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Abstract: Proper analysis of changes in brain structure can lead to a more accurate diagnosis of specific
brain disorders. The accuracy of segmentation is crucial for quantifying changes in brain structure.
In recent studies, UNet-based architectures have outperformed other deep learning architectures in
biomedical image segmentation. However, improving segmentation accuracy is challenging due
to the low resolution of medical images and insufficient data. In this study, we present a novel
architecture that combines three parallel UNets using a residual network. This architecture improves
upon the baseline methods in three ways. First, instead of using a single image as input, we use three
consecutive images. This gives our model the freedom to learn from neighboring images as well.
Additionally, the images are individually compressed and decompressed using three different UNets,
which prevents the model from merging the features of the images. Finally, following the residual
network architecture, the outputs of the UNets are combined in such a way that the features of the
image corresponding to the output are enhanced by a skip connection. The proposed architecture
performed better than using a single conventional UNet and other UNet variants.

Keywords: biomedical image segmentation; deep learning; parallel UNet; ResNet

MSC: 68U07; 68-06; 68M20

1. Introduction

Semantic segmentation assigns a specific class label to each pixel for localization in
image processing [1]. In medical image processing, magnetic resonance imaging (MRI)
is the most used non-invasive technology to study the brain, which produces a contrast
image in the tissue for the features of interest by repeating different excitations [2]. MRI
can detect diseases that affect the brain, such as Alzheimer’s disease (AD) and multiple
sclerosis [3]. Tissue atrophy is a commonly used biomarker to diagnose Alzheimer’s
disease. When diagnosing diseases such as Alzheimer’s disease, accurate identification
and categorization of the diseased tissue and its surrounding healthy structures are crucial.
A large number of data are required for a more accurate diagnosis. However, manually
analyzing large and complicated MRI datasets and extracting essential information can
be difficult for physicians. Furthermore, manual analysis of MRI images of the brain is
time-consuming and error-prone [4]. As a result, an automatic segmentation technique
needs to be developed to provide accurate and reliable results. Recently, large datasets
have been used to test computer assisted MRI segmentation to help physicians make a
qualitative diagnosis. MRI segmentation of the brain at different time points is also used to
evaluate structural changes in the brain. Normal brain structure segmentation includes four
classes: white matter (WM), gray matter (GM), cerebrospinal fluid (CSF), and background,
as shown in Figure 1.
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Figure 1. Binary map of four different classes generated from ground truth. 

Before convolutional neural network (CNN), conventional methods such as cluster-
ing and thresholding were used for image segmentation by locating object boundaries 
with low-level features [5]. A variety of graphical models have been used for localizing 
scene labels at the pixel level [5]. These methods fail in segmenting adjacent class labels. 
However, graphical models such as Conditional Random Forest (CRFs) [6] continue to be 
used as refinement layers to improve performance. Early deep learning approaches have 
fine-tuned fully connected layers of classification [7]. These studies used a refinement pro-
cess to overcome unsatisfactory results due to overfitting and insufficient depth for creat-
ing abstract features [7,8]. In recent studies, CNN has been widely used in many segmen-
tation tasks [9]. CNN has overcome the limitations of traditional pixel classification. The 
ability to automatically learn features in deep convolutional neural networks has been 
effective in achieving better performance [10]. Previous CNN approaches to image seg-
mentation are based on patches, sliding windows, and fully connected CRFs, etc. These 
approaches are unable to learn global features and have redundant computations [11]. 
Avoiding the limitations of earlier approaches, a fully convolutional network (FCN) ar-
chitecture for supervised pixel-wise prediction with a marginal number of weights in the 
convolution layers was considerably faster in the absence of the fully connected layers 
from CNN [12]. This architecture allowed generating segmentation maps for images with 
any resolution and it was revolutionary in segmentation research [5]. FCN along with 
“Skip” architecture allows the combination of information from different filter layers [12]. 

UNet follows the architecture consisting entirely of convolutional layers, as in FCN 
and SegNet [1]. UNet has a symmetric architecture, and it comprises an encoder and de-
coder [13]. The encoder uses pooling layers to reduce the spatial dimension while the de-
coder restores the spatial dimension [14]. The skip connections allow passing information 
from the encoder to the feature map of the decoder at the same level. Recently, there have 
been many studies that have proposed different UNet variants to improve the perfor-
mance of medical image segmentation [15–19]. Most of the studies used single UNet ar-
chitectures with various modifications such as batch normalization, data augmentation, 
and patch-wise segmentation [20–23]. In recent years, few architectures have been pre-
sented using more than one UNet. A two parallel UNet approach was proposed for iden-
tification and localization in X-ray images [24]. Another variant, Multi-Inputs UNet (MI-
UNet), consists of multiple inputs containing parcellation information in brain MRI [25]. 
The use of multiple UNet leads to the non-trivial task of combining the output or layers 
within them. In one approach, the output of one of the parallel UNet is fed to the water-
shed algorithm as a seed to segment the output of another UNet [26]. For exploitation of 
multi-modal data, inputs were contracted individually and combined before decoding 
that provides single output [27]. TMD-UNet includes modified node structures with three 
parallel sub-UNet models [28]. Unlike the traditional UNet model, TMD-UNet utilizes all 
the output features of the convolutional units and uses them as input for the next nodes. 
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Before convolutional neural network (CNN), conventional methods such as clustering
and thresholding were used for image segmentation by locating object boundaries with
low-level features [5]. A variety of graphical models have been used for localizing scene
labels at the pixel level [5]. These methods fail in segmenting adjacent class labels. However,
graphical models such as Conditional Random Forest (CRFs) [6] continue to be used as
refinement layers to improve performance. Early deep learning approaches have fine-
tuned fully connected layers of classification [7]. These studies used a refinement process
to overcome unsatisfactory results due to overfitting and insufficient depth for creating
abstract features [7,8]. In recent studies, CNN has been widely used in many segmentation
tasks [9]. CNN has overcome the limitations of traditional pixel classification. The ability
to automatically learn features in deep convolutional neural networks has been effective
in achieving better performance [10]. Previous CNN approaches to image segmentation
are based on patches, sliding windows, and fully connected CRFs, etc. These approaches
are unable to learn global features and have redundant computations [11]. Avoiding the
limitations of earlier approaches, a fully convolutional network (FCN) architecture for
supervised pixel-wise prediction with a marginal number of weights in the convolution
layers was considerably faster in the absence of the fully connected layers from CNN [12].
This architecture allowed generating segmentation maps for images with any resolution
and it was revolutionary in segmentation research [5]. FCN along with “Skip” architecture
allows the combination of information from different filter layers [12].

UNet follows the architecture consisting entirely of convolutional layers, as in FCN
and SegNet [1]. UNet has a symmetric architecture, and it comprises an encoder and
decoder [13]. The encoder uses pooling layers to reduce the spatial dimension while the
decoder restores the spatial dimension [14]. The skip connections allow passing information
from the encoder to the feature map of the decoder at the same level. Recently, there have
been many studies that have proposed different UNet variants to improve the performance
of medical image segmentation [15–19]. Most of the studies used single UNet architectures
with various modifications such as batch normalization, data augmentation, and patch-
wise segmentation [20–23]. In recent years, few architectures have been presented using
more than one UNet. A two parallel UNet approach was proposed for identification
and localization in X-ray images [24]. Another variant, Multi-Inputs UNet (MI-UNet),
consists of multiple inputs containing parcellation information in brain MRI [25]. The use
of multiple UNet leads to the non-trivial task of combining the output or layers within them.
In one approach, the output of one of the parallel UNet is fed to the watershed algorithm
as a seed to segment the output of another UNet [26]. For exploitation of multi-modal data,
inputs were contracted individually and combined before decoding that provides single
output [27]. TMD-UNet includes modified node structures with three parallel sub-UNet
models [28]. Unlike the traditional UNet model, TMD-UNet utilizes all the output features
of the convolutional units and uses them as input for the next nodes.
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As the depth of the neural network increases, the accuracy becomes saturated and
later deteriorates. Residual network introduced a framework to solve the degradation
problem [29]. The shortcut connections in this approach perform identity mapping, and
the outputs of these connections are added to the outputs of the stacked layer. Without
additional parameters and computational complexity, identity shortcut connections can
be easily implemented and trained end-to-end with backpropagation [29]. ResUnet-a
presented an idea to replace the building blocks of the UNet architecture with modified
residual blocks [30]. The modification enabled the labeling of high-resolution images for
the task of semantic segmentation.

For 2D segmentation of MRI images of the brain, most of the previous works used
a single input image. Data augmentation and patch-wise methods have generally been
used for the different UNet variants. Since the network runs each patch individually, these
networks are time-consuming, and the selection of the size of the patches either results
in reduced localization accuracy or leaks only in smaller contexts [13]. Some studies on
video segmentations use a single frame as input [31,32]. Using multiple frames in video
segmentation and images with multiple modalities in medical image segmentation has
improved the performance of the model [33]. In a unique approach of using multiple slices
as input to use neighboring slices for segmentation using UNet, the input was referred to
as pseudo-3D with an odd number of slices for predicting the central layer [33]. Medical
images do not change over time, as is the case with real-world video data. However, even
if the brain MRI images are time-invariant, adjacent slices can be extracted from 3D data.
The neighboring images still have similarity and can be treated and used as video data.

Motivated by using multiple frames to achieve coherent results and multi-path parallel
architecture to model highly complex relationships between neighboring slices, we propose
a novel architecture for the segmentation of brain MRI images. In this work, instead of
single slice as input, we used three consecutive 2D slices denoted as ‘early’, middle’, and
‘late’, where the central ‘middle’ slice is predicted as illustrated in Figure 2. We hypothesize
that the neighboring slices ‘early’ and ‘late’ comprised the spatial information correlated
with the ‘middle’ slice. The three slices were passed through three different conventional
UNet and fused later to predict the ‘middle’ slice. The late fusion of multi-paths in the
model was motivated by Nie et al., which found that better performance is achieved using
late fusion [34]. In addition, we also propose a novel method for the fusion of parallel
UNets using a residual network at the end. We added outputs of UNet for the ‘middle’ slice
to the stacked outputs residual network. This allows the model to learn from neighboring
layers as well as reinforce and preserve the features of the middle slice to achieve better
performance.
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slice, (b) the proposed SIP-UNet model, and (c) output of the proposed model which generates the
segmented result of nth slice.

The contributions of this paper are summarized as follows:
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1. We propose to use multiple slices as input that include neighboring slices, to extract
correlated information from them.

2. We introduce a novel parallel UNet to preserve individual spatial information of each
input slice.

3. We propose integration of the outputs of parallel Unets using a residual network with
late fusion to improve the performance.

4. We experiment with resizing images from OASIS data. Apart from resizing the 2D
images, the proposed method does not use any augmentation, patch-wise method,
pre- or post-processing of skull-stripped images.

5. We also experiment with the latest state-of-the-art methods, typical UNet, and mod-
ified Unet that takes three slices. The proposed method outperforms rest of these
methods.

The rest of the paper is organized as follows: Section 2.1 presents the dataset, and
the evaluation criteria are shown. The proposed parallel Unet architecture is presented in
detail in Section 2.2. The evaluation and the results of our novel architecture are presented
in Section 3. Finally, we present discussion points, and then draw a conclusion for this
work in Section 4.

2. Materials and Methods
2.1. Data

We evaluated our proposed model using the Open Access Series of Imaging Studios
(OASIS) dataset [35]. There were 413 subjects and 20 non-demented subjects included in
OASIS. Of the 436 subjects, we randomly selected 50 subjects for training and the remaining
386 subjects for testing the model. Each subject’s MRI scan and its segmented 3D image
had dimensions of 176 × 208 × 176. We extracted 2D images for three different planes:
axial, coronal, and sagittal. When converting each image to the 2D data, there were some
empty images that did not contain information about the brain in all planes. We selected
only slices from 15 to 145 for the axial plane, 30 to 180 slices for the coronal plane, and 25
to 145 slices for the sagittal plane to exclude empty 2D images. Because these 2D slices
varied in size across different dimensions and different planes, we resized all images to
the dimensions of 256 × 256. To create an input for our model, we concatenated three
consecutive images after resizing them. After concatenation, the size was 256 × 256 × 3.
The third dimension represented different slices instead of channels because we were using
colorless images. The first slice represented the ‘early’ slice, the second slice represented
the ‘central’ slice, and finally, the third slice represented the ‘late’ slice.

We used 50 subjects from the OASIS dataset for training. The same subjects were
used to train the models for the different planes. From each subject, 130 2D slices (from
15 to 145) were extracted in the axial plane. Similarly, 150 2D slices (from 30 to 180) and
120 2D slices (from 25 to 145) in the coronal and sagittal planes, respectively, were extracted
from each individual subject. Overall, we obtained 6500, 7500, and 6000 images from
axial, coronal, and sagittal plane, respectively. While training, we used 20% of data for the
validation, which gave us 1300, 1500, and 1200 images from axial, coronal, and sagittal
plane, respectively, for the validation. The models were trained and tested separately
for each individual plane. For testing, we used the remaining 386 subjects and extracted
the images in the same way as for the training. In total, we obtained 50,180, 57,900, and
46,320 images from the axial, coronal, and sagittal planes, respectively, as test data.

2.2. Method

The ability to utilize and extract features from neighboring slices or images distin-
guishes SIP-UNet from typical UNet. In a typical UNet, only a single corresponding image
is used as input in a typical UNet. However, in SIP-UNet two neighboring slices (‘early’
and ‘later’) are also used to obtain the segmentation result of the central slice. We visualized
and compared the sequential slices. We found that the slices next to the central slice have
common regions or similar structure. While comparing with the neighboring slices, the
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regions seemed like regions that were projected from or to the central slice. But when we
considered more than three slices (5 or more), the slices that were far from the central slice
by two or more slices had no common regions or structures. In some cases, they were
totally different if we took slices from the lower end or upper end of the brain. Therefore,
we concluded that considering more slices only increases the computational time and
reduces the performance of the model. Hence, we considered only three slices, where two
of them were neighboring slices. For each subject, MRI images were sliced for input data
containing three consecutive slices and then jointly fed into SIP-UNet. Figure 3 shows
the difference between the input for typical UNet and the proposed SIP-UNet. Figure 4
shows the architecture of conventional UNet and the one of the UNet structure used in the
SIP-UNet. The proposed SIP-UNet consisted of two main parts: the parallel UNet and the
late fusion using a residual network. The model was trained and tested individually for
axial, sagittal, and coronal views of brain MRI.
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2.2.1. Parallel UNet

The parallel UNet consisted of three typical UNet that were identical to each other.
Each of the slices from the input data was forwarded to a different individual UNet. The
architecture of an each individual UNet that built the parallel structure in Figure 3b is
shown in Figure 4b. The UNet architecture consisted of an encoder path and a decoder
path. Both the encoder and decoder followed a fully convolutional network architecture. In
the encoder path, a 3 × 3 convolution was repeated twice and was followed by a 2 × 2 max
pooling operation that doubles the number of feature channels at each down-sampling step.
Alternatively, the decoder path consisted of a 2 × 2 up-convolution that resulted in halving
the number of the feature channels, followed by concatenation with the corresponding
encoder path feature map and then performing two 3× 3 convolutions. In the end, a feature
map with 32 layers was obtained. Each convolutional operation in both the encoder and
decoder sections was followed by a ReLU [36] activation. The structural details of typical
UNet are shown in Table 1. The last convolution block which was followed by softmax
function was removed in the building block of the parallel UNet. Later, the feature maps
from the different UNet paths were fused using a proposed residual network.

2.2.2. Proposed Fusion Using Residual Network

In this paper, we propose a new method to combine the features of parallel UNet
architectures using a residual network. First, 32 feature maps from each UNet were
concatenated as shown in Figure 5. As shown in Figure 5, two 3 × 3 convolutions were
performed on the concatenated feature maps as shown in Figure 5. The output of the stacked
layers was then added to the central slice’s feature maps. The skip connection was used
only for the feature maps of the central slice. We hypothesize that using the skip connection
only for the ‘central’ slice feature maps will preserve and strengthen the information and
will not let the model learn unnecessary features from the neighboring slices.

Mathematics 2022, 10, x FOR PEER REVIEW 6 of 19 
 

 

2.2.1. Parallel UNet 
The parallel UNet consisted of three typical UNet that were identical to each other. 

Each of the slices from the input data was forwarded to a different individual UNet. The 
architecture of an each individual UNet that built the parallel structure in Figure 3b is 
shown in Figure 4b. The UNet architecture consisted of an encoder path and a decoder 
path. Both the encoder and decoder followed a fully convolutional network architecture. 
In the encoder path, a 3 × 3 convolution was repeated twice and was followed by a 2 × 2 
max pooling operation that doubles the number of feature channels at each down-sam-
pling step. Alternatively, the decoder path consisted of a 2 × 2 up-convolution that re-
sulted in halving the number of the feature channels, followed by concatenation with the 
corresponding encoder path feature map and then performing two 3 × 3 convolutions. In 
the end, a feature map with 32 layers was obtained. Each convolutional operation in both 
the encoder and decoder sections was followed by a ReLU [36] activation. The structural 
details of typical UNet are shown in Table 1. The last convolution block which was fol-
lowed by softmax function was removed in the building block of the parallel UNet. Later, 
the feature maps from the different UNet paths were fused using a proposed residual 
network. 

2.2.2. Proposed Fusion Using Residual Network 
In this paper, we propose a new method to combine the features of parallel UNet 

architectures using a residual network. First, 32 feature maps from each UNet were con-
catenated as shown in Figure 5. As shown in Figure 5, two 3 × 3 convolutions were per-
formed on the concatenated feature maps as shown in Figure 5. The output of the stacked 
layers was then added to the central slice’s feature maps. The skip connection was used 
only for the feature maps of the central slice. We hypothesize that using the skip connec-
tion only for the ‘central’ slice feature maps will preserve and strengthen the information 
and will not let the model learn unnecessary features from the neighboring slices. 

 
Figure 5. The proposed building block of residual learning for merging the three parallel Unets. 𝑥  
denotes output features from the UNet for the early slice, 𝑥  denotes output features from the UNet 
for the later slice, and 𝑥  denotes output from UNet for the central slice, which is used in the skip 
connection for residual learning. 

Table 1. Architecture of the single UNet. 

Layer Name Output Shape Connected to 
Input_1 256 × 256 × 1  
Conv2d 256 × 256 × 32 Input_1 

Figure 5. The proposed building block of residual learning for merging the three parallel Unets. xe
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Mathematics 2022, 10, 2755 7 of 19

Table 1. Architecture of the single UNet.

Layer Name Output Shape Connected to

Input_1 256 × 256 × 1

Conv2d 256 × 256 × 32 Input_1

Conv2d_1 256 × 256 × 32 Conv2d

Max_pooling2d 128 × 128 × 32 Conv2d_1

Conv2d_2 128 × 128 × 64 Max_pooling2d

Conv2d_3 128 × 128 × 64 Conv2d_2

Max_pooling2d_1 64 × 64 × 64 Conv2d_3

Conv2d_4 64 × 64 × 128 Max_pooling2d_1

Conv2d_5 64 × 64 × 128 Conv2d_4

Max_pooling2d_2 32 × 32 × 128 Conv2d_5

Conv2d_6 32 × 32 × 256 Max_pooling2d_2

Conv2d_7 32 × 32 × 256 Conv2d_6

Max_pooling2d_3 16 × 16 × 256 Conv2d_7

Conv2d_8 16 × 16 × 512 Max_pooling2d_3

Conv2d_9 16 × 16 × 512 Conv2d_8

Conv2d_transpose 32 × 32 × 256 Conv2d_9

Concatenate 32 × 32 × 512 Conv2d_transpose, Conv2d_7

Conv2d_10 32 × 32 × 256 Concatenate

Conv2d_11 32 × 32 × 256 Conv2d_10

Conv2d_transpose_1 64 × 64 × 128 Conv2d_11

Concatenate_1 64 × 64 × 256 Conv2d_transpose_1, Conv2d_5

Conv2d_12 64 × 64 × 128 Concatenate_1

Conv2d_13 64 × 64 × 128 Conv2d_12

Conv2d_transpose_2 128 × 128 × 64 Conv2d_13

Concatenate_2 128 × 128 × 128 Conv2d_transpose_2, Conv2d_3

Conv2d_14 128 × 128 × 64 Concatenate_2

Conv2d_15 128 × 128 × 64 Conv2d_14

Conv2d_transpose_3 256 × 256 × 32 Conv2d_15

Concatenate_3 256 × 256 × 64 Conv2d_transpose_3, Conv2d_1

Conv2d_16 256 × 256 × 32 Concatenate_3

Conv2d_17 256 × 256 × 32 Conv2d_16

Conv2d_18 256 × 256 × 4 Conv2d_17
All “conv2d” corresponds to a 3 × 3 convolution block followed by ReLU activation function except for the last
convolution block, which is followed by the softmax function. In case of SIP-UNet, the final convolution block is
removed. Output of “Conv2d_16” is concatenated with features from same convolution layer of other two Unets;
namely “Conv2d_33” and “Conv2d_50” as shown in Figure 6.
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Table 2. Architecture of the proposed residual network for merging the parallel Unets.

Layer Name Output Shape Connected to

Concatenate_12 256 × 256 × 96 Conv2d_16, Conv2d_33, Conv2d_50

Conv2d_51 256 × 256 × 64 Concatenate_12

Conv2d_52 256 × 256 × 64 Conv2d_51

Conv2d_53 256 × 256 × 64 Conv2d_33

Add 256 × 256 × 64 Conv2d_52, Conv2d_53

Conv2d_54 256 × 256 × 32 Add

Conv2d_55 256 × 256 × 32 Conv2d_54

Conv2d_56 256 × 256 × 32 Add

Add_1 256 × 256 × 32 Conv2d_55, Conv2d_56

Conv2d_57 256 × 256 × 4 Add_1
Two convolution blocks: conv2d_51 and conv2d_54 are followed by ReLU activation function. Similarly, two
addition blocks: add and add_1 are also followed by ReLU activation function. The final convolution block
“conv2d_57” is followed by softmax function and generates segmented output.

Formally, we denote the feature maps from ‘early’, ‘central’, and ‘later’ slices as xe,
xc, and xl respectively, and concatenated layers as x′, and let the concatenated layers fit
another mapping of F(x′). The underlying mapping H(x′) is defined as:

H
(
x′
)
= F

(
x′
)
+ xc (1)
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As the dimension of xc and F must be equal, a linear projection Ws is performed during
skip connections. The building block considered in this paper is defined as:

y =F
(
x′, {Wi}

)
+ Wsxc (2)
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Here, x′ and y are the input and output vectors of the considered building block,
respectively. The residual mapping to be learned is represented as a function F(x′, {Wi}).
In Figure 5, to omit biases for simplification of notations, we get F = W2σ(W1x′), where
σ denotes the ReLU [36]. In this paper, the flexible residual function F has two layers.
Even more layers are possible, but while using a single layer, it will be similar to a linear
layer. For the linear layer: y = W1x′ + Wsxc there are no observed advantages in the
residual network [29]. Even though the notations used are generally about fully connected
layers, convolutional layers can also be represented using these notations [29]. The function
F(x′, {Wi}) in Equation (2) represents convolutional layers. The structure detail of the
proposed residual block is shown in Table 2. There are two skip connections in this block.
The final convolution block is followed by a softmax activation function.

2.3. Loss Function

The objective of this study is to classify of brain MRI images at the pixel level. We
trained our model to predict each pixel to be a member of one of the four classes. For
the multi-class prediction model, we used the softmax activation function after the final
convolution layer. The truth labels in our ground truth were integer encoded: 0 for
background, 1 for CSF, 2 for GM, and 3 for WM. For this kind of multi-class segmentation
task, the most commonly used loss function is the sparse categorical cross-entropy loss
function. This cross-entropy is defined as:

L = − 1
|P| ∑p ∈ P yilog(σi) (3)

where σi is the softmax probability for ith class for all pixels P and yi is the actual distri-
bution. The above pixel-wise categorical cross-entropy is the total loss term. For each
class, it will compute the average difference between the actual and expected probability
distributions [37].

2.4. Training and Testing Schemes

Our model is for the 2D segmentation task. In our 3D medical image data, we have
different views/planes: (i) axial, (ii) sagittal, and (iii) coronal. We trained the model
individually for each plane and used it to make predictions and tested with it. From 3D
data, we extracted 2D slices first and then concatenated three consecutive slices. From these
three slices, the ‘central’ slice was predicted. Hence, we used the ground truth of the ‘central’
slice as the output for training. The input dimension for our model is 255 × 255 × 3.

We trained our SIP-UNet using the early stopping method. In the early stopping
method, we used a patience value of 20. Validation data which is 20% of the training data
were used to monitor the validation loss during the early stopping process. The early
stopping method determines the epochs and best weight during the training. Epochs
determined by the early stopping method are listed in Table 3 for all training processes. We
want our model to predict all the slices of the brain. We fed all slices of each training subject
into the model, except for the slices that did not contain any brain parts. The selection of
these concatenated slices for training was random. First, all the valid slices (containing
brain information/parts) of the training subject were converted into the desired shape and
stored in a training folder in NumPy array format. A random selection from this data, with
batch size of five, was used for training purposes.

During testing, the plane corresponding to the training plane was extracted and
predicted. For example, if we trained a model using an axial plane, the data related to
the axial plane were tested. Similar to the training data, the test input consisted of three
consecutive 2D slices and was fed to the model. The ground truth of the ‘central’ slice was
also stored, which was later used to evaluate the model by comparing it with the result.



Mathematics 2022, 10, 2755 10 of 19

Table 3. Segmentation result comparison between the Multiresnet, SegNet, single-slice input UNet,
multi-slice UNet, and the proposed SIP-UNet.

Axial Plane

Methods Input
Slices

Epochs
WM GM CSF

DSC JI DSC JI DSC JI

Multiresnet [21] 1 38 0.679 ± 0.180 0.538 ± 0.172 0.750 ± 0.073 0.605 ± 0.084 0.725 ± 0.079 0.574 ± 0.090
SegNet [20] 1 72 0.857 ± 0.087 0.758 ± 0.110 0.873 ± 0.050 0.778 ± 0.076 0.848 ± 0.041 0.738 ± 0.060

Unet 1 82 0.948 ± 0.075 0.908 ± 0.090 0.954 ± 0.027 0.914 ± 0.068 0.942 ± 0.032 0.893 ± 0.052
Unet (modified) 3 69 0.948 ± 0.075 0.908 ± 0.091 0.956 ± 0.027 0.917 ± 0.042 0.947 ± 0.030 0.900 ± 0.050

Proposed method 3 67 0.951 ± 0.074 0.912 ± 0.089 0.954 ± 0.026 0.923 ± 0.041 0.951 ± 0.074 0.912 ± 0.089

Coronal plane

Multiresnet [21] 1 50 0.737 ± 0.090 0.590 ± 0.101 0.762 ± 0.050 0.617 ± 0.063 0.736 ± 0.056 0.585 ± 0.068
SegNet [20] 1 70 0.889 ± 0.048 0.803 ± 0.073 0.886 ± 0.032 0.796 ± 0.049 0.861 ± 0.039 0.758 ± 0.058

Unet 1 64 0.959 ± 0.027 0.924 ± 0.044 0.954 ± 0.022 0.912 ± 0.035 0.941 ± 0.031 0.881 ± 0.049
Unet (modified) 3 101 0.962 ± 0.028 0.928 ± 0.046 0.958 ± 0.022 0.919 ± 0.036 0.948 ± 0.030 0.902 ± 0.048

Proposed method 3 82 0.962 ± 0.027 0.928 ± 0.044 0.959 ± 0.022 0.921 ± 0.035 0.951 ± 0.028 0.907 ± 0.046

Sagittal plane

Multiresnet [21] 1 42 0.720 ± 0.127 0.576 ± 0.134 0.761 ± 0.041 0.616 ± 0.050 0.738 ± 0.049 0.587 ± 0.060
SegNet [20] 1 73 0.830 ± 0.086 0.748 ± 0.118 0.868 ± 0.035 0.769 ± 0.053 0.845 ± 0.037 0.733 ± 0.054

Unet 1 78 0.951 ± 0.038 0.909 ± 0.060 0.954 ± 0.022 0.912 ± 0.035 0.944 ± 0.027 0.894 ± 0.043
Unet (modified) 3 102 0.954 ± 0.040 0.915 ± 0.062 0.957 ± 0.022 0.919 ± 0.036 0.949 ± 0.028 0.903 ± 0.044

Proposed method 3 75 0.955 ± 0.038 0.916 ± 0.060 0.959 ± 0.021 0.921 ± 0.034 0.953 ± 0.026 0.911 ± 0.041

The training epochs mentioned in the table are not defined manually. We used early stopping features of the Keras
library to determine the eochs.

2.5. Evaluation Metrices

For the performance evaluation, we used the Dice Similarity Coefficient (DSC), the
Jaccard Index (JI), Volumetric Overlap Error (VOE) [38], and Relative Volume Difference
(RVD) [39]. The JI is the ratio of the overlapping area between the predicted and the ground-
truth images to the union area between them. Another metric, the DSC is the ratio of two
times the overlapping area between ground truth and the predicted images to the total
number of pixels. The VOE is the ratio between intersection and union of the predicted
and the ground truth images. Similarly, the RVD gives us the absolute size difference of the
images, as a fraction of the size of the reference.

For the ground truth segmentation map I and the predicted segmentation map I′, the
JI and the DSC are defined in Equations (4) and (5), respectively.

J I =
|I ∩ I′|
|I ∪ I′| (4)

DSC =
2|I ∩ I′|
|I|+ |I′| (5)

VOE = 1− |I ∩ I′|
|I ∪ I′| (6)

RVD = ±|I| − |I
′|

|I| (7)

Because there are four classes in our segmentation, the JI and the DSC were calcu-
lated for each class separately. Among the four classes, performance on the background
segmentation was not evaluated. The background segmentation can also be performed
with simpler models. We compared the performance of the models for the remaining
three classes: CSF, GM, and WM. In multi-class segmentation, the evaluation metrics were
calculated for each class separately. For example, if we wanted to calculate the JI for CSF,
then pixels related to CSF were assigned to the value of 1, and the value of 0 was assigned
to the rest of the pixels. The same procedure was followed for GM and WM.
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3. Results

In Section 3.1, we perform a study based on the input of a single slice and multiple
slices in a simple UNet model and show the improvement by using SIP-UNet in segmenta-
tion. We then evaluate and compare the segmentation performance with various current
models in Section 3.2.

3.1. Analysis and Comparison with Single-Slice and Multiple-Slice Input UNet

UNet has better performance in segmenting biomedical images. We first tested the
UNet with a single-slice input for segmentation. The investigation purpose of testing with a
single-slice input was to compare it with the multi-slices input to see whether the results are
better with or without the neighboring slice’s features. Later the same UNet was modified in
the input layer to make it suitable for processing inputs containing neighboring slices. The
input in this UNet contained three 2D planes. The planes comprised the neighboring slices.

Most of the previous studies [10,14,40] used only a certain number of slices. In [14,40],
the slices were selected alternately or only one slice was selected from a few slices. The
purpose of predicting and training only a selected number of slices was to avoid repeat-
ing information from the neighboring slices since the 2D slices are similar to each other.
However, these methods are insufficient to quantify changes in the brain because they do
not consider the entire set of brain. In this study, we have included all of the slices that
comprise parts of the brain. This helps in quantifying changes in each layer and will later
lead to matching results in the 3D quantification.

The evaluation of UNet with single and multiple slices with the proposed SIP-UNet is
shown in Table 3 based on the DSC and the JI scores. The scores are average scores from
the test images of the corresponding plane. From the table, it can be observed that the
DSC score in the SIP-UNet is slightly improved for the single-slice and multi-slice UNet.
Considering only the axial plane, the DSC score using simple UNet is 0.948, 0.954, and 0.942
for WM, GM, and CSF, respectively, whereas the DSC scores obtained using the SIP-UNet
are 0.951, 0.954, and 0.951 for WM, GM, and CSF, respectively. The UNet with single input
has an almost identical DSC score as the UNet with multi-slices input. From the Table 3,
we can see that the DSC score of WM and CSF in axial plane is higher than the UNet and
multi-slice UNet. Moreover, the JI score for all tissues in the axial plane is higher than the
other two UNets. In the coronal plane, the JI score of the GM and the DSC score of the CSF
are higher than other two models. Moreover, in sagittal plane, the JI score of both GM and
CSF along with the DSC score of the CSF is higher than the UNet and multi-slice input
UNet. Our proposed model has higher scores in the case of CSF than the other UNets. CSF
is a colorless liquid. It is very difficult to segment. But our proposed model performed
better in case of CSF. With higher scores for CSF in all three planes, higher DSC and JI
scores for WM in axial plane, and finally higher JI scores for GM in all three planes, our
model outperformed typical UNet and the multi-slice input UNet.

To investigate the improvement in the result of the SIP-UNet result, we visually
compared the results of specific slices of a random subject. The comparison of the specific
tissue segmentation was easier with the binary mapping of the corresponding tissue. We
created a binary map of WM, GM, and CSF separately and then compared it with the
results of the different models and the ground truth. Figure 7 shows the result for the axial
plane. The column represents the ground truth and the results of the following: the one
slice input UNet, the multi-slice input UNet, and the proposed SIP-UNet respectively. The
row represents a binary map of the different tissues: WM, GM, and CSF from top to bottom.
The binary map shown in Figure 7 is a 70th slice in the axial plane from the randomly
selected subject. The difference observed in the pattern of the binary map of the different
models is highlighted with a red box in the figures. In the first row of WM, the binary map
of the multi- slice UNet output has a false prediction in a region highlighted by the red box
at the top of the image. However, there is no such false prediction in the other two models.
In the same row, the box in the middle shows the false prediction in all of the three models’
outputs. In this case, in the ground truth, there is no such tissue in the area covered by the
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middle red box, but we can see the false prediction in all of the outputs. However, if we
analyze it and take a clear look at it, we can see that the area of the false predicted tissue
in the middlebox in the SIP-UNet result is much smaller. Thus, even in the region of the
false prediction, the result of the proposed SIP-UNet is closer to the ground truth than the
other two models. The last red box from the top in the first row shows the region where
the single-slice UNet failed to predict the presence of tissue in that region, whereas the
other two models were successful. Among the three highlighted regions in the first row,
the proposed SIP-UNet gives a result closer to the ground truth.
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Figure 7. Illustration of segmentation results for axial plane for existing methods and SIP-UNet for
WM, GM, and CSF (top to bottom): (a) ground truth (binary map), segmented binary maps generated
by (b) single-slice input UNet, (c) multi-slice input UNet, and (d) proposed SIP-UNet.

The second row of Figure 7 compares the binary map of GM. The first highlighted area
shows the region where the multi-slices input UNet has predicted false. In the remaining
three highlighted regions, all of the three models were successful but the shape and edge of
the predicted result in these regions differ in the single-slice and multi-slice input UNet.
The proper edge and area of the tissues in these regions are correct with the proposed
SIP-UNet model. The third row contains the results for the CSF. Similar to GM in the second
row, the single-slice and multi-slice UNet models predicted the tissues in the highlighted
regions but could not provide the result with the same area and edge as in the ground
truth. In contrast, the SIP-UNet predicted the tissues in this region with an edge and shape
similar to the ground truth.

Figure 8 shows the segmentation results for the coronal plane. The subject was
randomly chosen and the 30th slice in the coronal plane of this subject segmented with
different models is presented in columns. The first row contains the WM binary map, where
we can see that the result of SIP-UNet (last column) is able to predict a very small region
consisting of WM, whereas the rest of the other two UNets with a single-slice and multi-
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slice are unable to predict this part. From the lower two rows of GM and CSF, a region is
highlighted in the top left corner that was incorrectly predicted. This misprediction in GM
resulted in no CSF in that region as shown in the last row. However, this misclassification
appeared in all three models. Although the proposed model is not perfect, we can see the
improvement in the remaining highlighted regions. In the remaining highlighted regions,
the single-slice and multi-slice UNets are unable to predict the presence of smaller tissues.
The two highlighted regions to the right of the GM predicted results (second row) show that
the classical UNet cannot detect smaller details. However, the SIP-UNet performed well in
these smaller regions and also maintained the edges of the tissues close to the ground truth.
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Figure 8. Architecture Illustration of segmentation results for coronal plane for existing methods
and SIP-UNet for WM, GM, and CSF (top to bottom): (a) ground truth (binary map), segmented
binary maps generated by (b) single-slice input UNet, (c) multi-slice input UNet, and (d) proposed
SIP-UNet.

Similar to the axial and coronal planes, the SIP-UNet also performed better in the
sagittal plane. In Figure 9, the segmented results of the different models are arranged in
different columns and the rows represent the different tissues as before. We can see the
miss prediction of tissue segmentation in the top highlighted region in the first row (WM
binary map). All models have the wrong segmented output in this region, but if we look
closely, the segmented WM in this region is comparatively lower in the result of SIP-UNet,
so it is close to the ground truth. The bottom highlighted region in the first row shows
how well the edge is predicted in the SIP-UNet. The same region in the multi-slice input
UNet has disconnected tissue, while the SIP-UNet has a region that is close to the ground
truth. Similarly, in the top left highlighted region in the last row (CSF binary map) of
Figure 9, both the single-slice and multi-slice input UNet has disconnected tissue, whereas
the SIP-UNet result has a connected tissue that matches the ground truth. In the rest of
the highlighted regions in the second and third rows in Figure 9, we can see how well the
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SIP-UNet performs in the regions where the typical UNet fails. In summary, the proposed
architecture can extract smaller details and edges of the tissue than the other implemented
models and the typical UNets. Although the DSC scores of the typical UNets are almost
identical to those of the proposed methods, the JI score of the proposed method is increased,
indicating better performance.
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3.2. Comparisons with Other Methods

Table 3 compares the performance of Multiresnet (Available online: https://github.
com/nibtehaz/MultiResUNet/blob/master/MultiResUNet.py, accessed on 14 December
2021), SegNet (Available online: https://github.com/divamgupta/image-segmentation-
keras/blob/master/keras_segmentation/models/segnet.py, accessed on 20 December
2021), the typical UNet, and the proposed UNet on the same dataset. We implemented all
the models listed in Table 1 and trained and tested them on the same data. In this table, we
implement Multiresnet and SegNet using the code available on GitHub. The multi-slice
input UNet is the modification of the single-slice input UNet, where the input layer of the
model is changed from one 2D input at a time to three 2D inputs simultaneously.

In terms of the DSC score, the proposed model has the highest mean score compared
to Multiresnet and SegNet. The DSC score of the proposed method is between 95% and 96%
for all three classes in all planes. Our goal is to extract information from the neighboring
slices without data augmentations and without any additional pre- or post-processing
other than resizing the image to fit in the model. Without any additional processing, the
Multiresnet only achieved a DSC score between 67% and 76%, and SegNet achieved an
average DSC value between 83% and 88%. All the models listed in Table 3 have a lower
DSC value than the proposed method. Additionally, the JI score of the proposed method

https://github.com/nibtehaz/MultiResUNet/blob/master/MultiResUNet.py
https://github.com/nibtehaz/MultiResUNet/blob/master/MultiResUNet.py
https://github.com/divamgupta/image-segmentation-keras/blob/master/keras_segmentation/models/segnet.py
https://github.com/divamgupta/image-segmentation-keras/blob/master/keras_segmentation/models/segnet.py
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is the highest among the implemented Multiresnet and SegNet. The average JI score
of the proposed method is in the range of 90% to 92% whereas the average JI score of
Multiresnet is in the range of 53% to 61% and that of SegNet is in the range of 73% to 80%.
In the implemented models, the output for all slices of the brain and all three planes has a
lower performance for both evaluation matrices. This indicates that the proposed model is
significantly better.

In Table 4, we compared the VOE and RVD scores of the models for the different
planes. The RVD scores are given in percentage, which means the scores are multiplied by
100 because the scores were too small to be shown in the table. From the table, the VOE of
the proposed method is less than the other methods for tissues in all planes, which means
the error is less in the proposed method. In case of the RVD scores, the scores in percentage
are also smaller with respect to the rest of the model. This helps to interpret that the output
of the proposed model has relatively less difference volume than the ground truth. Hence,
from the VOE and the RVD scores, we can conclude that the result of the proposed method
is close to the ground truth and performs better than the other models.

Table 4. RVD and VOE comparison between the Multiresnet, SegNet, single-slice input UNet,
multi-slice UNet, and the proposed SIP-UNet.

Axial Plane

Methods
Input
Slices

Epochs
WM GM CSF

RVD(%) VOE RVD(%) VOE RVD(%) VOE

Multiresnet [21] 1 38 −14.362 0.462 −4.692 0.395 −5.935 0.426
SegNet [20] 1 72 2.468 0.242 −2.618 0.222 3.129 0.262

Unet 1 82 2.261 0.092 −0.4114 0.086 0.4507 0.107
Unet (modified) 3 69 2.214 0.092 0.3998 0.083 −1.073 0.100

Proposed method 3 67 0.4833 0.088 −0.2854 0.077 0.9819 0.088

Coronal plane

Multiresnet [21] 1 50 −8.48 0.41 −3.429 0.383 −1.648 0.415
SegNet [20] 1 70 −0.0132 0.197 −1.647 0.204 4.21 0.242

Unet 1 64 −0.0583 0.076 −1.148 0.088 2.149 0.119
Unet (modified) 3 101 0.544 0.072 −1.072 0.081 1.49 0.098

Proposed method 3 82 −0.009 0.072 −0.548 0.079 0.881 0.093

Sagittal plane

Multiresnet [21] 1 42 −10.46 0.424 −0.724 0.384 −4.511 0.413
SegNet [20] 1 73 −0.665 0.252 −1.132 0.231 1.297 0.267

Unet 1 78 1.978 0.091 −0.669 0.088 −0.337 0.106
Unet (modified) 3 102 −0.779 0.085 −0.4686 0.081 1.547 0.097

Proposed method 3 75 −1.228 0.084 0.5545 0.079 −0.3729 0.089

We would like to mention that all the results used for comparison in Table 5 for
comparison are directly used from the published papers. We have not implemented four
of the methods in this table. In Table 5, three of the methods (CNN, FCN, and SegNet)
are obtained from Khagi et al. [10]. The result of patch-wise UNet is obtained from Lee
et al. [41]. The DSC score for each tissue is in Lee et al. [41] and the proposed method is
calculated using the average score of the three different planes for the corresponding tissue.
The scores for the patch-wise Mnet are taken directly from Yamanakkanavar et al. [42].
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Table 5. Comparison of different approaches for brain structure segmentation.

Authors Methods
DSC Score

WM GM CSF

Zhang et al. [43] CNN 86.4% 85.2% 83.5%
Nie et al. [34] FCN 88.7% 87.3% 85.5%

Khagi et al. [10] SegNet 81.9% 74.6% 72.2%
Lee et al. [41] Patch-wise UNet 94.33% 93.33% 92.67%

Yamanakkanavar et al. [42] Patch-wise Mnet 95.17% 94.32% 93.60%
Proposed method SIP-UNet 95.6% 95.73% 95.2%

From Table 5, it can be seen that the UNet-based deep learning architectures outper-
form other segmentation models. In terms of the DSC score, the proposed SIP-UNet has
the highest mean score of 95.6%, 95.73%, and 95.2% for the WM, GM, and CSF, respectively.
The performance of patch-wise UNet is higher than other methods and is close to the
proposed method. But according to Lee et al. [41], only slices with an interval of three
are used, which includes 48 slices per subject. The result for all of the slices using the
patch-wise method is unknown, and although only 48 slices per subject were used in that
paper, the DSC score is lower than the proposed method. Similar to the patch-wise UNet
method, another method using patch-wise Mnet also uses 48 slices per subjects. All the
deep learning-based methods have relatively lower DSC scores than the UNet-based deep
learning architectures. In summary, the proposed strategy can achieve significantly higher
segmentation performance for all three planes regardless of the number of slices and the
selected plane.

4. Discussion and Conclusions

Brain tissue segmentation plays a crucial role in quantifying changes in the brain. In
this work, we presented a fully automated brain tissue segmentation method that uses the
neighboring slices to extract correlated information.

In contrast to typical deep learning models where only one slice serves as the input, the
proposed SIP-UNet benefits from neighboring slices by extracting additional information
from them. SIP-UNet can achieve a better segmentation result for axial, coronal, and sagittal
2D planes. Both qualitative analysis by visual comparison and quantitative analysis indicate
that our segmentations are reliable. The proposed method can significantly improve the
performance in all three planes, and the average DSC and JI scores outperform the existing
deep learning-based segmentation models. The average DSC scores for the testing OASIS
dataset was 95.6%, 95.73%, and 95.2% for the WM, GM, and CSF respectively. Similarly, the
average JI scores for the testing OASIS dataset were 91.87%, 92.16%, and 91.00% for WM,
GM, and CSF respectively. The proposed method achieved a comparatively better JI score
than the typical UNets. The CSF is a colorless liquid, and it is very difficult to segment it in
medical imaging. Most of the methods and models perform poor in the case of CSF. But the
proposed model is better than the typical UNet in the case of segmenting CSF. However,
in terms of the DSC score, the proposed method is comparable to others and there is still
room for improvement.

To prepare 2D data for training and testing, we extracted 2D slices for each plane
separately and then stacked the neighboring slices on the top and at the bottom of the
middle slice that was to be predicted. The evaluation matrix was computed from the
average of the scores since we wanted to compare the performance of the model regardless
of the subject and the number of slices.

Our goal was to extract information from the neighboring slices for improvement.
Our model consisted of parallel UNets that were later merged with a residual network.
The purpose of this approach was to extract features from each slice separately without
mixing or suppressing the features of the middle/current slice. From the scores of the
evaluation matrix and visual comparison of the results, we can conclude that the model has
succeeded in extracting features from neighboring slices, which leads to an improvement in
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the segmentation result. The proposed method was comparatively successful in extracting
minute details about the edges and detecting smaller tissue regions.

Since most MRI brain data is in 3D and includes multiple slices, this method can be
extended to other tasks related to segmentation. In the case of videos, a 2D frame also has
neighboring slices. If the video data has a high number of frames per second, then the
successive frames have similar information that can improve results. The proposed method
can also be useful for other segmentation works such as in video data.

A potential limitation of this work is that the proposed model requires more mem-
ory and computation time than the typical UNet. But the proposed method has shown
promising segmentation performance. In our future work, we will modify the UNet used
in parallel to improve the computational efficiency of the proposed SIP-UNet architecture.
In addition, we aim to further improve the segmentation performance by using a different
approach to merge the features from the parallel UNets. A possible solution is to increase
the skip connections and create a deeper residual network for merging the features from
the parallel UNets.
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4. Despotović, I.; Goossens, B.; Philips, W. MRI segmentation of the human brain: Challenges, methods, and applications. Comput.

Math. Methods Med. 2015, 2015, 450341. [CrossRef]
5. Ulku, I.; Akagunduz, E. A Survey on Deep Learning-based Architectures for Semantic Segmentation on 2D images. arXiv 2019,

arXiv:1912.10230. [CrossRef]
6. Lafferty, J.; McCalium, A.; Pereira, F.C. Conditional Random Fields: Probabilistic Models for Segmenting and Labeling Sequence

Data. In Proceedings of the Eighteenth International Conference on Machine Learning, Williamstown, MA, USA, 28 June–1 July
2001; pp. 282–289.

7. Ganin, Y.; Lempitsky, V. N4-Fields: Neural Network Nearest Neighbor Fields for Image Transforms. arXiv 2014, arXiv:1406.6558.

https://www.oasis-brains.org/#data
http://doi.org/10.1109/TPAMI.2016.2644615
http://www.ncbi.nlm.nih.gov/pubmed/28060704
http://doi.org/10.1088/0031-9155/58/13/R97
http://doi.org/10.1155/2015/450341
http://doi.org/10.1080/08839514.2022.2032924


Mathematics 2022, 10, 2755 18 of 19

8. Ning, F.; Delhomme, D.; LeCun, Y.; Piano, F.; Bottou, L.; Barbano, P.E. Toward automatic phenotyping of developing embryos
from videos. IEEE Trans. Image Process. 2005, 14, 1360–1371. [CrossRef] [PubMed]

9. Ibtehaz, N.; Sohel Rahman, M. MultiResUNet: Rethinking the U-Net Architecture for Multimodal Biomedical Image Segmentation.
arXiv 2019, arXiv:1902.04049. [CrossRef]

10. Khagi, B.; Kwon, G.R. Pixel-Label-Based Segmentation of Cross-Sectional Brain MRI Using Simplified SegNet Architecture-Based
CNN. J. Healthc. Eng. 2018, 2018, 3640705. [CrossRef] [PubMed]

11. Gu, Z.; Cheng, J.; Fu, H.; Zhou, K.; Hao, H.; Zhao, Y.; Zhang, T.; Gao, S.; Liu, J. CE-Net: Context Encoder Network for 2D Medical
Image Segmentation. IEEE Trans. Med. Imaging 2019, 38, 2281–2292. [CrossRef]

12. Long, J.; Shelhamer, E.; Darrell, T. Fully Convolutional Networks for Semantic Segmentation. arXiv 2014, arXiv:1411.4038.
13. Ronneberger, O.; Fischer, P.; Brox, T. U-Net: Convolutional Networks for Biomedical Image Segmentation. arXiv 2015,

arXiv:1505.04597.
14. Yamanakkanavar, N.; Choi, J.; Lee, B. MRI Segmentation and Classification of Human Brain Using Deep Learning for Diagnosis

of Alzheimer’s Disease: A Survey. Sensors 2020, 20, 3243. [CrossRef] [PubMed]
15. Punn, S.N.; Agarwal, S. Modality specific U-Net variants for biomedical image segmentation: A survey. arXiv 2021,

arXiv:2107.04537. [CrossRef] [PubMed]
16. Zhang, B.; Mu, H.; Gao, M.; Ni, H.; Chen, J.; Yang, H.; Qi, D. A Novel Multi-Scale Attention PFE-UNet for Forest Image

Segmentation. Forests 2021, 12, 937. [CrossRef]
17. Rehman, M.U.; Cho, S.; Kim, J.H.; Chong, K.T. BU-Net: Brain Tumor Segmentation Using Modified U-Net Architecture. Electronics

2020, 9, 2203. [CrossRef]
18. Comelli, A.; Dahiya, N.; Stefano, A.; Vernuccio, F.; Portoghese, M.; Cutaia, G.; Bruno, A.; Salvaggio, G.; Yezzi, A. Deep Learning-

Based Methods for Prostate Segmentation in Magnetic Resonance Imaging. Appl. Sci. 2021, 11, 782. [CrossRef] [PubMed]
19. Gadosey, P.K.; Li, Y.; Agyekum, E.A.; Zhang, T.; Liu, Z.; Yamak, P.T.; Essaf, F. SD-UNet: Stripping down U-Net for Segmentation

of Biomedical Images on Platforms with Low Computational Budgets. Diagnostics 2020, 10, 110. [CrossRef] [PubMed]
20. Isensee, F.; Petersen, J.; Klein, A.; Zimmerer, D.; Jaeger, P.F.; Kohl, S.; Wasserthal, J.; Koehler, G.; Norajitra, T.; Wirkert, S.; et al.

nnU-Net: Self-adapting Framework for U-Net-Based Medical Image Segmentation. arXiv 2018, arXiv:1809.10486.
21. Blanc-Durand, P.; Gucht, A.V.D.; Schaefer, N.; Itti, E.; Prior, J.O. Automatic lesion detection and segmentation of 18F-FET PET in

gliomas: A full 3D U-Net convolutional neural network study. PLoS ONE 2018, 13, e0195798. [CrossRef] [PubMed]
22. Tong, G.; Li, Y.; Chen, H.; Zhang, Q.; Jiang, H. Improved U-NET network for pulmonary nodules segmentation. Optik 2018, 174,

460–469. [CrossRef]
23. Dong, H.; Yang, G.; Liu, F.; Mo, Y.; Guo, Y. Automatic Brain Tumor Detection and Segmentation Using U-Net Based Fully

Convolutional Networks. arXiv 2017, arXiv:1705.03820.
24. Que, Q.; Tang, Z.; Wang, R.; Zeng, Z.; Wang, J.; Chua, M.; Sin Gee, T.; Yang, X.; Veeravalli, B. CardioXNet: Automated Detection for

Cardiomegaly Based on Deep Learning. In Proceedings of the 2018 40th Annual International Conference of the IEEE Engineering
in Medicine and Biology Society (EMBC), Honolulu, HI, USA, 18–21 July 2018; pp. 612–615.

25. Zhang, Y.; Wu, J.; Liu, Y.; Chen, Y.; Wu, E.X.; Tang, X. MI-UNet: Multi-Inputs UNet Incorporating Brain Parcellation for Stroke
Lesion Segmentation From T1-Weighted Magnetic Resonance Images. IEEE J. Biomed. Health Inform. 2021, 25, 526–535. [CrossRef]

26. Kong, Y.; Li, H.; Ren, Y.; Genchev, G.Z.; Wang, X.; Zhao, H.; Xie, Z.; Lu, H. Automated yeast cells segmentation and counting
using a parallel U-Net based two-stage framework. OSA Continuum 2020, 3, 982–992. [CrossRef]

27. Dolz, J.; Ben Ayed, I.; Desrosiers, C. Dense Multi-path U-Net for Ischemic Stroke Lesion Segmentation in Multiple Image
Modalities. arXiv 2018, arXiv:1810.07003.

28. Tran, S.T.; Cheng, C.H.; Nguyen, T.T.; Le, M.H.; Liu, D.G. TMD-Unet: Triple-Unet with Multi-Scale Input Features and Dense
Skip Connection for Medical Image Segmentation. Healthcare 2021, 9, 54. [CrossRef]

29. He, K.; Zhang, X.; Ren, S.; Sun, J. Deep Residual Learning for Image Recognition. In Proceedings of the 2016 IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778.

30. Diakogiannis, F.I.; Waldner, F.; Caccetta, P.; Wu, C. ResUNet-a: A deep learning framework for semantic segmentation of remotely
sensed data. ISPRS J. Photogramm. Remote Sens. 2020, 162, 94–114. [CrossRef]

31. Liu, H.; Jiang, J. U-Net Based Multi-instance Video Object Segmentation. arXiv 2019, arXiv:1905.07826.
32. Perazzi, F.; Khoreva, A.; Benenson, R.; Schiele, B.; Sorkine-Hornung, A. Learning Video Object Segmentation from Static Images.

In Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 21–26 July
2017; pp. 3491–3500.

33. Vu, M.; Grimbergen, G.; Nyholm, T.; Löfstedt, T. Evaluation of multislice inputs to convolutional neural networks for medical
image segmentation. Med. Phys. 2020, 47, 6216–6231. [CrossRef] [PubMed]

34. Nie, D.; Wang, L.; Gao, Y.; Shen, D. Fully convolutional networks for multi-modality isointense infant brain image segmentation.
In Proceedings of the 2016 IEEE 13th International Symposium on Biomedical Imaging (ISBI), Prague, Czech Republic, 13–16
April 2016; pp. 1342–1345.

35. Marcus, D.S.; Wang, T.H.; Parker, J.; Csernansky, J.G.; Morris, J.C.; Buckner, R.L. Open Access Series of Imaging Studies (OASIS):
Cross-sectional MRI data in young, middle aged, nondemented, and demented older adults. J. Cogn. Neurosci. 2007, 19, 1498–1507.
[CrossRef]

36. Nair, V.; Hinton, G. Rectified Linear Units Improve Restricted Boltzmann Machines. ICML 2010, 27, 807–814.

http://doi.org/10.1109/TIP.2005.852470
http://www.ncbi.nlm.nih.gov/pubmed/16190471
http://doi.org/10.1016/j.neunet.2019.08.025
http://doi.org/10.1155/2018/3640705
http://www.ncbi.nlm.nih.gov/pubmed/30510671
http://doi.org/10.1109/TMI.2019.2903562
http://doi.org/10.3390/s20113243
http://www.ncbi.nlm.nih.gov/pubmed/32517304
http://doi.org/10.1007/s10462-022-10152-1
http://www.ncbi.nlm.nih.gov/pubmed/35250146
http://doi.org/10.3390/f12070937
http://doi.org/10.3390/electronics9122203
http://doi.org/10.3390/app11020782
http://www.ncbi.nlm.nih.gov/pubmed/33680505
http://doi.org/10.3390/diagnostics10020110
http://www.ncbi.nlm.nih.gov/pubmed/32085469
http://doi.org/10.1371/journal.pone.0195798
http://www.ncbi.nlm.nih.gov/pubmed/29652908
http://doi.org/10.1016/j.ijleo.2018.08.086
http://doi.org/10.1109/JBHI.2020.2996783
http://doi.org/10.1364/OSAC.388082
http://doi.org/10.3390/healthcare9010054
http://doi.org/10.1016/j.isprsjprs.2020.01.013
http://doi.org/10.1002/mp.14391
http://www.ncbi.nlm.nih.gov/pubmed/33169365
http://doi.org/10.1162/jocn.2007.19.9.1498


Mathematics 2022, 10, 2755 19 of 19

37. Rohlfing, T. Image Similarity and Tissue Overlaps as Surrogates for Image Registration Accuracy: Widely Used but Unreliable.
IEEE Trans. Med. Imaging 2021, 31, 153–163. [CrossRef] [PubMed]

38. Powers, D.M. Evaluation: From precision, recall and F-measure to ROC, informedness, markedness and correlation. arXiv 2020,
arXiv:2010.16061.

39. Yeghiazaryan, V.; Voiculescu, I.D. Family of boundary overlap metrics for the evaluation of medical image segmentation. J. Med.
Imaging 2018, 5, 015006. [CrossRef] [PubMed]

40. Yamanakkanavar, N.; Lee, B. A novel M-SegNet with global attention CNN architecture for automatic segmentation of brain MRI.
Comput. Biol. Med. 2021, 136, 104761. [CrossRef] [PubMed]

41. Lee, B.; Yamanakkanavar, N.; Choi, J. Automatic segmentation of brain MRI using a novel patch-wise U-net deep architecture.
PLoS ONE 2020, 15, e0236493. [CrossRef] [PubMed]

42. Yamanakkanavar, N.; Lee, B. Brain Tissue Segmentation using Patch-wise M-net Convolutional Neural Network. In Proceedings
of the 2020 IEEE International Conference on Consumer Electronics—Asia (ICCE-Asia), Seoul, Korea, 1–3 November 2020;
pp. 1–4.

43. Zhang, W.; Li, R.; Deng, H.; Wang, L.; Lin, W.; Ji, S.; Shen, D. Deep convolutional neural networks for multi-modality isointense
infant brain image segmentation. NeuroImage 2015, 108, 214–224. [CrossRef]

http://doi.org/10.1109/TMI.2011.2163944
http://www.ncbi.nlm.nih.gov/pubmed/21827972
http://doi.org/10.1117/1.JMI.5.1.015006
http://www.ncbi.nlm.nih.gov/pubmed/29487883
http://doi.org/10.1016/j.compbiomed.2021.104761
http://www.ncbi.nlm.nih.gov/pubmed/34426168
http://doi.org/10.1371/journal.pone.0236493
http://www.ncbi.nlm.nih.gov/pubmed/32745102
http://doi.org/10.1016/j.neuroimage.2014.12.061

	Introduction 
	Materials and Methods 
	Data 
	Method 
	Parallel UNet 
	Proposed Fusion Using Residual Network 

	Loss Function 
	Training and Testing Schemes 
	Evaluation Metrices 

	Results 
	Analysis and Comparison with Single-Slice and Multiple-Slice Input UNet 
	Comparisons with Other Methods 

	Discussion and Conclusions 
	References

