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Abstract: Along with the wide use of deep learning technology, its security issues have drawn
much attention over the years. Adversarial examples expose the inherent vulnerability of deep
learning models and make it a challenging task to improve their robustness. Model robustness is
related not only to its parameters but also to its architecture. This paper proposes a novel robustness
enhanced approach for neural networks based on a neural architecture search. First, we randomly
sample multiple neural networks to construct the initial population. Second, we utilize the individual
networks in the population to fit and update the surrogate models. Third, the population of neural
networks is evolved through a multi-objective evolutionary algorithm, where the surrogate models
accelerate the performance evaluation of networks. Finally, the second and third steps are performed
alternately until a network architecture with high accuracy and robustness is achieved. Experimental
results show that the proposed method outperforms some classical artificially designed neural
networks and other architecture search algorithms in terms of robustness.

Keywords: neural architecture search; surrogate model; CLEVER score; adversarial defense

MSC: 68T07

1. Introduction

The rise of deep learning has brought forth a revolution in many fields as well as some
security risk because of its uncertainty. Adversarial examples expose the vulnerability of
deep learning models [1]. These samples are constructed by adding noise that humans
cannot perceive into the original data, resulting in misclassification of a given input for the
deep learning models. This poses a big risk to the applications of neural networks. For
example, by adding a small perturbation to a “stop” road sign, the models may misjudge it
as a “60 km/h” sign, which will cause serious traffic accidents [2]. Therefore, determining
how to improve the adversarial robustness of deep learning neural networks is worthy of
further study.

Existing adversarial defense methods mostly focus on model parameters of neural
networks. For example, adversarial training methods [3–5] add adversarial samples into
the training data to retrain the models to enhance their robustness. However, these methods
will lead to a decline in model accuracy. Some researchers optimize, conceal, or confuse
the gradient of models [6,7] to make it less easy for attackers to use gradient information
to construct adversarial samples. However, this type of method can only defend against
gradient-targeted attack methods.

The architecture of a neural network is a vital factor that affects its robustness [8].
Some neural architecture search approaches have been proposed to build a robust model.
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In [9,10], evolutionary algorithms are used to search for a neural network with both high
accuracy and high robustness. However, the robustness of a neural network is evaluated
by adversarial samples generated by specific attack approaches, such that the optimized
network may not resist other adversarial attacks, especially new attack approaches. Some
methods [11–13], based on the Differentiable ARchiTecture Search (DARTS) [14] algorithm,
assess a model’s robustness using attack-independent metrics so that the optimized neural
network can defend against different adversarial attack approaches. Nevertheless, in
those methods, the two metrics of accuracy and robustness are aggregated into a single
optimization objective by the linear-weighted method, which makes it difficult to balance
the two metrics.

In this paper, we propose a novel Robustness Enhanced method of neural networks
based on Architecture Search with multi-objective evOlutionary optimizatioN (REASON).
Figure 1 describes the overall process of REASON. First, multiple neural networks are
randomly sampled to construct the initial population. Second, the surrogate models are fit
or updated through the individual networks in the population. Third, a multi-objective
evolutionary optimization algorithm [15–18] is implemented to evolve the population of
neural networks. The surrogate models are used to accelerate the evaluation process of
neural network architectures. The second and third steps are performed alternately until
an optimized network architecture with high accuracy and robustness is found. The main
contributions of this paper are as follows:

(1) We propose a novel robustness-enhanced method of neural networks based on archi-
tecture search with multi-objective optimization on the robustness and accuracy.

(2) We analyze the effectiveness of different surrogate models and select the best one to
accelerate the performance evaluation of networks in the architecture search algorithm.

(3) We utilize the CLEVER (Cross Lipschitz Extreme Value for nEtwork Robustness) [19] score,
which is an attack-independent metric, to evaluate the network robustness, so that the
optimized neural network can defend against various adversarial attack approaches.

(4) We conduct extensive experiments on real-world datasets to evaluate the effectiveness
of REASON.
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2. Related Work

We review the literature on robustness-enhanced methods of neural networks from
two aspects that are model-parameter related and model-architecture related.

The methods on model parameters refer to improving network robustness by optimiz-
ing model parameters. For example, Goodfellow et al. [3] proposed that the neural network
is vulnerable to adversarial sample attacks due to its linear characteristics and proposed
to use the adversarial samples generated by the gradient-based attack method for model
training to improve the robustness of the model. Ross et al. [7] proposed a gradient regular-
ization training method, which hides the gradient by penalizing the variation in the model
output relative to the input and can make the model resistant to transfer attacks. Since
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such methods need to calculate the model gradient multiple times, the computing time for
model training will increase exponentially and the accuracy of models will decrease.

The methods on model architecture refer to improving the robustness in the model by
designing the model architecture. Using neural architecture search technology to construct
a robust neural network has become an emerging direction in recent years.

Among the existing studies, one type of approach is to use adversarial training during
the search process to increase the robustness in the model. For example, some studies [8,20]
adopted one-shot NAS technology. When training the supernet, adversarial training is used
to enhance the robustness in the model. The study of [21] is based on the DARTS algorithm,
where for lower-level optimization, adversarial training is used to enhance the robustness
in the model, and for upper-level optimization, model accuracy and model computational
efficiency are taken as the two goals of the multi-objective optimization algorithm. Due
to the use of adversarial training, such methods result in an exponential increase in the
computational complexity of the algorithm, and the searched network is only robust to
some specific attack methods.

Another class of approaches focuses on the search space, which enhances the robust-
ness in the model by enlarging the search space or introducing specific structures in the
search space. For example, the authors of [9] believe that the design of existing search
spaces is derived from good artificial networks, which limits the ability of search algo-
rithms to discover architectures beyond existing knowledge. It divides the population into
hierarchical populations, block-level populations, and model-level populations to ensure a
larger search space. The study of [22] introduced denoising blocks, weight-free operations,
and Gabor filters in the search space to improve the robustness in the model. Such methods
require strong expert experience and are difficult to design.

Some scholars believe that the robustness in the model should not be implicitly im-
proved by adversarial training during the search process but should explicitly define
robustness metrics and directly optimize these metrics to obtain robust architectures. For
example, the study of [11] explored the relationship among robustness, architecture pa-
rameters and Lipschitz constant, and found that an appropriate constraint on architecture
parameters could reduce the Lipschitz constant to further improve the robustness. The
study of [12] mapped the robustness evaluation of the model to the smoothness of its
input loss landscape and used the DARTS algorithm to search. The study of [13] used two
differentiable metrics, the certified lower bound and the Jacobian norm bound, to evaluate
the model robustness and searched with the DARTS algorithm. Such methods combine the
accuracy and robustness in a weighted manner and it is difficult to weigh the relationship
between these two metrics.

In summary, the research on robust architecture search is still in its infancy. There
are some disadvantages: (1) in the method of using adversarial training in the search
process, huge computing power is required and the optimized model is only robust to
some specific attacks and has poor scalability; (2) the method of searching by increasing
the search space requires strong expert design experience; (3) the methods of optimizing
the robustness metrics all adopt the method of transforming multiple metrics into a single
optimization objective in a weighted manner and it is difficult to trade off the relationship
of multiple metrics.

3. Framework of Robustness Enhancement in Neural Networks

In this section, we elaborate on the robustness enhancement of networks based on
neural architecture search techniques. Generally, there are three major challenges for this
issue, namely multi-objective search trade off, network evaluation cost and robustness
evaluation method. First, we use the algorithm of NSGA-II (Elitist Non-Dominated Sorting
Genetic Algorithm) [23] to trade off accuracy and robustness in the multi-objective search.
Second, we train a surrogate model to reduce the cost of network evaluations. Third, we take
the CLEVER score as the robustness evaluation method, which is an attack-independent
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robustness metric. Finally, we propose a novel robust neural architecture search algorithm
based on the above ideas.

3.1. Multi-Objective Search Trade off

Two optimization objectives, accuracy and robustness, need to be considered in the
neural architecture search algorithm. The current multi-objective optimization approaches
can be categorized into two types. One is the scalar method [24–27], which transforms
the multi-objective problem into a single-objective one using a linear weighted method. It
requires multiple experimental attempts to predefine the weights of different objectives.
The other is the population-based method [28,29], which fits the Pareto front of multiple
objectives to help designers make tradeoffs within the set of solutions or works with
aggregation approaches to produce single solutions.

In this paper, the two objectives of accuracy and robustness cannot be simply trans-
formed into a single-objective one using the scalar method since they have different di-
mensions. We use the population-based NSGA-II algorithm, which equally considers the
two optimization objectives to obtain the Pareto frontier solutions. The NSGA-II is a fast
and elitist multi-objective genetic algorithm. It presents a selection operator that creates
a mating pool by combining the parent and offspring populations and selecting the best
solutions. Compared with other multi-objective optimization algorithms, the NSGA-II can
reach a good compromise between the optimization performance and the search efficiency
and can be easily implemented in our experiments.

3.2. Network Evaluation Cost

In the neural architecture search process, huge computing resources and time are
consumed to train a new network and evaluate the performance of its architecture. In
this paper, we take the advantage of surrogate models to accelerate the evaluation of
neural networks without training. A surrogate model is a simple analytical method that
mimics the input and output behavior of complex network evaluation systems. It consists
of an offline surrogate and an online one. The offline surrogate refers to training the
surrogate model before it is actually used in the search process. This method requires a
large amount of training data to be prepared in advance, while it is difficult to guarantee
the evaluation effect of the surrogate model. Different from the offline surrogate, the online
surrogate model is directly utilized in the search algorithm to reduce the evaluation cost
and it is gradually optimized by the search results at the same time. The two processes
are performed alternately to achieve co-evolution. Figure 2 depicts the online surrogate
process implemented in this paper. It is divided into two stages: the evolutionary algorithm
optimization and the surrogate model update.

In the stage of evolutionary algorithm optimization, NSGA-II first generates a large
number of offspring individuals by using the initial surrogate models to evaluate each
neural network. Then, it performs operations, such as crossover, inheritance, mutation,
and replication, on these individuals to construct an offspring population. In the stage of
surrogate model update, the generated offspring population helps to update and fit the
initial surrogate models so that they can assess the performance of networks more accurately
in the first stage. Specifically, we employ the Once For All (OFA) [30] network to specialize
the individual in offspring populations, which means the parameters in each descendant
network architecture can be directly inherited from the OFA network without training.
After that, we evaluate the accuracy and robustness in each specialized neural network and
use them to update the surrogate models. Compared to offline surrogate, online surrogate
requires significantly fewer training data. In this paper, we design experiments to test
many surrogate models, such as multilayer perceptron (MLP), Gaussian processes (GP),
classification and regression tree (CART), and analyzed their performance to select the best
one in our search framework.
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3.3. Robustness Evaluation Method

As mentioned in the last section, when updating the online surrogate models, the
accuracy and robustness in each neural network need to be calculated. For the robustness
evaluation, the defense success rate of the neural network under some attacks can be viewed
as the evaluation indicator. However, this method only works with some specific attacks,
not for all attacks. In this paper, we adopt the CLEVER score to evaluate the robustness
in neural networks, which is independent of any attack approach. The CLEVER score can
estimate the lower bound of the neural network perturbation through the local Lipschitz
constant to ensure that the model can defend against any attack when the perturbation
size is smaller than this score. Compared with other metrics, such as CROWN [31] and
Fast-Lin/Fast-Lip [32], this indicator has the advantages of fast calculation and strong
generality and, therefore, is suitable for the robustness evaluation of neural networks.

3.4. Robust Architecture Search Algorithm

Based on the above ideas, we propose a novel robust neural architecture search
algorithm. As shown in Algorithm 1, from lines 2 to 9, N neural networks are randomly
selected and added into the initial population A. For each individual network architecture,
the network weights are inherited from the OFA network. The network accuracy is obtained
by an accuracy function that calculates the accuracy based on a test data set. The network
robustness is evaluated by the CLEVER score function. Then, the K-iteration process
of network architecture search starts, shown in lines 10 to 21. In each iteration, neural
network individuals in population A are firstly used to fit two surrogate predictors of
network accuracy and robustness, shown in lines 11 to 12. Next, n offspring are selected
by implementing the NSGA-II algorithm to construct subpopulation Ã, where the two
surrogate predictors of accuracy and robustness help to accelerate the evaluation of new
neural networks without training, shown in line 13. Then, the network weights, accuracy
and robustness in the offspring are calculated by the OFA network, accuracy function and
CLEVER function, respectively, and they are added into A, shown in lines 14 to 19. In the
next iteration, based on the new population A, the surrogate models are updated and a
better subpopulation will be generated. Finally, when the iterative multi-objective search
process is done, the non-dominated sorting result of population A is returned, shown
in line 22.
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Algorithm 1. Robust architecture search algorithm

Given: N: the number of random samples; K: the number of iterations of multi-objective search;
A: the population set with empty initial value; Ã: the subpopulation generated in each iteration of
multi-objective search, with a size of n; SS: the search space of neural network architecture; α: the
individual network architecture; Sw: the OFA network; acc(α, w): the function for evaluating the
accuracy of network α with weights w; clever(α, w): the function for evaluating the robustness in
network α with weights w; Sacc: the surrogate predictor of accuracy; Srob: the surrogate predictor
of robustness; NSGA− I I(A, Sacc, Srob): the multi-objective search algorithm for generating
offspring based on the population set A through two surrogate predictor of Sacc and Srob.
Output: Pareto solutions of robust architecture search
1. i← 0, j← 0
2. while i < N do
3. randomly sample individual network αi from SS
4. get weights wi of αi by inheriting from Sw
5. acci = acc(αi, wi)
6. robi = clever(αi, wi)
7. A = A ∪ (αi, acci, robi)
8. i← i + 1
9. end while
10. while j < K do
11. fit Sacc based on A
12. fit Srob based on A
13. Ã = NSGA− I I(A, Sacc, Srob), size

(
Ã
)
= n

14. for each α in Ã do
15. get weights wα of α by inheriting from Sw
16. accα = acc(α, wα)
17. robα = clever(α, wα)
18. A = A ∪ (αα, accα, robα)
19. end for
20. j ← j + 1
21. end while
22. return Non-Dominated-Sort(A)

4. Experiments

In this section, we first introduce the experimental parameter settings and real-world
datasets. Next, we compare the performance of different surrogate models to select the
best one for the robust architecture search. Then, we conduct experiments to verify the
effectiveness of CLEVER score in evaluating the robustness in neural networks. Finally, we
analyze the results of the proposed REASON method.

4.1. Experimental Parameter Settings

The search space of neural network architecture is designed based on the Resnet50 [33]
structure. There are three types of variable parameters in the search space, including the
input resolution, the width (the number of channels at the bottleneck) and the depth (the
number of bottlenecks).

Figure 3 depicts the comparison of the Resnet50 and the search space. For the network
structure of the search space, parameters in the blue part are consistent with Resnet50, while
parameters in the cyan part need to be determined by the architecture search algorithm.
Specifically, a network consists of multiple stacked bottlenecks. A bottleneck includes three
convolution layers: a 1 × 1 convolutional layer for channel reduction, a 3 × 3 convolutional
layer for feature extraction and a 1 × 1 convolutional layer for channel expansion. The
number of channels for each bottleneck is controlled by the parameters of w and e. The w
represents the width multiplier, controlling the number of input and output channels of the
bottleneck, with a value among {0.65,0.8,1.0}. The e represents the expand ratio, determining
the number of middle channels in the bottleneck, with a value among {0.2,0.25,0.35}. The
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number of bottlenecks is controlled by the parameter d, with a value range of {0,1,2}.
Additionally, the input image size (input resolution) varies from 128 to 224.
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Except for the search space SS in Algorithm 1, other parameters in this algorithm are
tuned iteratively by a grid search strategy until they have made a tradeoff between the
optimization performance and the computational efficiency. Specifically, the number of
random samples N is set to 150. The number of iterations of multi-objective search K is
set to 60. The size of the subpopulation generated in each iteration is set to 15. The public
dataset ImageNet [34] is used in all the experiments.

4.2. Surrogate Model Performance Analysis

In this subsection, we compare the performance of three surrogate models of MLP, GP
and CART so as to select the best one in the robust architecture search algorithm.

4.2.1. Comparison of Root Mean Square Error

In Algorithm 1, the offspring networks are generated in each search iteration and used
to fit the surrogate model. In the same iteration, we firstly adopt the updated surrogate
model to predict the accuracy or robustness in the offspring network. Then, we calculate
the true accuracy or robustness in them on the validation dataset. Finally, we compare the
performance of three surrogate models by calculating the root mean square error between
the predicted value and the true value of each model. The smaller the mean square error is,
the better the surrogate model will be.

As shown in Figure 4, the RMSE of three surrogate models firstly increases and then
gradually decreases. The reason is that the number of offspring networks is too small
to fit the surrogate model well in the initial phase. With an increase in the number of
iterations, more offspring data are generated to update the surrogate model, leading to a
rapid decrease in RMSE. Although the RMSE of MLP is better than others, the predictive
effect of three surrogate models is not very different.
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4.2.2. Comparison of Correlation Coefficient

The NSGA-II algorithm pays more attention to the “good or bad relationship” between
offspring networks rather than how accurately the surrogate models predict, since it needs
to find the best individual through this relationship. Therefore, we can judge whether
prediction results of the surrogate model are closely related to the ranking relationship
among offspring individuals by calculating the rank correlation coefficient.

Kendall’s rank correlation coefficient [35] and Spearman’s rank correlation coeffi-
cient [36] were used for analysis. Those two methods measure the degree of similarity
between two rankings and can evaluate the significance of the relation between them.
Specifically, for the ranking set of X and Y, if there are more pairs (i, j) that satisfy xi > xj
and yi > yj or xi < xj and yi < yj, the rank correlation coefficient between X and Y will be
greater, and vice versa. In our experiment, X is the prediction set of surrogate models and Y
is the true value set of performance metrics for offspring networks. The coefficient is inside
the interval [−1, 1], where 1 means positive correlation, −1 means negative correlation and
0 means no correlation.

As shown in Figure 5, the values of two types of rank correlation coefficients for three
models are all above 0.8. It indicates that the ranking relationship between prediction values
and the true results is closely related. We can utilize the estimation of surrogate models
to effectively represent the ordinal association among offspring network performance.
Moreover, we can see that the correlation coefficients of GP and CART keep stable with the
increase in the number of iterations and is significantly better than that of MLP. The main
reason is that MLP is much more complex and needs more training samples to fit it.
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In summary, the root mean square errors of the three surrogate models are not very
different, while the correlation coefficients of the GP and CART outperform the MLP and
the GP is the best. Therefore, we choose the GP model as the surrogate model in the
subsequent experiments.

4.3. Robustness Evaluation Effectiveness Analysis

In this subsection, we conduct experiments to verify whether the CLEVER score is
effective in evaluating the robustness in neural networks.

4.3.1. Randomness Analysis

The CLEVER score estimates the lower bound of the robustness in the model through
a random sampling method, which has a certain randomness and is not a strict boundary.
As mentioned above, NSGA-II focuses on the ranking relationship between the robustness
in individual networks. Given the neural networks, we can calculate the CLEVER score for
them multiple times. If the ranking relationship between the CLEVER scores is fixed in
most test time, it indicates that the randomness of the CLEVER score has no influence on
the evaluation of the robustness in neural networks.

In the experiment, three different neural networks are selected and their CLEVER
scores are calculated 100 times, respectively. Each time, 100 sample points are selected and
the batch size of each sample point is set to 500. Each batch of 64 samples is sampled and
the perturbation radius is set to 5 with the perturbation norm of 2.

Figure 6 shows the experimental results. The CLEVER score of model 1 is the
smallest and the CLEVER score of model 3 is the largest. The ranking relationship
among the CLEVER scores of three models remains stable in 90 of the total 100 running
times, which proves the randomness of the CLEVER score has little effect on the model
robustness evaluation.
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4.3.2. Coefficient Analysis

To further demonstrate the effectiveness of the CLEVER method, we assess the corre-
lation of two rankings, the CLEVER score and the defense success rate of attacked models.
Specifically, highly robust neural networks should have large CLEVER scores as well as
high defense success rates against various adversarial attacks. We select the FGSM [2]
(Fast Gradient Sign Method) as the adversarial attack against neural network models. The
defense success rate of the model is defined as m/n ∗ 100%, where n is the number of
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adversarial samples generated by FGSM and m is the number of samples successfully
defended by the model. In this experiment, we firstly sample 100 subnets from the OFA
network and obtain their CLEVER scores. Then, we estimate their defense success rate
under FGSM attack on the validation dataset. Finally, we assess the significance of the
relation between the CLEVER score and the defense success rate rankings by calculating
Spearman’s and Kendall’s rank correlation coefficient.

The experimental parameters are set as follows. For the CLEVER score, 100 sample
points are selected and the batch size of each sample point is set to 500. Each batch of
64 samples is sampled and the perturbation radius is set to 5, with a perturbation norm of 2.
The average value of five CLEVER scores for each model is taken to eliminate the influence
of random sampling on the results. For the defense success rate, the perturbation size of
the FGSM attack is set to 4/255 and the perturbation norm is set to 2, with the number of
generated adversarial samples as 5000.

As shown in Table 1, the Spearman’s rank correlation coefficient is 0.9003 and Kendall’s
is 0.7208, which demonstrates the ranking association between CLEVER score and the
defense success rate is strongly related. The CLEVER score can effectively evaluate the
robustness in neural networks.

Table 1. Correlation coefficient between CLEVER score and defense success rate.

Spearman’s Rank Correlation Coefficient Kendall’s Rank Correlation Coefficient

0.9003 0.7208

4.4. Architecture Search Results Analysis

In this section, we verify the effectiveness of REASON through three comparison
experiments. First, we compare the search results of REASON with some classical artifi-
cially designed neural networks. Second, we demonstrate the performance advantages
of REASON compared with other robust enhance methods based on architecture search.
Finally, we prove the networks searched by REASON have better robustness to various
attack methods.

4.4.1. Comparison with Artificially Designed Networks

We compare the robustness in networks found by REASON with that of several well-
known artificially designed networks, including AlexNet [37], VGGNet [38], ResNet [33],
SqueezeNet [39], DenseNet [40], GoogLeNet [41], ShuffleNetV2 [42], MobileNetV3 [27]
and MnasNet [25]. The robustness evaluation metric is the defense success rates of each
network under various adversarial attacks. The selected attack methods include FGSM,
PGD (Projected Gradient Descent) [5], C&W (Carlini and Wagner) [43] and Deepfool [44].
For FGSM, set the perturbation size to 2/255 with the perturbation norm as infinite. For
PGD, set the perturbation size to 4/255, the step size to 2/255, the number of iterations to
5 and the perturbation norm to infinite. For C&W, set the maximum number of iteration
steps to 60. For Deepfool, set the overshoot parameter to 10, the class gradient to 1, and
the maximum number of iteration steps to 50. FGSM and PGD select the samples from
the entire validation set of the ImageNet dataset due to their fast attack speed. CW and
Deepfool randomly select 500 and 100 samples in the validation set, respectively.

Figure 7 shows the experimental results. The small orange dots represent artificially
designed networks, while the large blue dots depict networks searched by REASON.
The horizontal axis represents the classification accuracy of neural networks under clean
samples and the vertical axis describes their defense success rates under FGSM, PGD, C&W
and Deepfool, respectively. It can be seen that the accuracy of the searched network is
higher than that of all other artificially designed networks. For the defense success rate, the
searched network also outperforms others under all attack methods, except for C&W.
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The experimental details are shown in Table 2. The number in bold is the best value
for each column. We can see that the performance of the network searched by REASON is
much better than all other networks for all attack methods except for C&W. Particularly, for
the accuracy under clean samples, the searched network is 22.4% higher than the AlexNet
network. For the defense success rate, the searched network is 25.18% higher than the
ShuffleNetV2 under FGSM attack, 10.51% higher than the VGG13 under PGD attack and
47% higher than the AlexNet under Deepfool attack, which demonstrates the superiority
of REASON.

Table 2. Comparison of the network searched by REASON and artificially designed networks.

Network Accuracy FGSM PGD C&W Deepfool

Searched Network 78.908 43.118 18.272 7.4 65.0

AlexNet 56.522 31.224 11.254 13.8 18.0
VGG13 69.928 23.746 7.456 8.2 29.0
VGG19 72.376 28.528 8.33 7.8 29.0

ResNet50 76.13 33.856 8.67 9.8 42.0
ResNet101 77.374 36.016 9.198 9.4 42.0

SqueezeNet 58.092 20.73 7.966 8.0 26.0
DenseNet169 75.6 29.902 9.026 9.6 46.0
GoogLeNet 69.778 30.264 8.68 14.8 37.0

ShuffleNetV2 69.362 17.792 8.69 3.8 34.0
MobileNetV3_small 67.668 19.056 8.16 0.4 37.0
MobileNetV3_large 74.042 17.892 7.5 2.8 29.0

MnasNet 73.456 19.99 8.09 6.0 40.0

4.4.2. Comparison with Other Robust Architecture Search Algorithms

We evaluate REASON against the following same types of representative robust
architecture search algorithms: (1) RobNet [8], searching targets in the supernet based on
adversarial training; (2) SDARTS-ADVand PC-DARTS-ADV [45], finding networks using
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DARTS algorithm; and (3) DSRNA-CB and DSRNA-Jacobian [13], performing searches
based on differentiable robustness evaluation metrics.

In this experiment, two metrics are used for comparison. One is the accuracy under
clean samples. The other is the defense success rate of each network under FGSM and
PGD attacks. For FGSM, set the perturbation size to 2/255 with the perturbation norm as
infinite. For PGD, set the perturbation size to 2/255, the number of iteration steps to 100,
the iteration step size to 2/255 and the perturbation norm to infinite. According to [13],
the searched network is retrained with Jacobian regularization. For a fair comparison,
we implement the same Jacobian regularization training on the searched network, with a
regularization ratio of 0.001 and an epoch of 5.

Table 3 shows the comparison results of different search algorithms. For the accuracy
under clean samples, REASON is slightly lower than other methods except for RobNet-
large. DSRNA-Jacobian has the highest accuracy, only 2.8% higher than that of REASON.
For the defense success rate under FGSM and PGD attacks, REASON greatly outperforms
other algorithms. Specially, REASON is 22.72% higher and 22.79% higher than the RobNet-
large under FGSM and PGD attacks, respectively. To sum up, REASON is comparable to
other methods in accuracy but much better in robustness.

Table 3. Comparison of search algorithms.

Search Algorithms Accuracy FGSM PGD

REASON 73.066 62.458 59.93

RobNet-large 61.26 39.74 37.14

SDARTS-ADV 74.85 48.09 46.54
PC-DARTS-ADV 75.73 48.25 46.59

DSRNA-CB 75.84 50.89 45.39
DSRNA-Jacobian 75.88 48.69 43.79

4.4.3. Comparison with Search Algorithm Using Attack-Dependent Robustness Metric

Our search method adopts the CLEVER score, which is an attack-independent metric
to evaluate the network robustness, so that the searched neural network can defend against
all types of adversarial attacks. To verify it, we alter Algorithm 1 by replacing the CLEVER
score with an attack-dependent robustness metric and compare it with the original REASON
method. In this experiment, the attack-dependent robustness metric is the defense success
rate under FGSM attack. For the parameters of FGSM, the perturbation size is 4/255 with
the perturbation norm as infinite. The other parameters are the same as Algorithm 1.

Similarly, we use two metrics to compare the altered search algorithm with REASON,
which are the accuracy under clean samples and the defense success rates under FGSM,
PGD, C&W and Deepfool attacks. For FGSM, the perturbation size is 2/255 with the
perturbation norm as infinite. For PGD, set the perturbation size to 4/255, the number of
iteration steps to 5, the iteration step size to 2/255 and the perturbation norm to infinite.
For C&W, set the maximum number of iteration steps to 60, the learning rate to 0.005, the
confidence of adversarial examples to 0, the relative importance constant of the perturbation
size and classification confidence to 0.0001 and the number of binary search steps to 5. For
Deepfool, set the overshoot parameter to 10, the number of calculated gradient categories
to 1 and the maximum number of iteration steps to 50.

As shown in Table 4, the first column represents the two search algorithms with
different robustness evaluation metrics. We can observe that REASON with CLEVER score
is superior to the algorithm with the attack-dependent metric in almost all comparisons.
For the defense success rate under FGSM attack, REASON with CLEVER score is 0.2%
higher than the algorithm with the FGSM-dependent metric. The experimental results
indicate that the networks searched by REASON are more robust to different adversarial
attacks than networks searched by using attack-dependent metrics.
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Table 4. Comparison of search algorithms with different robustness evaluation metrics.

Metrics Accuracy FGSM PGD C&W Deepfool

Attack-Dependent 78.732 43.012 18.054 7.6 63.8
CLEVER Score 78.908 43.118 18.272 7.6 65.0

5. Conclusions

In this paper, we proposed a novel architecture search method based on a multi-
objective evolutionary algorithm for enhancing the robustness in neural networks. The
method uses NSGA-II to balance the optimization objectives of network accuracy and
robustness. The online surrogate models are trained to reduce the computational cost of
network performance evaluation. The attack-independent metric, CLEVER score, is used
to evaluate networks’ robustness, which enables the optimized neural network to defend
against different adversarial attacks. Experimental results on real-world datasets show
that the networks searched by the proposed method have better robustness than several
classical human-designed neural networks. Moreover, the proposed method outperforms
other neural architecture search algorithms in the robustness in models.

The future work will focus on exploring more effective robustness evaluation met-
rics and search space, so as to discover a neural network architecture beyond current
human knowledge.
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