))
∂

∂ul
i1 ...ik

. (A7)

where ul
i = ∂ul/∂xi, ul

J,i =∂ul
J/∂xi and the prolonged components η

(1)l
i , · · · , η

(k)l
i1 ...ik

are

defined in terms of
{

ξi(x, u), ηl(x, u)
}

by

η
(1)l
i = Dxi η

l −
(

Dxi ξ j
)
ui

j (A8)

and
η
(k)l
i1 ...ik

= Dxik
η
(k−1)l
i1 ...ik−1

−
(

Dxik
ξ j

)
ul

i1 ...ik−1 j.

For i, ij = 1, . . . , n; j = 1, . . . , k; l = 1, . . . , m, the total derivative Dxi can be expressed

Dxi =
∂

∂xi
+ ul

i
∂

∂ul + ul
ii1

∂

∂ul
i1

+ ul
ii1i2

∂

∂ul
i1i2

+ · · · , i = 1, . . . , n. (A9)

Appendix B

Noether symmetry and conservation laws.
For the prolongation vector field (A7), one can write it in the form

X = ξ iDxi + Wα ∂

∂uα
+ Dxi (W

α)
∂

∂uα
i
+ Dxi1

Dxi2
(Wα)

∂

∂uα
i1i2

+ · · · (A10)

where Wα = ηα − ξ juα
j .

The Euler–Lagrange operator is defined by

Euα =
δ

δuα
=

∂

∂uα
+ ∑

s≥1
(−1)sDxi1

. . . Dxis

∂

∂uα
i1 ...is

, α = 1, . . . , n. (A11)

If there exists a function L (t, x, u, ut, ux, . . . ) such that

Euα(L) = 0 (A12)

satisfies (A1), we say (A1) is variational and L is a Lagrangian of (A1) and Equation (A12)
is a Euler–Lagrange equation. If Equation (A12) does not satisfy (A1) completely, but

Euα(L) = f β
α F1

β , (A13)

where F1
β = Fβ − F0

β for (A1) and f β
α are nonzero functions, we say L is a partial Lagrangian

of (A1) and Equation (A13) is a Euler–Lagrange-type equation.

Definition A1. A generator of the type X in (A15) is a Noether-type symmetry, corresponding to a
partial Lagrangian L if it satisfies

X(L) + L{Dt(ξ1) + Dx(ξ2)} = WαEuα + Dt

(
B1
)
+ Dx

(
B2
)

(A14)

for some gauge vector B =
(

B1, B2).
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Theorem A1. Corresponding to each Noether-type symmetry X of partial Lagrangian L, there
corresponds a vector T =

(
T1, . . . , Tn), defined by

Ti = Lξ i + WαEuα
i
+ ∑

s≥1
Dxi1
· · ·Dxis

(Wα)Euα
ii1···is
− Bi, (A15)

which is a conserved vector of Equation (A1), i.e.,Di
(
Ti) = 0 for the solution of (A1).

Appendix C

General method of the multipliers method
The differential Equation (A1) can be rewritten as

Fα[U] = Fα

[
x, u, u(1), u(2), . . . , u(k)

]
= 0, α = 1, . . . , s. (A16)

A problem arises when finding divergence-type conservation laws in the form

Dxi T
i[U] = 0, (A17)

where Ti[U] = T
i
(

x, u, u(1), u(2), . . . , u(k)

)
, that hold for the kth-order differential

systems (A1).

Consider a set of multipliers {Λσ[U]}N
σ=1 =

{
Λσ

(
x, u, u(1), u(2), . . . , u(k)

)}N

σ=1
, which,

when taken as factors in the linear combination of equations of the PDE systems (A1) yield
a divergence expression

Λσ[U]Fα[U] ≡ Dxi T
i[U], (A18)

which holds for arbitrary functions U(x).
To seek sets of multipliers {Λσ[U]}N

σ=1 that yield conservation laws, one uses the
fundamental property of Euler operators (A11). The Euler operators can annihilate any
divergence expression DiΦi[U]. Therefore, Euα(DiTi[U]) ≡ 0 holds for arbitrary U(x) and
for some set of fluxes.

Theorem A2. The nonsingular local conservation law multiplier {Λσ[U]}N
σ=1 yields a divergence

expression for system (A1) if, and only if, the set of equations

Euα

(
Λσ(x, u, u(1), u(2), . . . , u(k))Fα(x, u, u(1), u(2), . . . , u(k))

)
≡ 0, (A19)

hold for arbitrary U(x). Equation (A19) is called the multiplier determining equation.
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