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Abstract: Many authors have recently examined the relationship between symmetry and generalized
convexity. Generalized convexity and symmetry have become a new area of study in the field of
inequalities as a result of this close relationship. In this article, we introduce the idea of preinvex fuzzy-
interval-valued functions (preinvex F·I-V·F) on coordinates in a rectangle drawn on a plane and show
that these functions have Hermite–Hadamard-type inclusions. We also develop Hermite–Hadamard-
type inclusions for the combination of two coordinated preinvex functions with interval values. The
weighted Hermite–Hadamard-type inclusions for products of coordinated convex interval-valued
functions discussed in a recent publication by Khan et al. in 2022 served as the inspiration for our
conclusions. Our proven results expand and generalize several previous findings made in the body of
literature. Additionally, we offer appropriate examples to corroborate our theoretical main findings.

Keywords: fuzzy-interval-valued function; fuzzy-interval double integral operator; coordinated
preinvex fuzzy-interval-valued function; Hermite–Hadamard inequality; Hermite–Hadamard–Fejér in-
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1. Introduction

The H-H inequality has been a potent instrument to obtain a lot of excellent results
in integral inequalities and optimization theory because of its crucial role in convex anal-
ysis. It has recently been generalized using other convexity types, particularly s-convex
functions [1–4], log-convex functions [5–7], harmonic convexity [8], and particularly for
h-convex functions [9]. Since 2007, numerous H-H inequalities for h-convex function
extensions and generalizations have been established in [10–16].

On the other hand, Archimedes’ calculation of the circumference of a circle can be
linked to the theory of interval analysis, which has a lengthy history. However, due to a
lack of applications to other sciences, it was forgotten for a very long time. Burkill [17]
developed several fundamental interval function features in 1924. Kolmogorov’s [18]
generalization of Burkill’s findings from single-valued functions to multi-valued functions
came shortly after. Of course, throughout the following 20 years, numerous additional
outstanding achievements were also obtained. Please take notice that Moore was the
first to realize how interval analysis might be used to calculate the error boundaries of
computer numerical solutions. The theoretical and applied research on interval analysis
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has received a lot of attention and has produced useful discoveries during the past 50 years
since Moore [19] published the first monograph on the subject in 1966. In more recent years,
Nikodem et al. [20] and, particularly, Budak et al. [21], Chalco–Cano et al. [22,23], Costa
et al. [24–26], Román–Flores et al. [27,28], Flores–Franuli et al. [29], and Zhao et al. [30–33]
have expanded various well-known inequalities. For more information, see [34–69] and
the references are therein.

We introduce the coordinated preinvex functions in fuzzy interval-valued settings,
which are inspired by Dragomir [34], Latif and Dragomir [44], and Khan et al. [37,38].
We also talk about how coordinated fuzzy-interval preinvexity and preinvexity relate to
one another. The key findings of this study are new fuzzy-interval versions of Hermite–
Hadamard-type inequalities that we develop with the help of newly defined coordinated
fuzzy-interval preinvexity. Finally, we provide some examples to highlight our key find-
ings. The current findings can also be seen as instruments for further study into topics
like inequalities for fuzzy-interval-valued functions, fuzzy interval optimization, and
generalized convexity.

2. Preliminaries

Let RI be the space of all closed and bounded intervals of R andQ ∈ RI be defined by

Q = [Q∗, Q∗] = {
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𝜆 ⋅ 𝒬 =  [𝜆𝒬∗, 𝜆𝒬∗] if 𝜆 > 0,0                if 𝜆 = 0,[𝜆𝒬∗, 𝜆𝒬∗]  if 𝜆 < 0. (2)

Then, the Minkowski difference 𝒵 − 𝒬, addition 𝒬 + 𝒵, and 𝒬 × 𝒵  for 𝒬, 𝒵 ∈ ℝ  
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Remark 1. (i) For given [𝒵∗, 𝒵∗], [𝒬∗, 𝒬∗] ∈ ℝ ,  the relation " ⊇ "  defined on ℝ  by [𝒬∗, 𝒬∗] ⊇ [𝒵∗, 𝒵∗] if and only if  𝒬∗ ≤ 𝒵∗, 𝒵∗ ≤ 𝒬∗, (6)
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looks like “up and down” on the real line ℝ, so we call " ⊇ " as “up and down” (or “UD” order, 
in short) [40]. 
(ii) For given [𝒵∗, 𝒵∗], [𝒬∗, 𝒬∗] ∈ ℝ , we say that [𝒵∗, 𝒵∗] ≤ [𝒬∗, 𝒬∗] if and only if  

∈ R| Q∗ ≤
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If Q∗ = Q∗, then Q is said to be degenerate. In this article, all intervals will be non-
degenerate intervals. IfQ∗ ≥ 0, then [Q∗, Q∗] is called a positive interval. The set of all posi-
tive intervals is denoted byR+

I and defined asR+
I = {[Q∗, Q∗] : [Q∗, Q∗] ∈ RI andQ∗ ≥ 0}.

Let λ ∈ R and λ · Q be defined by

λ · Q =


[λQ∗, λQ∗] if λ > 0,
{0} if λ = 0,
[λQ∗, λQ∗] if λ < 0.

(2)

Then, the Minkowski difference Z −Q, addition Q+ Z , and Q×Z for Q,Z ∈ RI
are defined by

[Z∗, Z∗] + [Q∗, Q∗] = [Z∗ +Q∗, Z∗ +Q∗], (3)

[Z∗, Z∗]× [Q∗, Q∗]
= [min{Z∗Q∗, Z∗Q∗, Z∗Q∗, Z∗Q∗}, max{Z∗Q∗, Z∗Q∗, Z∗Q∗, Z∗Q∗}]

(4)

[Z∗, Z∗]− [Q∗, Q∗] = [Z∗ −Q∗, Z∗ −Q∗], (5)

Remark 1. (i) For given [Z∗, Z∗], [Q∗, Q∗] ∈ RI , the relation “⊇I” defined on RI by
[Q∗, Q∗] ⊇I [Z∗, Z∗] if and only if

Q∗ ≤ Z∗, Z∗ ≤ Q∗, (6)

for all [Z∗, Z∗], [Q∗, Q∗] ∈ RI , it is a partial interval inclusion relation. The relation
[Q∗, Q∗] ⊇I [Z∗, Z∗] coincides with [Q∗, Q∗] ⊇ [Z∗, Z∗] on RI . It can be easily seen that

“⊇I” looks like “up and down” on the real line R, so we call “⊇I” as “up and down” (or “UD”
order, in short) [40].

(ii) For given [Z∗, Z∗], [Q∗, Q∗] ∈ RI , we say that [Z∗, Z∗] ≤I [Q∗, Q∗] if and only if

Z∗ ≤ Q∗, Z∗ ≤ Q∗ or Z∗ ≤ Q∗, Z∗ < Q∗ (7)

it is a partial interval order relation. The relation [Z∗, Z∗] ≤I [Q∗, Q∗] is coincident to
[Z∗, Z∗] ≤ [Q∗, Q∗] on RI . It can be easily seen that “≤I” looks like “left and right” on
the real line R, so we call “≤I” as “left and right” (or “LR” order, in short) [39,40].
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For [Z∗, Z∗], [Q∗, Q∗] ∈ RI , the Hausdorff–Pompeiu distance between intervals
[Z∗, Z∗] and [Q∗, Q∗] is defined by

dH([Z∗, Z∗], [Q∗, Q∗]) = max{|Z∗ −Q∗|, |Z∗ −Q∗|}. (8)

It is a familiar fact that (RI , dH) is a complete metric space [42–44].

Definition 1 ([40,41]). A fuzzy subset L of R is distinguished by mapping ψ̃ : R→ [0, 1] called
the membership mapping of L. That is, a fuzzy subset L of R is mapping ψ̃ : R→ [0, 1] . So, for
further study, we have chosen this notation.We appoint F to denote the set ofall fuzzy subsets of R.

Let ψ̃ ∈ F. Then, ψ̃ is known as a fuzzy number or fuzzy interval if the following properties
are satisfied by ψ̃:

(1) ψ̃ should be normal if there exists
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) = 1;
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∈ R, there exist ε > 0 or there exist
δ > 0 such that ψ̃(
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−ω| < δ;
(3) ψ̃ should be fuzzy convex, that is ψ̃((1− ϕ)x + ϕω) ≥ min

(
ψ̃(x), ψ̃(ω)

)
, for all x, ω ∈ R

and ϕ ∈ [0, 1]
(4) ψ̃ should be compactly supported, that is cl

{
u ∈ R

∣∣ ψ̃(
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) >0
}

is compact.

We appoint FI to denote the set ofall fuzzy intervals or fuzzy numbers of R.

Definition 2 ([40,41]). Given ψ̃ ∈ FI, the level sets or cut sets are given by
[
ψ̃
]λ

=
{
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) >0
}

. These sets are known as λ-level sets or λ-cut
sets of ψ̃.

Proposition 1 ([39]). Let ψ̃, ṽ ∈ FI . Then relation “4” given on FI by ψ̃ 4 ṽ when and only
when,

[
ψ̃
]λ ≤I [ṽ]λ, for every λ ∈ [0, 1], it is left and right order relation.

Remember the approaching notions, which are offered in literature. If ψ̃, ṽ ∈ FI and
λ ∈ R, then, for every λ ∈ [0, 1], the arithmetic operations are defined by[

ψ̃+̃ṽ
]λ

=
[
ψ̃
]λ

+ [ṽ]λ, (9)[
ψ̃×̃ṽ

]λ
=
[
ψ̃
]λ × [ ṽ]λ, (10)[

λ·ψ̃
]λ

= λ·
[
ψ̃
]λ (11)

These operations follow directly from the Equations (2)–(5), respectively.

Theorem 1 ([40]). The space FI dealing with a supremum metric, i.e., for ψ̃, ṽ ∈ FI

d∞
(
ψ̃, ṽ

)
= sup

0≤λ≤1
dH

([
ψ̃
]λ, [ṽ]λ

)
, (12)

Is a complete metric space, where H denote the well-known Hausdorff metric on the space of intervals.

Definition 3 ([40]). The F·I-V·F S̃ : [u, ν]→ FI is said to be convex F·I-V·F on [u, ν] if

S̃(σx + (1− σ)ω) 4 σS̃(x) +̃ (1− σ)S̃(ω), (13)

for all x, ω ∈ [u, ν], σ ∈ [0, 1], where S(x) < 0̃. If S̃ is concave F·I-V·F on [u, ν], then inequality
(14) is reversed.
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Definition 4 ([37]). Let h1, h2 : [0, 1] ⊆ [u, ν]→ R+ such that h1, h2
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0. Then, F·I-V·F
S̃ : [u, ν]→ FI is said to be (h1, h2)-preinvex F·I-V·F on [u, ν] if

S̃(x + (1− σ)ϕ(ω, x)) 4 η1(σ)η2(1− σ)S̃(x)+̃η1(1− σ)η2(σ)S̃(ω), (14)

for all x, ω ∈ [u, ν], σ ∈ [0, 1], where S̃(x) < 0̃ and ϕ : [u, ν]× [u, ν]→ [u, ν] . If S̃ is
(η1, η2)-concave on [u, ν], then inequality (15) is reversed.

Remark 2 ([37]). If η2(σ) ≡ 1, then (η1, η2)-preinvex F·I-V·F becomes η1-preinvex F·I-V·F,
that is
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Condition 1 (see [46]). Let K be an invex set with respect to θ. For any x, ω ∈ K and ξ ∈ [0, 1],

θ(x, x + ξθ(ω, x)) = −ξθ(ω, x),

θ(ω, x + ξθ(ω, x)) = (1− ξ)θ(ω, x).

Clearly for ξ = 0, we have θ(ω, x) = 0 if and only if, ω = x, for all x, ω ∈ K. For the
applications of Condition 1, see [46–48].

Theorem 2 ([19]). If S : [u, ν] ⊂ R→ RI is an I-V·F given by (x) [S∗(x), S∗(x)], then S is
Riemann integrable over [u, ν] if and only if, S∗ and S∗ both are Riemann integrable over [u, ν]
such that

(IR)
∫ ν

u
S(x)dx = [(R)

∫ ν

u
S∗(x)dx, (R)

∫ ν

u
S∗(x)dx] (18)

The collection of all Riemann integrable real-valued functions and Riemann integrable I-V·F is
denoted byR[u, ν] and TR[u, ν], respectively.

Definition 5 ([45]). Let S : [τ, ς] ⊂ R→ FI is fuzzy-number valued mapping. The fuzzy
Riemann integral ((FR)-integral) of S over [τ, ς], denoted by (FR)

∫ ς
τ S(
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)}, for every λ ∈
[0, 1]. S is (FR)-integrable over [τ, ς] if (FR)

∫ ς
τ S(
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∈ RI .

Note that, the Theorem 2 is also true for interval double integrals. The collection of all
double integrable I-V·F is denoted TO∆, respectively.

Theorem 3 ([32]). Let ∆ = [a, b]× [u, ν]. If S : ∆→ RI is ID-integrable on ∆, then we have

(ID)
∫ b

a

∫ ν

u
S(x, ω)dωdx = (IR)

∫ b

a
(IR)

∫ ν

u
S(x, ω)dωdx (20)
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Definition 6 ([38]). A fuzzy-interval-valued map S̃ : ∆ = [a, b]× [u, ν]→ FI is called F·I-
V·F on coordinates. Then, from λ-levels, we get the collection of I-V·Fs Sλ : ∆ ⊂ R2 → RI
on coordinates given by Sλ(x, ω) = [S∗((x, ω), λ), S∗((x, ω), λ)] for all (x, ω) ∈ ∆, where
S∗(., λ), S∗(., λ) : (x, ω)→ R are called lower and upper functions of Sλ.

Definition 7 ([38]). Let S̃ : ∆ = [a, b]× [u, ν] ⊂ R2 → FI be a coordinated F·I-V·F. Then,
S̃(x, ω) is said to be continuous at (x, ω) ∈ ∆ = [a, b]× [u, ν], if for each λ ∈ [0, 1], both end
point functions S∗((x, ω), λ) and S∗((x, ω), λ) are continuous at (x, ω) ∈ ∆.

Definition 8 ([38]). Let S̃ : ∆ = [a, b]× [u, ν] ⊂ R2 → FI be a F·I-V·F on coordinates. Then,
fuzzy double integral of S̃ over ∆ = [a, b]× [u, ν], denoted by (FD)

∫ b
a

∫ ν
u S̃(x, ω)dωdx, it is

defined level-wise by

[
(FD)

∫ b

a

∫ ν

u
S̃(x, ω)dωdx

]λ

= (ID)
∫ b

a

∫ ν

u
Sλ(x, ω)dωdx(IR)

∫ b

a
= (IR)

∫ ν

u
Sλ(x, ω)dωdx, (21)

for all λ ∈ [0, 1], S̃ is FD-integrable over ∆ if (FD)
∫ b

a

∫ ν
u S̃(x, ω)dωdx ∈ FI . Note that, if

end-point functions are Lebesgue-integrable, then S̃ is a fuzzy double Aumann-integrable function
over ∆.

Theorem 4 ([38]). Let S̃ : ∆ ⊂ R2 → FI be a F·I-V·F on coordinates. Then, from λ-levels, we get the
collection of I-V·Fs Sλ : ∆ ⊂ R2 → RI are given by Sλ(x, ω) = [S∗((x, ω), λ), S∗((x, ω), λ)]
for all (x, ω) ∈ ∆ = [a, b]× [u, ν] and for all λ ∈ [0, 1]. Then, S̃ is FD-integrable over ∆ if and only
if, S∗((x, ω), λ) and S∗((x, ω), λ) both are D-integrable over ∆. Moreover, if S̃ is FD-integrable
over ∆, then[

(FD)
∫ b

a

∫ ν
u S̃(x, ω)dωdx

]
λ =

[
(FR)

∫ b
a (FR)

∫ ν
u S̃(x, ω)dωdx

]λ
=

(IR)
∫ b

a (IR)
∫ ν

u Sλ(x, ω)dωdx = (ID)
∫ b

a

∫ ν
u Sλ(x, ω)dωdx,

(22)

for all λ ∈ [0, 1].

The family of all FD-integrable F·I-V·Fs over coordinates is denoted by FO∆ for all
λ ∈ [0, 1].

Theorem 5 ([38]). Let $ ∈ R, and S̃, J̃ ∈ FO∆. Then,

(1) $S̃ ∈ FO∆ and

(FD)
x

∆

$S̃dA = $(FD)
x

∆

S̃dA (23)

(2) S̃+̃ J̃ ∈ FO∆, and

(FD)
x

∆

(
S̃+̃J̃

)
dA = (FD)

x

∆

S̃dA+̃(FD)
x

∆

J̃ dA (24)

(3) suppose that ∆1 and ∆2 are non-overlapping, then

(FD)
x

∆1∪ ∆2

S̃dA = (FD)
x

∆1

S̃dA + (FD)
x

∆2

S̃dA (25)

Theorem 6 ([37]). Let S̃, J̃ : [u, u + ϕ(ν, u)]→ FI be two (η1, η2)-preinvex F·I-V·Fs with
η1, η2 : [0, 1]→ R+ and η1

(
1
2

)
η2

(
1
2

)
6= 0. Then, from λ-levels, we get the collection of I-

V·Fs Sλ, Jλ : [u, u + ϕ(ν, u)] ⊂ R→ R+
I are given by Sλ(x) = [S∗(x, λ), S∗(x, λ)] and
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Jλ(x) = [J∗(x, λ), J ∗(x, λ)] for all x ∈ [u, u + ϕ(ν, u)] and for all λ ∈ [0, 1]. If S̃×̃J̃ is
fuzzy Riemann integrable, then

1
ϕ(ν,u) (FR)

∫ u+ϕ(ν,u)
u S̃(x)×̃J̃ (x)dx

4 β̃(u, ν)
∫ 1

0 [η1(σ)η2(1− σ)]2dσ+̃γ̃(u, ν)
∫ 1

0 η1(σ)η2(σ)η1(1− σ)η2(1− σ)dσ,
(26)

and,

1
2[η1( 1

2 )η2( 1
2 )]

2 S̃
(

2u+ϕ(ν,u)
2

)
J̃
(

2u+ϕ(ν,u)
2

)
4 1

ϕ(ν,u) (FR)
∫ u+ϕ(ν,u)

u S̃(x)J̃ (x)dx +̃ γ̃(u, ν)
∫ 1

0 [η1(σ)η2(1− σ)]2dσ

+̃β̃(u, ν)
∫ 1

0 η1(σ)η2(σ)η1(1− σ)η2(1− σ)dσ

(27)

where β̃(u, ν) = S̃(u)×̃J̃ (u) +̃ S̃(ν)×̃J̃ (ν), γ̃(u, ν) = S̃(u)×̃J̃ (ν) +̃ S̃(ν)×̃J̃ (u), and
βλ(u, ν) = [β∗((u, ν), λ), β∗((u, ν), λ)] and γλ(u, ν) = [γ∗((u, ν), λ), γ∗((u, ν), λ)].

Remark 3. If η1(σ) = σ and η2(σ) ≡ 1, then (27) reduces to the result for preinvex F·I-V·F:

1
ϕ(ν, u)

(FR)
∫ u+ϕ(ν,u)

u
S̃(x)×̃J̃ (x)dx 4

1
3

β̃(u, ν)+̃
1
6

γ̃(u, ν) (28)

If η1(σ) = σ and η2(σ) ≡ 1, then (28) reduces to the result for preinvex F·I-V·F:

2 S̃
(

2u+ϕ(ν,u)
2

)
×̃J̃

(
2u+ϕ(ν,u)

2

)
4 1

ϕ(ν,u) (FR)
∫ u+ϕ(ν,u)

u S̃(x)×̃J̃ (x)dx +̃ 1
6 β̃(u, ν)+̃ 1

3 γ̃(u, ν).
(29)

Theorem 7 ([37]). Let S̃ : [u, u + ϕ(ν, u)]→ FI be a preinvex F·I-V·F with u < u + ϕ(ν, u).
Then, from λ-levels, we get the collection of I-V·Fs Sλ : [u, u + ϕ(ν, u)] ⊂ R→ R+

I are given by
Sλ(x) = [S∗(x, λ), S∗(x, λ)] for all x ∈ [u, u + ϕ(ν, u)] and for all λ ∈ [0, 1], and Condition
1 for ϕ holds. If S̃ ∈ SR([u, u+ϕ(ν,u)], λ) and ψ : [u, ν]→ R, ψ(x) ≥ 0, symmetric with respect

to 2 u+ϕ(ν,u)
2 , and

∫ u, u+ϕ(ν,u)
u ψ(x)dx > 0, then

S̃

(
2u + ϕ(ν, u)

2

)
4

1∫ u+ϕ(ν,u)
u ψ(x)dx

(FR)
∫ u+ϕ(ν,u)

u
S̃(x)ψ(x)dx 4

S̃(u)+̃S̃(ν)

2
. (30)

If S is preincave F·I-V·F, then inequality (31) is reversed.
Note that if ψ(x) = 1, then we acquire the following inequality:

S̃

(
2u + ϕ(ν, u)

2

)
4

1
(ν, u)

(FR)
∫ u+ϕ(ν,u)

u
S̃(x)dx 4

S̃(u)+̃S̃(ν)

2
. (31)

Coordinated preinvex fuzzy-interval-valued functions

Definition 9. The F·I-V·F S̃ : ∆→ FI is said to be a coordinated preinvex F·I-V·F on ∆ if

S̃(a + (1− σ)ϕ1(b, a), u + (1− s)ϕ2(ν, u))
4 σsS̃(a, u)+̃σ(1− s)S̃(a, ν)+̃(1− σ)sS̃(b, u)+̃(1− σ)(1− s)S̃(b, ν),

(32)

for all (a, b), (u, ν) ∈ ∆, and σ, s ∈ [0, 1], where S̃(x) < 0̃. If inequality (33) is reversed,
then S̃ is called coordinated concave F·I-V·F on ∆.
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The proof that Lemma 1 is straightforward will be omitted here.

Lemma 1. Let S̃ : ∆→ FI be a coordinated F·I-V·F on ∆. Then, S̃ is a coordinated preinvex
F·I-V·F on ∆, if and only if there exist two coordinated preinvex F·I-V·Fs S̃x : [u, ν]→ FI ,
S̃x(w) = S̃(x, w) and S̃ω : [a, b]→ FI , S̃ω(q) = S̃(q, ω).

Proof. From the Definition 9 of coordinated preinvex F·I-V·F, it can be easily proved. �

From Lemma 1, we can easily note each preinvex F·I-V·F is a coordinated preinvex
F·I-V·F. However, the converse is not true, see Example 1.

Theorem 8. Let S̃ : ∆→ FI be a F·I-V·F on ∆. Then, from λ-levels, we get the collection of
I-V·Fs Sλ : ∆→ R+

I ⊂ RI which are given by

Sλ(x, ω) = [S∗((x, ω), λ), S∗((x, ω), λ)], (33)

For all (x, ω) ∈ ∆ and for all λ ∈ [0, 1]. Then, S̃ is coordinated preinvex F·I-V·F on ∆, if and
only if, for all λ ∈ [0, 1], S∗((x, ω), λ) and S∗((x, ω), λ) are coordinated preinvex functions.

Proof. Assume that for each λ ∈ [0, 1],S∗(x, λ) and S∗(x, λ) are coordinated preinvex on
∆. Then, from (33), for all (a, b), (u, ν) ∈ ∆, σ and s ∈ [0, 1], we have

S∗((a + (1− σ)ϕ1(b, a), u + (1− s)ϕ2(ν, u)), λ)
≤ σsS∗((a, u), λ) + t(1− s)S∗((a, ν), λ)
+s(1− t)S∗((a, u), λ) + (1− σ)(1− s)S∗((a, ν), λ)

and
S∗((a + (1− σ)ϕ1(b, a), u + (1− s)ϕ2(ν, u)), λ)
≤ σsS∗((a, u), λ) + t(1− s)S∗((a, ν), λ)
+s(1− t)S∗((a, u), λ) + (1− σ)(1− s)S∗((a, ν), λ)

Then, by (33), (10), and (12), we obtain

Sλ((a + (1− σ)ϕ1(b, a), u + (1− s)ϕ2(ν, u)))
= [S∗((a + (1− σ)ϕ1(b, a), u + (1− s)ϕ2(ν, u)), λ), S∗((a + (1− σ)ϕ1(b, a), u + (1− s)ϕ2(ν, u)), λ)]
≤I σs[S∗((a, u), λ), S∗((a, u), λ)]+t(1− s)[S∗((a, ν), λ), S∗((a, ν), λ)]
+s(1− σ)[S∗((a, u), λ), S∗((a, u), λ)]+(1− σ)(1− s)[S∗((a, ν), λ), S∗((a, ν), λ)]

That is

S̃(a + (1− σ)ϕ1(b, a), u + (1− s)ϕ2(ν, u))
4 σsS̃(a, u)+̃σ(1− s)S̃(a, ν)+̃(1− σ)sS̃(b, u)+̃(1− σ)(1− s)S̃(b, ν),

hence, S is a coordinated preinvex F·I-V·F on ∆
Conversely, let S be a coordinated preinvex F·I-V·F on ∆. Then, for all (a, b), (u, ν) ∈

∆, σ and s ∈ [0, 1], we have

S̃(a + (1− σ)ϕ1(b, a), u + (1− s)ϕ2(ν, u))
4 σsS̃(a, u)+̃σ(1− s)S̃(a, ν)+̃(1− σ)sS̃(b, u)+̃(1− σ)(1− s)S̃(b, ν)

Therefore, again from (34), for each λ ∈ [0, 1], we have

Sλ((a + (1− σ)ϕ1(b, a), u + (1− s)ϕ2(ν, u)))
= [S∗((a + (1− σ)ϕ1(b, a), u + (1− s)ϕ2(ν, u)), λ), S∗((a + (1− σ)ϕ1(b, a), u + (1− s)ϕ2(ν, u)), λ)]
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Again, (10) and (12), we obtain

σsSλ(a, u) + σ(1− s)Sλ(a, ν) + (1− σ)sSλ(b, u) + (1− σ)(1− s)Sλ(b, ν)
= σs[S∗((a, u), λ), S∗((a, u), λ)]
+t(1− s)[S∗((a, ν), λ), S∗((a, ν), λ)]
+s(1− σ)[S∗((a, u), λ), S∗((a, u), λ)]
+(1− σ)(1− s)[S∗((a, ν), λ), S∗((a, ν), λ)],

for all x, ω ∈ ∆ and σ ∈ [0, 1]. Then, by coordinated preinvexity of S, we have for all
x, ω ∈ ∆ and σ ∈ [0, 1] such that

S∗((a + (1− σ)ϕ1(b, a), u + (1− s)ϕ2(ν, u)), λ)
≤ σsS∗(a, u) + σ(1− s)S∗(a, ν) + (1− σ)sS∗(b, u)
+(1− σ)(1− s)S∗(b, ν),

and
S∗((a + (1− σ)ϕ1(b, a), u + (1− s)ϕ2(ν, u)), λ)
≤ σsS∗(a, u) + σ(1− s)S∗(a, ν) + (1− σ)sS∗(b, u)
+(1− σ)(1− s)S∗(b, ν),

for each λ ∈ [0, 1]. Hence, the result follows. �

Remark 4. If one takes ϕ1(b, a) = b− a and ϕ2(ν, u) = ν− u, then S̃ is known as aconvex
F·I-V·F on coordinates if S̃ satisfies the following inequality:

S̃(σa + (1− σ)b, su + (1− s)ν)
4 σsS̃(a, u)+̃σ(1− s)S̃(a, ν)+̃(1− σ)sS̃(b, u)+̃(1− σ)(1− s)S̃(b, ν),

(34)

which is valid defined by Khan et al. [38].
If one takes S∗(x, ω) = S∗(x, ω) with λ = 1, then S is known as a preinvex function on

coordinates if S satisfies the following inequality

S(a + (1− σ)ϕ1(b, a), u + (1− s)ϕ1(ν, u))
≤ σsS(a, u) + σ(1− s)S(a, ν) + (1− σ)sS(b, u)
+(1− σ)(1− s)S(b, ν),

(35)

which is defined by Latif and Dragomir [44].
If one takes S∗(x, ω) = S∗(x, ω) with λ = 1, then S is known as a convex function on

coordinates if S satisfies the following inequality

S(aσa + (1− σ)b, su + (1− s)ν)
≤ σsS(a, u) + σ(1− s)S(a, ν) + (1− σ)sS(b, u)
+(1− σ)(1− s)S(b, ν),

(36)

is valid, then S is named as IVFon coordinates, which is defined by Dragomir [34].

Example 1. We consider the F·I-V·Fs S̃ : [0, 1]× [0, 1]→ FI defined by,

S(x, ω)(σ) =


σ

σω σ ∈ [0, σω]
2σω−σ

σω σ ∈ (σω, 2σω]
0 otherwise,

Then, for each λ ∈ [0, 1], we have Sλ(x) = [λxω, (2− λ)xω]. End-point functions
S∗((x, ω), λ), S∗((x, ω), λ) are coordinated concave functions with respect to ϕ1(b, a) = b− a
and ϕ2(ν, u) = ν− u for each λ ∈ [0, 1]. Hence, S̃(x, ω) is a coordinated concave F·I-V·F.
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From Example 1, it can be easily seen that each coordinated preinvex F·I-V·F is not a
preinvex F·I-V·F.

Theorem 9. Let ∆ be a coordinated preinvex set, and let S̃ : ∆→ FI be a F·I-V·F. Then, from
λ-levels, we obtain the collection of I-V·Fs Sλ : ∆→ R+

I ⊂ RI are given by

Sλ(x, ω) = [S∗((x, ω), λ), S∗((x, ω), λ)], (37)

for all (x, ω) ∈ ∆ and for all λ ∈ [0, 1]. Then, S̃ is a coordinated preinvex F·I-V·F on ∆, if and
only if, for all λ ∈ [0, 1], S∗((x, ω), λ) and S∗((x, ω), λ) are coordinated preinvex functions.

Proof. The proof of Theorem 9 is similar to that of Theorem 8. �

Example 2. We consider the F·I-V·Fs S̃ : [0, 1]× [0, 1]→ FI defined by,

S̃(x)(σ) =


σ

2(6−ex)(6−eω)
, σ ∈ [0, 2(6− ex)(6− eω)]

4(6−ex)(6−eω)−σ
2(6−ex)(6−eω)

, σ ∈ (2(6− ex)(6− eω), 4(6− ex)(6− eω)]

0, otherwise.

Then, for each λ ∈ [0, 1], we haveSλ(x) = [2λ(6− ex)(6− eω), (4− 2λ)(6− ex)(6− eω) ].
End-point functions S∗((x, ω), λ), S∗((x, ω), λ) are coordinated preincave functions with respect to
ϕ1(b, a) = b− a and ϕ2(ν, u) = ν− u for each λ ∈ [0, 1]. Hence, S̃(x, ω) is a coordinated preincave
F·I-V·F.

In the next results, to avoid confusion, we will not include the symbols (R), (IR),
(FR), (ID), and (FD) before the integral sign.

3. Fuzzy-Interval Hermite-Hadamard Inequalities

In this section, we propose HH- and HH–Fejér inequalities for coordinated preinvex
F·I-V·Fs, and verify with the help of some nontrivial example.

Theorem 10. Let S̃ : ∆ = [a, a + ϕ1(b, a)]× [u, u + ϕ2(ν, u)]→ FI be a coordinated preinvex
F·I-V·F on ∆. Then, from λ-levels, we get the collection of I-V·Fs Sλ : ∆→ R+

I are given by
Sλ(x, ω) = [S∗((x, ω), λ), S∗((x, ω), λ)] for all (x, ω) ∈ ∆ and for all λ ∈ [0, 1], and
Condition 1 for ϕ1 and ϕ2 holds. Then, the following inequality holds:

S̃
(

2a+ϕ1(b,a)
2 , 2u+ϕ2(ν,u)

2

)

4
1
2

[
1

ϕ1(b,a)

∫ a+ϕ1(b,a)
a S̃

(
x, 2u+ϕ2(ν,u)

2

)
dx+̃ 1

ϕ2(ν,u)

∫ u+ϕ2(ν,u)
u S̃

(
2a+ϕ1(b,a)

2 , ω
)

dω
]

4 1
ϕ1(b,a)ϕ2(ν,u)

∫ a+ϕ1(b,a)
a

∫ u+ϕ2(ν,u)
u S̃(x, ω)dωdx

4
1

4ϕ1(b,a)

[∫ a+ϕ1(b,a)
a S̃(x, u)dx+̃

∫ a+ϕ1(b,a)
a S̃(x, ν)dx

]

+
1

4ϕ2(ν,u)

[∫ u+ϕ2(ν,u)
u S̃(a, ω)dω+̃

∫ u+ϕ2(ν,u)
u S̃(b, ω)dω

]
4 S̃(a,u)+̃S̃(b,u)+̃S̃(a,ν)+̃S̃(b,ν)

4 .

(38)

If S̃(x) preincave F·I-V·F, then inequality (38) is reversed such that,
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S̃
(

2a+ϕ1(b,a)
2 , 2u+ϕ2(ν,u)

2

)
<

1
2

[
1

ϕ1(b,a)

∫ a+ϕ1(b,a)
a S̃

(
x, 2u+ϕ2(ν,u)

2

)
dx+̃ 1

ϕ2(ν,u)

∫ u+ϕ2(ν,u)
u S̃

(
2a+ϕ1(b,a)

2 , ω
)

dω
]

< 1
ϕ1(b,a)ϕ2(ν,u)

∫ a+ϕ1(b,a)
a

∫ u+ϕ2(ν,u)
u S̃(x, ω)dωdx

<
1

4ϕ1(b,a)

[∫ a+ϕ1(b,a)
a S̃(x, u)dx+̃

∫ a+ϕ1(b,a)
a S̃(x, ν)dx

]
+

1
4ϕ2(ν,u)

[∫ u+ϕ2(ν,u)
u S̃(a, ω)dω+̃

∫ u+ϕ2(ν,u)
u S̃(b, ω)dω

]
< S̃(a,u)+̃S̃(b,u)+̃S̃(a,ν)+̃S̃(b,ν)

4

(39)

Proof. Let S̃ : [a, a + ϕ1(b, a)]→ FI be a coordinated preinvex F·I-V·F. Then, by hypothe-
ses, we have

4S̃
(

2a+ϕ1(b,a)
2 , 2u+ϕ2(ν,u)

2

)
4 S̃(a + (1− σ)ϕ1(b, a), u + (1− s)ϕ2(ν, u))+̃S̃(b + σϕ1(b, a), ν + sϕ2(ν, u)).

By using Theorem 10, for every λ ∈ [0, 1], we have

4S∗
((

2a+ϕ1(b,a)
2 , 2u+ϕ2(ν,u)

2

)
, λ
)

≤ S∗((a + (1− σ)ϕ1(b, a), u + (1− s)ϕ2(ν, u)), λ)

+S∗((b + σϕ1(b, a), ν + sϕ2(ν, u)), λ),

4S∗
((

2a+ϕ1(b,a)
2 , 2u+ϕ2(ν,u)

2

)
, λ
)

≤ S∗((a + (1− σ)ϕ1(b, a), u + (1− s)ϕ2(ν, u)), λ)

+S∗((b + σϕ1(b, a), ν + sϕ2(ν, u)), λ).

By using Lemma 1, we have

2S∗
((

x, 2u+ϕ2(ν,u)
2

)
, λ
)
≤ S∗((x, u + (1− s)ϕ2(ν, u)), λ) +S∗((x, ν + sϕ2(ν, u)), λ),

2S∗
((

x, 2u+ϕ2(ν,u)
2

)
, λ
)
≤ S∗((x, u + (1− s)ϕ2(ν, u)), λ) +S∗((x, ν + sϕ2(ν, u)), λ),

(40)

and

2S∗
((

2a+ϕ1(b,a)
2 , ω

)
, λ
)
≤ S∗((a + (1− σ)ϕ1(b, a), ω), λ) +S∗((ν + sϕ2(ν, u), ω), λ),

2S∗
((

2a+ϕ1(b,a)
2 , ω

)
, λ
)
≤ S∗((a + (1− σ)ϕ1(b, a), ω), λ) +S∗((ν + sϕ2(ν, u), ω), λ).

(41)
From (41) and (42), we have

2
[
S∗
((

x, 2u+ϕ2(ν,u)
2

)
, λ
)

,S∗
((

x, 2u+ϕ2(ν,u)
2

)
, λ
)]

≤I [S∗((x, u + (1− s)ϕ2(ν, u)), λ),S∗((x, u + (1− s)ϕ2(ν, u)), λ)]
+[S∗((x, ν + sϕ2(ν, u)), λ),S∗((x, ν + sϕ2(ν, u)), λ)],

and
2
[
S∗
((

2a+ϕ1(b,a)
2 , ω

)
, λ
)

,S∗
((

2a+ϕ1(b,a)
2 , ω

)
, λ
)]

≤I [S∗((a + (1− σ)ϕ1(b, a), ω), λ),S∗((a + (1− σ)ϕ1(b, a), ω), λ)]
+[S∗((a + (1− σ)ϕ1(b, a), ω), λ),S∗((a + (1− σ)ϕ1(b, a), ω), λ)],

It follows that

Sλ

(
x,

2u + ϕ2(ν, u)
2

)
≤I Sλ(x, u + (1− s)ϕ2(ν, u)) +Sλ(x, ν + sϕ2(ν, u)) (42)
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and

Sλ

(
2a + ϕ1(b, a)

2
, ω

)
≤I Sλ(a + (1− σ)ϕ1(b, a), ω) +Sλ(b + σϕ1(b, a), ω) (43)

Since Sλ(x, .) And Sλ(., ω), both are coordinated preinvex-I-V·Fs, then from inequal-
ity (32), for every λ ∈ [0, 1], inequality (42) and (43), we have

Sλ

(
x,

2u + ϕ2(ν, u)
2

)
≤I

1
ϕ2(ν, u)

∫ u+ϕ2(ν,u)

u
Sλ(x, ω)dω ≤I

Sλ(x, u) +Sλ(x, ν)

2
. (44)

and

Sλ

(
2a + ϕ1(b, a)

2
, ω

)
≤I

1
ϕ1(b, a)

∫ a+ϕ1(b,a)

a
Sλ(x, ω)dx ≤I

Sλ(a, ω) +Sλ(b, ω)

2
. (45)

Dividing double inequality (44) by ϕ1(b, a), and integrating with respect to x over
[a, a + ϕ1(b, a)], we have

1
ϕ1(b,a)

∫ a+ϕ1(b,a)
a Sλ

(
x, 2u+ϕ2(ν,u)

2

)
dx

≤I
1

ϕ1(b,a)ϕ2(ν,u)

∫ a+ϕ1(b,a)
a

∫ u+ϕ2(ν,u)
u Sλ(x, ω)dωdx

≤I
1

2ϕ1(b,a)

[∫ a+ϕ1(b,a)
a Sλ(x, u)dx +

∫ a+ϕ1(b,a)
a Sλ(x, ν)dx.

] (46)

Similarly, dividing double inequality (46) by ϕ2(ν, u), and integrating with respect to
x over [u, u + ϕ2(ν, u)], we have

1
ϕ2(ν,u)

∫ u+ϕ2(ν,u)
u Sλ

(
2a + ϕ1(b,a)

2 , ω
)

dω ≤I
1

ϕ1(b,a)ϕ2(ν,u)

∫ a+ϕ1(b,a)
a

∫ u+ϕ2(ν,u)
u Sλ(x, ω)dωdx

≤I
1

2ϕ2(ν,u)

[∫ u+ϕ2(ν,u)
u Sλ(a, ω)dω +

∫ u+ϕ2(ν,u)
u Sλ(b, ω)dω

]
.

(47)

By adding (46) and (47), we have

1
2

[
1

ϕ1(b,a)

∫ a+ϕ1(b,a)
a Sλ

(
x, 2u + ϕ2(ν,u)

2

)
dx + 1

ϕ2(ν,u)

∫ u+ϕ2(ν,u)
u Sλ

(
2a+ϕ1(b,a)

2 , ω
)

dω
]

≤I
1

ϕ1(b,a)ϕ2(ν,u)

∫ a+ϕ1(b,a)
a

∫ u+ϕ2(ν,u)
u Sλ(x, ω)dωdx

≤I
1

4ϕ1(b,a)

[∫ a+ϕ1(b,a)
a Sλ(x, u)dx +

∫ a+ϕ1(b,a)
a Sλ(x, ν)dx

]
+

1
4ϕ2(ν,u)

[∫ u+ϕ2(ν,u)
u Sλ(a, ω)dω +

∫ u+ϕ2(ν,u)
u Sλ(b, ω)dω

] (48)

Since S is F·I-V·F, then inequality (48), we have

1
2

[
1

ϕ1(b,a)

∫ a+ϕ1(b,a)
a S̃

(
x, 2u+ϕ2(ν,u)

2

)
dx+̃ 1

ϕ2(ν,u)

∫ u+ϕ2(ν,u)
u S̃

(
2a+ϕ1(b,a)

2 , ω
)

dω
]

4 1
ϕ1(b,a)ϕ2(ν,u)

∫ a+ϕ1(b,a)
a

∫ u+ϕ2(ν,u)
u S̃(x, ω)dωdx

4
1

4ϕ1(b,a)

[∫ a+ϕ1(b,a)
a S̃(x, u)dx+̃

∫ a+ϕ1(b,a)
a S̃(x, ν)dx

]
+̃

1
4ϕ2(ν,u)

[∫ u+ϕ2(ν,u)
u S̃(a, ω)dω+̃

∫ u+ϕ2(ν,u)
u S̃(b, ω)dω

]
(49)

From the left side of inequality (32), for each λ ∈ [0, 1], we have

Sλ

(
2a + ϕ1(b, a)

2
,

2u + ϕ2(ν, u)
2

)
≤I

1
ϕ1(b, a)

∫ a+ϕ1(b,a)

a
Sλ

(
x,

2u + ϕ2(ν, u)
2

)
dx, (50)

Sλ

(
2a + ϕ1(b, a)

2
,

2u + ϕ2(ν, u)
2

)
≤I

1
ϕ2(ν, u)

∫ u+ϕ2(ν,u)

u
Sλ

(
2a + ϕ1(b, a)

2
, ω

)
dω. (51)



Mathematics 2022, 10, 2756 12 of 25

Taking addition of inequality (50) with inequality (51), we have

Sλ

(
2a+ϕ1(b,a)

2 , 2u+ϕ2(ν,u)
2

)

≤I
1
2

[
1

ϕ1(b,a)

∫ a+ϕ1(b,a)
a Sλ

(
x, 2u+ϕ2(ν,u)

2

)
dx + 1

ϕ2(ν,u)

∫ u+ϕ2(ν,u)
u Sλ

(
2a+ϕ1(b,a)

2 , ω
)

dω
] (52)

Since S̃ is a F·I-V·F, then it follows that

S̃
(

2a+ϕ1(b,a)
2 , 2u+ϕ2(ν,u)

2

)
4

1
2

[
1

ϕ1(b,a)

∫ a+ϕ1(b,a)
a S̃

(
x, 2u+ϕ2(ν,u)

2

)
dx +̃ 1

ϕ2(ν,u)

∫ u+ϕ2(ν,u)
u S̃

(
2a+ϕ1(b,a)

2 , ω
)

dω
] (53)

Now from right side of inequality (32), for every λ ∈ [0, 1], we have

1
ϕ1(b, a)

∫ a+ϕ1(b,a)

a
Sλ(x, u)dx ≤I

Sλ(a, u) +Sλ(b, u)
2

(54)

1
ϕ1(b, a)

∫ a+ϕ1(b,a)

a
Sλ(x, ν)dx ≤I

Sλ(a, ν) +Sλ(b, ν)

2
(55)

1
ϕ2(ν, u)

∫ u+ϕ2(ν,u)

u
Sλ(a, ω)dω ≤I

Sλ(a, ν) +Sλ(a, u)
2

(56)

1
ϕ2(ν, u)

∫ u+ϕ2(ν,u)

u
Sλ(b, ω)dω ≤I

Sλ(b, ν) +Sλ(b, u)
2

(57)

By adding inequalities (54)–(57), we have

1
4ϕ1(b,a)

[∫ a+ϕ1(b,a)
a Sλ(x, u)dx +

∫ a+ϕ1(b,a)
a Sλ(x, ν)dx

]
+

1
4ϕ2(ν,u)

[∫ u+ϕ2(ν,u)
u Sλ(a, ω)dω +

∫ u+ϕ2(ν,u)
u Sλ(b, ω)dω

]
≤I

Sλ(a,u)+Sλ(b,u)+Sλ(a,ν)+Sλ(b,ν)
4

Since S is a F·I-V·F, then it follows that

1
4ϕ1(b,a)

[∫ a+ϕ1(b,a)
a S̃(x, u)dx+̃

∫ a+ϕ1(b,a)
a S̃(x, ν)dx

]
+

1
4ϕ2(ν,u)

[∫ u+ϕ2(ν,u)
u S̃(a, ω)dω +̃

∫ u+ϕ2(ν,u)
u S̃(b, ω)dω

]
4 S̃(a,u)+̃S̃(b,u)+̃S̃(a,ν)+̃S̃(b,ν)

4

(58)

By combining inequalities (50), (53), and (58), we get the desired result. �

Remark 5. If one takes ϕ1(b, a) = b− a and ϕ2(ν, u) = ν− u, then from (39), we acquire the
following inequality, see [38]:

S̃
(

a+b
2 , u+ν

2

)
4

1
2

[
1

b−a

∫ b
a S̃

(
x, u+ν

2
)
dx+̃ 1

ν−u
∫ ν

u S̃
(

a+b
2 , ω

)
dω
]
4 1

(b−a)(ν−u)

∫ b
a

∫ ν
u S̃(x, ω)dωdx

4
1

4(b−a)

[∫ b
a S̃(x, u)dx+̃

∫ b
a S̃(x, ν)dx

]
+̃

1
4(ν−u)

[∫ ν
u S̃(a, ω)dω+̃

∫ ν
u S̃(b, ω)dω

]
4 S̃(a,u)+̃S̃(b,u)+̃S̃(a,ν)+̃S̃(b,ν)

4 .

(59)



Mathematics 2022, 10, 2756 13 of 25

If S∗(x, ω) = S∗(x, ω) with λ = 1, then from (39), we acquire the following inequality,
see [44]:

S
(

2a+ϕ1(b,a)
2 , 2u+ϕ2(ν,u)

2

)

≤
1
2

[
1

ϕ1(b,a)

∫ a+ϕ1(b,a)
a S

(
x, 2u+ϕ2(ν,u)

2

)
dx + 1

ϕ2(ν,u)

∫ u+ϕ2(ν,u)
u S

(
2a+ϕ1(b,a)

2 , ω
)

dω
]

≤ 1
ϕ1(b,a)ϕ2(ν,u)

∫ a+ϕ1(b,a)
a

∫ u+ϕ2(ν,u)
u S(x, ω)dωdx

≤
1

4ϕ1(b,a)

[∫ a+ϕ1(b,a)
a S(x, u)dx +

∫ a+ϕ1(b,a)
a S(x, ν)dx

]

+
1

4ϕ2(ν,u)

[∫ u+ϕ2(ν,u)
u S(a, ω)dω +

∫ u+ϕ2(ν,u)
u S(b, ω)dω

]
≤ S(a,u)+S(b,u)+S(a,ν)+S(b,ν)

4

(60)

If S∗(x, ω) = S∗(x, ω) with λ = 1 and, ϕ1(b, a) = b− a and ϕ2(ν, u) = ν− u, then
from (39), we acquire the following inequality, see [34]:

S
(

a+b
2 , u+ν

2

)
≤ 1

2

[
1

b−a

∫ b
a S

(
x, u+ν

2
)
dx + 1

ν−u
∫ ν

u S
(

a+b
2 , ω

)
dω
]

≤ 1
(b−a)(ν−u)

∫ b
a

∫ ν
u S(x, ω)dωdx

≤ 1
4(b−a)

[∫ b
a S(x, u)dx +

∫ b
a S(x, ν)dx

]
+

1
4(ν−u)

[∫ ν
u S(a, ω)dω +

∫ ν
u S(b, ω)dω

]
≤ S(a,u)+S(b,u)+S(a,ν)+S(b,ν)

4 .

(61)

Example 3. We consider the F·I-V·Fs S̃ : [0, 1]× [0, 1]→ FI defined by,

S(x)(σ) =


σ

2(6+ex)(6+eω)
, σ ∈ [0, 2(6 + ex)(6 + eω)]

4(6+ex)(6+eω)−σ
2(6+ex)(6+eω)

, σ ∈ (2(6 + ex)(6 + eω), 4(6 + ex)(6 + eω)]

0 , otherwise,

Then, for each λ ∈ [0, 1], we haveSλ(x) = [2λ(6 + ex)(6 + eω), (4 + 2λ)(6 + ex)(6 + eω) ].
End-point functions S∗((x, ω), λ), S∗((x, ω), λ) are coordinated preinvex functions with respect to
ϕ1(b, a) = b − a and ϕ2(ν, u) = ν − u for each λ ∈ [0, 1]. Hence, S̃(x, ω). is a coordinated
preinvex F·I-V·F.

Sλ

(
2a + ϕ1(b, a)

2
,

2u + ϕ2(ν, u)
2

)
=

2λ
(

5 + e
1
2

)2
, 2(2 + λ)

(
6 + e

1
2

)
2



1
2

 1
ϕ1(b,a)

∫ a+ϕ1(b,a)
a Sλ

(
x, 2u+ϕ2(ν,u)

2

)
dx +

1
ϕ2(ν,u)

∫ u+ϕ2(ν,u)
u Sλ

(
2a+ϕ1(b,a)

2 , ω
)

dω


=
[
4λ
(

6 + e
1
2

)
(5 + e), 4(2 + λ)

(
6 + e

1
2

)
(5 + e)

]
1

ϕ1(b, a)ϕ2(ν, u)

∫ a+ϕ1(b,a)

a

∫ u+ϕ2(ν,u)

u
Sλ(x, ω)dωdx =

[
2λ(5 + e)2, 2(2 + λ)(5 + e)2

]
1

4ϕ1(b,a)

[∫ a+ϕ1(b,a)
a Sλ(x, u)dx +

∫ a+ϕ1(b,a)
a Sλ(x, ν)dx

]
+ 1

4ϕ2(ν,u)

[∫ u+ϕ2(ν,u)
u Sλ(a, ω)dω +

∫ u+ϕ2(ν,u)
u Sλ(b, ω)dω

]
= [λ(5 + e)(13 + e), (2 + λ)(5 + e)(13 + e)]
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Sλ(a,u)+Sλ(b,u)+Sλ(a,ν)+Sλ(b,ν)
4

=
[
λ
(6+e)(20+e)+49

2 , 2(2 + λ) (
6+e)(20+e)+49

2

]
That is 2λ

(
5 + e

1
2

)
2, 2(2 + λ)

(
6 + e

1
2

)2


≤I

[
4λ
(

6 + e
1
2

)
(5 + e), 4(2 + λ)

(
6 + e

1
2

)
(5 + e)

]
≤I

[
2λ(5 + e)2, 2(2 + λ)(5 + e)2

]
≤I [λ(5 + e)(13 + e), (2 + λ)(5 + e)(13 + e)]
≤I

[
λ
(6+e)(20+e)+49

2 , 2(2 + λ) (
6+e)(20+e)+49

2

]
Hence, Theorem 10 has been verified.

We now obtain some HH-inequalities for the product of coordinated preinvex F·I-V·Fs
which are known as Pachpatte Type inequalities. These inequalities are refinements of
some known inequalities; see [34,37,38,44].

Theorem 11. Let S̃, J̃ : ∆ = [a, a+ ϕ1(b, a)]× [u, u+ ϕ2(ν, u)] ⊂ R2 → FI be two coordinated
preinvex F·I-V·Fs on ∆ , whose λ-levels Sλ, Jλ : [a, a+ ϕ1(b, a)]× [u, u+ ϕ2(ν, u)]→ R+

I are de-
fined by Sλ(x, ω) = [S∗((x, ω), λ), S∗((x, ω), λ)] and Jλ(x, ω) = [J∗((x, ω), λ), J ∗((x, ω), λ)]
for all (x, ω) ∈ ∆ and for all λ ∈ [0, 1]. If Condition 1 for ϕ1 and ϕ2 is fulfilled, then following
inequality hold:

1
ϕ1(b,a)ϕ2(ν,u)

∫ a+ϕ1(b,a)
a

∫ u+ϕ2(ν,u)
u S̃(x, ω)×̃J̃ (x, ω)dωdx

4 1
9 α̃(a, b, u, ν)+̃ 1

18 β̃(a, b, u, ν)+̃ 1
36 γ̃(a, b, u, ν),

(62)

where

α̃(a, b, u, ν)

= S̃(a, u)×̃J̃ (a, u) +̃ S̃(a, ν)×̃J̃ (a, ν)+̃S̃(b, u)×̃J̃ (b, u) +̃ S̃(b, ν)×̃J̃ (b, ν),

β̃(a, b, u, ν)

= S̃(a, u)×̃J̃ (a, ν) +̃ S̃(a, ν)×̃J̃ (a, u)+̃S̃(b, u)×̃J̃ (b, ν) +̃ S̃(b, ν)×̃J̃ (b, u),

+̃S̃(a, u)×̃J̃ (b, u) +̃ S̃(b, ν)×̃J̃ (a, ν)+̃S̃(b, u)×̃J̃ (a, u) +̃ S̃(a, ν)×̃J̃ (b, ν)

γ̃(a, b, u, ν)

= S̃(a, u)×̃J̃ (b, ν) +̃ S̃(b, u)×̃J̃ (a, ν)+̃ S̃(b, ν)×̃J̃ (a, u)+̃S̃(b, u)×̃J̃ (a, ν)

and for each λ ∈ [0, 1], α̃(a, b, u, ν), β̃(a, b, u, ν) and γ̃(a, b, u, ν) are defined as follows:

αλ(a, b, u, ν) = [α∗((a, b, u, ν), λ), α∗((a, b, u, ν), λ)]

βλ(a, b, u, ν) = [β∗((a, b, u, ν), λ), β∗((a, b, u, ν), λ)]

γλ(a, b, u, ν) = [γ∗((a, b, u, ν), λ), γ∗((a, b, u, ν), λ)].

Proof. Let S̃ and J̃ both are coordinated preinvex F·I-V·Fs on [a, a + ϕ1(b, a)]× [u, u + ϕ2(ν, u)].
Then

S̃(a + (1− σ)ϕ1(b, a), u + (1− s)ϕ2(ν, u)) 4 σsS̃(a, u)+̃σ(1− s)S̃(a, ν)+̃(1− σ)sS̃(b, u)+̃(1− σ)(1− s)S̃(b, ν),

and

J̃ (a + (1− σ)ϕ1(b, a), u + (1− s)ϕ2(ν, u))4 σsJ̃ (a, u)+̃σ(1− s)J̃ (a, ν)+̃(1− σ)sJ̃ (b, u)+̃(1− σ)(1− s)J̃ (b, ν).
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Since S̃ and J̃ both are coordinated preinvex F·I-V·Fs, then by Lemma 1, there exist

S̃x : [u, ν]→ FI

S̃x(ω) = S̃(x, ω)

J̃x : [u, ν]→ FI

J̃x(ω) = J̃ (x, ω)

and
S̃ω : [a, b]→ FI

S̃ω(x) = S̃(x, ω)

J̃ω : [a, b]→ FI

J̃ω(x) = J̃ (x, ω)

Since S̃x, J̃x, S̃ω and J̃ω are F·I-V·Fs, then by inequality (29), we have

1
ϕ1(b,a)

∫ a+ϕ1(b,a)
a S̃ω(x)× J̃ω(x)dx

4 1
3

[
S̃ω(a)× J̃ω(a) + S̃ω(b)× J̃ω(b)

]
+ 1

6

[
S̃ω(a)× J̃ω(b) + S̃ω(b)× J̃ω(a)

]
,

and

1
ϕ2(ν,u)

∫ u+ϕ2(ν,u)
u S̃x(ω)× J̃x(ω)dω

4 1
3

[
S̃x(u)× J̃x(u) + S̃x(ν)× J̃x(ν)

]
+ 1

6

[
S̃x(u)× J̃x(ν) + S̃x(u)× J̃x(ν)

]
.

For each λ ∈ [0, 1], we have

1
ϕ1(b,a)

∫ a+ϕ1(b,a)
a Sλω(x)×Jλω(x)dx

≤I
1
3 [Sλω(a)×Jλω(a) +Sλω(b)×Jλω(b)] + 1

6 [Sλω(a)×Jλω(b) +Sλω(b)×Jλω(a)],

and

1
ϕ2(ν,u)

∫ u+ϕ2(ν,u)
u Sλx(ω)×Jλx(ω)dω

≤I
1
3 [Sλx(u)×Jλx(u) +Sλx(ν)×Jλx(ν)] +

1
6 [Sλx(u)×Jλx(ν) +Sλx(u)×Jλx(ν)]

The above inequalities can be written as

1
ϕ1(b,a)

∫ a+ϕ1(b,a)
a Sλ(x, ω)×Jλ(x, ω)dx

≤I
1
3 [Sλ(a, ω)×Jλ(a, ω) +Sλ(b, ω)×Jλ(b, ω)] + 1

6 [Sλ(a, ω)×Jλ(b, ω) +Sλ(b, ω)×Jλ(a, ω)],
(63)

and

1
ϕ2(ν,u)

∫ u+ϕ2(ν,u)
u Sλ(x, ω)×Jλ(x, ω)dω

≤I
1
3 [Sλ(x, u)×Jλ(x, u) +Sλ(x, ν)×Jλ(x, ν)] + 1

6 [Sλ(x, u)×Jλ(x, u) +Sλ(x, ν)×Jλ(x, ν)].
(64)

Firstly, we solve inequality (63), taking integration on the both sides of inequality with
respect to ω over interval [u, u + ϕ2(ν, u)] and dividing both sides by ϕ2(ν, u), we have

1
ϕ1(b,a)ϕ2(ν,u)

∫ a+ϕ1(b,a)
a

∫ u+ϕ2(ν,u)
u Sλ(x, ω)×Jλ(x, ω)dωdx

≤I
1

3ϕ2(ν,u)

∫ u+ϕ2(ν,u)
u [Sλ(a, ω)×Jλ(a, ω) +Sλ(b, ω)×Jλ(b, ω)]dω

+ 1
6ϕ2(ν,u)

∫ u+ϕ2(ν,u)
u [Sλ(a, ω)×Jλ(b, ω) +Sλ(b, ω)×Jλ(a, ω)]dω.

(65)

Now again by inequality (29), for each λ ∈ [0, 1], we have
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1
ϕ2(ν,u)

∫ u+ϕ2(ν,u)
u Sλ(a, ω)×Jλ(a, ω)dω

≤I
1
3
∫ u+ϕ2(ν,u)

u [Sλ(a, u)×Jλ(a, u) +Sλ(a, ν)×Jλ(a, ν)]dω + 1
6
∫ u+ϕ2(ν,u)

u [Sλ(a, u)×Jλ(a, ν) +Sλ(a, u)×Jλ(a, ν)]dω.
(66)

1
ϕ2(ν,u)

∫ u+ϕ2(ν,u)
u Sλ(b, ω)×Jλ(b, ω)dω

≤I
1
3
∫ u+ϕ2(ν,u)

u [Sλ(b, u)×Jλ(b, u) +Sλ(b, ν)×Jλ(b, ν)]dω + 1
6
∫ u+ϕ2(ν,u)

u [Sλ(b, u)×Jλ(b, ν) +Sλ(b, u)×Jλ(a, ν)]dω
(67)

1
ϕ2(ν,u)

∫ u+ϕ2(ν,u)
u Sλ(a, ω)×Jλ(b, ω)dω

≤I
1
3
∫ u+ϕ2(ν,u)

u [Sλ(a, u)×Jλ(b, u) +Sλ(a, ν)×Jλ(b, ν)]dω + 1
6
∫ u+ϕ2(ν,u)

u [Sλ(a, u)×Jλ(b, ν) +Sλ(a, ν)×Jλ(b, u)]dω.
(68)

1
ϕ2(ν,u)

∫ u+ϕ2(ν,u)
u Sλ(b, ω)×Jλ(a, ω)dω

≤I
1
3
∫ u+ϕ2(ν,u)

u [Sλ(b, u)×Jλ(a, u) +Sλ(b, ν)×Jλ(a, ν)]dω + 1
6
∫ u+ϕ2(ν,u)

u [Sλ(b, u)×Jλ(a, ν) +Sλ(b, ν)×Jλ(a, u)]dω.
(69)

From (66)–(69), inequality (65) we have

1
ϕ1(b, a)ϕ2(ν, u)

∫ a+ϕ1(b,a)

a

∫ u+ϕ2(ν,u)

u
Sλ(x, ω)×Jλ(x, ω)dωdx≤I

1
9

αλ(a, b, u, ν) +
1

18
βλ(a, b, u, ν) +

1
36

γλ(a, b, u, ν).

That is

1
ϕ1(b, a)ϕ2(ν, u)

∫ a+ϕ1(b,a)

a

∫ u+ϕ2(ν,u)

u
S̃(x, ω)×̃J̃ (x, ω)dωdx 4

1
9

α̃(a, b, u, ν)+̃
1

18
β̃(a, b, u, ν)+̃

1
36

γ̃(a, b, u, ν).

Hence, this concludes the proof of theorem. �

Theorem 12. Let S̃, J̃ : ∆ = [a, a + ϕ1(b, a)]× [u, u + ϕ2(ν, u)] ⊂ R2 → FI be two coordinated
preinvex F·I-V·Fs. Then, from λ-levels, we get the collection of I-V·Fs Sλ, Jλ : ∆ ⊂ R2 → R+

I
are given by Sλ(x) = [S∗((x, ω), λ), S∗((x, ω), λ)] and Jλ(x) = [J∗((x, ω), λ), J ∗((x, ω), λ)]
for all (x, ω) ∈ ∆ and for all λ ∈ [0, 1]. If Condition 1 for ϕ1 and ϕ2 is fulfilled, then following
inequality hold:

4 S̃
(

2a+ϕ1(b,a)
2 , 2u+ϕ2(ν,u)

2

)
×̃J̃

(
2a+ϕ1(b,a)

2 , 2u+ϕ2(ν,u)
2

)
4 1

ϕ1(b,a)ϕ2(ν,u)

∫ a+ϕ1(b,a)
a

∫ u+ϕ2(ν,u)
u S̃(x, ω)×̃J̃ (x, ω)dωdx+̃ 5

36 α̃(a, b, u, ν)+̃ 7
36 β̃(a, b, u, ν)+̃ 2

9 γ̃(a, b, u, ν),
(70)

where α̃(a, b, u, ν), β̃(a, b, u, ν), and γ̃(a, b, u, ν) are given in Theorem 11.

Proof. S̃, J̃ : ∆→ FI are two coordinated preinvex F·I-V·Fs, and then from inequality
(30) and for each λ ∈ [0, 1], we have

2Sλ

(
2a+ϕ1(b,a)

2 , 2u+ϕ2(ν,u)
2

)
×Jλ

(
2a+ϕ1(b,a)

2 , 2u+ϕ2(ν,u)
2

)
≤I

1
ϕ1(b,a)

∫ a+ϕ1(b,a)
a Sλ

(
x, 2u+ϕ2(ν,u)

2

)
×Jλ

(
x, 2u+ϕ2(ν,u)

2

)
dx

+ 1
6

[
Sλ

(
a, 2u+ϕ2(ν,u)

2

)
×Jλ

(
a, 2u+ϕ2(ν,u)

2

)
+Sλ

(
b, 2u+ϕ2(ν,u)

2

)
×Jλ

(
b, 2u+ϕ2(ν,u)

2

)]
+ 1

3

[
Sλ

(
a, 2u+ϕ2(ν,u)

2

)
×Jλ

(
b, 2u+ϕ2(ν,u)

2

)]
+Sλ

(
b, 2u+ϕ2(ν,u)

2

)
×Jλ

(
a, 2u+ϕ2(ν,u)

2

) (71)

and

2Sλ

(
2a+ϕ1(b,a)

2 , 2u+ϕ2(ν,u)
2

)
×Jλ

(
2a+ϕ1(b,a)

2 , 2u+ϕ2(ν,u)
2

)
≤I

1
ϕ2(ν,u)

∫ u+ϕ2(ν,u)
u Sλ

(
2a+ϕ1(b,a)

2 , ω
)
×Jλ

(
2a+ϕ1(b,a)

2 , ω
)

dω

+ 1
6

[
Sλ

(
2a+ϕ1(b,a)

2 , u
)
×Jλ

(
2a+ϕ1(b,a)

2 , u
)
+Sλ

(
2a+ϕ1(b,a)

2 , ν
)
×Jλ

(
2a+ϕ1(b,a)

2 , ν
)]

+ 1
3

[
Sλ

(
2a+ϕ1(b,a)

2 , u
)
×Jλ

(
2a+ϕ1(b,a)

2 , ν
)
+Sλ

(
2a+ϕ1(b,a)

2 , ν
)
×Jλ

(
2a+ϕ1(b,a)

2 , u
)] (72)



Mathematics 2022, 10, 2756 17 of 25

Summing the inequalities (71) and (72), then taking the multiplication of the resultant
one by 2, we obtain

8Sλ

(
2a+ϕ1(b,a)

2 , 2u+ϕ2(ν,u)
2

)
×Jλ

(
2a+ϕ1(b,a)

2 , 2u+ϕ2(ν,u)
2

)
≤I

2
ϕ1(b,a)

∫ a+ϕ1(b,a)
a Sλ

(
x, 2u+ϕ2(ν,u)

2

)
×Jλ

(
x, 2u+ϕ2(ν,u)

2

)
dx

+ 2
ϕ2(ν,u)

∫ u+ϕ2(ν,u)
u Sλ

(
2a+ϕ1(b,a)

2 , ω
)
×Jλ

(
2a+ϕ1(b,a)

2 , ω
)

dx

+ 1
6

[
2Sλ

(
a, 2u+ϕ2(ν,u)

2

)
×Jλ

(
a, 2u+ϕ2(ν,u)

2

)
+ 2Sλ

(
b, 2u+ϕ2(ν,u)

2

)
×Jλ

(
b, 2u+ϕ2(ν,u)

2

)]
+ 1

6

[
2Sλ

(
2a+ϕ1(b,a)

2 , u
)
×Jλ

(
2a+ϕ1(b,a)

2 , u
)
+ 2Sλ

(
2a+ϕ1(b,a)

2 , ν
)
×Jλ

(
2a+ϕ1(b,a)

2 , ν
)]

+ 1
3

[
2Sλ

(
a, 2u+ϕ2(ν,u)

2

)
×Jλ

(
b, 2u+ϕ2(ν,u)

2

)
+ 2Sλ

(
b, 2u+ϕ2(ν,u)

2

)
×Jλ

(
a, 2u+ϕ2(ν,u)

2

)]
+ 1

3

[
2Sλ

(
2a+ϕ1(b,a)

2 , u
)
×Jλ

(
2a+ϕ1(b,a)

2 , ν
)
+ 2Sλ

(
2a+ϕ1(b,a)

2 , ν
)
×Jλ

(
2a+ϕ1(b,a)

2 , u
)]

. (73)

Now, with the help of integral inequality (30) for each integral on the right-hand side
of (73), we have

2Sλ

(
a, 2u+ϕ2(ν,u)

2

)
×Jλ

(
a, 2u+ϕ2(ν,u)

2

)
≤I

1
ϕ2(ν,u)

∫ u+ϕ2(ν,u)
u Sλ(a, ω)×Jλ(a, ω)dω

+ 1
6 [Sλ(a, u)×Jλ(a, u) +Sλ(a, ν)×Jλ(a, ν)]

+ 1
3 [Sλ(a, u)×Jλ(a, ν) +Sλ(a, ν)×Jλ(a, u)]

(74)

2Sλ

(
b, 2u+ϕ2(ν,u)

2

)
×Jλ

(
b, 2u+ϕ2(ν,u)

2

)
≤I

1
ϕ2(ν,u)

∫ u+ϕ2(ν,u)
u Sλ(b, ω)×Jλ(b, ω)dω

+ 1
6 [Sλ(b, u)×Jλ(b, u) +Sλ(b, ν)×Jλ(b, ν)]

+ 1
3 [Sλ(b, u)×Jλ(b, ν) +Sλ(b, ν)×Jλ(b, u)]

(75)

2Sλ

(
a, 2u+ϕ2(ν,u)

2

)
×Jλ

(
b, 2u+ϕ2(ν,u)

2

)
≤I

1
ϕ2(ν,u)

∫ u+ϕ2(ν,u)
u Sλ(a, ω)×Jλ(b, ω)dω

+ 1
6 [Sλ(a, u)×Jλ(b, u) +Sλ(a, ν)×Jλ(b, ν)]

+ 1
3 [Sλ(a, u)×Jλ(b, ν) +Sλ(a, ν)×Jλ(b, u)]

(76)

2Sλ

(
b, 2u+ϕ2(ν,u)

2

)
×Jλ

(
a, 2u+ϕ2(ν,u)

2

)
≤I

1
ϕ2(ν,u)

∫ u+ϕ2(ν,u)
u Sλ(b, ω)×Jλ(a, ω)dω

+ 1
6 [Sλ(b, u)×Jλ(a, u) +Sλ(b, ν)×Jλ(a, ν)]

+ 1
3 [Sλ(b, u)×Jλ(a, ν) +Sλ(b, ν)×Jλ(a, u)]

(77)

2Sλ

(
2a+ϕ1(b,a)

2 , u
)
×Jλ

(
2a+ϕ1(b,a)

2 , u
)

≤I
1

ϕ1(b,a)

∫ a+ϕ1(b,a)
a Sλ(x, u)×Jλ(x, u)dx

+ 1
6 [Sλ(a, u)×Jλ(a, u) +Sλ(b, u)×Jλ(b, u)]

+ 1
3

[
Sλ

(
2a+ϕ1(b,a)

2 , u
)
×Jλ

(
2a+ϕ1(b,a)

2 , u
)
+Sλ

(
2a+ϕ1(b,a)

2 , u
)
×Jλ

(
2a+ϕ1(b,a)

2 , u
)] (78)

2Sλ

(
2a+ϕ1(b,a)

2 , ν
)
×Jλ

(
2a+ϕ1(b,a)

2 , ν
)

≤I
1

ϕ1(b,a)

∫ a+ϕ1(b,a)
a Sλ(x, ν)×Jλ(x, ν)dx

+ 1
6 [Sλ(a, ν)×Jλ(a, ν) +Sλ(b, ν)×Jλ(b, ν)]

+ 1
3

[
Sλ

(
2a+ϕ1(b,a)

2 , ν
)
×Jλ

(
2a+ϕ1(b,a)

2 , ν
)
+Sλ

(
2a+ϕ1(b,a)

2 , ν
)
×Jλ

(
2a+ϕ1(b,a)

2 , ν
)] (79)

2Sλ

(
2a+ϕ1(b,a)

2 , u
)
×Jλ

(
2a+ϕ1(b,a)

2 , ν
)

≤I
1

ϕ1(b,a)

∫ a+ϕ1(b,a)
a Sλ(x, u)×Jλ(x, ν)dx

+ 1
6 [Sλ(a, u)×Jλ(a, ν) +Sλ(b, u)×Jλ(b, ν)]

+ 1
3

[
Sλ

(
2a+ϕ1(b,a)

2 , u
)
×Jλ

(
2a+ϕ1(b,a)

2 , ν
)
+Sλ

(
2a+ϕ1(b,a)

2 , u
)
×Jλ

(
2a+ϕ1(b,a)

2 , ν
)] (80)
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2Sλ

(
2a+ϕ1(b,a)

2 , ν
)
×Jλ

(
2a+ϕ1(b,a)

2 , u
)

≤I
1

ϕ1(b,a)

∫ a+ϕ1(b,a)
a Sλ(x, ν)×Jλ(x, u)dx

+ 1
6 [Sλ(a, ν)×Jλ(a, u) +Sλ(b, ν)×Jλ(b, u)]

+ 1
3

[
Sλ

(
2a+ϕ1(b,a)

2 , ν
)
×Jλ

(
2a+ϕ1(b,a)

2 , u
)
+Sλ

(
2a+ϕ1(b,a)

2 , ν
)
×Jλ

(
2a+ϕ1(b,a)

2 , u
)] (81)

From (74)–(81), we have

8Sλ

(
2a+ϕ1(b,a)

2 , 2u+ϕ2(ν,u)
2

)
×Jλ

(
2a+ϕ1(b,a)

2 , 2u+ϕ2(ν,u)
2

)
≤I

2
ϕ1(b,a)

∫ a+ϕ1(b,a)
a Sλ

(
x, 2u+ϕ2(ν,u)

2

)
×Jλ

(
x, 2u+ϕ2(ν,u)

2

)
dx

+ 2
ϕ2(ν,u)

∫ u+ϕ2(ν,u)
u Sλ

(
2a+ϕ1(b,a)

2 , ω
)
×Jλ

(
2a+ϕ1(b,a)

2 , ω
)

dx + 1
6ϕ2(ν,u)

∫ u+ϕ2(ν,u)
u Sλ(a, ω)×Jλ(a, ω)dω

+ 1
6ϕ2(ν,u)

∫ u+ϕ2(ν,u)
u Sλ(b, ω)×Jλ(b, ω)dω + 1

6ϕ1(b,a)

∫ a+ϕ1(b,a)
a Sλ(x, u)×Jλ(x, u)dx

+ 1
6ϕ1(b,a)

∫ a+ϕ1(b,a)
a Sλ(x, ν)×Jλ(x, ν)dx + 1

3ϕ2(ν,u)

∫ u+ϕ2(ν,u)
u Sλ(a, ω)×Jλ(b, ω)dω

+ 1
3ϕ2(ν,u)

∫ u+ϕ2(ν,u)
u Sλ(b, ω)×Jλ(a, ω)dω+ 1

3ϕ1(b,a)

∫ a+ϕ1(b,a)
a Sλ(x, u)×Jλ(x, ν)dx

+ 1
3ϕ1(b,a)

∫ a+ϕ1(b,a)
a Sλ(x, ν)×Jλ(x, u)dx ,+ 1

18 αλ(a, b, u, ν) + 1
9 βλ(a, b, u, ν) + 2

9 γλ(a, b, u, ν)

(82)

Now, again with the help of integral inequality (30) for first two integrals on the
right-hand side of (82), we have the following relation:

2
ϕ1(b,a)

∫ a+ϕ1(b,a)
a Sλ

(
x, 2u+ϕ2(ν,u)

2

)
×Jλ

(
x, 2u+ϕ2(ν,u)

2

)
dx

≤I
1

ϕ1(b,a)ϕ2(ν,u)

∫ a+ϕ1(b,a)
a

∫ u+ϕ2(ν,u)
u Sλ(x, ω)×Jλ(x, ω)dωdx

+ 1
3ϕ1(b,a)

∫ a+ϕ1(b,a)
a [Sλ(x, u)×Jλ(x, u) +Sλ(x, ν)×Jλ(x, ν)]dx

+ 1
6ϕ1(b,a)

∫ a+ϕ1(b,a)
a [Sλ(x, u)×Jλ(x, ν) +Sλ(x, ν)×Jλ(x, u)]dx,

(83)

2
ϕ2(ν,u)

∫ u+ϕ2(ν,u)
u Sλ

(
2a+ϕ1(b,a)

2 , ω
)
×Jλ

(
2a+ϕ1(b,a)

2 , ω
)

dx

≤I
1

ϕ1(b,a)ϕ2(ν,u)

∫ a+ϕ1(b,a)
a

∫ u+ϕ2(ν,u)
u Sλ(x, ω)×Jλ(x, ω)dωdx

+ 1
3ϕ2(ν,u)

∫ u+ϕ2(ν,u)
u [Sλ(a, ω)×Jλ(a, ω) +Sλ(b, ω)×Jλ(b, ω)]dω

+ 1
6ϕ2(ν,u)

∫ u+ϕ2(ν,u)
u [Sλ(a, ω)×Jλ(b, ω) +Sλ(b, ω)×Jλ(a, ω)]dω

(84)

From (83) and (84), we have

8Sλ

(
2a+ϕ1(b,a)

2 , 2u+ϕ2(ν,u)
2

)
×Jλ

(
2a+ϕ1(b,a)

2 , 2u+ϕ2(ν,u)
2

)
≤I

1
ϕ1(b,a)ϕ2(ν,u)

∫ a+ϕ1(b,a)
a

∫ u+ϕ2(ν,u)
u Sλ(x, ω)×Jλ(x, ω)dωdx

+ 1
3ϕ1(b,a)

∫ a+ϕ1(b,a)
a [Sλ(x, u)×Jλ(x, u) +Sλ(x, ν)×Jλ(x, ν)]dx

+ 1
6ϕ1(b,a)

∫ a+ϕ1(b,a)
a [Sλ(x, u)×Jλ(x, ν) +Sλ(x, ν)×Jλ(x, u)]dx

+ 1
ϕ1(b,a)ϕ2(ν,u)

∫ a+ϕ1(b,a)
a

∫ u+ϕ2(ν,u)
u Sλ(x, ω)×Jλ(x, ω)dωdx

+ 1
3ϕ2(ν,u)

∫ u+ϕ2(ν,u)
u [Sλ(a, ω)×Jλ(a, ω) +Sλ(b, ω)×Jλ(b, ω)]dω

+ 1
6ϕ2(ν,u)

∫ u+ϕ2(ν,u)
u [Sλ(a, ω)×Jλ(b, ω) +Sλ(b, ω)×Jλ(a, ω)]dω,+ 1

6ϕ2(ν,u)

∫ u+ϕ2(ν,u)
u Sλ(a, ω)×Jλ(a, ω)dω

+ 1
6ϕ2(ν,u)

∫ u+ϕ2(ν,u)
u Sλ(b, ω)×Jλ(b, ω)dω

+ 1
6ϕ1(b,a)

∫ a+ϕ1(b,a)
a Sλ(x, u)×Jλ(x, u)dx + 1

6ϕ1(b,a)

∫ a+ϕ1(b,a)
a Sλ(x, ν)×Jλ(x, ν)dx

+ 1
3ϕ2(ν,u)

∫ u+ϕ2(ν,u)
u Sλ(a, ω)×Jλ(b, ω)dω + 1

3ϕ2(ν,u)

∫ u+ϕ2(ν,u)
u Sλ(b, ω)× Jλ(a, ω)dω

+ 1
3ϕ1(b,a)

∫ a+ϕ1(b,a)
a Sλ(x, u)×Jλ(x, ν)dx + 1

3ϕ1(b,a)

∫ a+ϕ1(b,a)
a Sλ(x, ν)×Jλ(x, u)dx ,

+ 1
18 αλ(a, b, u, ν) + 1

9 βλ(a, b, u, ν) + 2
9 γλ(a, b, u, ν).
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It follows that

8Sλ

(
2a+ϕ1(b,a)

2 , 2u+ϕ2(ν,u)
2

)
×Jλ

(
2a+ϕ1(b,a)

2 , 2u+ϕ2(ν,u)
2

)
≤I

2
ϕ1(b,a)ϕ2(ν,u)

∫ a+ϕ1(b,a)
a

∫ u+ϕ2(ν,u)
u Sλ(x, ω)×Jλ(x, ω)dωdx

+ 2
3ϕ1(b,a)

∫ a+ϕ1(b,a)
a [Sλ(x, u)×Jλ(x, u) +Sλ(x, ν)×Jλ(x, ν)]dx

+ 1
3ϕ1(b,a)

∫ a+ϕ1(b,a)
a [Sλ(x, u)×Jλ(x, ν) +Sλ(x, ν)×Jλ(x, u)]dx

+ 2
3ϕ2(ν,u)

∫ u+ϕ2(ν,u)
u [Sλ(a, ω)×Jλ(a, ω) +Sλ(b, ω)×Jλ(b, ω)]dω

+ 1
3ϕ2(ν,u)

∫ u+ϕ2(ν,u)
u [Sλ(a, ω)×Jλ(b, ω) +Sλ(b, ω)×Jλ(a, ω)]dω

+ 1
18 αλ(a, b, u, ν) + 1

9 βλ(a, b, u, ν) + 2
9 γλ(a, b, u, ν).

(85)

Now, using integral inequality (25) for integrals on the right-hand side of (85), we
have the following relation:

1
ϕ1(b,a)

∫ a+ϕ1(b,a)
a Sλ(x, u)×Jλ(x, u)dx

≤I
1
3 [Sλ(a, u)×Jλ(a, u) +Sλ(b, u)×Jλ(b, u)] + 1

6 [Sλ(a, u)×Jλ(b, u) +Sλ(b, u)×Jλ(a, u)],
(86)

1
ϕ1(b,a)

∫ a+ϕ1(b,a)
a Sλ(x, ν)×Jλ(x, ν)dx

≤I
1
3 [Sλ(a, ν)×Jλ(a, ν) +Sλ(b, ν)×Jλ(b, ν)] + 1

6 [Sλ(a, ν)×Jλ(b, ν) +Sλ(b, ν)×Jλ(a, ν)],
(87)

1
ϕ1(b,a)

∫ a+ϕ1(b,a)
a Sλ(x, u)×Jλ(x, ν)dx

≤I
1
3 [Sλ(a, u)×Jλ(a, ν) +Sλ(b, u)×Jλ(b, ν)] + 1

6 [Sλ(a, u)×Jλ(b, ν) +Sλ(b, u)×Jλ(a, ν)],
(88)

1
ϕ1(b,a)

∫ a+ϕ1(b,a)
a Sλ(x, ν)×Jλ(x, u)dx

≤I
1
3 [Sλ(a, ν)×Jλ(a, u) +Sλ(b, ν)×Jλ(b, u)] + 1

6 [Sλ(a, ν)×Jλ(b, u) +Sλ(b, ν)×Jλ(a, u)],
(89)

1
ϕ2(ν,u)

∫ u+ϕ2(ν,u)
u Sλ(a, ω)×Jλ(a, ω)dω

≤I
1
3 [Sλ(a, u)×Jλ(a, u) +Sλ(a, ν)×Jλ(a, ν)] + 1

6 [Sλ(a, u)×Jλ(a, ν) +Sλ(a, ν)×Jλ(a, u)],
(90)

1
ϕ2(ν,u)

∫ u+ϕ2(ν,u)
u Sλ(b, ω)×Jλ(b, ω)dω

≤I
1
3 [Sλ(b, u)×Jλ(b, u) +Sλ(b, ν)×Jλ(b, ν)] + 1

6 [Sλ(b, u)×Jλ(b, ν) +Sλ(b, ν)×Jλ(b, u)],
(91)

1
ϕ2(ν,u)

∫ u+ϕ2(ν,u)
u Sλ(a, ω)×Jλ(b, ω)dω

≤I
1
3 [Sλ(a, u)×Jλ(b, u) +Sλ(a, ν)×Jλ(b, ν)] + 1

6 [Sλ(a, u)×Jλ(b, ν) +Sλ(a, ν)×Jλ(b, u)],
(92)

1
ϕ2(ν,u)

∫ u+ϕ2(ν,u)
u Sλ(b, ω)×Jλ(a, ω)dω

≤I
1
3 [Sλ(b, u)×Jλ(a, u) +Sλ(b, ν)×Jλ(a, ν)] + 1

6 [Sλ(b, u)×Jλ(a, ν) +Sλ(b, ν)×Jλ(a, u)].
(93)

From (86)–(93), inequality (95), we have

4 Sλ

(
2a+ϕ1(b,a)

2 , 2u+ϕ2(ν,u)
2

)
×Jλ

(
2a+ϕ1(b,a)

2 , 2u+ϕ2(ν,u)
2

)
≤I

1
ϕ1(b,a)ϕ2(ν,u)

∫ a+ϕ1(b,a)
a

∫ u+ϕ2(ν,u)
u Sλ(x, ω)×Jλ(x, ω)dωdx

+ 5
36 αλ(a, b, u, ν) + 7

36 βλ(a, b, u, ν) + 2
9 γλ(a, b, u, ν)

That is

4 S̃
(

2a+ϕ1(b,a)
2 , 2u+ϕ2(ν,u)

2

)
×̃J̃

(
2a+ϕ1(b,a)

2 , 2u+ϕ2(ν,u)
2

)
˜

4 1
ϕ1(b,a)ϕ2(ν,u)

∫ a+ϕ1(b,a)
a

∫ u+ϕ2(ν,u)
u S̃(x, ω)×̃J̃ (x, ω)dωdx+ 5

36 α̃(a, b, u, ν)+̃ 7
36 β̃(a, b, u, ν)+̃ 2

9 γ̃(a, b, u, ν).

We now give HH-Fejér inequality for coordinated preinvex F·I-V·Fs by means of FOR
in the following result. �
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Theorem 13. Let S̃ : ∆ = [a, a + ϕ1(b, a)]× [u, u + ϕ2(ν, u)]→ FI be a coordinated prein-
vex F·I-V·F with a < b and u < ν. Then, from λ-levels, we get the collection of I-V·Fs
Sλ : ∆→ R+

I are given by Sλ(x, ω) = [S∗((x, ω), λ), S∗((x, ω), λ)] for all (x, ω) ∈ ∆

and for all λ ∈ [0, 1]. Let ψ : [a, a + ϕ1(b, a)]→ R with (x) ≥ 0,
∫ a+ϕ1(b,a)

a ψ(x)dx > 0,

and K : [u, u + ϕ2(ν, u)]→ R with K(ω) ≥ 0,
∫ u+ϕ2(ν,u)

u K(ω)dω > 0, be two symmetric

functions with respect to 2a+ϕ1(b,a)
2 and 2u+ϕ2(ν,u)

2 , respectively. If Condition 1 for ϕ1 and ϕ2 holds,
then following inequality hold:

S̃
(

2a+ϕ1(b,a)
2 , 2u+ϕ2(ν,u)

2

)
4 1

2

 1∫ b
a ψ(x)dx

∫ a+ϕ1(b,a)
a S̃

(
x, 2u+ϕ2(ν,u)

2

)
ψ(x)dx

+̃ 1∫ u+ϕ2(ν,u)
u K(ω)dω

∫ u+ϕ2(ν,u)
u S̃

(
2a+ϕ1(b,a)

2 , ω
)
K(ω)dω


4 1∫ a+ϕ1(b,a)

a ψ(x)dx
∫ u+ϕ2(ν,u)

u K(ω)dω

∫ a+ϕ1(b,a)
a

∫ u+ϕ2(ν,u)
u S̃(x, ω)ψ(x)K(ω)dωdx

4
1

4
∫ a+ϕ1(b,a)

a ψ(x)dx

[∫ a+ϕ1(b,a)
a S̃(x, u)dx+̃

∫ a+ϕ1(b,a)
a S̃(x, ν)dx

]

+̃
1

4
∫ u+ϕ2(ν,u)

u K(ω)dω

[∫ u+ϕ2(ν,u)
u S̃(a, ω)dω+̃

∫ u+ϕ2(ν,u)
u S̃(b, ω)dω

]
4 S̃(a,u)+̃S̃(b,u)+̃S̃(a,ν)+̃S̃(b,ν)

4

(94)

Proof. Since S̃ both is a coordinated preinvex F·I-V·F on ∆, it follows that for functions,
then by Lemma 1, there exist

S̃x : [u, ν]→ FI , S̃x(ω) = S̃(x, ω) , S̃ω : [a, b]→ FI , S̃ω(x) = S̃(x, ω)

Thus, from inequality (31), for each λ ∈ [0, 1], we have

Sλx

(
2u + ϕ2(ν, u)

2

)
≤I

1∫ u+ϕ2(ν,u)
u K(ω)dω

∫ u+ϕ2(ν,u)

u
Sλx(ω)K(ω)dω ≤I

Sλx(u) +Sλx(ν)

2
,

and

Sλω

(
2a + ϕ1(b, a)

2

)
≤I

1∫ a+ϕ1(b,a)
a ψ(x)dx

∫ a+ϕ1(b,a)

a
Sλω(x)ψ(x)dx ≤I

Sλω(a) +Sλω(b)
2

The above inequalities can be written as

Sλ

(
x,

2u + ϕ2(ν, u)
2

)
≤I

1∫ u+ϕ2(ν,u)
u K(ω)dω

∫ u+ϕ2(ν,u)

u
Sλ(x, ω)K(ω)dω ≤I

Sλ(x, u) +Sλ(x, ν)

2
, (95)

and

Sλ

(
2a + ϕ1(b, a)

2
, ω

)
≤I

1∫ a+ϕ1(b,a)
a ψ(x)dx

∫ a+ϕ1(b,a)

a
Sλ(x, ω)ψ(x)dx ≤I

Sλ(a, ω) +Sλ(b, ω)

2
(96)

Multiplying (95) by ψ(x) and then integrating the resultant with respect to x over
[a, a + ϕ1(b, a)], we have
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∫ a+ϕ1(b,a)
a Sλ

(
x, 2u+ϕ2(ν,u)

2

)
ψ(x)dx

≤I
1∫ u+ϕ2(ν,u)

u K(ω)dω

∫ a+ϕ1(b,a)
a

∫ u+ϕ2(ν,u)
u Sλ(x, ω)ψ(x)K(ω)dωdx ≤I

∫ a+ϕ1(b,a)
a

Sλ(x,u)+Sλ(x, ν)
2 ψ(x)dx.

(97)

Now, multiplying (96) by K(ω) and then integrating the resultant with respect to ω
over [u, u + ϕ2(ν, u)], we have∫ u+ϕ2(ν,u)

u Sλ

(
2a+ϕ1(b,a)

2 , ω
)
K(ω)dω

≤I
1∫ a+ϕ1(b,a)

a ψ(x)dx

∫ a+ϕ1(b,a)
a

∫ u+ϕ2(ν,u)
u Sλ(x, ω)ψ(x)K(ω)dxdω ≤I

∫ a+ϕ1(b,a)
a

Sλ(a,ω)+Sλ(b,ω)
2 K(ω)dω

(98)

Since
∫ a+ϕ1(b,a)

a ψ(x)dx > 0 and
∫ u+ϕ2(ν,u)

u K(ω)dω > 0, then dividing (97) and (98)

by
∫ a+ϕ1(b,a)

a ψ(x)dx > 0 and
∫ u+ϕ2(ν,u)

u K(ω)dω > 0, respectively, we get

1
2

[
1∫ a+ϕ1(b,a)

a ψ(x)dx

∫ a+ϕ1(b,a)
a Sλ

(
x, 2u+ϕ2(ν,u)

2

)
ψ(x)dx + 1∫ u+ϕ2(ν,u)

u K(ω)dω

∫ u+ϕ2(ν,u)
u Sλ

(
2a+ϕ1(b,a)

2 , ω
)
K(ω)dω

]
≤I

1∫ a+ϕ1(b,a)
a ψ(x)dx

∫ u+ϕ2(ν,u)
u K(ω)dω

∫ a+ϕ1(b,a)
a

∫ u+ϕ2(ν,u)
u Sλ(x, ω)ψ(x)K(ω)dωdx

≤I
1∫ a+ϕ1(b,a)

a ψ(x)dx

∫ a+ϕ1(b,a)
a

Sλ(x,u)+Sλ(x, ν)
4 ψ(x)dx

+
1∫ u+ϕ2(ν,u)

u K(ω)dω

∫ u+ϕ2(ν,u)
u

Sλ(a,ω)+Sλ(b,ω)
4 K(ω)dω

(99)

Now, from the left part of double inequalities (95) and (96), we obtain

Sλ

(
2a + ϕ1(b, a)

2
,

2u + ϕ2(ν, u)
2

)
≤I

1∫ u+ϕ2(ν,u)
u K(ω)dω

∫ u+ϕ2(ν,u)

u
Sλ

(
2a + ϕ1(b, a)

2
, ω

)
K(ω)dω, (100)

and

Sλ

(
2a + ϕ1(b, a)

2
,

2u + ϕ2(ν, u)
2

)
≤I

1∫ a+ϕ1(b,a)
a ψ(x)dx

∫ a+ϕ1(b,a)

a
Sλ

(
x,

2u + ϕ2(ν, u)
2

)
ψ(x)dx (101)

Summing the inequalities (100) and (101), we get

Sλ

(
2a + ϕ1(b, a)

2
,

2u + ϕ2(ν, u)
2

)
≤I

1
2


1∫ a+ϕ1(b,a)

a ψ(x)dx

∫ a+ϕ1(b,a)
a Sλ

(
x, 2u+ϕ2(ν,u)

2

)
ψ(x)dx

+
1∫ u+ϕ2(ν,u)

u K(ω)dω

∫ u+ϕ2(ν,u)
u Sλ

(
2a+ϕ1(b,a)

2 , ω
)
K(ω)dω

 (102)

Similarly, from the right part of (101) and (102), we can obtain

1∫ u+ϕ2(ν,u)
u K(ω)dω

∫ u+ϕ2(ν,u)

u
Sλ(a, ω)K(ω)dω ≤I

Sλ(a, u) +Sλ(a, ν)

2
, (103)

1∫ u+ϕ2(ν,u)
u K(ω)dω

∫ u+ϕ2(ν,u)

u
Sλ(b, ω)K(ω)dω ≤I

Sλ(b, u) +Sλ(b, ν)

2
, (104)
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and

1∫ a+ϕ1(b,a)
a ψ(x)dx

∫ a+ϕ1(b,a)

a
Sλ(x, u)ψ(x)dx ≤I

Sλ(a, u) +Sλ(b, u)
2

(105)

1∫ a+ϕ1(b,a)
a ψ(x)dx

∫ a+ϕ1(b,a)

a
Sλ(x, ν)ψ(x)dx ≤I

Sλ(a, ν) +Sλ(b, ν)

2
(106)

Adding (103)–(106) and dividing by 4, we get

1
4
∫ u+ϕ2(ν,u)

u K(ω)dω

[∫ u+ϕ2(ν,u)
u Sλ(a, ω)K(ω)dω +

∫ u+ϕ2(ν,u)
u Sλ(b, ω)K(ω)dω

]

+
1

4
∫ a+ϕ1(b,a)

a ψ(x)dx

[∫ a+ϕ1(b,a)
a Sλ(x, u)ψ(x)dx +

∫ a+ϕ1(b,a)
a Sλ(x, ν)ψ(x)dx

]
≤I

Sλ(a,u)+Sλ(a, ν)+Sλ(b,u)+Sλ(b, ν)
4

(107)

Combing inequalities (99), (102), and (107), we obtain

Sλ

(
2a+ϕ1(b,a)

2 , 2u+ϕ2(ν,u)
2

)
≤I

1
2


1∫ a+ϕ1(b,a)

a ψ(x)dx

∫ a+ϕ1(b,a)
a Sλ

(
x, 2u+ϕ2(ν,u)

2

)
ψ(x)dx

+
1∫ u+ϕ2(ν,u)

u K(ω)dω

∫ u+ϕ2(ν,u)
u Sλ

(
2a+ϕ1(b,a)

2 , ω
)
K(ω)dω


≤I

1∫ a+ϕ1(b,a)
a ψ(x)dx

∫ u+ϕ2(ν,u)
u K(ω)dω

∫ a+ϕ1(b,a)
a

∫ u+ϕ2(ν,u)
u S(x, ω)ψ(x)K(ω)dωdx

≤I
1

4
∫ u+ϕ2(ν,u)

u K(ω)dω

[∫ u+ϕ2(ν,u)
u Sλ(a, ω)K(ω)dω +

∫ u+ϕ2(ν,u)
u Sλ(b, ω)K(ω)dω

]

+
1

4
∫ a+ϕ1(b,a)

a ψ(x)dx

[∫ a+ϕ1(b,a)
a Sλ(x, u)ψ(x)dx +

∫ a+ϕ1(b,a)
a Sλ(x, ν)ψ(x)dx

]
≤I

Sλ(a,u)+Sλ(a, ν)
2 + Sλ(b,u)+Sλ(b, ν)

2 + Sλ(a,u)+Sλ(b,u)
2 + Sλ(a,ν)+Sλ(b,ν)

2

That is

S̃
(

2a+ϕ1(b,a)
2 , 2u+ϕ2(ν,u)

2

)
4 1

2

 1∫ a+ϕ1(b,a)
a ψ(x)dx

∫ a+ϕ1(b,a)
a S̃

(
x, 2u+ϕ2(ν,u)

2

)
ψ(x)dx

+̃ 1∫ u+ϕ2(ν,u)
u K(ω)dω

∫ u+ϕ2(ν,u)
u S̃

(
2a+ϕ1(b,a)

2 , ω
)
K(ω)dω


4 1∫ a+ϕ1(b,a)

a ψ(x)dx
∫ u+ϕ2(ν,u)

u K(ω)dω

∫ a+ϕ1(b,a)
a

∫ u+ϕ2(ν,u)
u S̃(x, ω)ψ(x)K(ω)dωdx

4
1

4
∫ a+ϕ1(b,a)

a ψ(x)dx

[∫ a+ϕ1(b,a)
a S̃(x, u)dx+̃

∫ a+ϕ1(b,a)
a S̃(x, ν)dx

]

+̃
1

4
∫ u+ϕ2(ν,u)

u K(ω)dω

[∫ u+ϕ2(ν,u)
u S̃(a, ω)dω+̃

∫ u+ϕ2(ν,u)
u S̃(b, ω)dω

]
4 S̃(a,u)+̃S̃(b,u)+̃S̃(a,ν)+̃S̃(b,ν)

4

Hence, this concludes the proof. �

Remark 6. If one takes K(ω) = 1 = ψ(x), then from (94) we achieve (39).
If one takes ϕ1(b, a) = b− a and ϕ2(ν, u) = ν− u, then from (94), we acquire the following

inequality, see [38]:
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S̃
(

a+b
2 , u+ν

2

)
4 1

2

[
1∫ b

a ψ(x)dx

∫ b
a S̃

(
x, u+ν

2
)
ψ(x)dx+̃ 1∫ b

a K(ω)dω

∫ b
a S̃

(
a+b

2 , ω
)
K(ω)dω

]
4 1∫ b

a ψ(x)dx
∫ b

a K(ω)dω

∫ b
a

∫ ν
u S̃(x, ω)ψ(x)K(ω)dωdx

4
1

4
∫ b

a ψ(x)dx

[∫ b
a S̃(x, u)dx+̃

∫ b
a S̃(x, ν)dx

]
+̃

1
4
∫ b

a K(ω)dω

[∫ ν
u S̃(a, ω)dω+̃

∫ ν
u S̃(b, ω)dω

]
4 S̃(a,u)+̃S̃(b,u)+̃S̃(a,ν)+̃S̃(b,ν)

4

(108)

If one takes ϕ1(b, a) = b − a, ϕ2(ν, u) = ν − u and K(ω) = 1 = ψ(x), then from (94), we
acquire the inequality (59), see [38].

4. Conclusions

As an extension of convex fuzzy-interval-valued functions on coordinates, we have
proposed the idea of fuzzy interval-valued preinvex functions in this article. For coordi-
nated preinvex fuzzy interval-valued functions, we have created H–H-type inequalities.
The product of two coordinated preinvex fuzzy-interval-valued functions was also exam-
ined, which are known as Pachpatte Type inequalities, as well as several new H–H-type
inclusions. Other types of interval-valued preinvex functions on the coordinates may be in-
cluded in the results produced in this study. Future work will explore fuzzy interval-valued
fractional integrals on coordinates to study H–H-type and H–H–Fejér-type inequalities with
the help of fuzzy-order relation for coordinated preinvex fuzzy interval-valued functions.
We hope that the concepts and findings presented in this article will inspire readers to
conduct more research.
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4. Set, E.; İşcan, İ.; Kara, H.H. Hermite-Hadamard-Fejer type inequalities for s-convex function in the second sense via fractional
integrals. Filomat 2016, 30, 3131–3138. [CrossRef]

5. Dragomir, S.S. New inequalities of Hermite-Hadamard type for log-convex functions. Khayyam J. Math. 2017, 3, 98–115.
6. Niculescu, C.P. The Hermite-Hadamard inequality for log-convex functions. Nonlinear Anal. 2012, 75, 662–669. [CrossRef]
7. Set, E.; Ardıç, M.A. Inequalities for log-convex functions and P-functions. Miskolc Math. Notes 2017, 18, 1033–1041. [CrossRef]
8. Mohsen, B.B.; Awan, M.U.; Noor, M.A.; Riahi, L.; Noor, K.I.; Almutairi, B. New quantum Hermite-Hadamard inequalities utilizing

harmonic convexity of the functions. IEEE Access 2019, 7, 20479–20483. [CrossRef]
9. Varošanec, S. On h-convexity. J. Math. Anal. Appl. 2007, 326, 303–311. [CrossRef]
10. Latif, M.A.; Alomari, M. On Hadamard-type inequalities for h-convex functions on the co-ordinates. Int. J. Math. Anal. 2009, 3,

1645–1656.
11. Matłoka, M. On Hadamard’s inequality for h-convex function on a disk. Appl. Math. Comput. 2014, 235, 118–123. [CrossRef]
12. Mihai, M.V.; Noor, M.A.; Awan, M.U. Trapezoidal like inequalities via harmonic h-convex functions on the co-ordinates in a

rectangle from the plane. Rev. Real Acad. Cienc. Exactas Físicas Nat. 2017, 111, 257–262. [CrossRef]
13. Mihai, M.V.; Noor, M.A.; Noor, K.I.; Awan, M.U. Some integral inequalities for harmonic h-convex functions involving hypergeo-

metric functions. Appl. Math. Comput. 2015, 252, 257–262. [CrossRef]
14. Noor, M.A.; Noor, K.I.; Awan, M.U. A new Hermite-Hadamard type inequality for h-convex functions. Creat. Math. Inform. 2015,

24, 191–197.
15. Sarikaya, M.Z.; Saglam, A.; Yildirim, H. On some Hadamard-type inequalities for h-convex functions. J. Math. Inequal. 2008, 2,

335–341. [CrossRef]
16. Sarikaya, M.Z.; Set, E.; Özdemir, M.E. On some new inequalities of Hadamard-type involving h-convex functions. Acta Math.

Univ. Comenian LXXIX 2010, 2, 265–272.
17. Burkill, J.C. Functions of Intervals. Proc. Lond. Math. Soc. 1924, 22, 275–310. [CrossRef]
18. Kolmogorov, A.N. Untersuchungen über Integralbegriff. Math. Ann. 1930, 103, 654–696. [CrossRef]
19. Moore, R.E. Interval Analysis; Prentice-Hall, Inc.: Hoboken, NJ, USA, 1966.
20. Nikodem, K.; Sanchez, J.L.; Sanchez, L. Jensen and Hermite-Hadamard inequalities for strongly convex set-valued maps. Math.

Aeterna 2014, 4, 979–987.
21. Budak, H.; Tunç, T.; Sarikaya, M.Z. Fractional Hermite-Hadamard-type inequalities for interval-valued functions. Proc. Am. Math.

Soc. 2020, 148, 705–718. [CrossRef]
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29. Flores-Franulič, A.; Chalco-Cano, Y.; Román-Flores, H. An Ostrowski type inequality for interval-valued functions. In Proceedings

of the IFSA World Congress and NAFIPS Annual Meeting IEEE, Edmonton, AB, Canada, 24–28 June 2013; pp. 1459–1462.
30. Zhao, D.F.; An, T.Q.; Ye, G.J.; Liu, W. New Jensen and Hermite-Hadamard type inequalities for h-convex interval-valued functions.

J. Inequal. Appl. 2018, 2018, 302. [CrossRef]
31. Zhao, D.F.; Ye, G.J.; Liu, W.; Torres, D.F.M. Some inequalities for interval-valued functions on time scales. Soft Comput. 2019, 23,

6005–6015. [CrossRef]
32. Zhao, D.F.; An, T.Q.; Ye, G.J.; Liu, W. Chebyshev type inequalities for interval-valued functions. Fuzzy Sets Syst. 2020, 396, 82–101.

[CrossRef]
33. Zhao, D.F.; An, T.Q.; Ye, G.J.; Torres, D.F.M. On Hermite-Hadamard type inequalities for harmonical h-convex interval-valued

functions. Math. Inequal. Appl. 2020, 23, 95–105.
34. Dragomir, S.S. On the Hadamard’s inequality for convex functions on the co-ordinates in a rectangle from the plane. Taiwan. J.

Math. 2001, 5, 775–788. [CrossRef]
35. Moore, R.E.; Kearfott, R.B.; Cloud, M.J. Introduction to Interval Analysis; SIAM: Philadelphia, PA, USA, 2009.
36. Khan, M.B.; Noor, M.A.; Abdullah, L.; Chu, Y.M. Some new classes of preinvex fuzzy-interval-valued functions and inequalities.

Int. J. Comput. Intell. Syst. 2021, 14, 1403–1418. [CrossRef]
37. Khan, M.B.; Mohammed, P.O.; Noor, M.A.; Abuahalnaja, K. Fuzzy Integral Inequalities on Coordinates of Convex Fuzzy

Interval-Valued Functions. Math. Biosci. Eng. 2021, 18, 6552–6580. [CrossRef] [PubMed]

http://doi.org/10.2298/FIL1612131S
http://doi.org/10.1016/j.na.2011.08.066
http://doi.org/10.18514/MMN.2017.1798
http://doi.org/10.1109/ACCESS.2019.2897680
http://doi.org/10.1016/j.jmaa.2006.02.086
http://doi.org/10.1016/j.amc.2014.02.085
http://doi.org/10.1007/s13398-016-0332-0
http://doi.org/10.1016/j.amc.2014.12.018
http://doi.org/10.7153/jmi-02-30
http://doi.org/10.1112/plms/s2-22.1.275
http://doi.org/10.1007/BF01455714
http://doi.org/10.1090/proc/14741
http://doi.org/10.1007/s00500-014-1483-6
http://doi.org/10.1007/s40314-019-0836-2
http://doi.org/10.1016/j.fss.2017.02.001
http://doi.org/10.1016/j.fss.2018.04.012
http://doi.org/10.1007/s40314-016-0396-7
http://doi.org/10.1186/s13660-018-1896-3
http://doi.org/10.1007/s00500-018-3538-6
http://doi.org/10.1016/j.fss.2019.10.006
http://doi.org/10.11650/twjm/1500574995
http://doi.org/10.2991/ijcis.d.210409.001
http://doi.org/10.3934/mbe.2021325
http://www.ncbi.nlm.nih.gov/pubmed/34517545


Mathematics 2022, 10, 2756 25 of 25

38. Costa, T.M.; Roman-Flores, H. Some integral inequalities for fuzzy-interval-valued functions. Inform. Sci. 2017, 420, 110–125.
[CrossRef]

39. Zhang, D.; Guo, C.; Chen, D.; Wang, G. Jensen’s inequalities for set-valued and fuzzy set-valued functions. Fuzzy Sets Syst. 2021,
404, 178–204. [CrossRef]

40. Bede, B. Mathematics of Fuzzy Sets and Fuzzy Logic; Volume 295 of Studies in Fuzziness and Soft Computing; Springer:
Berlin/Heidelberg, Germany, 2013.

41. Diamond, P.; Kloeden, P.E. Metric Spaces of Fuzzy Sets: Theory and Applications; World Scientific: Singapore, 1994.
42. Aubin, J.P.; Frankowska, H. Set-Valued Analysis; Birkhäuser: Boston, MA, USA, 1990.
43. Latif, M.A.; Dragomir, S.S. Some Hermite-Hadamard type inequalities for functions whose partial derivatives in absolute value

are preinvex on the co-ordinates. Facta Univ. Ser. Math. Inform. 2013, 28, 257–270.
44. Kaleva, O. Fuzzy differential equations. Fuzzy Sets Syst. 1987, 24, 301–317. [CrossRef]
45. Mohan, M.S.; Neogy, S.K. On invex sets and preinvex functions. J. Math. Anal. Appl. 1995, 189, 901–908. [CrossRef]
46. Noor, M.A. Fuzzy preinvex functions. Fuzzy Sets Syst. 1994, 64, 95–104. [CrossRef]
47. Noor, M.A.; Noor, K.I. On strongly generalized preinvex functions. J. Inequal. Pure Appl. Math. 2005, 6, 102.
48. Zhao, T.H.; He, Z.Y.; Chu, Y.M. Sharp bounds for the weighted Hölder mean of the zero-balanced generalized complete elliptic

integrals. Comput. Methods Funct. Theory 2021, 21, 413–426. [CrossRef]
49. Zhao, T.H.; Wang, M.K.; Chu, Y.M. Concavity and bounds involving generalized elliptic integral of the first kind. J. Math. Inequal.

2021, 15, 701–724. [CrossRef]
50. Chu, H.H.; Zhao, T.H.; Chu, Y.M. Sharp bounds for the Toader mean of order 3 in terms of arithmetic, quadratic and contra

harmonic means. Math. Slovaca 2020, 70, 1097–1112. [CrossRef]
51. Zhao, T.H.; He, Z.Y.; Chu, Y.M. On some refinements for inequalities involving zero-balanced hyper geometric function. AIMS

Math. 2020, 5, 6479–6495. [CrossRef]
52. Zhao, T.H.; Wang, M.K.; Chu, Y.M. A sharp double inequality involving generalized complete elliptic integral of the first kind.

AIMS Math. 2020, 5, 4512–4528. [CrossRef]
53. Zhao, T.H.; Shi, L.; Chu, Y.M. Convexity and concavity of the modified Bessel functions of the first kind with respect to Hölder

means. Rev. R. Acad. Cienc. Exactas Físicas Nat. Ser. A Mat. RACSAM 2020, 114, 96. [CrossRef]
54. Zhao, T.H.; Zhou, B.C.; Wang, M.K.; Chu, Y.M. On approximating the quasi-arithmetic mean. J. Inequal. Appl. 2019, 2019, 42.

[CrossRef]
55. Zhao, T.H.; Wang, M.K.; Zhang, W.; Chu, Y.M. Quadratic transformation inequalities for Gaussian hypergeometric function. J.

Inequal. Appl. 2018, 2018, 251. [CrossRef]
56. Khan, M.B.; Noor, M.A.; Noor, K.I.; Chu, Y.M. New Hermite-Hadamard Type Inequalities for -Convex Fuzzy-Interval-Valued

Functions. Adv. Differ. Equ. 2021, 2021, 6–20. [CrossRef]
57. Khan, M.B.; Noor, M.A.; Noor, K.I.; Nisar, K.S.; Ismail, K.A.; Elfasakhany, A. Some Inequalities for LR-(h1, h2)-Convex Interval-

Valued Functions by Means of Pseudo Order Relation. Int. J. Comput. Intell. Syst. 2021, 14, 180. [CrossRef]
58. Khan, M.B.; Noor, M.A.; Al-Bayatti, H.M.; Noor, K.I. Some New Inequalities for LR-log-h-Convex Interval-Valued Functions by

Means of Pseudo Order Relation. Appl. Math. Inf. Sci. 2021, 15, 459–470.
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