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Abstract: Piezoelectric actuators and sensors are applied in many fields in order to produce forces
or displacements with the aim of sensing, manipulating or measurement, among other functions.
This study presents the numerical methodology to optimize the static response of a thick-shell
structure consisting of piezoelectric sensors, based on the maximisation of the electric charge while
controlling the amount of piezoelectric and material required. Two characteristic functions are
involved, determining the topology of the sensor and the polarisation profile. Constraints over the
reaction force are included in the optimisation problem in order to avoid singularities. The topology
optimisation method is used to obtain the optimal results, where regularisation techniques (density
filtering and projection) are used to avoid hinges. The minimum length scale can be controlled by the
use of three different projections. As the main novelty, a displacement-controlled scheme is proposed
in order to generate a robust algorithm for future studies including non-linearities.

Keywords: topology optimisation; piezoelectric actuator; shell; finite element method

MSC: 74P15

1. Introduction

The topology optimisation method is a conceptual tool which allows us to increase
the capabilities of different types of devices. The classical mechanical problem is the
minimisation of the compliance or the weight of a structure, but in the last years this
method has been used in different fields of science such as electronics, propagation of
waves and optics, among others. This paper is focused on the improvement of the response
of piezoelectric sensors, with the objective of reducing the size of the device to increase the
range of applications.

The application of piezoelectric sensors and actuators has experienced significant
development in recent years. Piezoelectric sensors are devices that produce a small voltage
when they are deformed, while piezoelectric actuators take advantage of the ability to
generate a displacement when voltage is applied. This effect is generally used in situations
that require the application of large forces in an ultra-precise way [1], as well as to generate
systems capable of developing handling functions at a microscopic level [2–4].

One of the common applications is the placement of piezoelectric patches on structures
subjected to vibrations, so that it is possible to monitor the state of vibrational states
and control undesirable vibrations, generating so-called smart structures [5–11]. In these
structures, the location of the piezoelectric elements is critical, due to the need to adjust the
positioning so that their effect is maximised, reducing the cost of the material to be used. In
addition, another critical design factor in structural elements is usually weight, so it is of
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interest to minimize the volume of material used in the host structure, while maintaining
certain levels of rigidity [12,13]. Another application associated with the maximisation of
electrical load obtained by piezoelectric sensors is energy harvesting systems. This has
also significantly grown in recent years [14] considering that they can be used as a way for
recovering waste energy from many surfaces, not only in industry, but also in our daily
lives. A particular example of their applicability is the shock absorbers of vehicles which
are cylindrical elements that are subjected to vibration loads during service [15].

In addition, the use of cylindrical shells is increasingly widespread in engineering ap-
plications, mainly in sectors such as civil, chemical, aerospace and naval transportation [8].
In these sectors, the structural analysis of shell elements such as pressurised tanks, aircraft
fuselage, fuel tanks or fluid pipes are commonly found in literature [16,17]. These structures
have characteristics such as high rigidity and lightweight, which leads to their application
in loading conditions resulting in high level of stresses. It is interesting to use piezoelectric
elements for the purpose of Structural Health Monitoring (SHM), or to modify the shape
of the structure to improve its structural response [18,19] or aerodynamics [20]. There are
numerous works that seek to analyse the response of shell-type structures with piezoelectric
layers from the analytical, numerical and experimental points of view [21–23]. For instance,
Yue et al. [9] experimentally measured the capacity for sensing and vibration control with
piezoelectric patches in a paraboloidal shell structure, which can be implemented in struc-
tonic systems typical of aerospace sector. Similarly, Li et al. [8] theoretically estimated and
experimentally validated the effect of the orientation of diagonal piezoelectric sensors in
a cylindrical shell excited by piezoelectric actuators. It is also worth mentioning in this
field the work of Varelis and Saravanos [24], in which the ability to predict the non-linear
electromechanical response of laminated piezoelectric shell under buckling and elastic
instability is analytically demonstrated. In this work, a commonly used iterative technique
is maintained, i.e., Newton–Raphson, therefore the Cylindrical Arc-Length method was
applied in order to overcome the snap-through points.

Previous works [13,25,26] have shown that the implementation of topological optimi-
sation on numerical models based on the Finite Element Method (FEM) allows, simultane-
ously, an optimizing host structure and a polarisation profile of the electrodes. These works
were carried out on different geometries in the form of flat plates and one-dimensional
beams. A similar work, applied in this case to curved shell-type structures, was carried out
by Donoso et al. [27], but limited to the design of the polarisation profile.

Nevertheless, none of the previously mentioned studies apply topological optimi-
sation to the simultaneous design of the support structure and the polarisation profile
in shell elements. The present work develops the numerical modelling that allows this
optimal design, maximizing the electric energy produced and allowing the application of
restrictions on the volume of material, in order to achieve a light and low-cost structure.
In addition, regularisation techniques [28–30] are used in order to avoid the appearance
of hinges. Unlike previous works by the authors [13,25,26], a control scheme based on the
application of displacement was specifically developed, in contrast to the usual approach
of the compliance optimisation problem which takes the applied force as a reference. This
control scheme may avoid a lack of convergence when snap-through issues arise [31,32].

The work is divided as follows. Section 2 describes the mathematical formulation
of the electric charge and the mechanical elastic response of the shell. The mathematical
formulation of the optimisation problem is presented in Section 3. Numerical results are
found in Section 4. Finally, the conclusions of the work are shown in Section 5.

2. Formulation of the Problem
2.1. Governing Equations

The computation of the electric charge q, which represents the capacity of the piezoelec-
tric sensor, is obtained following Equation (1) [33]. This equation is simplified considering
the negligible effect of the piezoelectric layer on the stiffness of the structure and the
piezoelectric isotropy (e31 = e32) of the sensor [27].



Mathematics 2022, 10, 2753 3 of 12

q = e31

∫
Ω

χp(x1, x2)[ε11 + ε22]dΩ = e31

∫
Ω

χp(x1, x2)

[
∂u
∂x1

+
∂v
∂x2

+ x3

(
∂φ2

∂x1
− ∂φ1

∂x2

)]
dΩ, (1)

where (u, v) are the translational in-plane displacements, (φ1, φ2) the rotation over the x1
and x2-axis, respectively, Ω is the design domain and e31 is the piezoelectric constant, i.e., a
material property. χp ∈ {−1, 0, 1} is a characteristic function that represents the polarity of
the surface electrode, ε11 and ε22 are the in-plane normal strains.

The displacements and rotations are calculated by solving the equilibrium equation:{
−div(Es(χs) : ε) = fv, in Ω
(Es(χs) : ε) · n = fs, in Γ f

,

subject to the boundary conditions:
u, v, w = 0, in Γc

u = uin in Γu

v = vin in Γv

w = win in Γw

,

with w the vertical displacement, Es the stiffness tensor, ε the infinitesimal strain tensor, fv and fs
the volumetric and surface forces, respectively. Γ f and Γc represent the boundary of Ω where
forces are imposed and displacements are constraint, respectively, n the normal vector of the
boundary and uin, vin and win the displacements imposed in Γu, Γv and Γw. χs ∈ {0, 1}
represents the host structural variable that defines void or solid, respectively.

2.2. Finite Element Model

Flat thick-shell formulation is developed based on Reissner-Mindlin plate theory for a
bidimensional finite element consisting of four nodes with six degrees of freedom (DOF),
three displacements u, v and w, and three rotations φ1, φ2 and φ3 [34,35], described with
regard to an element local coordinate system (x1, x2, x3). Displacement and rotations are
defined independently and therefore they are interpolated separately. The interpolation of
in-plane displacements, associated to membrane behaviour, is shown in Equation (2).[

ũ
ṽ

]
= Nm

[
ui
vi

]
, (2)

where ũ, ṽ are the element interpolated displacements, Nm is the shape functions matrix
for a quadrinodal membrane element and subscript i ∈ {1, 2, 3, 4} refers to the specific
node. The bending DOFs, representing the out-of-plane displacements and rotations, are
interpolated applying bending shape functions as shown in Equation (3). w̃

φ̃1
φ̃2

 = Nb

wi
φ1i
φ2i

, (3)

with Nb being the bending shape functions matrix.
The stiffness matrix in local element coordinates is obtained by concatenating the

membrane matrix (defined in Equation (4)), corresponding to the two in-plane translational
displacements (u and v), while the bending terms (Equation (5)) are obtained from the
thick-plane element, which consists of three DOFs (w, φ1 and φ2). The sixth DOF, φ3,
is assigned an arbitrary stiffness, much lower than the rest of components, taking into
consideration that this rotation does not contribute to strain energy [34]. Nevertheless, this
DOF is required for consistency of matrices when transforming to the global coordinate
system. The integration in the domain of the element (Ωe) is reduced to an integration in the
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area (A), described in the x1 and x2 directions. This integration is performed numerically
using a reduced integration scheme based on Gaussian Quadrature to avoid shear locking.

Km =
∫

Ωe
Bm

TCmBm dΩe =
∫

A

(∫ h

0
dx3

)
Bm

TCmBm dA = h
∫

A
Bm

TCmBm dA (4)

Kb =
∫

A
BT

b
h3

12
CbBb dA +

∫
A

BT
s hkCsBs dA, (5)

where B is the derivative of the shape functions, C the material stiffness tensor, partic-
ularised in this study for a linear isotropic elastic material and h is the thickness of the
element (dimension in x3-direction). The subscripts b, m and s represent bending, mem-
brane and shear, respectively. Finally, k represents the stiffness associated with the drilling
DOF (φ3), the value of which is about one-thousandth of the smallest diagonal element
of the element matrix stiffness, following recommendations in the literature [34]. More
information about the definition of these parameters could be found in finite element
reference books [34,35].

Additionally, with the aim of computing the electric charge generated by the piezo-
electric elements, it is necessary to compute the sum of strains in each element. This is
defined in local coordinates in Equation (6), which can be related to the discretised problem
by means of the derivative of shape functions.

ε̃11
ε̃22
ε̃12

 =



∂ũ
∂x1
∂ṽ
∂x2

∂ũ
∂x2

+
∂ṽ
∂x1

− x3


−∂φ̃2

∂x1
∂φ̃1

∂x2
∂φ̃1

∂x1
− ∂φ̃2

∂x2

 = Bm

[
ui
vi

]
− x3Bb

wi
φ1i
φ2i

. (6)

As the geometry to be modelled is not coplanar, the elements have different local orien-
tations, therefore it is necessary to compute the global stiffness matrix in global coordinates,
which are called xyz. The rotation could be performed by means of a transformation matrix
defined by the direction cosines relating to both coordinate systems.

3. Topology Optimisation Problem and Sensitivity Analysis

In this work we aim to maximize the electric charge produced in a cylindrical-type
structure submitted to a static deformation. The expression for the discretised objective
function is:

q = FT(ρp, ρs)U =
nel

∑
e

ρpeρ3
seB

T
e Ue, (7)

where nel is the number of finite elements, Be is the discretisation of the strain displacement
matrix, Ue is the vector with the displacement of the element e. The variable ρpe defines
the sign of the polarisation profile, while the role of the relaxed variable ρse is to penalize
the electric charge generated by void elements [36]. The piezoelectric property e31 has
been removed from the objective function, since a constant does not affect the optimal
design. The constraint over the maximum volume fraction is included in the problem, as
this usually improves the convergence of the optimisation algorithm. The global stiffness
of the structure is controlled by adding two constraints over the reaction forces in the
structure. This ensures that the point where the displacement is imposed is connected with
the boundary conditions. Finally, taking into account Equation (7), the formulation of the
discretised problem is stated as follows:

max
ρs ,ρp

: q
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subject to: 

ρ̃s = H(ρs)

ρ̂s = P(ρ̃s)

K(ρ̂s)U = R
LT

u U = uin

vT(ρ̂s) ≤ V0 | Ω |
LT

r R ≤ rmax

LT
r R ≥ rmin

,

where Lr is a vector of zeros with the value 1 in the constrained degrees of freedom, R is the
reaction force vector, ρ̃s is the filtered structural density, ρ̂s is the projected density [37], Lu is a
vector of zeros with the value 1 in the degree of freedom where the displacement is imposed, uin is
the fixed displacement, v is a vector containing the measure of the elements, V0 is the maximum
volume fraction, | Ω | is the measure of the design domain, finally, rmax and rmin are the
maximum and minimum reaction force allowed, respectively, used to avoid singular solutions.

The well-known Solid Isotropic Material with Penalisation (SIMP) method [28] is used
to penalize intermediate densities. The expression for a smoothed threshold projection [29]
based on the hyperbolic tangent function is:

ρ̂se =
tanh(βη) + tanh(β(ρ̃se − η))

tanh(βη) + tanh(β(1− η))
, (8)

where η ∈ [0, 1] and β are tuning parameters that define the threshold and the sharpness
of the function, respectively. The filtered densities of Equation (8) are projected to 0 or 1
depending if these value are smaller or bigger than the threshold η. The filtered densities ρ̃
are expressed as [30]:

ρ̃se =

nel

∑
j

de(xj)ρsj

nel

∑
j

de(xj)

,

where xj is the barycentre of the j-th element, and the weighting function de(xj) is given by
the cone-shape function:

de(xj) = max{R f − ||xj − xe||, 0},

where R f is the filter radius.
The use of the filtering technique together with the projection method ensures a mesh-

independent 0–1 design. As shown in [25], the polarisation variable ρp does not need any
kind of regularisation.

3.1. Robust Formulation

This section presents the robust formulation of the problem, which was introduced
in [29]. This consists of the use of three different projections called erode, intermediate and
dilate and from now on, the projection will be represented with the superscript (m) for each
projection ((e), (i) and (d), respectively). The implementation of this approach ensures
a minimum length scale in both void and solid regions, hence avoiding the appearance
of hinges.

The robust topology optimisation problem is written in terms of a min-max prob-
lem, which is not differentiable. The problem is then reformulated using the so-called
bound formulation:

max
ρs ,ρp

: α (9)
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subject to: 

q(m) ≥ α

ρ̃s = H(ρs)

ρ̂
(m)
s = P(m)(ρ̃s)

K(ρ̂
(m)
s )U(m) = R(m)

LT
u U(m) = uin

vT ρ̂
(d)
s ≤ V∗0 | Ω |

LT
r R(m) ≤ rmax

LT
r R(m) ≥ rmin

m ≡ {e, i, d},

(10)

where α is an additional bound variable, superscript (m) represents the projection and

V∗0 =
V0

V(i)
V(d) is the maximum volume fraction allowed for the dilate projection. This

value is updated every 20 iterations. This formulation solves the non-differentiability issue
with the max–min function. It is important to remark that the equilibrium equation and the
constraints of the reaction forces must be computed for each projection.

3.2. Computation of Sensitivities

The optimisation problem is solved using the Method of the Moving Asymptotes (MMA) [38].
This algorithm needs the partial derivatives with respect to the variables ρs and ρp.

The derivatives of the elastic problem equations (the equilibrium equations and the
constraints) are straightforward, and they are not included in this work for the sake of
brevity. The derivative of the function q with respect to ρs is computed using the chain rule:

∂q
∂ρse

=
∂q

∂ρ̂se

∂ρ̂se

∂ρ̃se

∂ρ̃se

∂ρse
,

with:
∂q

∂ρ̂se
=

(
∂FT

∂ρ̂se
U + FT ∂U

∂ρ̂se

)
.

Note that the adjoint method can be used to circumvent the computational cost of computing
the derivative of the displacement vector U. The derivatives of q with respect to ρp is:

∂q
∂ρpe

=
∂FT

∂ρpe
U.

In practice, it is convenient to work with normalised parameters in order to avoid
computations with numbers with different magnitude order. The electrical charge is
normalised with the electrical charge generated by the homogeneous design.

A summary of the process is shown in Algorithm 1.
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Algorithm 1: Algorithm and computational implementation
Set : material properties, geometry and BC’s
Set : Optimisation parameters
Define : initialisation ρp and ρs
Compute : reference charge qre f
Set : Optimisation method tolerance tol
While e > tol

Filtering and projection ρs → ρ̃s → ρ̂s;
Assembly of global matrix K(ρ̂s) and vector F(ρ̂s, ρp);
Get vector U;
Compute objective function c = q;
Compute constraints;
Calculate derivatives;
Update variables with MMA (ρ∗s , ρ∗p);
Define convergence variable e = ||(ρ∗s , ρ∗p)− (ρs, ρp)||;

end

4. Numerical Examples

Commercial software Matlab R2020b has been used to solve the finite element models
and the optimisation problem proposed in this work. The results obtained, in terms of force,
displacement, stress and strain fields, have been validated by means of the comparison
with a commercial FEM software, i.e., Abaqus 2019 [39].

4.1. First Example

The domain Ω is defined as a semicylindrical shell. The dimensions are Lx = 1 m and
Ly = 1 m with a global thickness of t = 0.01 m. The Young’s modulus of the material is set
to E = 1 Pa and the Poisson’s ratio to ν = 0.3.

The proposed structure is discretised in 60× 60 elements. The scheme of the structure
and its boundary conditions are shown in Figure 1. The displacements and rotations over
the red lines are fixed to zero (clamped), while vertical displacement is imposed at the
coordinates (x, y, z) = (0, 0.5, 0.5) m with a value of uin = 0.15 mm.

Lx

Lyx

z

y

uin

ρs ∈ [0, 1]

ρp ∈ [−1, 1]

Figure 1. Dimensions and boundary conditions.

This case study is focused in obtaining the optimal electrode profile ρp that will be
used as initialisation in the rest of the examples. Since the host structure ρs is fixed, it makes
no sense to add constraints over the reaction force.

The result of the optimisation process is shown in Figure 2. The structure variable ρs
is represented in Figure 2 (left), with the black colour showing solid areas. The electrode
profile appears at the centre, where blue and pink mean electrodes of different polarity. The
whole structure including electrodes is depicted in Figure 2 (right).
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Figure 2. Structure layout ρs (left), electrode profile ρp (centre) and 3D design (right) for the first
example.

The reference value used to compare the results is the cost generated by the homo-
geneous design ρs = 1 and ρp = 1. The cost excluding the piezoelectric constant e31, is
cre f

e31
= 0.721 m2. For the rest of examples, the objective function is the non-dimensional

parameter defined as: λ =
c

cre f
.

The value of the objective function for this first example is λ1 = 31.92, showing the
importance of the optimisation process. This value is larger than the reference, since the
homogeneous electrode ρp = 1 is far from being a good design. The polarisation profile in
Figure 2 shows that approximately half of the surface shell is subjected to strain with the
opposite sign, and then most of the electrical charge produced by the positive polarity is
cancelled with charge generated by the negative electrode.

The result of the optimisation process shows that the electrode profile obtained for
each finite element is related to its curvature. This example clearly demonstrates that the
optimisation of only one variable, the electrode—polarisation ρp—increases the electric
charge generated by the sensor.

4.2. Second Example

The volume fraction is fixed to V0 = 0.5 and the reaction force to r = −3× 10−9 N. The
values of rmin and rmax are computed by subtracting and adding a small value ε = r/100.
Concerning the tuning parameters of the filter and the projections, the filter radius is set
to R f = 0.1 m, the smoothness of the projection to β = 1 at the beginning of the iterative
process, and it doubles the value every 40 iterations up to β = 8. The thresholds for the
three projections are ηe = 0.7, ηi = 0.5 and ηd = 0.3, for the erode, intermediate and dilate
projection, respectively.

The variable ρs is initialised with a homogeneous design according to the volume
constraint, and ρp with the optimised polarity profile of the previous example. The optimal
design is shown in Figure 3 (right).

Figure 3. Structure layout ρs (left), electrode profile ρp (centre) and 3D design (right) for the second
example.

The value of the objective function for the optimum design is λ2 = 20.91. This result
surpasses the reference charge, however, this value is smaller than λ1. This is due to the
maximum volume fraction imposed. The smaller the volume fraction is, the bigger the
displacements are since the structure is less stiff, but the region Ω is also smaller. It is
very convenient to use this constraint as this improves the convergence of the topology
optimisation problem, as well as this can be used to control the amount of material if we
have in mind the fabrication cost, the weight or the size of the structure.
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The structural variable ρs depicted in Figure 3 (left) shows that the whole structure is
continuous, in the way that the point of application of the mechanical force is connected
with the clamped edges. The robust scheme is working properly, which is corroborated by
the absence of hinges.

4.3. Third Example

For this case study, the value of constraint over the reaction force is fixed to r =
−4× 10−9 N, while the rest of parameters do not change. This variation of the reaction
force increases the structure stiffness, since the imposed displacement is the same as in the
previous example. The results are shown in Figure 4.

Figure 4. Structure layout ρs (left), electrode profile ρp (centre) and 3D design (right) for the third
example.

The value of the objective function for the optimum design is λ3 = 60.44. With this
method, the stiffness of the structure can be modelled by imposing a different constraint r.
This parameter can be adapted to the function of the application, since this is part of the
input data.

In this last example the structure layout ρs is stiffer than in the previous case. This is
due to the reaction force, which is 25% higher than in the second example. This parameter
can be fixed depending on the proposed application of the sensor.

4.4. Validation of the Results

The finite element problem has been solved by using an ad hoc script developed
with the software Matlab. In order to validate the results obtained, the displacement field
(the control variable in the optimisation problem) has been checked with Abaqus in the
reference design (first example).

For the reference example, the deformed structure is shown in Figure 5, where the
displacement has been scaled in order to better observe the deformed structure. It can be
visually verified that the deformation obtained with both softwares is similar.

Figure 5. Deformation of the structure obtained with Matlab (left) and Abaqus (right).
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Additionally, to corroborate that the finite element method has been correctly imple-
mented, the vertical displacement of the midline (arc with coordinate y = Ly/2 follow-
ing Figure 1) of the sensor is compared. To avoid a high relative error, the infinity norm has
been used to compare the difference between both softwares:

||w̃M − w̃A||∞ = 2.3740× 10−6 m,

where w̃ represents the vertical displacement computed at the midline, and subscripts M
and A stand for Matlab and Abaqus, respectively.

The vertical reaction forces computed at the node where the displacement is imposed
are r̃M = 7.477× 10−9 N and r̃A = 7.551× 10−9 N. With a difference of ≈1% we can
consider the results obtained with Matlab valid.

5. Conclusions

In this work, a systematic procedure to maximize the electric charge generated by a
semi-cylindrical piezoelectric sensor is presented. The objective function is computed in
terms of two variables related through the deformation of the structure, the topology of
the sensor and the polarisation profile of the electrode. The main novelty presented in this
paper is the simultaneous optimisation of both variables.

The advantage of solving an optimisation problem is shown in several optimal designs,
showing that the electric charge of the device has been improved for different volume
fractions and values of the reaction force. The well-known issue of the appearance of
hinges is overcome by implementing a robust scheme with three different projections. This
regularisation also allows us to control the minimum length scale.

The shell modelled in this work is subjected to small displacements and small strains,
but a control scheme based on the application of displacement (instead of controlling the
applied force) is implemented with the objective of modelling a geometrically non-linear
problem in the future.

In order to validate the mechanical response of the structure, the displacement field of
the shell is computed with two different commercial softwares—Matlab and Abaqus.
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