

Article

Some Generalized Versions of Chevet-Saphar Tensor Norms

Ju Myung Kim

Department of Mathematics and Statistics, Sejong University, Seoul 05006, Korea; kjm21@sejong.ac.kr

Abstract: The paper is concerned with some generalized versions g_E and w_E of classical tensor norms. We find a Banach space E for which g_E and w_E are finitely generated tensor norms, and show that g_E and w_E are associated with the ideals of some E-nuclear operators. We also initiate the study of some theories of our tensor norms.

Keywords: Schauder basis; vector-valued sequence; tensor norm; operator ideal

MSC: 46B45; 47L20

1. Introduction

One of the important theories in the study of Banach spaces is the theory of tensor norms (see Section 2 for the definition of tensor norm). It provides not only new examples of Banach spaces but also a powerful tool in the study of Banach operator ideals. One may refer to [1–5] and the references therein for various information and content about tensor norms. Throughout this paper, Banach spaces will be denoted by X and Y over \mathbb{R} or \mathbb{C} , with dual spaces X^* and Y^* , and the closed unit ball of X will be denoted by B_X . We will denote by $X \otimes Y$ the algebraic tensor product of X and Y. The most classical two tensor norms are the *injective norm* ε and the *projective norm* π , which were systematically investigated by Grothendieck [6,7]. For $u \in X \otimes Y$,

$$\varepsilon(u; X, Y) := \sup \left\{ \left| \sum_{n=1}^{l} x^*(x_n) y^*(y_n) \right| : x^* \in B_{X^*}, y^* \in B_{Y^*} \right\},$$

where $\sum_{n=1}^{l} x_n \otimes y_n$ is any representation of u, and

$$\pi(u; X, Y) := \inf \Big\{ \sum_{n=1}^{l} \|x_n\| \|y_n\| : u = \sum_{n=1}^{l} x_n \otimes y_n, l \in \mathbb{N} \Big\}.$$

More recently, the author [8] introduced a tensor norm related with the injective norm. Lapresté [9] introduced the most generalized version $\alpha_{p,q}$ of the projective norm, and its some related topics were studied by Díaz, López-Molina, Rivera [10] and the author [11]. Many of the interesting tensor norms can be obtained from the tensor norm $\alpha_{p,q}$ (1 $\leq p$, $q \leq \infty$, $1/p + 1/q \geq 1$), which is defined as follows. Let $1 \leq r \leq \infty$ with 1/r = 1/p + 1/q - 1. For $u \in X \otimes Y$, let

$$\alpha_{p,q}(u) := \inf \left\{ \|(\lambda_n)_{n=1}^l\|_r \sup_{x^* \in B_{X^*}} \|(x^*(x_n))_{n=1}^l\|_{q^*} \sup_{y^* \in B_{Y^*}} \|(y^*(y_n))_{n=1}^l\|_{p^*} : u = \sum_{n=1}^l \lambda_n x_n \otimes y_n, l \in \mathbb{N} \right\},$$

where p^* is the conjugate index of p and $\|\cdot\|_p$ means the ℓ_p -norm. Then, we see that

$$g_p(u) := \inf \left\{ \|(\|x_n\|)_{n=1}^l \|_p \sup_{y^* \in B_{Y^*}} \|(y^*(y_n))_{n=1}^l \|_{p^*} : u = \sum_{n=1}^l x_n \otimes y_n, l \in \mathbb{N} \right\} = \alpha_{p,1}(u),$$

Citation: Kim, J.M. Some Generalized Versions of Chevet–Saphar Tensor Norms. *Mathematics* 2022, 10, 2716. https://doi.org/10.3390/math10152716

Academic Editors: Rafael de la Rosa, Francisco Javier Garcia-Pacheco and Adrián Ruiz Serván

Received: 6 July 2022 Accepted: 27 July 2022 Published: 1 August 2022

Publisher's Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Copyright: © 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).

Mathematics 2022. 10, 2716 2 of 16

$$w_p(u) := \inf \left\{ \sup_{x^* \in B_{X^*}} \| (x^*(x_n))_{n=1}^l \|_p \sup_{y^* \in B_{Y^*}} \| (y^*(y_n))_{n=1}^l \|_{p^*} : u \right\}$$

= $\sum_{n=1}^l x_n \otimes y_n, l \in \mathbb{N}$ = $\alpha_{p,p^*}(u)$

and $\pi(u) = \alpha_{1,1}(u)$. The tensor norms g_p and w_p were introduced and studied by Chevet and Saphar [12,13]; see [10,11,14–24] and the references therein for the investigation on related topics.

In this paper, we consider another generalization of g_p and w_p . These tensor norms are somehow determined by the Banach space ℓ_p . Naturally, one may extend these notions by replacing ℓ_p by a general Banach space with a Schauder basis. Throughout this paper, E is a Banach space having the 1-unconditional Schauder basis $(e_n)_n$, $(e_n^*)_n$ is the sequence of coordinate functionals for $(e_n)_n$ and $E_* := \overline{\operatorname{span}}\{e_n^*\}_{n=1}^\infty$. For a finite subset E of $\mathbb R$ and E and E and E are E and E are E and E are E and E are E are E and E are E are E are E and E are E are E and E are E are E are E are E and E are E are E are E and E are E are E are E are E are E are E and E are E are E are E are E and E are E and E are E and E are E are E are E and E are E and E are E and E are E are E are E are E are E are E and E are E and E are E and E are E are E are E are E are E and E are E are E are E are E and E are E are E and E are E and E are E and E are E are E and E are E are E and E are E are E are E are E are E are E and E are E are E are E

$$\|(x_n)_{n\in F}\|_{E(X)} := \left\|\sum_{n\in F} \|x_n\|e_n\right\|_E \text{ and } \|(x_n)_{n\in F}\|_{E^w(X)} := \sup_{x^*\in B_{X^*}} \left\|\sum_{n\in F} x^*(x_n)e_n\right\|_E.$$

We are now ready to introduce the main notion in this paper.

Definition 1. *For* $u \in X \otimes Y$ *, let*

$$g_E(u; X, Y) := \inf \Big\{ \|(x_n)_{n \in F}\|_{E(X)} \|(y_n)_{n \in F}\|_{E_*^w(Y)} : u = \sum_{n \in F} x_n \otimes y_n, F \subset \mathbb{N} \Big\},$$

$$w_E(u; X, Y) := \inf \Big\{ \|(x_n)_{n \in F}\|_{E^w(X)} \|(y_n)_{n \in F}\|_{E^w_*(Y)} : u = \sum_{n \in F} x_n \otimes y_n, F \subset \mathbb{N} \Big\}.$$

For instance, $g_{\ell_p} = g_p$ and $w_{\ell_p} = w_p$ $(1 \le p < \infty)$, and $g_{c_0} = w_{c_0} = g_\infty = w_\infty$.

Tensor norms are closely related with normed operator ideals. Actually, in view of the monograph of Defant and Floret [2], there is a one-to-one correspondence between maximal Banach operator ideals and finitely generated tensor norms. A tensor norm α is said to be associated with a normed operator ideal $[A, \| \cdot \|_A]$ if the canonical map from A(M,N) to $M^* \otimes_{\alpha} N$ equipped with the norm α is an isometry for every finite-dimensional normed spaces M and N. It is well known that g_p is associated with the ideal of p-nuclear operators. The starting point of this paper comes from [25], where the E-nuclear operators (see Section 2 for the definition of E-nuclear operators) were defined by replacing ℓ_p by E in the notion of p-nuclear operators. The main goal of this paper is to find a Banach space E for which g_E and w_E are tensor norms, and show that g_E and w_E are associated with the ideals of E-nuclear operators. Obtaining some results for g_E and w_E , we provide a base for further investigations of the g_E - and w_E -tensor norms and E-operator ideals. We focus on the Banach space $E = (\sum \ell_q)_p$ $(1 \leq p, q \leq \infty)$ of infinite ℓ_p direct sum of ℓ_q s, which is a generalization of ℓ_p . For this case, we extend some well known results for g_p and w_p as follows.

In Section 2, for $E = (\sum \ell_q)_p$ $(1 \le p, q \le \infty)$, we prove that g_E and w_E are finitely generated tensor norms, and it is demonstrated that g_E and w_E are associated with the ideals of E-nuclear operators. In Section 3, we prove that g_E is left projective and for every Banach space X, the injective tensor product $X \otimes_{\varepsilon} E$ is isometric to $X \otimes_{w_E} E$; furthermore, if $(e_n)_n$ is shrinking, then $E^* \otimes_{\varepsilon} X$ is isometric to $E^* \otimes_{w_E} X$. Additionally, we establish the completions of our E-tensor norms for $E = (\sum \ell_q)_p$, and as an application, we represent E-nuclear operators acting on dual spaces. We refer to the book of Defant and Floret [2] as a reference to the main notions and formulas in the theory of tensor norms and (quasi) normed operator ideals.

2. The g_E - and w_E -Tensor Norms and Their Associated Operator Ideals

Let us recall that a tensor norm α is a norm on $X \otimes Y$ for each pair of Banach spaces X and Y such that

Mathematics 2022, 10, 2716 3 of 16

(TN1) $\varepsilon \leq \alpha \leq \pi$;

(TN2) for all operators $T_1: X_1 \rightarrow Y_1$ and $T_2: X_2 \rightarrow Y_2$,

$$||T_1 \otimes T_2 : X_1 \otimes_{\alpha} X_2 \to Y_1 \otimes_{\alpha} Y_2|| \le ||T_1|| ||T_2||.$$

A tensor norm α is said to be *finitely generated* if

$$\alpha(u; X, Y) = \inf\{\alpha(u; M, N) : u \in M \otimes N, \dim M, \dim N < \infty\}$$

for every $u \in X \otimes Y$.

Proposition 1. Suppose that $(e_n)_n$ is normalized. If g_E and w_E satisfy the triangle inequality, then they are finitely generated tensor norms.

Proof. We only consider g_E . Let X and Y be Banach spaces. Let $c \in \mathbb{C}$ and let $u = \sum_{n \in F} x_n \otimes y_n$ be an arbitrary representation in $X \otimes Y$. Then

$$g_E(cu; X, Y) \le \|(cx_n)_{n \in F}\|_{E(X)} \|(y_n)_{n \in F}\|_{E_*^w(Y)} = |c| \|(x_n)_{n \in F}\|_{E(X)} \|(y_n)_{n \in F}\|_{E_*^w(Y)}.$$

Thus $g_E(cu; X, Y) \le |c|g_E(u; X, Y)$. Since $g_E(u; X, Y) = g_E((1/c)(cu); X, Y) \le (1/|c|)g_E(cu; X, Y), g_E(cu; X, Y) \ge |c|g_E(u; X, Y).$

(TN1): Let $u = \sum_{n \in F} x_n \otimes y_n$ be an arbitrary representation in $X \otimes Y$. Let $x^* \in B_{X^*}$ and $y^* \in B_{Y^*}$. Then

$$\Big| \sum_{n \in F} x^*(x_n) y^*(y_n) \Big| = \Big| \Big(\sum_{k \in F} y^*(y_k) e_k^* \Big) \Big(\sum_{n \in F} x^*(x_n) e_n \Big) \Big| \le \|(x_n)_{n \in F}\|_{E(X)} \|(y_n)_{n \in F}\|_{E_*^w(Y)}$$

and

$$g_E(u;X,Y) \leq \sum_{n \in F} g_E(x_n \otimes y_n) \leq \sum_{n \in F} ||x_n|| ||y_n||.$$

It follows that $\varepsilon(u; X, Y) \leq g_E(u; X, Y) \leq \pi(u; X, Y)$, and so

$$g_E(u; X, Y) = 0 \Leftrightarrow u = 0$$

for $u \in X \otimes Y$.

(TN2): Let $T_1: X_1 \to Y_1$ and $T_2: X_2 \to Y_2$ be operators. Let $u \in X_1 \otimes X_2$ and let $u = \sum_{n \in F} x_n^1 \otimes x_n^2$ be an arbitrary representation. Then

$$\begin{split} g_{E}((T_{1} \otimes T_{2})(u); Y_{1}, Y_{2}) &= g_{E} \Big(\sum_{n \in F} T_{1}x_{n}^{1} \otimes T_{2}x_{n}^{2}; Y_{1}, Y_{2} \Big) \\ &\leq \|(T_{1}x_{n}^{1})_{n \in F}\|_{E(Y_{1})} \|(T_{2}x_{n}^{2})_{n \in F}\|_{E_{*}^{w}(Y_{2})} \\ &= \|T_{1}\| \|T_{2}\| \|((1/\|T_{1}\|)T_{1}x_{n}^{1})_{n \in F}\|_{E(Y_{1})} \|((1/\|T_{2}\|)T_{2}x_{n}^{2})_{n \in F}\|_{E_{*}^{w}(Y_{2})} \\ &\leq \|T_{1}\| \|T_{2}\| \|(x_{n}^{1})_{n \in F}\|_{E(X_{1})} \|(x_{n}^{2})_{n \in F}\|_{E_{*}^{w}(X_{2})}. \end{split}$$

Hence

$$g_E((T_1 \otimes T_2)(u); Y_1, Y_2) \leq ||T_1|| ||T_2|| g_E(u; X_1, X_2).$$

To show that g_E is finitely generated, let $u \in X \otimes Y$ and let $u = \sum_{n \in F} x_n \otimes y_n$ be an arbitrary representation. Let $M_0 := \operatorname{span}\{x_n\}_{n \in F}$ and $N_0 := \operatorname{span}\{y_n\}_{n \in F}$. Using the Hahn–Banach extension theorem, we have

Mathematics 2022, 10, 2716 4 of 16

$$\inf\{g_{E}(u; M, N) : u \in M \otimes N, \dim M, \dim N < \infty\}$$

$$\leq g_{E}(u; M_{0}, N_{0})$$

$$\leq \|(x_{n})_{n \in F}\|_{E(M_{0})} \sup_{z^{*} \in B_{N_{0}^{*}}} \left\| \sum_{n \in F} z^{*}(y_{n})e_{n}^{*} \right\|_{E^{*}}$$

$$= \|(x_{n})_{n \in F}\|_{E(X)} \|(y_{n})_{n \in F}\|_{E_{*}^{w}(Y)}.$$

Hence,

 $\inf\{g_E(u; M, N) : u \in M \otimes N, \dim M, \dim N < \infty\} \leq g_E(u; X, Y).$

We can now prove:

Theorem 1. If $E = (\sum \ell_q)_p$ $(1 \le p, q < \infty)$, $E = (\sum c_0)_p$ $(1 \le p < \infty)$ or $E = (\sum \ell_q)_{c_0}$ $(1 \le q < \infty)$, then g_E and w_E are finitely generated tensor norms.

Proof. We only consider g_E . Let X and Y be Banach spaces. By Proposition 1, we only need to show the triangle inequality of g_E .

For the he case $E = (\sum \ell_q)_p \ (1 < p, q < \infty)$, let $u, v \in X \otimes Y$ and let $\delta > 0$ be given. We can find representations

$$u = \sum_{n=1}^{l} \sum_{k=1}^{l} x_{nk}^{1} \otimes y_{nk}^{1}$$
 and $v = \sum_{n=1}^{l} \sum_{k=1}^{l} x_{nk}^{2} \otimes y_{nk}^{2}$

such that

$$\begin{aligned} &\|((x_{nk}^1)_{k=1}^l)_{n=1}^l\|_{E(X)}\|((y_{nk}^1)_{k=1}^l)_{n=1}^l\|_{E_*^w(Y)} \leq (1+\delta)g_E(u;X,Y), \\ &\|((x_{nk}^2)_{k=1}^l)_{n=1}^l\|_{E(X)}\|((y_{nk}^2)_{k=1}^l)_{n=1}^l\|_{E_*^w(Y)} \leq (1+\delta)g_E(v;X,Y). \end{aligned}$$

We may assume that

$$\begin{split} &\|((x_{nk}^1)_{k=1}^l)_{n=1}^l\|_{E(X)} \leq ((1+\delta)g_E(u;X,Y))^{1/p},\\ &\|((y_{nk}^1)_{k=1}^l)_{n=1}^l\|_{E_*^w(Y)} \leq ((1+\delta)g_E(u;X,Y))^{1/p^*},\\ &\|((x_{nk}^2)_{k=1}^l)_{n=1}^l\|_{E(X)} \leq ((1+\delta)g_E(v;X,Y))^{1/p},\\ &\|((y_{nk}^2)_{k=1}^l)_{n=1}^l\|_{E_*^w(Y)} \leq ((1+\delta)g_E(v;X,Y))^{1/p^*}. \end{split}$$

Since

$$u + v = \sum_{i=1}^{2} \sum_{n=1}^{l} \sum_{k=1}^{l} x_{nk}^{i} \otimes y_{nk}^{i},$$

Mathematics 2022, 10, 2716 5 of 16

$$\begin{split} &g_{E}(u+v;X,Y) \\ &\leq \Big(\sum_{i=1}^{2}\sum_{n=1}^{l}\Big(\sum_{k=1}^{l}\|x_{nk}^{i}\|^{q}\Big)^{p/q}\Big)^{1/p}\sup_{y^{*}\in B_{Y^{*}}}\Big(\sum_{i=1}^{2}\sum_{n=1}^{l}\Big(\sum_{k=1}^{l}|y^{*}(y_{nk}^{i})|^{q^{*}}\Big)^{p^{*}/q^{*}}\Big)^{1/p^{*}} \\ &\leq \Big(\sum_{n=1}^{l}\Big(\sum_{k=1}^{l}\|x_{nk}^{1}\|^{q}\Big)^{p/q} + \sum_{n=1}^{l}\Big(\sum_{k=1}^{l}\|x_{nk}^{2}\|^{q}\Big)^{p/q}\Big)^{1/p} \\ &\Big(\sup_{y^{*}\in B_{Y^{*}}}\sum_{n=1}^{l}\Big(\sum_{k=1}^{l}|y^{*}(y_{nk}^{1})|^{q^{*}}\Big)^{p^{*}/q^{*}} + \sup_{y^{*}\in B_{Y^{*}}}\sum_{n=1}^{l}\Big(\sum_{k=1}^{l}|y^{*}(y_{nk}^{2})|^{q^{*}}\Big)^{p^{*}/q^{*}}\Big)^{1/p^{*}} \\ &\leq ((1+\delta)(g_{E}(u;X,Y) + g_{E}(v;X,Y)))^{1/p}((1+\delta)(g_{E}(u;X,Y) + g_{E}(v;X,Y)))^{1/p^{*}} \\ &= (1+\delta)(g_{E}(u;X,Y) + g_{E}(v;X,Y)). \end{split}$$

Since $\delta > 0$ was arbitrary,

$$g_E(u+v;X,Y) \leq g_E(u;X,Y) + g_E(v;X,Y).$$

For the case $E = (\sum \ell_1)_p \ (1 :$

$$g_E(u+v;X,Y)$$

$$\leq \left(\sum_{i=1}^{2} \sum_{n=1}^{l} \left(\sum_{k=1}^{l} \|x_{nk}^{i}\|\right)^{p}\right)^{1/p} \sup_{y^{*} \in B_{Y^{*}}} \left(\sum_{i=1}^{2} \sum_{n=1}^{l} \left(\sup_{1 \leq k \leq l} |y^{*}(y_{nk}^{i})|\right)^{p^{*}}\right)^{1/p^{*}}$$

$$\leq \left(\sum_{n=1}^{l} \left(\sum_{k=1}^{l} \|x_{nk}^{1}\|\right)^{p} + \sum_{n=1}^{l} \left(\sum_{k=1}^{l} \|x_{nk}^{2}\|\right)^{p}\right)^{1/p}$$

$$\left(\sup_{y^{*} \in B_{Y^{*}}} \sum_{n=1}^{l} \left(\sup_{1 \leq k \leq l} |y^{*}(y_{nk}^{1})|\right)^{p^{*}} + \sup_{y^{*} \in B_{Y^{*}}} \sum_{n=1}^{l} \left(\sup_{1 \leq k \leq l} |y^{*}(y_{nk}^{2})|\right)^{p^{*}}\right)^{1/p^{*}}$$

$$y^* \in \hat{B}_{Y^*} = 1 \le k \le l$$

$$y^* \in \hat{B}_{Y^*} = 1 \le k \le l$$

$$y^* \in \hat{B}_{Y^*} = 1 \le k \le l$$

$$y^* \in \hat{B}_{Y^*} = 1 \le k \le l$$

$$y^* \in \hat{B}_{Y^*} = 1 \le k \le l$$

$$y^* \in \hat{B}_{Y^*} = 1 \le k \le l$$

$$y^* \in \hat{B}_{Y^*} = 1 \le k \le l$$

$$y^* \in \hat{B}_{Y^*} = 1 \le k \le l$$

$$y^* \in \hat{B}_{Y^*} = 1 \le k \le l$$

$$y^* \in \hat{B}_{Y^*} = 1 \le k \le l$$

$$y^* \in \hat{B}_{Y^*} = 1 \le k \le l$$

$$y^* \in \hat{B}_{Y^*} = 1 \le k \le l$$

$$y^* \in \hat{B}_{Y^*} = 1 \le k \le l$$

$$y^* \in \hat{B}_{Y^*} = 1 \le k \le l$$

$$y^* \in \hat{B}_{Y^*} = 1 \le k \le l$$

$$y^* \in \hat{B}_{Y^*} = 1 \le k \le l$$

$$y^* \in \hat{B}_{Y^*} = 1 \le k \le l$$

$$y^* \in \hat{B}_{Y^*} = 1 \le k \le l$$

$$y^* \in \hat{B}_{Y^*} = 1 \le k \le l$$

$$y^* \in \hat{B}_{Y^*} = 1 \le k \le l$$

$$y^* \in \hat{B}_{Y^*} = 1 \le k \le l$$

$$y^* \in \hat{B}_{Y^*} = 1 \le k \le l$$

$$y^* \in \hat{B}_{Y^*} = 1 \le k \le l$$

$$y^* \in \hat{B}_{Y^*} = 1 \le k \le l$$

$$y^* \in \hat{B}_{Y^*} = 1 \le k \le l$$

$$y^* \in \hat{B}_{Y^*} = 1 \le k \le l$$

$$y^* \in \hat{B}_{Y^*} = 1 \le k \le l$$

$$y^* \in \hat{B}_{Y^*} = 1 \le k \le l$$

$$y^* \in \hat{B}_{Y^*} = 1 \le k \le l$$

$$y^* \in \hat{B}_{Y^*} = 1 \le k \le l$$

$$y^* \in \hat{B}_{Y^*} = 1 \le k \le l$$

$$y^* \in \hat{B}_{Y^*} = 1 \le k \le l$$

$$y^* \in \hat{B}_{Y^*} = 1 \le k \le l$$

$$y^* \in \hat{B}_{Y^*} = 1 \le k \le l$$

$$y^* \in \hat{B}_{Y^*} = 1 \le k \le l$$

$$y^* \in \hat{B}_{Y^*} = 1 \le k \le l$$

$$y^* \in \hat{B}_{Y^*} = 1 \le k \le l$$

$$y^* \in \hat{B}_{Y^*} = 1 \le k \le l$$

$$y^* \in \hat{B}_{Y^*} = 1 \le k \le l$$

$$y^* \in \hat{B}_{Y^*} = 1 \le k \le l$$

$$y^* \in \hat{B}_{Y^*} = 1 \le k \le l$$

$$y^* \in \hat{B}_{Y^*} = 1 \le k \le l$$

$$y^* \in \hat{B}_{Y^*} = 1 \le k \le l$$

$$y^* \in \hat{B}_{Y^*} = 1 \le k \le l$$

$$y^* \in \hat{B}_{Y^*} = 1 \le k \le l$$

$$y^* \in \hat{B}_{Y^*} = 1 \le k \le l$$

$$y^* \in \hat{B}_{Y^*} = 1 \le k \le l$$

$$y^* \in \hat{B}_{Y^*} = 1 \le k \le l$$

$$y^* \in \hat{B}_{Y^*} = 1 \le k \le l$$

$$y^* \in \hat{B}_{Y^*} = 1 \le k \le l$$

$$y^* \in \hat{B}_{Y^*} = 1 \le k \le l$$

$$y^* \in \hat{B}_{Y^*} = 1 \le k \le l$$

$$y^* \in \hat{B}_{Y^*} = 1 \le k \le l$$

$$y^* \in \hat{B}_{Y^*} = 1 \le k \le l$$

$$y^* \in \hat{B}_{Y^*} = 1 \le k \le l$$

$$y^* \in \hat{B}_{Y^*} = 1 \le k \le l$$

$$y^* \in \hat{B}_{Y^*} = 1 \le k \le l$$

$$y^* \in \hat{B}_{Y^*} = 1 \le k \le l$$

$$y^* \in \hat{B}_{Y^*} = 1 \le k \le l$$

$$y^* \in \hat{B}_{Y^*} = 1 \le k \le l$$

$$y^* \in \hat{B}_{Y^*} = 1 \le k \le l$$

$$y^* \in \hat{B}_{Y^*} = 1 \le k \le l$$

$$y^* \in \hat{B}_{Y^*} = 1 \le k \le l$$

$$y^* \in \hat{B}_{Y^*} = 1 \le k \le l$$

$$y^* \in \hat{B}_{Y^*} = 1 \le k \le l$$

$$y^* \in \hat{B}_{Y^*} = 1 \le k \le l$$

For the case $E = (\sum \ell_q)_1$ (1 < $q < \infty$): We may assume that

$$\|((x_{nk}^1)_{k=1}^l)_{n=1}^l\|_{E(X)} \leq (1+\delta)g_E(u;X,Y), \|((y_{nk}^1)_{k=1}^l)_{n=1}^l\|_{E_*^w(Y)} \leq 1,$$

$$\|((x_{nk}^2)_{k=1}^l)_{n=1}^l\|_{E(X)} \leq (1+\delta)g_E(v;X,Y), \|((y_{nk}^2)_{k=1}^l)_{n=1}^l\|_{E_*^w(Y)} \leq 1.$$

Then

$$\begin{split} &g_{E}(u+v;X,Y) \\ &\leq \sum_{i=1}^{2} \sum_{n=1}^{l} \left(\sum_{k=1}^{l} \|x_{nk}^{i}\|^{q} \right)^{1/q} \sup_{y^{*} \in B_{Y^{*}}} \sup_{i=1,2,1 \leq n \leq l} \left(\sum_{k=1}^{l} |y^{*}(y_{nk}^{i})|^{q^{*}} \right)^{1/q^{*}} \\ &\leq \sum_{n=1}^{l} \left(\sum_{k=1}^{l} \|x_{nk}^{1}\|^{q} \right)^{1/q} + \sum_{n=1}^{l} \left(\sum_{k=1}^{l} \|x_{nk}^{2}\|^{q} \right)^{1/q} \\ &\leq (1+\delta)(g_{E}(u;X,Y) + g_{E}(v;X,Y)). \end{split}$$

For the case $E = (\sum c_0)_p$ (1 :

Mathematics 2022, 10, 2716 6 of 16

$$\begin{split} &g_{E}(u+v;X,Y) \\ &\leq \Big(\sum_{i=1}^{2}\sum_{n=1}^{l} \big(\sup_{1\leq k\leq l} \|x_{nk}^{i}\|\big)^{p}\Big)^{1/p} \sup_{y^{*}\in B_{Y^{*}}} \Big(\sum_{i=1}^{2}\sum_{n=1}^{l} \Big(\sum_{k=1}^{l} |y^{*}(y_{nk}^{i})|\Big)^{p^{*}}\Big)^{1/p^{*}} \\ &\leq \Big(\sum_{n=1}^{l} \big(\sup_{1\leq k\leq l} \|x_{nk}^{1}\|\big)^{p} + \sum_{n=1}^{l} \big(\sup_{1\leq k\leq l} \|x_{nk}^{2}\|\big)^{p}\Big)^{1/p} \\ &\Big(\sup_{y^{*}\in B_{Y^{*}}} \sum_{n=1}^{l} \Big(\sum_{k=1}^{l} |y^{*}(y_{nk}^{1})|\Big)^{p^{*}} + \sup_{y^{*}\in B_{Y^{*}}} \sum_{n=1}^{l} \Big(\sum_{k=1}^{l} |y^{*}(y_{nk}^{2})|\Big)^{p^{*}}\Big)^{1/p^{*}} \\ &\leq \big((1+\delta)(g_{E}(u;X,Y) + g_{E}(v;X,Y))\big)^{1/p} \big((1+\delta)(g_{E}(u;X,Y) + g_{E}(v;X,Y))\big)^{1/p^{*}} \\ &= (1+\delta)(g_{E}(u;X,Y) + g_{E}(v;X,Y)). \end{split}$$

For the case $E = (\sum \ell_q)_{c_0}$ (1 < $q < \infty$): We may assume that

$$\|((x_{nk}^1)_{k=1}^l)_{n=1}^l\|_{E(X)} \le 1, \|((y_{nk}^1)_{k=1}^l)_{n=1}^l\|_{E^w(Y)} \le (1+\delta)g_E(u; X, Y),$$

$$\|((x_{nk}^2)_{k=1}^l)_{n=1}^l\|_{E(X)} \le 1, \|((y_{nk}^2)_{k=1}^l)_{n=1}^l\|_{E_*^w(Y)} \le (1+\delta)g_E(v; X, Y).$$

Then

$$\begin{split} &g_{E}(u+v;X,Y) \\ &\leq \sup_{i=1,2,1 \leq n \leq l} \Big(\sum_{k=1}^{l} \|x_{nk}^{i}\|^{q} \Big)^{1/q} \sup_{y^{*} \in B_{Y^{*}}} \sum_{i=1}^{2} \sum_{n=1}^{l} \Big(\sum_{k=1}^{l} |y^{*}(y_{nk}^{i})|^{q^{*}} \Big)^{1/q^{*}} \\ &\leq \sup_{y^{*} \in B_{Y^{*}}} \sum_{n=1}^{l} \Big(\sum_{k=1}^{l} |y^{*}(y_{nk}^{1})|^{q^{*}} \Big)^{1/q^{*}} + \sup_{y^{*} \in B_{Y^{*}}} \sum_{n=1}^{l} \Big(\sum_{k=1}^{l} |y^{*}(y_{nk}^{2})|^{q^{*}} \Big)^{1/q^{*}} \\ &\leq (1+\delta)(g_{E}(u;X,Y) + g_{E}(v;X,Y)). \end{split}$$

The cases $E = (\sum \ell_1)_{c_0}$ and $E = (\sum c_0)_1$ also follow from similar proofs. \square

Throughout the remainder of this paper, we will assume that g_E and w_E are finitely generated tensor norms. For a Banach space X, let us consider the Banach spaces

$$E(X) := \left\{ (x_n)_n \text{ in } X : \sum_{n=1}^{\infty} ||x_n|| e_n \text{ converges in } E \right\}$$

equipped with the norm $\|(x_n)_n\|_{E(X)} := \|\sum_{n=1}^{\infty} \|x_n\|e_n\|_{E}$,

$$E^w(X) := \left\{ (x_n)_n \text{ in } X : \sum_{n=1}^{\infty} x^*(x_n) e_n \text{ converges in } E \text{ for each } x^* \in X^* \right\}$$

equipped with the norm $\|(x_n)_n\|_{E^w(X)} := \sup_{x^* \in B_{X^*}} \|\sum_{n=1}^{\infty} x^*(x_n)e_n\|_E$ and

$$E^{u}(X) := \left\{ (x_{n})_{n} \text{ in } X : \lim_{l \to \infty} \sup_{x^{*} \in B_{X^{*}}} \left\| \sum_{n \ge l} x^{*}(x_{n}) e_{n} \right\|_{E} = 0 \right\}$$

equipped with the norm $||(x_n)_n||_{E^w(X)}$.

Let *X* and *Y* be Banach spaces, and let $T: X \to Y$ be an operator such that

$$T=\sum_{n=1}^{\infty}x_{n}^{*}\underline{\otimes}y_{n},$$

where $x_n^* \underline{\otimes} y_n(x) = x_n^*(x) y_n$. The following operators were introduced in [25]. We say that T is E-nuclear (respectively, dual E-nuclear) if $(x_n^*)_n \in E(X^*)$ (respectively, $E_*^w(X^*)$) and $(y_n)_n \in E_*^w(Y)$ (respectively, E(Y)). The collection of all E-nuclear (respectively, dual

Mathematics 2022. 10, 2716 7 of 16

E-nuclear) operators from X to Y is denoted by $\mathcal{N}_E(X,Y)$ (respectively, $\mathcal{N}^E(X,Y)$), and for $T \in \mathcal{N}_E(X,Y)$ (respectively, $\mathcal{N}^E(X,Y)$), let

$$||T||_{\mathcal{N}_E} := \inf ||(x_n^*)_n||_{E(X^*)} ||(y_n)_n||_{E_*^w(Y)}$$
(respectively, $||T||_{\mathcal{N}^E} := \inf ||(x_n^*)_n||_{E_*^w(X^*)} ||(y_n)_n||_{E(Y)}$),

where the infimum is taken over all such representations. We say that T is uniform E-nuclear (respectively, dual uniform E-nuclear) if $(x_n^*)_n \in E^u(X^*)$ (respectively, $E^w(X^*)$) and $(y_n)_n \in E^w_*(Y)$ (respectively, $E^u(Y)$). The collection of all uniform E-nuclear (respectively, dual uniform E-nuclear) operators from X to Y is denoted by ${}_u\mathcal{N}_E(X,Y)$ (respectively, ${}_u\mathcal{N}^E(X,Y)$) and for $T \in {}_u\mathcal{N}_E(X,Y)$ (respectively, ${}_u\mathcal{N}^E(X,Y)$), let

$$\begin{split} \|T\|_{u\mathcal{N}_E} &:= \inf \|(x_n^*)_n\|_{E^w(X^*)} \|(y_n)_n\|_{E^w_*(Y)} \\ &(\text{respectively}, \|T\|_{u\mathcal{N}^E} := \inf \|(x_n^*)_n\|_{E^w_*(X^*)} \|(y_n)_n\|_{E^w(Y)}), \end{split}$$

where the infimum is taken over all such representations. For instance, \mathcal{N}_{ℓ_p} is the ideal of *p-nuclear operators*, and ${}_{u}\mathcal{N}_{\ell_p}$ is the ideal of *p-compact operators* (cf. [2,15]).

Let \mathcal{F} be the ideal of finite rank operators and let X and Y be Banach spaces. For $T \in \mathcal{F}(X,Y)$, let

$$||T||_{\mathcal{N}_{E}^{0}} := \inf \Big\{ ||(x_{n}^{*})_{n \in F}||_{E(X^{*})} ||(y_{n})_{n \in F}||_{E_{*}^{w}(Y)} : T = \sum_{n \in F} x_{n}^{*} \underline{\otimes} y_{n}, \text{ finite } F \subset \mathbb{N} \Big\},$$

$$||T||_{\mathcal{N}_{0}^{E}} := \inf \Big\{ ||(x_{n}^{*})_{n \in F}||_{E_{*}^{w}(X^{*})} ||(y_{n})_{n \in F}||_{E(Y)} : T = \sum_{n \in F} x_{n}^{*} \underline{\otimes} y_{n}, \text{ finite } F \subset \mathbb{N} \Big\},$$

$$||T||_{u\mathcal{N}_{0}^{0}} := \inf \Big\{ ||(x_{n}^{*})_{n \in F}||_{E^{w}(X^{*})} ||(y_{n})_{n \in F}||_{E^{w}(Y)} : T = \sum_{n \in F} x_{n}^{*} \underline{\otimes} y_{n}, \text{ finite } F \subset \mathbb{N} \Big\},$$

$$||T||_{u\mathcal{N}_{0}^{E}} := \inf \Big\{ ||(x_{n}^{*})_{n \in F}||_{E_{*}^{w}(X^{*})} ||(y_{n})_{n \in F}||_{E^{w}(Y)} : T = \sum_{n \in F} x_{n}^{*} \underline{\otimes} y_{n}, \text{ finite } F \subset \mathbb{N} \Big\}.$$

Let α^t be the *transposed tensor norm* (see [2]) of a tensor norm α . Let X and Y be Banach spaces. For $T = \sum_{n \in F} x_n^* \underline{\otimes} y_n \in \mathcal{F}(X,Y)$, let $u_T := \sum_{n \in F} x_n^* \underline{\otimes} y_n \in X^* \underline{\otimes} Y$. Then we see that

$$\begin{split} & \|T\|_{\mathcal{N}_{E}^{0}} = g_{E}(u_{T}; X^{*}, Y), \|T\|_{u\mathcal{N}_{E}^{0}} = w_{E}(u_{T}; X^{*}, Y), \\ & \|T\|_{\mathcal{N}_{0}^{E}} = g_{E}^{t}(u_{T}; X^{*}, Y), \|T\|_{u\mathcal{N}_{0}^{E}} = w_{E}^{t}(u_{T}; X^{*}, Y). \end{split}$$

Proposition 2. If X or Y is a finite-dimensional normed space, then

$$\|T\|_{\mathcal{N}_{E}^{0}} = \|T\|_{\mathcal{N}_{E}}, \|T\|_{\mathcal{N}_{0}^{E}} = \|T\|_{\mathcal{N}^{E}}, \|T\|_{u\mathcal{N}_{E}^{0}} = \|T\|_{u\mathcal{N}_{E}}, \|T\|_{u\mathcal{N}_{0}^{E}} = \|T\|_{u\mathcal{N}^{E}}$$

for every operartor T from X to Y.

Proof. We only consider \mathcal{N}_0^E . Let $T: X \to Y$ be an operator, and let $\delta > 0$ be given. Let

$$T = \sum_{n=1}^{\infty} x_n^* \underline{\otimes} y_n$$

be a dual E-nuclear representation such that

$$\|(x_n^*)_n\|_{E_*^w(X^*)}\|(y_n)_n\|_{E(Y)} \leq (1+\delta)\|T\|_{\mathcal{N}^E}.$$

Mathematics 2022, 10, 2716 8 of 16

If *X* is finite-dimensional, then there exists an $l \in \mathbb{N}$ such that

$$\left\| \sum_{n \ge l+1} x_n^* \underline{\otimes} y_n \right\| \le \sup_{x \in B_X} \sum_{n \ge l+1} |x_n^*(x)| \|y_n\|$$

$$= \sup_{x \in B_X} \left(\sum_{n \ge l+1} |x_n^*(x)| e_n^* \right) \left(\sum_{n \ge l+1} \|y_n\| e_n \right)$$

$$\le \left\| (x_n^*)_n \right\|_{E_*^w(X^*)} \left\| \sum_{n \ge l+1} \|y_n\| e_n \right\|_E$$

$$\le \delta \|T\|_{\mathcal{N}^E} / \|id_X\|_{\mathcal{N}^E},$$

where id_X is the identity map on X. We have

$$||T||_{\mathcal{N}_{0}^{E}} \leq \left\| \sum_{n=1}^{l} x_{n}^{*} \underline{\otimes} y_{n} \right\|_{\mathcal{N}_{0}^{E}} + \left\| \sum_{n \geq l+1} x_{n}^{*} \underline{\otimes} y_{n} \right\|_{\mathcal{N}_{0}^{E}}$$

$$\leq \|(x_{n}^{*})_{n}\|_{E_{*}^{w}(X^{*})} \|(y_{n})_{n}\|_{E^{w}(Y)} + \left\| \sum_{n \geq l+1} x_{n}^{*} \underline{\otimes} y_{n} \right\| \|id_{X}\|_{\mathcal{N}_{0}^{E}}$$

$$\leq (1 + 2\delta) ||T||_{\mathcal{N}^{E}}.$$

If *Y* is finite-dimensional, then id_X can be replaced by id_Y in the above proof. \Box

From Proposition 2, we have:

Corollary 1. The tensor norms g_E , g_E^t , w_E and w_E^t , respectively, are associated with $[\mathcal{N}_E, \|\cdot\|_{\mathcal{N}_E}]$, $[\mathcal{N}^E, \|\cdot\|_{\mathcal{N}^E}]$, $[u\mathcal{N}_E, \|\cdot\|_{u\mathcal{N}_E}]$ and $[u\mathcal{N}^E, \|\cdot\|_{u\mathcal{N}^E}]$.

3. Some Results of the g_E - and w_E -Tensor Norms

A tensor norm α is called *left-projective* if, for every quotient operator $q: Z \to X$, the operator

$$q \otimes id_Y : Z \otimes_{\alpha} Y \to X \otimes_{\alpha} Y$$

is a quotient operator for all Banach spaces X, Y and Z. If the transposed α^t of α is left-projective, then α is called *right-projective*.

Proposition 3. *The tensor norm* g_E *is left-projective.*

Proof. Let $q: Z \to X$ be a quotient operator. To show that the map

$$q \otimes id_Y : Z \otimes_{g_E} Y \to X \otimes_{g_E} Y$$

is a quotient operator, let $u = \sum_{n \in F} x_n \otimes y_n \in X \otimes_{g_E} Y$. We should show that

$$g_E(u; X, Y) \ge \inf\{g_E(v; Z, Y) : v \in Z \otimes_{g_E} Y, q \otimes id_Y(v) = u\}.$$

Let $\delta > 0$ be given. Since q is a quotient operator, there exists $\{z_n\}_{n \in F} \subset Z$ such that

$$qz_n = x_n, ||z_n|| \le (1+\delta)||x_n||$$

Mathematics 2022, 10, 2716 9 of 16

for every $n \in F$. Then we have

$$\inf\{g_{E}(v;Z,Y): v \in Z \otimes_{g_{E}} Y, q \otimes id_{Y}(v) = u\}$$

$$\leq g_{E}\left(\sum_{n \in F} z_{n} \otimes y_{n}; Z, Y\right)$$

$$\leq \|(z_{n})_{n \in F}\|_{E(Z)} \|(y_{n})_{n \in F}\|_{(E_{*})^{w}(Y)}$$

$$= \left\|\sum_{n \in F} \|z_{n}\|e_{n}\right\|_{E} \|(y_{n})_{n \in F}\|_{(E_{*})^{w}(Y)}$$

$$\leq (1+\delta) \left\|\sum_{n \in F} \|x_{n}\|e_{n}\right\|_{E} \|(y_{n})_{n \in F}\|_{(E_{*})^{w}(Y)}.$$

Since $u = \sum_{n \in F} x_n \otimes y_n$ was an arbitrary representation,

$$\inf\{g_E(v;Z,Y):v\in Z\otimes_{g_E}Y,q\otimes id_Y(v)=u\}\leq (1+\delta)g_E(u;X,Y).$$

Since $\delta > 0$ was also arbitrary, we complete the proof. \Box

For a tensor norm α , we will denote by $X \hat{\otimes}_{\alpha} Y$ the completion of the normed space $X \otimes_{\alpha} Y$.

Lemma 1 ([2], Proposition 21.7(1)). For a finitely generated tensor norm α , if a Banach space X has the approximation property, then for every Banach space Y, the natural map

$$I_{\alpha}: \Upsilon \hat{\otimes}_{\alpha} X \longrightarrow \Upsilon \hat{\otimes}_{\varepsilon} X$$

is injective.

Theorem 2. For every Banach space X,

$$X \otimes_{\varepsilon} E = X \otimes_{w_{\varepsilon}} E$$

holds isometrically, and if $(e_n)_n$ is shrinking, then

$$E^* \otimes_{\varepsilon} X = E^* \otimes_{w_r} X$$

holds isometrically.

Proof. In order to prove the first statement, let $u \in X \otimes E$, and let $U : X^* \to E$ be the corresponding finite rank operator for u. Then, $U^*(E^*)$ can be viewed with a subset of X. Thus, for every $x^* \in X^*$,

$$Ux^* = \sum_{i=1}^{\infty} (e_i^* Ux^*) e_i = \sum_{i=1}^{\infty} x^* (U^* e_i^*) e_i.$$

Since $U(B_{X^*})$ is a relatively compact subset of E,

$$\lim_{l \to \infty} \varepsilon \left(\sum_{i=1}^{l} U^* e_i^* \otimes e_i - u; X, E \right) = \lim_{l \to \infty} \left\| \sum_{i=1}^{l} U^* e_i^* \underline{\otimes} e_i - U \right\|$$

$$= \lim_{l \to \infty} \sup_{x^* \in B_{X^*}} \left\| \sum_{i=1}^{l} (e_i^* U x^*) e_i - U x^* \right\|_E = 0.$$

Consequently,

$$u = \sum_{i=1}^{\infty} U^* e_i^* \otimes e_i$$

Mathematics 2022, 10, 2716 10 of 16

converges in $X \hat{\otimes}_{\varepsilon} E$.

To show that the above series unconditionally converges in $X \hat{\otimes}_{w_E} E$, let $\delta > 0$ be given. Let $\{Ux_k^*\}_{k=1}^m$ be a $\delta/2$ -net for $U(B_{X^*})$. Choose an $l_\delta \in \mathbb{N}$ so that

$$\left\| \sum_{i \ge l_{\delta}} (e_i^* U x_k^*) e_i \right\|_E \le \frac{\delta}{2}$$

for every k = 1,...,m. Now, let G be an arbitrary finite subset of \mathbb{N} with min $G > l_{\delta}$. Let $x^* \in B_{X^*}$ and $e^* \in B_{E^*}$. Let $k_0 \in \{1,...,m\}$ be such that

$$||Ux^* - Ux_{k_0}^*||_E \le \frac{\delta}{2}.$$

Then we have

$$\begin{split} \left\| \sum_{i \in G} x^* (U^* e_i^*) e_i \right\|_E \left\| \sum_{i \in G} (e^* e_i) e_i^* \right\|_{E^*} &= \left\| \sum_{i \in G} (e_i^* U x^*) e_i \right\|_E \sup_{E \subseteq L_k} \sup_{\alpha_k e_k \in B_E} \left| \sum_{i \in G} e^* (\alpha_i e_i) \right| \\ &\leq \left\| \sum_{i \in G} (e_i^* U x^*) e_i \right\|_E \\ &\leq \left\| \sum_{i \in G} (e_i^* U (x^* - x_{k_0}^*)) e_i \right\|_E + \left\| \sum_{i \in G} (e_i^* U x_{k_0}^*) e_i \right\|_E \\ &\leq \left\| \sum_{i = 1}^{\infty} (e_i^* U (x^* - x_{k_0}^*)) e_i \right\|_E + \left\| \sum_{i \geq l_\delta} (e_i^* U x_{k_0}^*) e_i \right\|_E \\ &\leq \left\| U x^* - U x_{k_0}^* \right\|_E + \frac{\delta}{2} \leq \delta. \end{split}$$

Consequently,

$$w_{E}\left(\sum_{i \in G} U^{*}e_{i}^{*} \otimes e_{i}; X, E\right) \leq \|(U^{*}e_{i}^{*})_{i \in G}\|_{E^{w}(X)}\|(e_{i})_{i \in G}\|_{E^{w}_{*}(E)} \leq \delta$$

and so

$$v:=\sum_{i=1}^{\infty}U^*e_i^*\otimes e_i$$

unconditionally converges in $X \hat{\otimes}_{w_E} E$. Since a Banach space with a basis has the approximation property, by Lemma 1, u = v in $X \hat{\otimes}_{w_E} E$. Then, since for every $l \in \mathbb{N}$,

$$w_{E}\left(\sum_{i=1}^{l} U^{*}e_{i}^{*} \otimes e_{i}; X, E\right) \leq \|(U^{*}e_{i}^{*})_{i=1}^{l}\|_{E^{w}(X)} \|(e_{i})_{i=1}^{l}\|_{E^{w}(E)}$$

$$\leq \sup_{x^{*} \in B_{X^{*}}} \left\|\sum_{i=1}^{l} (e_{i}^{*}Ux^{*})e_{i}\right\|_{E'}$$

$$w_{E}(u; X, E) \leq \|U\| = \varepsilon(u; X, E).$$

In order to prove the second statement, let $v \in E^* \otimes X$ and let $V : E \to X$ be the corresponding finite rank operator for v. For every $e = \sum_i \alpha_i e_i \in E$,

$$Ve = \sum_{i=1}^{\infty} \alpha_i Ve_i = \sum_{i=1}^{\infty} (e_i^* e) Ve_i.$$

Mathematics 2022, 10, 2716 11 of 16

Since $(e_i^*)_i$ is a basis for E^* , and $V^*(B_{X^*})$ is a relatively compact subset of E^* ,

$$\begin{split} \lim_{l \to \infty} \varepsilon \Big(\sum_{i=1}^{l} e_i^* \otimes V e_i - v; E^*, X \Big) &= \lim_{l \to \infty} \Big\| \sum_{i=1}^{l} e_i^* \underline{\otimes} V e_i - V \Big\| \\ &= \lim_{l \to \infty} \Big\| \sum_{i=1}^{l} V e_i \underline{\otimes} e_i^* - V^* \Big\| \\ &= \lim_{l \to \infty} \sup_{x^* \in B_{\mathbf{Y}^*}} \Big\| \sum_{i=1}^{l} (V^* x^*) (e_i) e_i^* - V^* x^* \Big\|_{E^*} &= 0. \end{split}$$

Consequently,

$$v = \sum_{i=1}^{\infty} e_i^* \otimes Ve_i$$

converges in $E^* \hat{\otimes}_{\varepsilon} X$.

To show that the above series unconditionally converges in $E^*\hat{\otimes}_{w_E}X$, let $\delta>0$ be given. Let $\{V^*x_k^*\}_{k=1}^m$ be a $\delta/2$ -net for $V^*(B_{X^*})$. Choose an $l_\delta\in\mathbb{N}$ so that

$$\left\| \sum_{i>l_{\delta}} V^* x_k^*(e_i) e_i^* \right\|_{E^*} \le \frac{\delta}{2}$$

for every k = 1, ..., m. Now, let G be an arbitrary finite subset of \mathbb{N} with min $G > l_{\delta}$. Let $x^* \in B_{X^*}$ and $e^{**} \in B_{E^{**}}$. Let $k_0 \in \{1, ..., m\}$ be such that

$$||V^*x^* - V^*x_{k_0}^*||_{E^*} \le \frac{\delta}{2}.$$

Then, we have

$$\begin{split} \left\| \sum_{i \in G} e^{**}(e_i^*) e_i \right\|_E \left\| \sum_{i \in G} (x^* V e_i) e_i^* \right\|_{E^*} &= \sup_{\sum_k \alpha_k e_k^* \in B_{E^*}} \left| \sum_{i \in G} e^{**} (\alpha_i e_i^*) \right| \left\| \sum_{i \in G} V^* x^* (e_i) e_i^* \right\|_{E^*} \\ &\leq \left\| \sum_{i \in G} V^* x^* (e_i) e_i^* \right\|_{E^*} \\ &\leq \left\| \sum_{i \in G} V^* (x^* - x_{k_0}^*) (e_i) e_i^* \right\|_{E^*} + \left\| \sum_{i \in G} V^* x_{k_0}^* (e_i) e_i^* \right\|_{E^*} \\ &\leq \left\| \sum_{i = 1}^{\infty} V^* (x^* - x_{k_0}^*) (e_i) e_i^* \right\|_{E^*} + \left\| \sum_{i \geq l_{\delta}} V^* x_{k_0}^* (e_i) e_i^* \right\|_{E^*} \\ &\leq \left\| V^* (x^* - x_{k_0}^*) \right\|_{E^*} + \frac{\delta}{2} \leq \delta. \end{split}$$

Consequently,

$$w_E\Big(\sum_{i\in G}e_i^*\otimes Ve_i; E^*, X\Big) \leq \|(e_i^*)_{i\in G}\|_{E^w(E^*)}\|(Ve_i)_{i\in G}\|_{E^w_*(X)} \leq \delta$$

and so

$$u:=\sum_{i=1}^{\infty}e_i^*\otimes Ve_i$$

Mathematics 2022, 10, 2716 12 of 16

unconditionally converges in $E^*\hat{\otimes}_{w_E}X$. By Lemma 1, since $v^t=u^t$ in $X\hat{\otimes}_{\varepsilon}E^*$, $v^t=u^t$ in $X\hat{\otimes}_{w_E^t}E^*$, and so v=u in $E^*\hat{\otimes}_{w_E}X$. Since for every $l\in\mathbb{N}$,

$$w_{E}\left(\sum_{i=1}^{l} e_{i}^{*} \otimes Ve_{i}; E^{*}, X\right) \leq \|(e_{i}^{*})_{i=1}^{l}\|_{E^{w}(E^{*})} \|(Ve_{i})_{i=1}^{l}\|_{E^{w}_{*}(X)}$$

$$\leq \sup_{x^{*} \in B_{X^{*}}} \left\|\sum_{i=1}^{l} V^{*}x^{*}(e_{i})e_{i}^{*}\right\|_{E^{*}},$$

$$w_{E}(v; E^{*}, X) \leq \|V\| = \varepsilon(v; E^{*}, X).$$

Now, we consider the completions of our tensor norms. The following lemma is well known.

Lemma 2. Let $(Z, \|\cdot\|)$ be a normed space, and let $(\hat{Z}, \|\cdot\|)$ be its completion. If $z \in \hat{Z}$, then for every $\delta > 0$, there exists a sequence $(z_n)_n$ in Z such that

$$\sum_{n=1}^{\infty} \|z_n\| \le (1+\delta)\|z\|$$

and $z = \sum_{n=1}^{\infty} z_n$ converges in \hat{Z} .

Proposition 4. Suppose that $E = (\sum \ell_q)_p$ $(1 \le p, q < \infty)$, $E = (\sum c_0)_p$ $(1 \le p < \infty)$ or $E = (\sum \ell_q)_{c_0}$ $(1 \le q < \infty)$. If $u \in X \hat{\otimes}_{w_E} Y$, then there exist $(x_n)_n \in E^u(X)$ and $(y_n)_n \in E^u_*(Y)$ such that

$$u=\sum_{n=1}^{\infty}x_n\otimes y_n$$

unconditionally converges in $X \hat{\otimes}_{w_E} Y$ and

$$w_E(u; X, Y) = \inf \Big\{ \|(x_n)_n\|_{E^w(X)} \|(y_n)_n\|_{E^w_*(Y)} : u = \sum_{n=1}^{\infty} x_n \otimes y_n \Big\}.$$

Proof. Let $u \in X \hat{\otimes}_{w_E} Y$, and let $\delta > 0$ be given. Then, by Lemma 2, there exists a sequence $(u_n)_n$ in $X \otimes Y$ such that

$$\sum_{n=1}^{\infty} w_E(u_n; X, Y) \le (1+\delta)w_E(u; X, Y)$$

and $u = \sum_{n=1}^{\infty} u_n$ converges in $X \hat{\otimes}_{w_E} Y$.

We only consider the case $E = (\sum \ell_q)_p \ (1 < p, q < \infty)$. The proofs of the other cases are similar. For every $n \in \mathbb{N}$, let

$$u_n = \sum_{i=1}^{m_n} \sum_{j=1}^{m_n} x_{ij}^n \otimes y_{ij}^n$$

be such that

$$\|((x_{ij}^n)_{j=1}^{m_n})_{i=1}^{m_n}\|_{E^w(X)}\|((y_{ij}^n)_{j=1}^{m_n})_{i=1}^{m_n}\|_{E^w_*(Y)} \leq (1+\delta)w_E(u_n;X,Y).$$

We may assume that

$$\|((x_{ij}^n)_{j=1}^{m_n})_{i=1}^{m_n}\|_{E^w(X)} \leq ((1+\delta)w_E(u_n;X,Y))^{1/p},$$

Mathematics 2022, 10, 2716 13 of 16

$$\|((y_{ij}^n)_{j=1}^{m_n})_{i=1}^{m_n}\|_{E_*^w(Y)} \le ((1+\delta)w_E(u_n;X,Y))^{1/p^*}.$$

In order to show that $u = \sum_{n=1}^{\infty} \sum_{i=1}^{m_n} \sum_{j=1}^{m_n} x_{ij}^n \otimes y_{ij}^n$ unconditionally converges in $X \hat{\otimes}_{w_E} Y$ and $(((x_{ij}^n)_{j=1}^{m_n})_{i=1}^{m_n})_n \in E^u(X)$ and $(((y_{ij}^n)_{j=1}^{m_n})_{i=1}^{m_n})_n \in E^u_*(Y)$, let $\gamma > 0$ be given. Choose an $N_{\gamma} \in \mathbb{N}$ so that for all $l \geq N_{\gamma}$,

$$w_E\left(u-\sum_{n=1}^l u_n;X,Y\right) \leq \gamma \text{ and } \sum_{n\geq l} w_E(u_n;X,Y) \leq \gamma.$$

Then, for all $l \ge N_{\gamma}$ and $1 \le a, b \le m_{l+1}$,

$$w_{E}\left(u-\left(\sum_{n=1}^{l}u_{n}+\sum_{i=1}^{a}\sum_{j=1}^{m_{l+1}}x_{ij}^{l+1}\otimes y_{ij}^{l+1}+\sum_{j=1}^{b}x_{(a+1)j}^{l+1}\otimes y_{(a+1)j}^{l+1}\right);X,Y\right)$$

$$\leq \gamma+w_{E}\left(\sum_{i=1}^{a}\sum_{j=1}^{m_{l+1}}x_{ij}^{l+1}\otimes y_{ij}^{l+1}+\sum_{j=1}^{b}x_{(a+1)j}^{l+1}\otimes y_{(a+1)j}^{l+1};X,Y\right)$$

$$\leq \gamma+\|((x_{ij}^{l+1})_{j=1}^{m_{l+1}})_{i=1}^{m_{l+1}}\|_{E^{w}(X)}\|((y_{ij}^{l+1})_{j=1}^{m_{l+1}})_{i=1}^{m_{l+1}}\|_{E^{w}(Y)}$$

$$\leq \gamma+(1+\delta)w_{E}(u_{l+1};X,Y)$$

$$\leq \gamma+(1+\delta)\gamma.$$

This shows that

$$u = \sum_{n=1}^{\infty} \sum_{i=1}^{m_n} \sum_{j=1}^{m_n} x_{ij}^n \otimes y_{ij}^n$$

converges in $X \hat{\otimes}_{w_E} Y$. To show that the above series converges unconditionally, let F be an arbitrary finite subset of $\mathbb N$ with $\min F > \sum_{n=1}^{N_\gamma} m_n^2$, and let $\{s_k \otimes t_k\}_{k \in F}$ be the set of corresponding tensors. Then, there exists $l_1, l_2 > N_\gamma$ such that $\{s_k \otimes t_k\}_{k \in F} \subset \{\{x_{ij}^n \otimes y_{ij}^n\}_{i,j=1}^{m_n}\}_{n=1}^{l_2}$. We have

$$w_{E}\left(\sum_{k\in F} s_{k} \otimes t_{k}; X, Y\right) \leq \sum_{n=l_{1}}^{l_{2}} \|((x_{ij}^{n})_{j=1}^{m_{n}})_{i=1}^{m_{n}}\|_{E^{w}(X)} \|((y_{ij}^{n})_{j=1}^{m_{n}})_{i=1}^{m_{n}}\|_{E^{w}_{*}(Y)}$$

$$\leq \sum_{n=l_{1}}^{l_{2}} (1+\delta)w_{E}(u_{n}; X, Y)$$

$$\leq (1+\delta)\gamma.$$

Since for all $l \ge N_{\gamma}$ and $1 \le a, b \le m_l$,

$$\begin{split} \sup_{x^* \in B_{X^*}} \left(\left(\sum_{j=b}^{m_l} |x^*(x_{aj}^l)|^q \right)^{p/q} + \sum_{i=a+1}^{m_l} \left(\sum_{j=1}^{m_l} |x^*(x_{ij}^l)|^q \right)^{p/q} + \sum_{n \geq l+1} \sum_{i=1}^{m_n} \left(\sum_{j=1}^{m_n} |x^*(x_{ij}^n)|^q \right)^{p/q} \right)^{1/p} \\ & \leq \sup_{x^* \in B_{X^*}} \left(\sum_{n \geq l} \sum_{i=1}^{m_n} \left(\sum_{j=1}^{m_n} |x^*(x_{ij}^n)|^q \right)^{p/q} \right)^{1/p} \\ & \leq \left(\sum_{n \geq l} \sup_{x^* \in B_{X^*}} \sum_{i=1}^{m_n} \left(\sum_{j=1}^{m_n} |x^*(x_{ij}^n)|^q \right)^{p/q} \right)^{1/p} \\ & \leq \left(\sum_{n \geq l} (1+\delta) w_E(u_n; X, Y) \right)^{1/p} \leq \left((1+\delta) \gamma \right)^{1/p}, \end{split}$$

 $(((x_{ij}^n)_{j=1}^{m_n})_{i=1}^{m_n})_n \in E^u(X)$ and we see that

$$\|(((x_{ij}^n)_{j=1}^{m_n})_{i=1}^{m_n})_n\|_{E^w(X)} \leq \left((1+\delta)\sum_{n=1}^{\infty} w_E(u_n;X,Y)\right)^{1/p}.$$

Mathematics 2022, 10, 2716 14 of 16

Similarly,

$$(((y_{ij}^n)_{j=1}^{m_n})_{i=1}^{m_n})_n \in E_*^u(Y) \text{ and } \|(((y_{ij}^n)_{j=1}^{m_n})_{i=1}^{m_n})_n\|_{E_*^w(Y)} \leq \left((1+\delta)\sum_{n=1}^{\infty} w_E(u_n;X,Y)\right)^{1/p^*}.$$

Consequently, the infimum

$$\inf\{\cdot\} \leq \|(((x_{ij}^n)_{j=1}^{m_n})_{i=1}^{m_n})_n\|_{E^w(X)}\|(((y_{ij}^n)_{j=1}^{m_n})_{i=1}^{m_n})_n\|_{E_*^w(Y)} \leq (1+\delta)^2 w_E(u; X, Y).$$

Since $\delta > 0$ was arbitrary, $\inf\{\cdot\} \leq w_E(u; X, Y)$. For every such representation

$$u=\sum_{n=1}^{\infty}x_n\otimes y_n$$

unconditionally converging in $X \hat{\otimes}_{w_E} Y$,

$$w_{E}(u; X, Y) = \lim_{l \to \infty} w_{E} \Big(\sum_{n=1}^{l} x_{n} \otimes y_{n} \Big)$$

$$\leq \lim_{l \to \infty} \|(x_{n})_{n=1}^{l}\|_{E^{w}(X)} \|(y_{n})_{n=1}^{l}\|_{E^{w}_{*}(Y)}$$

$$= \|(x_{n})_{n=1}^{\infty}\|_{E^{w}(X)} \|(y_{n})_{n=1}^{\infty}\|_{E^{w}_{*}(Y)}.$$

Thus, $w_E(u; X, Y) \leq \inf\{\cdot\}$. \square

As in the proof of Proposition 4, we have:

Proposition 5. Suppose that $E = (\sum \ell_q)_p$ $(1 \le p, q < \infty)$, $E = (\sum c_0)_p$ $(1 \le p < \infty)$ or $E = (\sum \ell_q)_{c_0}$ $(1 \le q < \infty)$. If $u \in X \hat{\otimes}_{g_E} Y$, then there exist $(x_n)_n \in E(X)$ and $(y_n)_n \in E^u_*(Y)$ such that

$$u=\sum_{n=1}^{\infty}x_n\otimes y_n$$

unconditionally converges in $X \hat{\otimes}_{g_E} Y$ and

$$g_E(u; X, Y) = \inf \Big\{ \|(x_n)_n\|_{E(X)} \|(y_n)_n\|_{E_*^w(Y)} : u = \sum_{n=1}^\infty x_n \otimes y_n \Big\}.$$

Let α be a finitely generated tensor norm. Let $\mathcal{L}(X,Y)$ be the Banach space of all operators from X to Y. The operator $j_{\alpha}: X^* \otimes_{\alpha} Y \to \mathcal{L}(X,Y)$ is defined by $j_{\alpha}(\sum_{n=1}^m x_n^* \otimes y_n) = \sum_{n=1}^m x_n^* \otimes y_n$, and let

$$J_{\alpha}: X^* \hat{\otimes}_{\alpha} Y \to \mathcal{L}(X,Y)$$

be the coninuous extension of J_{α} . We equip $J_{\alpha}(X^*\hat{\otimes}_{\alpha}Y)$ with the quotient norm of $X^*\hat{\otimes}_{\alpha}Y/\ker J_{\alpha}$, which will be denoted by $\|\cdot\|_{J_{\alpha}}$. According to a well-known result of Grothendieck [16] (cf. [10], Proposition 1.5.4), if X^* or Y has the approximation property (AP), then J_{α} is injective; hence, $X^*\hat{\otimes}_{\alpha}Y$ is isometric to $(J_{\alpha}(X^*\hat{\otimes}_{\alpha}Y), \|\cdot\|_{J_{\alpha}})$.

Lemma 3 ([21], Theorem 2.4). *Assume that* X^{***} *or* Y *has the AP.*

If
$$T \in J_{\alpha}(X^{**} \hat{\otimes}_{\alpha} Y) \subset \mathcal{L}(X^{*}, Y)$$
 and $T^{*}(Y^{*}) \subset X$, then $T \in \overline{J_{\alpha}(X \otimes Y)}^{\|\cdot\|_{J_{\alpha}}}$

The prototype of the following theorem is described in [21] (Theorem 3.1).

Theorem 3. Suppose that $E = (\sum \ell_q)_p$ $(1 \le p, q < \infty)$, $E = (\sum c_0)_p$ $(1 \le p < \infty)$ or $E = (\sum \ell_q)_{c_0}$ $(1 \le q < \infty)$. Assume that X^{***} or Y has the AP. If $T \in \mathcal{N}_E(X^*, Y)$ (respectively,

Mathematics 2022, 10, 2716 15 of 16

> $_{u}\mathcal{N}_{E}(X^{*},Y)$) and $T^{*}(Y^{*})\subset X$, then there exist $(x_{n})_{n}\in E(X)$ (respectively, $E^{u}(X)$) and $(y_{n})_{n}\in E(X)$ $E_*^u(Y)$ such that

$$T = \sum_{n=1}^{\infty} x_n \underline{\otimes} y_n$$

unconditionally converges in $\mathcal{N}_E(X^*, Y)$ (respectively, ${}_{u}\mathcal{N}_E(X^*, Y)$).

Proof. We only consider \mathcal{N}_E . The proof of the case ${}_{u}\mathcal{N}_E$ is similar. First, we show that $(J_{g_E}(X^{**} \hat{\otimes}_{g_E} Y), \|\cdot\|_{J_{g_E}}) = (\mathcal{N}_E(X^*, Y), \|\cdot\|_{\mathcal{N}_E}). \text{ Let } J_{g_E}(u) \in J_{g_E}(X^{**} \hat{\otimes}_{g_E} Y). \text{ Let } u = 0$ $\sum_{n=1}^{\infty} x_n^{**} \otimes y_n$ be an arbitrary representation in Proposition 5. Then

$$J_{g_E}(u) = \sum_{n=1}^{\infty} x_n^{**} \underline{\otimes} y_n \in \mathcal{N}_E(X^*, Y)$$

and $||J_{g_E}(u)||_{\mathcal{N}_E} \le ||(x_n^{**})_n||_{E(X)}||(y_n)_n||_{E_*^w(Y)}$. Since the representation of u was arbitrary, $||J_{g_E}(u)||_{\mathcal{N}_E} \le g_E(u; X^{**}, Y) = ||J_{g_E}(u)||_{J_{g_E}}$.

Let $T \in \mathcal{N}_E(X^*, Y)$ and let $\delta > 0$ be given. Let $T = \sum_{n=1}^{\infty} x_n^{**} \underline{\otimes} y_n$ be an arbitrary \mathcal{N}_E -representation. Since

$$g_{E}\left(\sum_{n=m}^{l} x_{n}^{**} \otimes y_{n}; X^{*}, Y\right) \leq \|(x_{n}^{**})_{n=m}^{l}\|_{E(X)} \|(y_{n})_{n=m}^{l}\|_{E_{*}^{w}(Y)}$$

$$\leq \|(y_{n})_{n}\|_{E_{*}^{w}(Y)} \|\sum_{n=m}^{l} \|x_{n}^{**}\|e_{n}\|_{E'}$$

 $\sum_{n=1}^{\infty} x_n^{**} \otimes y_n$ converges in $X^{**} \hat{\otimes}_{g_E} Y$. Thus,

$$T = J_{g_E} \left(\sum_{n=1}^{\infty} x_n^{**} \otimes y_n \right) \in J_{g_E} (X^{**} \hat{\otimes}_{g_E} Y).$$

Choose an $l \in \mathbb{N}$ so that $g_E(\sum_{n>l} x_n^{**} \otimes y_n; X^{**}, Y) \leq \delta$. Then, we have

$$||T||_{J_{g_E}} = g_E \Big(\sum_{n=1}^{\infty} x_n^{**} \otimes y_n; X^{**}, Y \Big)$$

$$\leq g_E \Big(\sum_{n=1}^{l} x_n^{**} \otimes y_n; X^{**}, Y \Big) + \delta$$

$$\leq ||(x_n^{**})_n||_{E(X)} ||(y_n)_n||_{E_x^w(Y)} + \delta.$$

Since the representation of T was arbitrary, $\|T\|_{J_{g_E}} \leq \|T\|_{\mathcal{N}_E}$. Now, let $T \in \mathcal{N}_E(X^*, Y)$. Choose $u \in X^{**} \hat{\otimes}_{g_E} Y$ so that $T = J_{g_E}(u)$. By Lemma 3, $J_{g_E}(u) \in \overline{J_{g_E}(X \otimes Y)}^{\|\cdot\|_{J_{g_E}}}$. Since J_{g_E} is an isometry and $X \hat{\otimes}_{g_E} Y$ is isometrically embeded in $X^{**} \hat{\otimes}_{g_E} Y$ (cf. [3], Proposition 6.4), we see that $u \in X \hat{\otimes}_{g_E} Y$. By Proposition 5, there exist $(x_n)_n \in E(X)$ and $(y_n)_n \in E^u_*(Y)$ such that $u = \sum_{n=1}^\infty x_n \otimes y_n$ unconditionally converges in $X \hat{\otimes}_{g_E} Y$. Hence,

$$T = J_{g_E}(u) = \sum_{n=1}^{\infty} x_n \underline{\otimes} y_n$$

unconditionally converges in $\mathcal{N}_E(X^*, Y)$. \square

4. Discussion

This work is the general and natural extension of some results about the tensor norms g_p and w_p . There have been many more investigations about g_p and w_p since their introduction. We expect that several more results on g_p and w_p , and the ideals of p-nuclear and p-compact operators, can be developed. For instance, for a finitely generated tensor Mathematics 2022, 10, 2716 16 of 16

norm α , a Banach space X is said to have the α -approximation property (α -AP) if for every Banach space Y, the natural map

$$J_{\alpha}: Y \hat{\otimes}_{\alpha} X \longrightarrow Y \hat{\otimes}_{\varepsilon} X$$

is injective (cf. [2]), Section 21.7. The g_p -AP and the w_p -AP were well studied, and the g_p -AP (respectively, w_p -AP) is closely related with an approximation property of the *ideal* of *p*-summing operators (respectively, *ideal* of *p*-dominated operators) (cf. [11]). We can consider the g_E -AP and the w_E -AP as the following subjects:

- 1. An investigation of the ideals of *E*-summing operators and *E*-dominated operators;
- 2. Some relationships of the ideals of *E*-summing operators and *E*-dominated operators, respectively, between the g_E -AP and the w_E -AP, respectively.

Funding: This work was supported by the National Research Foundation of Korea (NRF-2021R1F1A1047322). **Conflicts of Interest:** The authors declare no conflict of interest.

References

- 1. Debnath, P.; Konwar, N.; Radenović, S. Metric Fixed Point Theory: Applications in Science, Engineering and Behavioural Sciences; Springer: Singapore, 2021.
- 2. Defant, A.; Floret, K. Tensor Norms and Operator Ideals; Elsevier: Amsterdam, The Netherlands, 1993.
- 3. Paulsen, V. Completely Bounded Maps and Operator Algebras; Cambridge Studies in Advanced Mathematics; Cambridge University Press: Cambridge, UK, 2002.
- Ryan, R.A. Introduction to Tensor Products of Banach Spaces; Springer: Berlin/Heidelberg, Germany, 2002.
- 5. Diestel, J.; Fourie, J.H.; Swart, J. The Metric Theory of Tensor Products; AMS: Providence, RI, USA, 2008.
- 6. Grothendieck, A. Résumé de la théorie métrique des produits tensoriels topologiques. Bol. Soc. Mat. São Paulo 1953, 8, 1–79.
- 7. Grothendieck, A. Produits tensoriels topologiques et espaces nucléaires. Mem. Am. Math. Soc. 1955, 16, 193–200.
- 8. Kim, J.M. The ideal of σ -nuclear operators and its associated tensor norm. *Mathematics* **2020**, 8, 1192. [CrossRef]
- 9. Lapresté, J.T. Opérateurs sommants et factorisations à travers les espaces L^p. Studia Math. 1976, 57, 47–83. [CrossRef]
- 10. Díaz, J.C.; López-Molina, J.A.; Rivera, A.M.J. The approximation property of order (p,q) in Banach spaces. *Collect. Math.* **1990**, 41, 217–232.
- 11. Kim, J.M. Approximation properties of tensor norms and operator ideals for Banach spaces. *Open Math.* **2020**, *18*, 1698–1708. [CrossRef]
- 12. Chevet, S. Sur certains produits tensoriels topologiques d'espaces de Banach. *Z. Wahrscheinlichkeitstheorie Verw. Geb.* **1969**, 11, 120–138. [CrossRef]
- 13. Saphar, P. Applications à puissance nucléaire et applications de Hilbert-Schmidt dans les espaces de Banach. *Ann. Scient. Ec. Norm. Sup.* **1966**, *83*, 113–151. [CrossRef]
- 14. Delgado, J.M.; Piñeiro, C.; Serrano, E. Density of finite rank operators in the Banach space of *p*-compact operators. *J. Math. Anal. Appl.* **2010**, *370*, 498–505. [CrossRef]
- 15. Fourie, J.H.; Swart, J. Tensor products and Banach ideals of p-compact operators. Manuscripta Math. 1981, 35, 343–351. [CrossRef]
- 16. Galicer, D.; Lassalle, S.; Turco, P. The Ideal of p-Compact Operators: A Tensor Product Approach. Studia Math. 2012, 211, 269–286. [CrossRef]
- 17. Kim, J.M. Unconditionally *p*-null sequences and unconditionally *p*-compact operators. *Studia Math.* **2014**, 224, 133–142. [CrossRef]
- 18. Kim, J.M. The ideal of unconditionally p-compact operators. Rocky Mountain J. Math. 2017, 47, 2277–2293. [CrossRef]
- 19. Lassalle, S.; Oja, E.; Turco, P. Weaker relatives of the bounded approximation property for a Banach operator ideal. *J. Approx. Theory* **2016**, 205, 25–42. [CrossRef]
- 20. Lassalle, S.; Turco, P. On null sequences for Banach operator ideals, trace duality and approximation properties. *Math. Nachr.* **2017**, 290, 2308–2321. [CrossRef]
- 21. Oja, E. Grothendieck's nuclear operator theorem revisited with an application to *p*-null sequences. *J. Func. Anal.* **2012**, 263, 2876–2892. [CrossRef]
- 22. Reinov, O. Approximation properties of order *p* and the existence of non-*p*-nuclear operators with *p*-nuclear second adjoints. *Math. Nachr.* **1982**, *109*, 125–134. [CrossRef]
- Saphar, P. Hypothèse d'approximation a l'ordre p dans les espaces de Banach et approximation d'applications p-absolument sommantes. Israel J. Math. 1972, 13, 379–399. [CrossRef]
- 24. Sinha, D.P.; Karn, A.K. Compact operators whose adjoints factor through subspaces of ℓ_p . Studia Math. **2002**, 150, 17–33. [CrossRef]
- 25. Kim, J.M.; Lee, K.Y.; Zheng, B. Banach compactness and Banach nuclear operators. Results Math. 2020, 75, 161. [CrossRef]