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1. Introduction

One of the important theories in the study of Banach spaces is the theory of tensor
norms (see Section 2 for the definition of tensor norm). It provides not only new examples
of Banach spaces but also a powerful tool in the study of Banach operator ideals. One may
refer to [1-5] and the references therein for various information and content about tensor
norms. Throughout this paper, Banach spaces will be denoted by X and Y over R or C, with
dual spaces X* and Y*, and the closed unit ball of X will be denoted by Bx. We will denote
by X ® Y the algebraic tensor product of X and Y. The most classical two tensor norms are
the injective norm € and the projective norm 1t, which were systematically investigated by
Grothendieck [6,7]. Foru € X®Y,

!
e(u; X,Y) :=sup {’ Y x*(xn)y*(yn)| : x* € Bx+,y" € By*},
n=1

where Yl _, x, ® y, is any representation of u, and

1

1
(X, Y) = inf{ Yo xalllyall :u = Y xu @y, € N}.
n=1 n=1

More recently, the author [8] introduced a tensor norm related with the injective
norm. Lapresté [9] introduced the most generalized version «y,; of the projective norm,
and its some related topics were studied by Diaz, Lépez-Molina, Rivera [10] and the
author [11]. Many of the interesting tensor norms can be obtained from the tensor norm
apg (1 < p,g<oo,1/p+1/q>1), which is defined as follows. Let 1 < r < oo with
1/r=1/p+1/g—1.Foru e X®Y,let

apqg(u) == inf{”(/\n)fqﬂnr SUP i eBy . \|(x*(Xn))51:1|\q* SUPycp,. H(y*(yn))ln:1||p* -u
=Y AnXn @yl € N},

where p* is the conjugate index of p and || - ||, means the /,-norm. Then, we see that

1
8p(0) = inf {[(xall s lly sup 10" ()il 5= 32 w0 @1 €N =y 0),
Y*EByx n=1
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wp(u) := inf { SUP - cBy. [[CaE) supy«cp,., |I(y* (Yn)) e llpe s
= 251:1 Xn @ Yn,l € N} = wp,p- (1)

and 7t(u) = aq,1(u). The tensor norms g, and w, were introduced and studied by Chevet
and Saphar [12,13]; see [10,11,14-24] and the references therein for the investigation on
related topics.

In this paper, we consider another generalization of ¢, and w;. These tensor norms
are somehow determined by the Banach space /;,. Naturally, one may extend these notions
by replacing ¢, by a general Banach space with a Schauder basis. Throughout this paper, E
is a Banach space having the 1-unconditional Schauder basis (e, )n, (€})x is the sequence
of coordinate functionals for (e, ), and E, := span{e;; }_;. For a finite subset F of N and
{xn}nep C X, let

L and || (8uerllenco == sup | X ¥ (xuen

|Gennerllec) = || X lxalen
neF x*€Bxx ' neF

e
We are now ready to introduce the main notion in this paper.

Definition 1. Foru € X®Y, let

Se(1; X,Y) := inf{H(xn)neF”E(X)”(yn)neFHEié’(Y) tu=) xn®@ynFC N}/

neF

we(u; X,Y) = inf{”(xn)neF”Ew(X)||(yn)n€F||E}:’(Y) U=y X ®yn F C N}-
neF

For instance, gy, = gy and wy, = wp (1<p<o),and g, = We, = §oo = Woo-

Tensor norms are closely related with normed operator ideals. Actually, in view of
the monograph of Defant and Floret [2], there is a one-to-one correspondence between
maximal Banach operator ideals and finitely generated tensor norms. A tensor norm «
is said to be associated with a normed operator ideal [A, || - || 4] if the canonical map from
A(M,N) to M* ®, N equipped with the norm « is an isometry for every finite-dimensional
normed spaces M and N. It is well known that g, is associated with the ideal of p-nuclear
operators. The starting point of this paper comes from [25], where the E-nuclear operators
(see Section 2 for the definition of E-nuclear operators) were defined by replacing ¢, by E
in the notion of p-nuclear operators. The main goal of this paper is to find a Banach space
E for which gr and wg, are tensor norms, and show that g and wr are associated with the
ideals of E-nuclear operators. Obtaining some results for ¢g and wg, we provide a base
for further investigations of the gg- and wg-tensor norms and E-operator ideals. We focus
on the Banach space E = (¥ /;)p (1 < p,q < c0) of infinite £, direct sum of /;s, which is
a generalization of /. For this case, we extend some well known results for g, and w,
as follows.

In Section 2, for E = (¥ 4;)p (1 < p,q < o), we prove that g and wg are finitely
generated tensor norms, and it is demonstrated that ¢gg and wg are associated with the
ideals of E-nuclear operators. In Section 3, we prove that g is left projective and for every
Banach space X, the injective tensor product X ®; E is isometric to X ®y, E; furthermore,
if (e,)n is shrinking, then E* ®, X is isometric to E* ®y,, X. Additionally, we establish the
completions of our E-tensor norms for E = (3 /;),, and as an application, we represent
E-nuclear operators acting on dual spaces. We refer to the book of Defant and Floret [2]
as a reference to the main notions and formulas in the theory of tensor norms and (quasi)
normed operator ideals.

2. The gg- and wg-Tensor Norms and Their Associated Operator Ideals

Let us recall that a tensor norm « is a norm on X ® Y for each pair of Banach spaces X
and Y such that
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(TND) e<a<rm
(TN2) for all operators T : X1 — Yy and T : Xo — Y>,

IT1®@Ts: X1 @a X = Y1 @4 Yo < || T2 ||| T2 |-
A tensor norm « is said to be finitely generated if
a(u; X,Y) = inf{a(u; M,N) :u € M® N,dim M, dim N < co}
foreveryu e X®Y.

Proposition 1. Suppose that (ey), is normalized. If g¢ and wg satisfy the triangle inequality,
then they are finitely generated tensor norms.

Proof. We only consider gg. Let X and Y be Banach spaces. Let c € C and let u =
Y ueF Xn @ Y, be an arbitrary representation in X ® Y. Then

ge(cu; X,Y) < ||(an)neF||E(X)H(yn)neFHEzf(Y) = |C|”(xn)nEFHE(X)H(yn)neFHEZé’(Y)'

Thus ge(cu; X,Y) < |c|lge(u; X,Y). Since gp(u; X,Y) = ge((1/¢)(cu); X,Y) <
(1/el)ge (et X, Y), ge(e; X, Y) > lelge(u X, Y).

(ITN1): Let u = Y _,cr Xn ® Yy, be an arbitrary representation in X ® Y. Let x* € Bx-
and y* € By«. Then

| L # Gy )] = | ( Sy ei) ( " Gen )| < 1ol | meellezer
and

Se(1; X,Y) < ZgE(xn ®Yn) < 2 (EANZAE

neF neF
It follows that e(u; X, Y) < gp(u; X, Y) < m(u; X, Y), and so

;X Y)=0<u=0

forue X®Y.
(TN2): Let T7 : X3 = Yy and T, : Xo — Y, be operators. Let u € X; ® X, and let
u =Y ,cr X; ® x2 be an arbitrary representation. Then

SE(Ti @ T2)(u); Y1, Y2) = gE( Z;:Tlx}q ® Tyxy; erYz)
ne
< N(Tixp)neell e 1(T2xi)ner | 2 ()
= IT N T2/ NT2 ) Tracs)ner a1/ I T2l T2 ner |l g vy)
< ”TlH”TZH||(x111)n€FHE(X1)H(X%)HGF”ES:’(XZ)'
Hence
Se((Th ® To)(u); Y1, Y2) < || Ta[|[| T2llgE (; X1, Xa).

To show that g is finitely generated, let u € X® Y and let u = Y, cr x4 @ y, be
an arbitrary representation. Let M := span{x, },cr and Ny := span{y, } ,cr. Using the
Hahn-Banach extension theorem, we have
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inf{ge(u; M\,N) :u € M® N,dim M, dim N < oo}
< ge(u; Mo, No)

< Nl uerllemy sup || X =" twer ]|

Z*GBNS neF
= || (xn)nerllEcx) | (Yn)nerllEey)

Hence,
inf{gp(u; M\,N) :u € M@ N,dimM,dim N < oo} < gp(1; X,Y).
O

We can now prove:

Theorem 1. If E = (L 44)p (1 < p,g < ), E = (Lco)p (1 < p < o) or E = (L)
(1 < g < ), then gg and wg are finitely generated tensor norms.

Proof. We only consider gr. Let X and Y be Banach spaces. By Proposition 1, we only need
to show the triangle inequality of g.

For the he case E = (L. {;)p (1 < p,q < ), letu,v € X® Y and let § > 0 be given.
We can find representations

1ol I
U=y, Zx}zk®y111kandv: Zlkzxik@?yik
n=1k=1

n=1k=1

such that
(e ket e e I aiet it e vy < (14 6)8E (1 X, Y),

[I(C=A /- llex ||((3/$lk)§<=1)fq:1||E10(Y) < (1+90)8e(v; X, Y).

We may assume that

1 Cepk=t)n=1llE) < ((1+8)ge(w; X, Y))P,
H(Wmk=t)n=1llw vy < ((1+0)ge (X, Y))M7"
H(Ciet)n= e < (1 +0)ge (v X, V)P,
I(Wmk=t)n=1llEzr) < (L+0)ge(v; X, Y)P

Since
i

2 1 ,
uto=3 Y ) X OV
i=1ln

=1k=1
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ge(u+0;X,Y)
2 1 Lo s | e
SLL R e (RE (R ) )

1/p

< (% (L itr)” i (k; 1))
-l— sup Zl: (Zl: ynk K )P*/q*)l/l’*

Yy*EByx n=1 k=1
(<1+5)(gg(u X,Y) 4 ge(0; X, V))YP((146)(ge(w; X, Y) + ge(0; X, Y)) VP
= (1+9)(ge(; X,Y) + ge(v; X,Y)).

Since 4 > 0 was arbitrary,
ge(u+vXY) <ge(w; X, YY)+ ge(v; X, Y).

For the case E = (Y /1)y (1 < p < co):

ge(u+7;X,Y)
. 1/ 2 1 . A 1/pF
(ZZMZ (Z\Ixzkl\)r]) pyfgw(;E(éﬁlw*(yzw) ’
L 1
< (; (’_z;l||x;k|)p+g (X 50)")
«\ 1/p"

1 !
((sup Yo (sup Iy (pol)” + sup Y (sup Iy (v20D)")

y*€Bys =1 1<k<I y*E€By« =1 1<k<I
< ((1+0) (g X,Y) +ge (0 X, Y)) /P ((1+6) (ge(1: X, Y) + ge(v; X, Y) )/
= (1+0)(ge(1; X, Y) + 8 (v; X, Y)).
For the case E = (}.4;)1 (1 < q < o0): We may assume that
|\((x31k)§<:1)51:1“£(x) <(1+0)ge(w; X,Y), ”((y;k);(:l)fq:lHEi”(Y) <1

(k=) nea e < (14 8)8e (0 X,Y), (v ket D nat lpe(y) < 1.
Then

o5
?
+
S

|xnqu> sup  sup (Zly Yik) I")W

y*EByx i=1,2,1<n<l

(k lllxik\lq) " Z (2 I<%17)

+0)(8e(; X, Y) +g5(v, X,Y)).

I
—
3
Il
—_

IN
MN
MN

=~ \><
M- =

1/9

IN
1=

~~ =
;_\

For the case E = (Y ¢co)p (1 < p < c0):
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ge(u+v,X,Y)

2 1 ) 1/p 2 ! ! . 1/p
< (L X Csup lg?) ™ sup (XX (XLl widl) )

i=1n=1 1<k<I Y*€Byx “i=1n=1 k=1

! 1/p
< (X Coup llxel)? + Y (sup 20)?)

n=1 1<k< n=1 1<k<I

] a ! “ P\ 1P

( sup Z(ZIy (vh)l)” + sup Z(Zly 7200)")
y EBy* n= k=1 y GBy* n= =1

k
< ((1+0) (88 X,Y) + g2 (0; X, V)P ((1+6) (ge(1: X, Y) + ge(v; X, Y) )/
= (1+0)(ge(1; X, Y) + 8 (v; X, Y)).

For the case E = (}_{;)¢, (1 < g < ): We may assume that

H((x}qk)%c:ﬂln:lHE(X) <1 ||((y11k)§<=1)£1:1”w(y) <(1+0)ge(w; X,Y),

(G- =1 e < LI Wak=Dn=allEx(r) < (1+0)ge(0: X, Y).

Then
ge(u+v,X,Y)
! /q 2 1 I IR V7
sup (z Iigli?) " sup YL (Ll elr)
i=12,1<n<l k=1 Y*€Byx i=1n=1 k=1
1 1/¢* 1 ! * 1/q*
< sup Z(Z wl”) "+ sup Y (X AN
Y E€Byx n=1 k=1 Y*EByx n=1 k=1
<(1+0)(ge(w; X,Y) +ge(v; X, Y)).

The cases E = (}_ /1), and E = (}_cp); also follow from similar proofs. [J

Throughout the remainder of this paper, we will assume that gr and wr, are finitely
generated tensor norms. For a Banach space X, let us consider the Banach spaces
(e
E(X) := {(xn)n in X : Y |lxu|len converges in E}
n=1

equipped with the norm || (x4 )n[|g(x) := | 2ok l|xnllen |z,
EY(X) := { Xp)pin X : 2 (xy)en converges in E for each x* € X*}
equipped with the norm || (xy)n || po(x) = SUP ¢, 11 x*(xn)en||g and

_o}

EY(X) := {(xn)n inX: hm sup HZx Xn)eén

_>OOX*€B * o on>l

equipped with the norm || (xn)n || go(x)
Let X and Y be Banach spaces, and let T : X — Y be an operator such that

n=1
where x;,®y,(x) = x;;(x)y,. The following operators were introduced in [25]. We say

that T is E-nuclear (respectively, dual E-nuclear) if (x};), € E(X*) (respectively, E¥(X*))
and (yn)n € EX(Y) (respectively, E(Y)). The collection of all E-nuclear (respectively, dual
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E-nuclear) operators from X to Y is denoted by N, E(X,Y) (respectively, NE (X, Y)), and for
T € Ne(X,Y) (respectively, NE(X,Y)), let

Tz := i [[ ) nll gy | W)l (v

(respectively, || T|| e == inf | (x;)ul| g x+) [| )l E(r)

where the infimum is taken over all such representations. We say that T is uniform E-
nuclear (respectively, dual uniform E-nuclear) if (x};), € E*(X*) (respectively, E¥(X*)) and
(Yn)n € EX(Y) (respectively, E*(Y)). The collection of all uniform E-nuclear (respectively,
dual uniform E-nuclear) operators from X to Y is denoted by ,N(X,Y) (respectively,
#NE(X,Y))and for T € ,NE(X,Y) (respectively, ,N'E(X,Y)), let

1Tl := [ ()l o 0y | )l e

(respectively, |||,y == inf || (x3)nll g2 () [|(Yn)nll Eo(v) )

where the infimum is taken over all such representations. For instance, Ny, is the ideal of
p-nuclear operators, and , Ny is the ideal of p-compact operators (cf. [2,15]).

Let F be the ideal of finite rank operators and let X and Y be Banach spaces. For
TeF(XY)let

||T||/\/g = inf{H(xfz)neFHE(X*)H(]/n)neP\ Evy): T = %X,ﬁ@vn, finite F C N},
1Tl pe = inf{||(x;§)neFHE10(X*)||(yn)neF||E(Y) T= P X, ®Yn, finite F C N},
1Tl p0 = inf{||(x§§)nep||gw(x*)||(yn)neP||Ezy(y) T = %xﬁ@/n, finite F C N},
1T gz = inf { I ne e e | dner ey = T = L i, fnite F C N},

Let a! be the transposed tensor norm (see [2]) of a tensor norm «. Let X and Y be Banach
spaces. For T = Y, crxiQy, € F(X,Y), letur := Y ,crxi @y, € X* @Y. Then we
see that

Tl o = 8E(ur; X7, V), T,y = e (ur; X7, Y),
Il = g X5, Y, T e = wh (s X7, ).
Proposition 2. If X or Y is a finite-dimensional normed space, then
17l = 1T 1 Tlage = ITHwe 1Tl e = DT 1Tl pge = T,
for every operartor T from X to'Y.

Proof. We only consider NF. Let T : X — Y be an operator, and let § > 0 be given. Let
T= Z X @Yn
n=1

be a dual E-nuclear representation such that

Gl e [ Wndalleery < (14T pre-
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If X is finite-dimensional, then there exists an I € N such that

| ¥ xmew| <sup X i)l
n>1+1 x€Bx n>1+1
=sup (Y lw@len) (X lvallen)
x€Bx “n>I+1 n>1+1
§||(x:;)n|E’*”(X*) Z [ynllen E
n>1+1

< 8l Tl e/ lidx

where idy is the identity map on X. We have

NE + H 2 X @Yn
0

1
< *
1Tl < | n; X5 @Yn p e

< inlles e | Gadallgee) + || & xi@yn

lidx |
n>1+1

< (14 20)[|T| ye-
If Y is finite-dimensional, then idx can be replaced by idy in the above proof. O

From Proposition 2, we have:

Corollary 1. The tensor norms gg, g%, wg and wk, respectively, are associated with [N, || - || ],

WE A el LeNE - g ) and [WNE |-l ).

3. Some Results of the gg- and wg-Tensor Norms

A tensor norm « is called left-projective if, for every quotient operator q : Z — X, the
operator
gRidy : ZQRy Y = X®s Y

is a quotient operator for all Banach spaces X,Y and Z. If the transposed a' of « is left-
projective, then « is called right-projective.

Proposition 3. The tensor norm g is left-projective.
Proof. Let g : Z — X be a quotient operator. To show that the map
qRidy : Z Qg Y — X ®g, Y
is a quotient operator, let u = ), cr Xy @ yn € X Qg Y. We should show that
SE(; X, Y) > inf{gp(v; Z,Y) :v € Z®g, Y,q®idy(v) = u}.
Let & > 0 be given. Since g is a quotient operator, there exists {z, },er C Z such that

qzn = Xn, ||zall < (14 0)||xn|
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for every n € F. Then we have
inf{gp(v;Z,Y) :v € Z®g, Y,q®idy(v) = u}
< gE( Z Zn ®yn;Z/Y)
neF
< N @n)nerlle) 1 (Yn)ner |l e, yo )

= H Y Ilzallen

neF

(1+0)|| ¥ llxalen

neF

N n)nerlle,)e(

M Wn)nerll e,y

Since u = ) ,,cr Xn ® Y, Was an arbitrary representation,
inf{gp(v;Z,Y) v € Z®g, Y,q®idy(v) = u} < (1+0)ge(w; X,Y).
Since 6 > 0 was also arbitrary, we complete the proof. [

For a tensor norm &, we will denote by X®,Y the completion of the normed space
X ®a Y.

Lemma 1 ([2], Proposition 21.7(1)). For a finitely generated tensor norm «, if a Banach space X
has the approximation property, then for every Banach space Y, the natural map

Iy : Y&, X — Y®:X
is injective.
Theorem 2. For every Banach space X,
X®E=X®qugE
holds isometrically, and if (ey)y is shrinking, then
E*®e X = E* Qup X
holds isometrically.

Proof. In order to prove the first statement, let u € X ® E, and let U : X* — E be the
corresponding finite rank operator for 1. Then, U*(E*) can be viewed with a subset of X.
Thus, for every x* € X*,

Ux* =) (efUx*)e; = Y x*(U*e} e;.
i=1 i=1
Since U(Bx~) is a relatively compact subset of E,

/ l
time( ) Uef © e —u; X,E) = lim | Z Ue; ce; — U|
—oo N\ = !

[—o0

= hm sup HZ efUx™)

=0 X*EBX* i=1

=0.
E

Consequently,

[e9)
=) U'ef@e
i=1
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converges in X&,E.
To show that the above series unconditionally converges in X®y,,E, let § > 0 be given.
Let {Ux; }]' | be a 6/2-net for U(Bx+). Choose an I; € N so that

| T (eruxpe| gg

>l

for every k = 1,...,m. Now, let G be an arbitrary finite subset of N with min G > I;. Let
x* € Bx+ and e* € Bg+. Letky € {1, ..., m} be such that

* * (5
U — U e < 5.

Then we have

H Y x*(Utef e H Z(e*ei)ef’ = || Y (efUx*)e; sup ‘ Y e*(wie;)
icG Ellice =T EYiaeccBr ' icG
< || Y (ef Ux™)e
icG E
< | Sleue —x)e| + | X lerusi e
icG I Te E
< | Steute =i e, +|| T et e
— E / 0 E
i=1 121‘5
* * o
Consequently,

wE( Y U'ef @e; X, E) < |[(U%¢})iccllpo(x)ll(€i)iecllpe gy < 6
ieG
and so

vi=) U'ef ®e

™

I
—

1

unconditionally converges in X®y, E. Since a Banach space with a basis has the approxi-
mation property, by Lemma 1, u = v in X&,, E. Then, since for every | € N,

1
wg (L Utef @ e X,E) < [(U°e]) oyl | e e
i=1

IN

7

E

l
sup H Y (efUx*)e;
X*€Byx ' j=1
we(u; X, E) < ||U|| = e(u; X, E).
In order to prove the second statement, let v € E* ® X and let V : E — X be the
corresponding finite rank operator for v. For every e =) ; aje; € E,

Ve=1Y ajVe; =) (efe)Ve;.
i1 i1
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Since (e}'); is a basis for E*, and V*(Bx- ) is a relatively compact subset of E*,

lim s(Ze ® Ve; — v; E¥, X) = 11m H Ze ®RVe; — VH

|—o0

= lim | 2 Vei@ef — V*

1
= lim sup HZ (V*x™)(e;)e;f — V*x*

l_>°°x EB * 0 i=1 E*

=0.

Consequently,
v=1Y e @ Ve
i=1
converges in E*&,X.

To show that the above series unconditionally converges in E*®, X, let § > 0 be
given. Let {V*x{}]' | be a 6/2-net for V*(Bx+). Choose an I; € N so that

H Y VExi(e)ef

l>l§

<9
Ex — 2

for every k = 1,...,m. Now, let G be an arbitrary finite subset of N with min G > I5. Let
x* € Bx+ and e** € Bp«+. Letkg € {1, ...,m} be such that

IVEx™ = Viag [ler <

Then, we have

H Y e (e} (x*Ve;)e; L= sup ’ Yo e (wief)||| Y] Vixt(e)ef .
icG Yk axep €Bpx " ieG icG

< | £ vix(ene;
icG

<Y VE(xt = xg ) (eief —l—HZV*xk ei)e ’

0 0 E*

icG

< V (x* —xp) e’ —I—H V*xZ i)e;

S [k * )
< V(" = xg ) e + 5= J.
Consequently,
we( L ef ® Ve %, X) < (e)iec lpe(en) Il (Vedieallpwx) < 8
ieG
and so -
u:= ZE;k ® Ve,

I
—
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unconditionally converges in E*&,. X. By Lemma 1, since v = u! in X&.E*, v! = ulin
Yy E y

X®w%E*, and so v = u in E*®y, X. Since for every I € N,
l 1 1
wE(Zei'k ® Vei;E*/X> < ||(ef)i:1||Ew(E*)||(V€i)z‘:1HE*W(X)
i=1

< sup HZV* *(e;)ef

X*GBX* i=1

E*

we(v; E*, X) < ||V]| = e(v; E*, X).
O

Now, we consider the completions of our tensor norms. The following lemma is well
known.

Lemma 2. Let (Z,|| - ||) be a normed space, and let (Z, || - ||) be its completion. If z € Z, then for
every & > 0, there exists a sequence (z, ), in Z such that

Y llzall < (1 +6) 2]
n=1

and z =Y " 1z, converges in Z.

Proposition 4. Suppose that E = (¥ 4;)p (1 < p,g < ), E = (Lco)p (1 < p < ) or
E=(Lly)e (1<q<o0).Ifuec XQqy,Y, then there exist (x,), € E" ( X) and (yy)n € EX(Y)
such that

u:an(X)yn

n=1

unconditionally converges in X&,, Y and
w (X, Y) = inf {[[(on)all oo | ndallzer) 5 = Y % @ ).
n=1

Proof. Let u € X®y, Y, and let § > 0 be given. Then, by Lemma 2, there exists a sequence
(uy)y in X ® Y such that

Z (u; X,Y) < (14 6)we(u; X, Y)

and u = Y o° | u, converges in X®q, Y.
We only consider the case E = (}_£;), (1 < p,q < ). The proofs of the other cases
are similar. For every n € N, let

My My
Uy = ZZxZ@y?j

i=1j=1
be such that
(G 722 e oo | (@) )i e oy < (1 8w (un; X, Y).
We may assume that

G o) < (14 8)we (s X, Y))P,
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) ) e vy < (14 8)we (s X, Y)) VP
In order to show that u = Y>>, y " Y™ j—1 Xij T ® yZ] unconditionally converges in

X&q,Y and (((xl’;);'zl)?;”l)n € E*(X) and (((yl])r"l)lmnl) € EX(Y), let v > 0 be given.

Choose an Ny € Nso that forall/ > N,,

wE(u— Zun,X Y) <vand ) wg(un; X, Y) < 7.

n=1 n>1

Then, foralll > N, and 1 <a,b < mjy,

( ( Xl: 1y + Z Z xl+1 l+1 + le(ﬁl l;l_l) ) X, Y)

n=1 i=1 j=1
a_ M1
Syt we ( ) E le ZH + Z xlﬁl lﬁl)'; X, Y)
i=1 j=1

< o I o H((yff1>]1 el

<94+ Q+0we(u1;X,Y)

<v+(1+6)y.
This shows that S
o0 n n
u=73y ) Y xioy;
n=1i=1j=1

converges in X®wE Y. To show that the above series converges unconditionally, let F

be an arbitrary finite subset of N with minF > Zanl m?2, and let {s; ® t; }xer be the
set of corresponding tensors. Then, there exists I1,I, > N, such that {s; ® ty}yer C

{{x?j@)y” il 1} Wehave

b

ZUE( Y sk @t X, Y) <y, ||((x$)]r-n:"1)l " e X)||((]/1])m" )izt gz vy

keF n=I

< Ii (14 6)we(uy; X,Y)

Tl:ll

< (146)7.

Since foralll > Nyand 1 <a,b <mj,

s (Ll ¥ (L

X*EBys i i=a+1

m My

i)l
p/q\1/p
< sup (ZZ(Z\X ) )

X*GBX* n>li=

my, | My Jax1/
(L g B (B
< (La+oetnx )" < (@+om',

n>1

(((x l]);nnl)l ™ )n € E"(X) and we see that

Il < (14 T el X))
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Similarly,
m m u m m - 1/}7*
() im)n € ELY) and (1) nllesir) < ((14+0) ¥ we(us X, )
n=1

Consequently, the infimum

inf{-} < () ) nll oo | D) D e vy < (14 6)?wp (u; X, Y).

Since § > 0 was arbitrary, inf{-} < wg(u; X,Y).
For every such representation

U=y x4 Qyn
n=1

unconditionally converging in X®y, Y,

weg(u; X,Y) = lli_)rgwg(éxn ®yn>
< im [t} e )t e
= [1Cen)nza L o) | )i e v
Thus, we(u; X, Y) < inf{-}. O

As in the proof of Proposition 4, we have:

Proposition 5. Suppose that E = (¥ 4;)p (1 < p,g < ), E = (Lco)p (1 < p < ) or
E=(Xly)e (1< g <o) Ifu € X®qg,Y, then there exist (x,), € E(X) and (yn)n € EX(Y)
such that -

u = Z x” ®yn

n=1

unconditionally converges in X&q, Y and

g6 (X, Y) = inf { || Gen)all g |yl gy 0 = 3 %0 @y -
n=1

Let « be a finitely generated tensor norm. Let £(X,Y) be the Banach space of all
operators from X to Y. The operator j, : X* ®, Y — L(X,Y) is defined by j.(}Y)" | x; ®

m

Yn) = Y X5, ®Yn, and let
Ju: X*&aY — L(X,Y)

be the coninuous extension of j,. We equip J,(X*®,Y) with the quotient norm of X*®,Y/

ker]y, which will be denoted by || - ||}, . According to a well-known result of Grothendieck [16]
(cf. [10], Proposition 1.5.4), if X* or Y has the approximation property (AP), then J, is injec-

tive; hence, X*®,Y is isometric to (Jo (X*&aY), || - [1.)-

Lemma 3 ([21], Theorem 2.4). Assume that X*** or Y has the AP.
IfT € Jo(X™&,Y) C L(X*,Y) and T*(Y*) C X, then T € J,(X ® Y)”'”’“.
The prototype of the following theorem is described in [21] (Theorem 3.1).

Theorem 3. Suppose that E = (Y 4;)p (1 < p,q < o), E = (LYco)p (1 < p < o) or
E=(X4g)e (1 <q<co). Assume that X*** or Y has the AP. If T € Ng(X*,Y) (respectively,
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WNE(X*,Y)) and T*(Y*) C X, then there exist (xn)n € E(X) (respectively, E* (X)) and (yn)n €
EY(Y) such that

T = E Xn @Yy
n=1
unconditionally converges in Ng(X*,Y) (respectively, ZNg(X*,Y)).

Proof. We only consider NE. The proof of the case +NE is similar. First, we show that
(Joe (X7 @ Y), |l - g, ) = WE(X®Y), || - lag). Let Jop (1) € Jop(X™®g,Y). Letu =
Yoo 1 X5 ®yy, be an arbitrary representation in Proposition 5. Then

[ee]

]gE(“) = Z x5 Qyn € Ng(X5,Y)

n=1

and [|Jg; ()|l < (103" )nllE(x) | (Yn)n |l o (v)- Since the representation of u was arbitrary,
ge ()l < 8e(; X%, Y) = [|Jg (), -

Let T € Ng(X*,Y) and let 6 > 0 be given. Let T = Y77 ; x3*®y, be an arbitrary
NE-representation. Since

1
gt (2 5 @y XY ) < 105l | bl

n=m
1
Y [l len
n=m

7

E

< H(]/n)nHE}:’(Y)

Yoot X5 @ Yy converges in X** &, Y. Thus,

T = ]8E< Z X" ®yn) € Jor (X &g, Y).
n=1
Choose an I € N so that gp(Y,,~; X, ® yn; X**,Y) < 6. Then, we have

(o)
1T, = g2 ( L i @yui X7 Y)
=1

n
1
< gE( Yo x ®yn;X**,Y) +6
n=1
< NG )nlleeo | Wn)nllee vy + 6.

Since the representation of T was arbitrary, || T, o S I T|| Ay -
Now, let T € Ng(X*,Y). Choose u € X**&,,Y so that T = Jo.(u). By Lemma 3,

Jor (1) € Jor (X ® Y)H.HIgE . Since Jg, is an isometry and X&,, Y is isometrically embeded in
X**&4¢, Y (cf. [3], Proposition 6.4), we see that u € X&,,Y. By Proposition 5, there exist
(xn)n € E(X) and (yn)n € E¥(Y) such thatu = Y ; x, ® y, unconditionally converges in
X®g, Y. Hence,

o

T =Jop(u) = Y xa®Ynu

n=1

unconditionally converges in Ng(X*,Y). O

4. Discussion

This work is the general and natural extension of some results about the tensor
norms g, and wy. There have been many more investigations about g, and w), since their
introduction. We expect that several more results on g, and wy,, and the ideals of p-nuclear
and p-compact operators, can be developed. For instance, for a finitely generated tensor
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norm «, a Banach space X is said to have the a-approximation property (a-AP) if for every
Banach space Y, the natural map

Jo: YEuX — Y& X

is injective (cf. [2]), Section 21.7. The g,-AP and the w,-AP were well studied, and the

gp-AP (respectively, w,-AP) is closely related with an approximation property of the ideal

of p-summing operators (respectively, ideal of p-dominated operators) (cf. [11]). We can consider

the gg-AP and the wg-AP as the following subjects:

1.  Aninvestigation of the ideals of E-summing operators and E-dominated operators;

2. Some relationships of the ideals of E-summing operators and E-dominated operators,
respectively, between the gg-AP and the wg-AP, respectively.
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