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Abstract: In essence, the network is a way of encoding the information of the underlying social
management system. Ubiquitous social management systems rarely exist alone and have dynamic
complexity. For complex social management systems, it is difficult to extract and represent multi-
angle features of data only by using non-negative matrix factorization. Existing deep NMF models
integrating multi-layer information struggle to explain the results obtained after mid-layer NMF. In
this paper, NMF is introduced into the multi-layer NMF structure, and the feature representation
of the input data is realized by using the complex hierarchical structure. By adding regularization
constraints for each layer, the essential features of the data are obtained by characterizing the feature
transformation layer-by-layer. Furthermore, the deep autoencoder and NMF are fused to construct
the multi-layer NMF model MSDA-NMF that integrates the deep autoencoder. Through multiple
data sets such as HEP-TH, OAG and HEP-TH, Pol blog, Orkut and Livejournal, compared with
8 popular NMF models, the Micro index of the better model increased by 1.83, NMI value increased
by 12%, and link prediction performance improved by 13%. Furthermore, the robustness of the
proposed model is verified.

Keywords: depth autocoding; social management systems; multilayered structure; non-negative
matrix factorization; character representation

MSC: 22-08

1. Introduction

Non-negative matrix factorization (NMF) is now known to be a relatively new method
of matrix factorization [1]. Since D.D. Lee et al. proposed a new method of feature subspace
in Nature in 1999, Non-negative Matrix Factorization [2] has been widely used in image
analysis, text clustering, data mining, speech processing and other aspects. With the
deepening of research, many application analyses have developed, from the early single-
structure feature analysis to the joint mining of multiple network structures and the layered
analysis of multi-source information. In addition, abundant data indicate that the model
based on a single pairwise interaction may not capture complex dependencies between
network nodes [3]. The interaction of user with both the video and its enrichments results
in a lot of explicit and implicit relevance feedback, which enables some works to provide
personalized and rich multimedia content [4]. Lambiotte and Rosvall et al. [5] described the
shortcomings of the traditional network model and the existing ideal high-order model in
their article published in NaturePhysics and discussed that the multi-layer network model
played an important role in the analysis of various types of interactions of many actual
complex systems.
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In the analysis and mining of multi-relational data, the method based on network
representation learning has attracted the attention of many scholars because of its excellent
performance in many practical tasks. Network representation learning [6] (also known
as network embedding) is an effective network analysis method. Based on preserving
network structure information, it embeds graphs into a low-dimensional and compact
space. For complex multi-level data, however, with only the NMF decomposition single-
layer network composed of a single decomposition, it tends to reach a higher accuracy
even with the corruption of a severe proportion of data, as well as the function of the local
minimum in split, leaving it unable to express the characteristics of data from many angles,
so decomposition results are not always satisfied [7].

To effectively represent high-order and multi-layer complex data, traditional vector-
based machine learning and deep learning algorithms can directly use the mapping of
low-dimensional space representations to efficiently complete network analysis tasks,
which greatly enrich the selection of algorithms and models for network mining tasks [8,9].
Therefore, how to use an effective deep network structure for the hierarchical feature
extraction of complex data and how to combine the advantages of non-negative matrix de-
composition and deep networks have important practical implications for the collaborative
discovery of data research knowledge from multiple information sources.

Therefore, in this paper, NMF is introduced into a multi-layer NMF structure, and the
feature representation of input data is realized by using a complex hierarchical structure. By
adding regularization constraints for each layer, the essential features of data are obtained
by characterizing the feature transformation layer-by-layer, and further, the multi-layer
NMF model MDA-NMF of a deep autoencoder and NMF is constructed. The method pro-
posed in this paper can effectively improve the detection accuracy and prediction accuracy
of social groups in the complex social management system. The main contributions of the
proposed system can be summarized as follows: 1. The model integrates the multi-layer
structure features of deep self-coding; 2. The model introduces multi-layer NMF structure,
which can effectively use a complex hierarchical structure to achieve feature representation
of input data; 3. Through the evaluation of multiple data sets, it is proved that the proposed
method is superior to the existing multi-layer NMF method.

The rest of the paper is organized as follows: Section 2 discusses the related work.
Section 3 introduces the proposed method through model description and model opti-
mization. The experimental results are shown in Section 4 and discussed by parametric
sensitivity analysis, multiclassification experiment, node clustering experiment, and link
prediction experiment. Finally, Section 5 introduces the conclusion.

2. Materials and Methods
2.1. Study on Non-Negative Matrix Factorization

Non-negative matrix factorization is a popular machine learning technique. The
essence of a non-negative matrix algorithm is to transform high-dimensional data into
low-dimensional data by a linear combination of variables. There is non-negative value in
the decomposition result, which dramatically improves the interpretability of the model,
and development is also a widespread concern. In 2001, Lee and Seung put forward the
multiplicative iteration algorithm [10], and from then the NMF algorithm was widely
used in areas such as NLP, CV, a recommendation system and other fields. However,
as the result of matrix decomposition, the feature matrix and coefficient matrix are not
sparse enough, so the feature extraction is not apparent enough. Therefore, researchers
have begun to study the sparsity of the feature matrix and coefficient matrix, and the
repeatability of data in the feature matrix and sparse matrix will also be reduced. Similarly,
many methods have been proposed. For example, Hoyer et al. [11] reconstructed the
data and established the objective function by calculating the error between the actual and
Euclidean distances. In addition, L1 was added as the penalty term, and the eigenmatrix
and coefficient moment were optimized by iteration through the gradient descent method.
Ren et al. [12] first used the given reference image to create nonorthogonal and non-negative
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basis components and then used these components to model the target. A factor then scales
the constructed model to compensate for the contribution from the disk. Jia et al. [13]
proposed a new semi-supervised model that simultaneously learns similar matrices with
supervised information and generates clustering results. Huang et al. [14] proposed a
robust multi-feature collective non-negative matrix decomposition (RMCNMF) model for
ECG biometric noise and sample variation.

In summary, many studies implement complex function approximation and learn data
sets from small sample sets through distributed representation of input data. Therefore,
more and more researchers have focused on deep non-negative matrix factorization based
on deep learning.

2.2. Deep Non-Negative Matrix Decomposition Analysis

The development of deep learning has gone through a long process. SVM, Boosting,
Logistic Regression (LR) and other methods have been successively proposed. The struc-
tures of these methods either have no hidden layer nodes or contain a layer of them, so
they are collectively referred to as shallow layer models. In 2006, The DBN (Deep Belief
Network) model proposed by Hinton et al. [15] made it possible to construct Deep models
for learning. Subsequently, deep models such as Deep Boltzmann Machines (DBM) [16]
and Fuzzy Deep Belief Networks (FDBN) [17] were successively proposed. These deep
networks with multiple hidden layers have excellent feature learning abilities. The features
acquired by learning have an essential description of data, which is more favourable in
visualization or classification applications. Ye et al. [18] proposed a new model for commu-
nity detection—Depth-like autoencoder NMF (DANMF) based on the deep non-negative
matrix method. DANMF adopts the architecture of hierarchical mapping between the
original network and the final network community allocation and implicitly learns the
hidden attributes from the low-level to the high-level of the original network in the middle
layer. According to the deep decomposition architecture, De et al. [19] reviews the MF
model based on deep learning and introduces the algorithm and application.

Because of deep networks’ excellent data learning performance, some scholars have
proposed multi-layer non-negative matrix decomposition algorithms based on NMF and
related algorithms in recent years [20]. However, the above methods and the deep NMF
model integrating multi-layer information struggle to explain the results of the middle
layer NMF.

2.3. Multilayer Non-Negative Matrix Factorization

Unlike single-layer learning, multi-layer NMF reveals more intuitive feature levels
through the relationship between features of each layer. Layered structures learn mean-
ingful and helpful features. The first model to extend CLRMA to multiple levels was the
multi-layer NMF proposed by Cichocki et al., 2006 [21,22]. At the first level, the low-rank
factor factorization of X is computed. At the next level, the matrix factorization is per-
formed until the matrix factorization is performed. In 2013, a hierarchical non-negative
matrix decomposition algorithm was proposed by [23] for hierarchical data representation.
Multi-layer NMF obtains a multi-layer structure through multiple iterations of a nonsmooth
non-negative matrix decomposition algorithm. Rajabi et al. [24] proposed using multi-
layer NMF (MLNMF) to achieve hyperspectral decomposition. The spectral eigenmatrices
are modelled as the product of sparse matrices. Chen et al. [25] proposed a constrained
multi-layer NMF method for hyperspectral data processing. In this approach, at each
level, and two constraints are implemented on the objective function. One is the sparsity
on the abundance matrix, and the other is the minimum volume on the spectral matrix.
The hierarchical processing decomposed the abundance matrix into a series of matrices,
making the sparsity feature more evident and meaningful. Yuan et al. [26] introduced
Hoyer projectors to provide the iterative directivity of structures in the decomposition of
processes. They proposed a multi-layer non-negative matrix decomposition framework
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based on Hoyer projection—HP-MLNMF, which completely reconstructed and enhanced
the methods.

However, in the above methods, there are few studies on the description of the middle
layer of multi-layer network and the fusion model of NMF.

2.4. Encoder-Based Model

The basic idea is to map the context matrix to the embedding matrix and then use the
embedding matrix to reconstruct the original context matrix. Deep neural graph representa-
tion (DNGR) [27], Structural Deep Network Embedding (SDNE) [28] and MVC-DNE [29]
use deep neural networks to combine graph structures into coder algorithms directly. The
basic idea behind these methods is to use autoencoders to compress information approx-
imately node-local neighbor characteristics. The key to SDNE’s ability to preserve node
neighbour characteristics is deep autoencoders and multiple nonlinear layers. The model is
used to protect first and second-order approximations of nodes by using Laplacian features
in the middle layers of the encoder and by using modified autoencoder reconstruction errors.
In addition to the domain autoencoder method mentioned above, there is also an encoder
method that iteratively aggregates domain information to generate node embedding [30]
and the GraphSAGE algorithm [31]. Researchers design encoders that rely on node-local
neighbor characteristics rather than the whole graph and use node embedding methods to
overcome significant limitations of shallow embedding and self-coding methods.

To sum up, most of the research based on the encoder model are based on local graphs,
and few on multi-layer global graphs.

3. Proposed Model
3.1. Model Description

There is only one layer of mapping between the original network and the embedded
result features. The organization patterns of real-world networks is complex and diverse,
and the mapping of the original network and community member space is likely to contain
not only complex hierarchical and structural information, but also imply low-level hidden
features, which cannot be extracted using classical shallow NMF-based methods. Further-
more, deep autoencoders are an excellent scheme for bridging the gap between low-level
and high-level abstractions of raw data [32]. Inspired by the deep autoencoders, we can
assume that we can obtain better structural features between nodes (i.e., more accurate
structural feature matrix V) by further decomposition of mapping V and quality extraction
at a deeper level from a lower to a higher level.

Based on the above discussion, this paper proposes a new model called the fusion
deep autoencoder multi-layer STRUCTURE NMF model (MSDA-NMF). NMF introduces
a multi-layer NMF structure and combines a deep autoencoder with NMF. Figure 1 illus-
trates an encoder component and a decoder component constituting the MSDA-NMF with
a deep structure. Similar to the deep autoencoder, the encoder component attempts to
transform raw networks into a low-dimensional hidden feature matrix captured in the
middle layer. Like the deep autoencoder, the encoder component changes the primary
network into a low-dimensional invisible feature matrix captured in the middle layer.
Every intermediate layer explains the resemblance between nodes of various sequence.
The decoder has symmetry with the encoder. It reconstructs the original network from
the final embedded eigenmatrix through the hierarchical mapping learned in the encoder
component. Unlike traditional NMF-based loss functions that only consider the decoder
components, MSDA-NMF integrates encoder components and decoder components into
unified loss functions.Using this method, the quasi-autoencoder NMF can learn the rela-
tionships between cross-layer features and obtain the extraction process from first-order
to the high-order similarity of network structure in complex data intuitively and easily.
MSDA-NMF using this hierarchical structure feature extraction algorithm, the optimal
depth class autoencoder class NMF structure suitable for classification tasks is studied.
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Figure 1. Framework diagram of the MSDA-NMF model.

To better explain the terms and symbols used in this paper, we have unified the terms
and symbols used. See Table 1 for details.

Table 1. Symbol Description.

Symbol Definition

A The adjacency matrix of graph G
ri Embedding dimension of layer I NMF
Zi Layer I auxiliary matrix
Vi I layer embeds the eigenmatrix
B Random walk eigenmatrix
C Second order node similarity eigenmatrix
vol(G) = ∑i ∑j Aij The capacity of figure G

3.1.1. Model Solution

NMF directly learns a layer of auxiliary matrix Z and basis matrix V. However, real-
world networks are often complex and diverse organizational patterns. Therefore, the
mapping between the original network and the community member space will probably
contain complicated hierarchical and structural information with implicit low-level hidden
attributes. It is well known that deep learning can bridge the gap between low-level and
high-level abstractions of raw data. In this sense, we propose to factor the mapping Z
further, hoping to add an extra layer of abstraction for each layer of embedding results
and extract the similarity between nodes from low order to high order. To be specific,
the adjacency matrix A is decomposed into the product of p + 1 non-negative matrices,
as follows:

A ≈ Z1Z2 . . . ZpVp (1)

Thereinto Vp ∈ Rk×n, Zi ∈ Rri−1×ri (1 ≤ i ≤ 3), request n = n0 ≥ r1 ≥ · · · ≥ rp−1 ≥
rp = k.

A hierarchy in Formula (1) that allows p-level abstract understanding of the original
network can look similar to the following Sample decomposition:

Vp−1 ≈ ZpVp,

. . .

V2 ≈ Z3V3,

V1 ≈ Z2Z3V3.

(2)
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We also retain the non-negative constraint Vi(1 ≤ i ≤ p). Vi is the embedded
characteristic matrix of the i layer, and Zi is the auxiliary matrix of the i layer. By doing
so, each layer of abstract Vi captures node similarity of different orders, from first-order
proximity to structural identification and finally to community-level similarity. To learn the
embedding matrix, we derive the following objective function. This paper uses a three-layer
NMF structure, so p = 3:

min
Zi ,Vp
LD = ‖A− Z1Z2Z3V3‖2

F s.t., Zi ≥ 0, Vp ≥ 0, ∀i = 1, 2, . . . , p. (3)

After the optimization of Formula (3), we can obtain the learning result of a network
representation of each layer Vi(i < p) by ‖A− Z1Z2Z3V3‖2

F as [33].

3.1.2. Fusion Depth-like Autoencoder Matrix Decomposition

It can be seen that Formula (1) is a reconstruction of the original network corresponding
to the decoder part of the autoencoder. To improve the representation learning capability of
the auto encoder, the encoder components must be integrated into the community detection
model based on NMF to form the NMF model similar to the autoencoder. The rationality
of the NMF model of class automatic coders is quite simple. For the ideal basis matrix V, it
is supposed to be able to reconstruct the primal network by reconstructing the mapping Z
with a small error; meanwhile, it should be able to precisely project the primal network
Z to the community membership space by the help of the mapping Z, that is, V = ZTA.
Integrating the encoder component and the decoder component with a unified loss function
allows them to know each other during the learning process, from which we can obtain the
ideal community members of the node. To accomplish this vision in the depth model, the
objective function of the encoder is as follows.

min
Zi ,Vp
LE = ‖V3 − ZT

3 ZT
2 ZT

1 A‖2
F s.t., Zi ≥ 0, Vp ≥ 0, ∀i = 1, 2, . . . , p. (4)

The current deep class autoencoder matrix decomposition model cannot explain what
kind of network representation results can be obtained at the impenetrable levels. To
enhance the interpretability of this model, we add standard terms for different levels.
In [34], the second-order similarity matrix of LINE is expressed in the form:

C = log(vol(G)D−1AD−1)− logb, (5)

log(.) is the logarithm of all the matrix elements, D is the degree matrix of graph G,
D = diag(d1, d2, . . . , d|V|), and b is the negative sampling parameter. vol(G) is the capacity
of the graph. G, vol(G) = ∑i ∑j Aij.

The final objective function is:

min
Zi ,Vp
L = LD + LE + α‖ZT

1 − Z2Z3V3‖2
F + β‖Z3V3 −C‖+ γ‖WV3 − B‖

s.t., Zi ≥ 0, Vp ≥ 0, ∀i = 1, 2, . . . , p.
(6)

In this way, the first-order similarity of the network structure can be obtained after
first-layer non-negative matrix decompositions, the second-order similarity of the network
structure can be obtained after second-layer non-negative matrix decompositions, and
higher-order features can be obtained after third-layer non-negative matrix decompositions.

3.2. Model Optimization

Optimization problems are highly related to scientific research [35], and in this paper
in order to speed up the model’s approximation of the factor matrix, we pretrain each
layer to obtain the initial approximation Zi and Vi of the factor matrix. The training time
of the model can be significantly reduced by the pretraining process. The effectiveness
of pretraining has been proven in deep autoencoder networks. For pretraining, we first
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decompose the adjacency matrix A ≈ Z1V1 by minimizing ‖A− Z1V1‖2
F + ‖V1 − ZT

1 A‖2
F.

Then, we decompose the matrix V1 into V1 ≈ Z2V2 by minimizing ‖V1−Z2V2‖2
F + ‖ V2−

ZT
a A‖2

F. The third layer is similar. Then, fine-tuning the objective function (6) for each
layer by alternately minimizing the objective function proposed in the equation until the
update of the objective function is very small, that is, the convergence ends. The updated
algorithm is shown in the objective function of Algorithm 1.

Algorithm 1: Optimization of MSDA-NMF model

1 Input: Network G, Second order eigenmatrix C, Higher order eigenmatrix B,
Different dimensions r1, r2, r3, Convergence coefficient δ, Balance
parameters α, β, γ

2 Output: Z1 ∈ Rn×r1 , Z2 ∈ Rn×r1W ∈ Rr3×r3 , V3 ∈ Rn×r3

3 Z1, V1 ← NMF(A, r1)
4 Z2, V2 ← NMF(V2, r2)
5 Z3, V3 ← NMF(V3, r3)
6 while not conv do
7 if L

i−Li−1

Li−1 < δ then
8 Update V using Formula (9)
9 Update Z using Formula (12)

10 Update Z using Formula (14)
11 Update Z using Formula (16)
12 Update W using Formula (18)
13 Use Formula (6) to calculate the loss function (L)
14 i← i + 1
15 end
16 else
17 conv← true
18 end
19 end
20 return Zi, W, Z, H

The objective function (6) requires a parameter matrix consisting of V3, Z1, Z2, Z3, W,
and their update rules are introduced in detail below. So here we have U = Z1Z2Z3.

3.2.1. V3 Subproblems

When V3 is updated, the matrices Z1, Z2, Z3 and W are fixed to obtain the objective
function is Equation (6).

By introducing Lagrangian multiplication matrix Θ, the following can be obtained:

L(V3) = tr(AAT −AVT
3 UT −UV3AT + UVT

3 U)T

+tr(V3VT
3 −V3AT(U)− ZT

3 ZT
2 ZT

1 AVT
3 + ZT

3 ZT
2 ZT

1 AATU)

+αtr(Z1ZT
1 − Z1V3ZT

3 ZT
2 − Z2Z3V3Z1 + Z2Z3V3VT

3 ZT
3 ZT

2 )

+βtr(Z3V3VT
3 ZT

3 − Z3V3BT − BVT
3 ZT

3 + BBT)

+γtr(WV3VT
3 WT −WV3CT −CV3CT −CVT

3 WT + CCT)

+te(ΘV3)

(7)

Let αL(V3)
αV3

= 0 be obtained:

ATU−UTA + 2V3UTU + 2V3 − 2UTA + α(2Z2ZT
3 ZT

1 − Z2ZT
3 ZT

1 + 2Z2ZT
3 Z2Z3)

+β(ZT
3 Z3 − ZT

3 B− ZT
3 B) + γ(2WTW− 2WTC) + Θ = 0

(8)
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Initialize V3 and update V3 according to the following rules:

V3 ← V3 �
2UTA + 2αZ2ZT

3 ZT
1 + 2βZT

3 B + 2γWTC
ATU + 2V3UTU + 2V3 + 2αZ2ZT

3 Z2Z3 + βZT
3 Z3 + 2γWTWV3

(9)

3.2.2. Z1 Subproblem

When updating Z1, other variables are fixed to receive the following objective function:

‖A−UV3‖2
F + ‖V3 − ZT

3 ZT
2 ZT

1 A‖2
F + α‖ZT

1 − Z2Z3V3‖2
F (10)

Similar to the update matrix V3, Lagrangian multiplication matrix Θ is introduced
to obtain:

L(Z1) = tr(AAT −AUTZT
1 )−UV3AT + UV3VT

3 ZT
3 ZT

2 ZT
1

+tr(V3VT
3 −V3ATU− ZT

3 ZT
2 ZT

1 AVT
3 + ZT

3 ZT
2 ZT

1 AATU)

+αtr(ZT
1 Z1 − Z1(Z2Z3V3)

T − Z2Z3V3Z1 + Z2Z3V3(Z2Z3V3)
T) + tr(ΘZ1)

(11)

Identical to the optimization calculation of V3, we define the update rules of Z1 as follows:

Z1 ← Z1 �
A(Z2Z3V3)

T + AVT
3 ZT

3 ZT
2 + α(Z2Z3V3)

T

UV3VT
3 ZT

3 Z2 + AATU(Z2Z3)T + αZ1
(12)

3.2.3. Z2 Subproblem

When Z2 is updated, other variables are fixed and the following objective function
is obtained:

‖A−UV3‖2
F + ‖V3 − ZT

3 ZT
2 ZT

1 A‖2
F + α‖ZT

1 − Z2Z3V3‖2
F (13)

Referring to the V3 optimization algorithm, we define the update rules of Z2 as follows:

Z2 ← Z2 �
2ZT

1 AVT
3 ZT

3 + αZT
1 VT

3 ZT
3

ZT
1 UV3VT

3 ZT
3 + ZT

1 AATUTZ3 + αZ2Z3V3VT
3 Z3

(14)

3.2.4. Z3 Subproblem

When updating Z3, fix other variables and obtain the following objective function:

min
Zi ,Vp
L = LD + LE + α‖ZT

1 − Z2Z3V3‖2
F + β‖Z3V3 −C‖ (15)

Refer to the V3 optimization algorithm, we define the update rules of Z3 as follows:

Z3 ← Z3 �
2UT

2 UT
1 AVT

3 + 2UT
2 UT

1 AVT
3 + 2αZT

2 ZT
1 V3 + β(BVT

3 ZT
3 + BVT

3 )

2ZT
2 ZT

1 UV3VT
3 + 2ZT

2 ZT
1 AATU + 2αZT

2 Z2Z3V3VT
3 + βZ3V3VT

3
(16)

3.2.5. W Subproblem

When W is updated, other variables are fixed and the following objective function
is obtained:

γ‖WV3 −C‖2
F (17)

Refer to the V3 optimization algorithm, we define the update rule of W as follows:

W←W� C
WV3

(18)

3.2.6. Model Complexity Analysis

The computational complexity of the five updated formulas in algorithm Algorithm
1 is respectively O(r1r2r3n2 + r1r2r3n + r2r3n + r2

1r2
2r2

3n + r2
2r3n), O(r3n2 + r2r3n + r1r2n +
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n3 + r1n2), O(r1n2 + r1r3n + r1r2r3 + r2
1n + r2

1r2), O(r1r2n + r2n2 + r2r3n + r1r2
2 + r2

2r3),
O(r2r3n). Since r1, r2, r3 can be considered input constants, and r1 ≤ r2 ≤ r3, the computa-
tional complexity is O(n3). Most real complex networks are sparse, so only nonzero values
are computed in the matrix multiplication of real complex networks. The calculation is sim-
plified to O(n2e); here, we use E to represent the number of edges in the complex network.
In addition, the model, the matrices Z1 ∈ Rn×r1 , Z2 ∈ Rr2×r3 , Z3 ∈ Rr2×r3 , W ∈ Rr3×r3

are parametric, the space complexity is denoted by O(n2e). Since r1, r2, and r3 are much
smaller than n, the calculation method of space complexity is simplified as O(n2), but the
complexity increases as the embedded dimensions increase.

4. Results and Discussion

In this paper, MSDA-NMF model is constructed by using the complex hierarchical
structure to realize the feature representation of input data. With 8 different data sets and
6 methods, effective comparison is achieved. The experiments are performed on a computer
with Windows 7, 3.10 GHz and 32.00 GB RAM.

4.1. Experimental Objects

The parameters of the msDA-NMF model in this paper include three hyperparameters
α, β and γ, different layer dimensions ri, and convergence coefficient δ. In this complex network
experiment, we first defined α, β and γ ∈ [1, 101] or ∈ [0, 1], ri ∈ {100, 200, 300, 400, 500}.
Based on these parameters, we obtain the optimal parameters of the model. Here, the number
of clusters, K, is a variable that changes according to the tags in the data set.

4.2. Data Sets and Comparison Methods

This section provides a brief overview of the open data set and advanced complex
network representation learning models used in various fields.

4.2.1. Data Set

We complete the task of multi-label node classification through four popular networks.
To better verify our model’s clustering and link prediction robustness, we use three data
sets with basic facts here. The statistical characteristics of the data set are shown in Table 2:

• GR-QC, Hep-TH, Hep-PH [36]: This collaborative network is coauthored by authors
from three different fields (general relativity and quantum cosmology, theory of high-
energy physics, and phenomenology of high-energy physics) and extracted in the
arXiv. The vertices of the network represent the authors, and the edges of the network
represents an author who co-authored a scientific paper in this network. The GR-QC
data set covers the smallest graph with 19,309 nodes (5855 authors, 13,454 articles)
and 26,169 edges. The HEP-TH data set covers documents during January 1993
to April 2003 (124 months). It began during the beginning of arXiv and therefore
essentially stands for the entire history of the HEP-TH section, with the citation graph
covering all citations in a data set with N = 29,555 and E = 352,807 edges. If a paper I
references a paper J, the chart contains directed edges from I to j. If an article is cited or
cited, the diagram does not collect pieces of information about the paper. The HEP-PH
data set is the second citation graph, taken from the HEP-PH section of arXiv, which
covers all the citations in the data set with N = 30,501 and E = 347,268 edges.

• Open Academic Graph (OAG) [37]: This collaborative network of undirected authors
is formed by an open available academic chart indexed from Microsoft Academia and
on the Miner website in the United States, which includes 67, 768, 244 authors and
895, 368, 962 collaborative advantages. The labels of the network vertices represent
the top research areas of each author, and the network contains 19 areas (labels) and
allows authors to post in different areas, making related vertices have multiple labels.

• Polblog [38]: Polblog is a network of blogs used by American politicians with nodes.
There are 1335 blogs, including 676 pages of liberal blogs and 659 pages of conservative
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blogs. If their blogs have a WEB connection, there are edges. The labels here mainly
refer to the different political categories of politicians.

• Orkut [39]: As an online dating network, Orkut takes nodes as users and creates
connections between nodes according to the user’s friend relationships. Orkut has
multiple highlighted communities, including student communities, events, interest-
based groups and varsity teams.

• Livejournal [39]: The nodes in the Livejournal data set represent bloggers. How two
people can be friends, and there is an edge between them. It divides bloggers into
groups based on their friendships and label them culture, entertainment, expression,
fans, life/style, life/support, games, sports, student life and technology.

• Wikipedia [40]: This word co-occurrence network is owned by Wikipedia. The class
tags for this network are POS tags inferred by the Stanford pos-tagger.

Table 2. Data set network structure information.

Data Set Number of Nodes |V | Number of Edges |E| Number of Categories k More Labels

Wikipedia 4777 18,412 40 yes
Polblog 1335 16,627 2 no

Livejournal 11,118 396,461 26 no
Orkut 998 23,050 6 no

GR-QC 19,309 26,169 42 no
Hep-TH 29,555 352,807 5 yes
Hep-PH 30,501 347,268 38 yes

OAG 13,890 86,784 19 yes

4.2.2. Control Methods

We compared the proposed SDA-NMF model based on three NMFs with the four
most advanced network embedding methods. The comparison results are as follows.

• M-NMF [41]: M-NMF combines the community structure characteristics and 2-step
proximity of nodes in the NMF framework to learn node embedding in network struc-
ture. Node representation is used to show consistency with the network community
structure, and an auxiliary community representation matrix is used to link local
characteristics (first- and second-order similarity). Community structure features in
the network structure to make joint optimization through the optimization formula.
The embedding aspect of the experiment is set to 128, and the other parameters are set
according to the original paper.

• NetMF [34]: NetMF proves that models with negative sampling (DeepWalk, PTE and
LINE) may be considered enclosed matrices, and demonstrates their superiority over
DeepWalk and LINE in traditional network analysis and mining missions.

• AROPE [42]: This method moves the singular value decomposition frame, and the
embedding vector to any order, and learns the higher-order proximity of nodes. Thus,
further, it reveals its internal relations.

• DeepWalk [43]: Deep walk generates random paths for each node and treats the paths
of these nodes as sentences in a language model. It subsequently proceeds to learn the
embedding vectors using the Skip-Gram model. In the experiment, the parameters
are set according to the original paper.

• Node2vec [44]: This method extends the use of a biased random walk in DeepWalk.
All parameters are the default settings of the algorithm, but two offset parameters P
and q are introduced to optimize the process of random walk.

• LINE [45]: LINE learns the embedding of the nodes through the definition of two loss
functions, preserving the first- and second-order of proximity separately. The standard
parameter setup is applied by default in this article, but the negative ratio is 5.

• SDNE [28]: SDN utilizes a deep autoencoder with a semi-supervised architecture to
optimize first- and second-order similarity of nodes and explicits objective functions
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to elucidate ways to retain network structure. In the experiment, the parameters are
set according to the original paper.

• GAE [30]: GAE model has some advantages in link prediction tasks of citation net-
works. The algorithm is based on a variational autoencoder and has the same convo-
lution structure as GCN.

4.2.3. Evaluation Index

The robustness of the proposed model is verified by the following evaluation indicators:
NMI [46]: The accuracy of comparison between algorithmically divided communities

and generated standard communities is an important measure of community discovery.
The measurement value is generally between 0 and 1. The higher the value is, the more
accurate the detection result of the algorithm will be. When the value is 1, the result
consistent with the label community can be obtained. The formula is as follows:

I(A, B) =
−2 ∑CA

i=1 ∑CB
j=1 Nijlog(

Nij N
Ni·N·j

)

∑CA
i=1 Ni·log(Ni·

N ) + ∑CB
i=1 N·jlog(

N·j
N )

(19)

NMI [47]: AUC is defined as the area under the receiver operating characteristic (ROC)
curve, which is initially used to evaluate the classification effect of a classifier. Specifically,
given the order of edges that are not observed, the AUC value is a random selection of the
edge of a lost edge (e.g., an edge in the EP) and the probability is higher than the edge of a
randomly selected edge not existing (for example, an edge in the US—E), a probability in
the process of the realization of the algorithm, because, considering the time complexity,
we usually calculate the probability of each observed no-edge value instead of a sorted
list. To better estimate the value of AUC in the sorted list case, at each step we randomly
select a missing edge and a nonexistent edge and compare their values. If in n independent
comparisons, the value of the missing edge is higher than that of the non-existent edge for
n′ times, and they are equal for n′′ times, then AUC can be defined as:

AUC = n′+0.5n′′
n (20)

4.3. Parameter Sensitivity Analysis

This section analyzes the effects of parameters α, β, γ, r1, r2 and r3 of the MSDA-
NMF model on the clustering performance. These effects are on the real network, where
ri, i ∈ {1, 2, 3} are the i-level embedding dimensions. To determine the specific parameters
of the model, this paper first fixed all the other parameters except the two changing numbers
based on the OAG data set. Second, the effect of each change is verified by adjusting the
parameters of the two changes. This paper takes the OAG data set as an example to
investigate influences of different parameters. The effects of each parameter are explored
through varying parameters and simultaneously keeping the others fixed. For example, we
observe the effect of α, β by changing α, β and fixing γ with r1, r2, r3 and so on. Specifically,
we change ri, r ∈ {1, 2, 3} from 100, 200, 300, 400, 500, and ask for r3 < r2 < r1.

Figure 2 shows the influence of dimensions r1, r2 and r3 embedded in different layers
on the effects of the three data clustering classes. The lighter the color of the point in the
figure is, the larger the NMI value under the point coordinates. The NMI value of the
yellow point is the maximum, and the NMI value of the purple point is the minimum. The
size of a point also indicates the NMI value of the point. The larger the point is, the greater
the NMI value of the point.
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Figure 2. Analysis of the embedding dimension relationship of different layers.

Figure 3a–c shows the performance of the NMI as these parameters change.

Figure 3. Relationship between α, γ, β and cluster evaluation index NMI. (a) Relationship between α,
β and cluster evaluation index NMI; (b) Relationship between α, γ and cluster evaluation index NMI;
(c) Relationship between γ, β and cluster evaluation index NMI.

From the figures, we can see that:
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1. In Figure 2, when r1 is approximately 200, r2 is approximately 170 and r3 is 150,
NMI is the maximum. If r2 is controlled and r3 remains unchanged, NMI decreases with
the increase of r1, and the dimension of r3 is not lower, but the NMI value is higher.

2. In Figure 3a:
(1) When α is less than 30, and β is greater than 80 and less than 100, the model has

the worst value of robustness.
(2) When α is greater than 40 and less than 80, the NMI value tends to be stable with

an increase in β to less than 50.
(3) When α is greater than 50 and β is less than 30, the model can obtain better

clustering performance at this time.
3. In Figure 3b, when y is in [1, 61], NMI does not change much, indicating that when

γ is in [81, 101], and the clustering performance is relatively stable with increasing γ.
4. In Figure 3c, we notice that in a particular range, when both β and γ increase,

NMI tends to be stable, while when γ and β are in the range [61, 81], NMI reaches its
maximum value.

As for the relationship between α, β, γ and the cluster evaluation index NMI, experi-
mental results show that when r1 = 200, r2 = 170 and r3 = 150, at this point, more effective
network structure features can be obtained, even in low-dimensional space. Therefore, we
set the data in the following experiment when r1 = 200, r2 = 170 and r3 = 150.

4.4. Multiclassification Experiment

Table 3 illustrates the experimental results.
In the HEP-TH dataset, the MSDA-NMF (V2) model has a micro result of 31.15 and a

macro result of 17.01, just slightly below the optimal values of 33.87 and 25.58 for all the
comparative models, respectively, but the results of this model are better than all the other
comparative models except for the optimal value. The MSDA-NMF (V3) model has a micro
result of 35.7, better than all comparative models and 1.83 higher than the AROPE model,
which has the highest micro result among them. In the macro comparison, the macro result
of this model of 19.02 is only slightly lower than the optimal value of 25.58 of the GAE
model, but still performs better in the optimal value than the other comparative models.

The results of the multiclassification experiments of the MSDA-NMF (V2) and the
MSDA-NMF (V2) are compared. In the HEP-TH dataset, the results of the MSDA-NMF
(V2) model are lower than those of the three-layer model. It can be seen that the more
intermediate levels there are in the classification experiments, the more effective the MSDA-
NMF can be in the model. In other citation network data sets, OAG and HEP-PH, the
performance of the three-layer models proposed in this paper is superior to other models.

In addition, the micro and macro data results of the MSDA-NMF (V2) model proposed
in this paper also outperformed the other models in the HEP-PH dataset, and the macro
indicators were higher than the comparison models in the OAG dataset. In the HEP-TH,
OAG and HEP-PH data sets, the micro-F1 and macro-F1 multi-classification evaluation
performance of MSDA-NMF is better than those of NetMF, GAE and other popular feature
models. This proves the effectiveness of our network-embedding model.

What is special here is that the AREOP model performs better than the MSDA-NMF
method for the micro-F1 and macro-F1 metrics in our comparison based on the Wikipedia
data set. This is probably because Wikipedia is a dense word co-occurrence network, so
a relatively low order is sufficient to characterize Wikipedia’s web structure. Therefore,
the MSDA-NMF method based only on matrix decomposition performs poorly in the
classification task on sparse data sets.
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Table 3. Performance evaluation of multi-label classification.

Model Hep-TH OAG Wikipedia Hep-PH
Micro Macro Micro Macro Micro Macro Micro Macro

NetMF 31.54 14.86 16.01 12.10 49.9 9.25 23.87 5.43
M-NMF 21.81 6.53 18.34 11.13 48.13 7.91 24.25 9.17

LINE 23.74 13.32 11.94 9.54 41.74 9.73 25.17 8.32
DeepWalk 29.32 17.38 12.05 10.09 35.08 9.38 26.21 12.43

AROPE 33.87 14.51 19.61 12.78 52.83 10.69 15.39 10.37
GAE 27.11 25.58 16.67 11.85 50.48 10.75 24.66 11.13

MSDA-NMF (V2) 31.15 17.01 15.64 13.88 50.53 9.33 27.14 14.27
MSDA-NMF (V3) 35.70 19.02 19.8 15.83 50.28 8.31 28.5 15.6

4.5. Node Clustering Experiment

In this section, the behavior of node clusters is assessed according to the normalized
mutual information (NMI) of typical metrics. In this paper, we use real data (including
Polbog, Livejournal and Orkut) to assess the clustering performance of the model on
real data sets. The NMI varies from 0 to 1, with a larger value indicating better cluster
performance. In experiments to verify the clustering effect of the model, the standard
K-means algorithm is used. Because the initial value has a significant impact on the
clustering result, the clustering should be repeated 50 times and its average value should
be considered as the result.

Figure 4 demonstrates the clustering ability of nodes with related NMI. It can be seen
from the figure that:

1. In the Polblog and Orkut data sets, MSDA-NMF (V2) and MSDA-NMF (V3) obtained
better results based on NMI compared with all models. In particular, in the Polblog data
set, the MSDA-NMF (V2) and MSDA-NMF (V3) modes also have a great advantage in NMI
value compared with the best DeepWalk mode among the comparison modes. This is
because our method integrates lower-order structural features and multi-layer features
to capture diverse and comprehensive structural features of the network, and can obtain
better NMI values in data sets with a lower number of categories.

2. The model in this paper also achieves better results in Orkut data sets with fewer
categories. What is special here is that in the relatively high number of categories in the
Livejournal data set, the NMI value obtained by this model is slightly lower than that
obtained by the GAE model. The main reason for this is that GAE has the same convolution
structure as GCN and is based on a variational autoencoder, so GAE has better robustness
in link prediction for citation networks.

3. SDNE and LINE only retain the proximity between network nodes and cannot effec-
tively preserve the community structure. Random walk-based DeepWalk and Node2VEC
can better capture the second-order and higher-order similarity. Although AROPE can
capture the similarity of different nodes and capture more global structure information
as the length increases, the omission of community structure makes the algorithm ignore
module information. But for the sparse network and the network without prominent
community structure, the modularity of the NMF is constrained by the similarity of nodes
to each other. Therefore, its performance is relatively low.

This paper also compares the performance of the MSDA-NMF model of three-layer
NMF and the MSDA-NMF model of two-layer NMF in multiclassification experiments.
The results show that the NMI values obtained by the MSDA-NMF (V3) model are higher
than those obtained by the MSDA-NMF (V2) model in all data sets. This proves the validity
of the MSDA-NMF (V3) model in network embedding.



Mathematics 2022, 10, 2750 15 of 18

Figure 4. Evaluation of node clustering performance based on NMI.

4.6. Link Prediction Experiment

Link prediction mainly detects the accuracy of prediction by predicting which pairs
of nodes may form edges and comparing them with the actually deleted edges. In the
experiment, we randomly hide the 10%, 20%, 30%, 40% and 50% edges as test data, and the
other edges are connected. We use the remaining edges to train the robust results of node
embedding vectors. We evaluated the effectiveness of our model based on typical AUC
(Area Under A Curve) evaluation indexes.

Table 4. Experimental results of link prediction.

Data Set Polblog Orkut Livejournal GR-QC

NetMF 0.525 0.650 0.789 0.795
M-NMF 0.672 0.835 0.151 0.843

DeepWalk 0.499 0.487 0.446 0.849
Node2vec 0.495 0.516 0.512 0.530

LINE 0.471 0.470 0.572 0.508
SDNE 0.460 0.521 0.631 0.513

AROPE 0.694 0.646 0.738 0.734
GAE 0.859 0.792 0.967 0.937

MSDA-NMF (V2) 0.672 0.891 0.963 0.884
MSDA-NMF (V3) 0.782 0.912 0.980 0.953

To verify the validity of our proposed model, we first delete the 10% edge on all
network data sets. As shown in Table 4:

1. Compared with other algorithms, MSDA-NMF (V3) improves the prediction perfor-
mance by 10% compared to the optimal prediction model GAE and 64%.

2. Compared to the worst prediction model, MSDA-NMF (V2) has a low prediction
performance of compared to the optimal prediction model in the comparison model.

3. In the comparison data set of Orkut and GR-QC:
(1) The proposed MSDA-NMF (V2) and MSDA-NMF (V3) models obtained the optimal

prediction results.
(2) However, in the GR-QC data set, the accuracy of the MSDA-NMF (V3) model was

higher than that of the MSDA-NMF (V2).
What is remarkable here is that in the Polblog data set, none of the methods proposed

in this paper can obtain the optimal prediction effect. As shown in Table 2, the Polblog
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data set has a small number of pairs of categories, which makes the model unable to obtain
better prediction results in hierarchical operation.

Specifically, to further verify the influence of the proportion of training data on the
model, this paper conducted tests through Livejournal and Orkut data. The results in
Figure 5 show that our method has a certain superiority over all the mainstream methods
for removing different parts of edges in the two data sets. Because networks have different
structural characteristics, the remaining edge of the Livejournal data set is close to the
optimal level at 90%, and MSDA-NMF (V2) obtains prediction results similar to those of
MSDA-NMF (V3). It can be seen that our method has an excellent performance in link
prediction, indicating that network embedding results retain the structural characteristics
of data sets.

Figure 5. Changing the predictive performance of training data ratios.

5. Conclusions and Future Work

This paper introduces the multilayer structure NMF, a complex hierarchical structure
to realize the characteristics of the input data by adding the regularization constraint for
each layer, the essential feature of depicting feature transformation to obtain the data one
by one, to further merge their depth due to the multilayer structure of the encoder MSDA
NMF model. It can effectively improve the detection accuracy and prediction accuracy of
social groups in the complex social management system. Eight popular models, NetMF,
M-NMF, DeepWalk, Node2vec, LINE SDNE, AROPE and GAE were compared with eight
real data sets to verify the robustness of the algorithm.

Although the proposed method (the data set presented in this paper) has a good
detection effect, there are still some problems to be solved; for example, the results of the
model are not optimal in the network with a large number of categories. Therefore, how to
overcome the multistructure characteristics of multicategories in real networks and models
simultaneously is the key to effectively improving the detection performance of the model
in all data sets, and it is also challenging and necessary work [48]. We will take these factors
into account in our future work.
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