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Cătaş, A.; Malik, S.N.; Oladejo, S.O.

Some Geometrical Results Associated

with Secant Hyperbolic Functions.

Mathematics 2022, 10, 2697. https://

doi.org/10.3390/math10152697

Academic Editors: Valer-Daniel Breaz

and Ioan-Lucian Popa

Received: 2 July 2022

Accepted: 25 July 2022

Published: 29 July 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

mathematics

Article

Some Geometrical Results Associated with Secant
Hyperbolic Functions
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1. Introduction and Preliminaries

LetH(c, n) be the class of analytic functions f (ζ) having the series form
f (ζ) = c + cnζ

n + cn+1ζ
n+1 + cn+2ζ

n+2 + cn+3ζ
n+3 + . . . , ζ ∈ f := {ζ ∈ C : |ζ| < 1}. (1)

We denote H(0, 1) with c1 = 1 by H and H(1, 1) by P . Let S denote the subclasses
of H consisting of functions that are univalent in f. We say f (ζ) ∈ H is subordinate
to g(ζ) ∈ H (written as f ≺ g or f (ζ) ≺ g(ζ)) if there exists a Schwarz function w(ζ)

such that f (ζ) = g(w(ζ)) for all ζ ∈ f. For f , g ∈ H with f (ζ) = ζ +
∞
∑

n=2
anζ

n and

g(ζ) = ζ+
∞
∑

n=2
bnζ

n, the convolution of f and g depicted by f (ζ) ∗ g(ζ) is defined in [1] as:

f (ζ) ∗ g(ζ) = ζ+
∞

∑
n=2

anbnζ
n, ζ ∈ f

Let P(A,B) denotes the class of all functions p(ζ) such that p(ζ) ≺ 1+Aζ
1+Bζ ,

ζ ∈ f, −1 ≤ B < A ≤ 1. Equivalently, p ∈ P(A, B) if and only if p(ζ) satisfies the
following inequality: ∣∣∣∣ p(ζ)− 1

A−Bp(ζ)

∣∣∣∣ ≤ 1, ζ ∈ f. (2)

For f ∈ H, if we choose p(ζ) = ζ f ′(ζ)/ f (ζ) in (2), then f ∈ S∗(A, B). In particular, if
A = 1− 2σ, B = −1, the class S∗(A, B) reduces to the class S∗(σ) of starlike function of
order σ.

The class S is one of the most vital categories of Geometric functions theory due
to its wide applications in sciences and engineering, such as in the study of ODEs and
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PDEs, operators’ theory and image processing techniques. Most subclasses of S emanated
in an attempt to solve the great Bieberbach conjecture, and these were classified based
on the geometries of their image domains. For example, the subclass S∗ of S consists of
those functions f ∈ H that map f onto a starlike domain, whereas those that map f onto
a convex domain are denoted by C. These functions are known as starlike and convex
functions, respectively.

In 1992, Ma and Minda [2] gave a unified characterization of the subclasses of S∗.
For this reason, they considered analytic functions ϕ(ζ) with Reϕ(ζ) > 0 in f and nor-
malized by ϕ(0) = 1 and ϕ′(0) > 0. Thus, the Ma and Minda class of starlike functions
denoted by S∗(ϕ(ζ)) was defined by the subordination

ζ f ′(ζ)
f (ζ)

≺ ϕ(ζ), f ∈ A, ζ ∈ f.

Many known and new subclasses of S whose image domains have nice geometries
can be obtained by specializing the superordinate function ϕ(ζ). For example, if

(a) ϕ(ζ) = 1+ζ
1−ζ , we are led to the well-konwn class of starlike functions.

(b) ϕ(ζ) = 1+Aζ
1−Bζ , S∗(ϕ(ζ)) reduces to the class of Janowski starlike function introduced

and studied by Janowski [3].
(c) ϕ(ζ) =

√
1 + ζ, we have the class S∗L, which illustrates the starlike functions mapping

f onto a region bounded by lemniscate of Bernoulli in right half plan, and was
introduced by Sokół and Stankiewic [4].

(d) ϕ(ζ) = ζ+
√

1 + ζ2, we have the class S∗CR of functions mapping f onto a region
bounded by crescent domains, and was introduced by Raina and Sokół [5].

(e) ϕ(ζ) = (1 + sζ)2, 0 < s ≤
√

2
2 , then the class S∗(ϕ) reduces to the class of starlike

limaçon functions, which was developed and examined by Masih and Kanas [6].

For more information for other choices of ϕ(ζ), we refer to [7] (p. 6), and [8] (p. 2).
Furthermore, in recent times, the choice of ϕ(ζ) has been extended to trigonometry and
hyperbolic functions. In this direction, for the choice of ϕ(ζ) = eζ, cos(ζ), 1 + sin(ζ),
1 + sinh−1(ζ) and cosh(ζ), Mendiratta et al. [9], Bano and Mohsa [10], Cho et al. [11],
Kumar and Arora [12] and Alotaibi et al. [13] developed and examined the respective
subclasses S∗e ,S∗cos,S∗sin,S∗

sinh−1 and S∗cosh of starlike functions. In a more recent article by
Bano and Mohsan [14], the choice of secant hyperbolic function was unvailed and the
geometric properties such as the structural formula, inclusion results, and some sharp radii
of convexity and Janowski starlikeness associated with the class

S∗sech =

{
f ∈ H :

ζ f ′(ζ)
f (ζ)

≺ sech(ζ), ζ ∈ f
}

(3)

were discussed.
In the light of these studies by Bano and Mohsan [14] and Alotaibi et al. [13], we study

the differential subordination implication related to the Janowski and secant hyperbolic
functions. Moreover, we examine a few geometric characterization of this function, such as
necessary and sufficient conditions with the concept of convolution, growth and distortion
bounds, radii of starlikeness and partial sums.

The following Jack’s Lemma is significant to establish our findings.

Lemma 1 ([15]). Let w(ζ) be analytic in f with w(0) = 0. If |w(ζ)| attains its maximum value
on the circle |ζ| = r at a point ζ0 ∈ f, then we have ζ0w′(ζ0) = kw(ζ0), for some k ≥ 1.

In the subsequent sections, we assume the analytic function p ∈ P , state and prove
the main results of this current work.

2. Sufficient Conditions Related with sech(ζ)

Theorem 1. Let −1 ≤ B < sech(1) tanh(1)
sec(1) tan(1) ≤ A ≤ 1 and suppose
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1 + βζp′(ζ) ≺ 1 +Aζ
1 + Bζ , ζ ∈ f. (4)

If

|β| > A−B
sech(1) tanh(1)− |B| sec(1) tan(1)

, (5)

then
p(ζ) ≺ sech(ζ), ζ ∈ f.

Proof. Let p(ζ) = sech(w(ζ)), where w(ζ) is analytic in f with w(0) = 0. Let

R1(ζ) = 1 + βζp′(ζ) = 1− βζw′(ζ) sech(w(ζ)) tanh(w(ζ)).

Then ∣∣∣∣ R1(ζ)− 1
A−BR1(ζ)

∣∣∣∣ = ∣∣∣∣ βζw′(ζ) sech(w(ζ)) tanh(w(ζ))

A−B + Bβζw′(ζ) sech(w(ζ)) tanh(w(ζ))

∣∣∣∣.
To achieve our goal, we have to prove that |w(ζ)| < 1 in f. On the contrary, assume

ζ0 ∈ f such that max
|ζ|≤|ζ0|

|w(ζ)| = |w(ζ0)| = 1. By Lemma 1, there exists k ≥ 1 such that

ζ0w′(ζ0) = kw(ζ0). Let w(ζ0) = eiθ for θ ∈ [0, π]. Then∣∣∣∣ R1(ζ0)− 1
A−BR1(ζ0)

∣∣∣∣ =∣∣∣∣ β eiθ w′(eiθ) sech(eiθ) tanh(eiθ)

A−B + Bβ eiθ w′(eiθ) sech(eiθ) tanh(eiθ)

∣∣∣∣
≥ |β|k| sech(eiθ)| | tanh(eiθ)|
A − B + k|β| |B| | sech(eiθ)| | tanh(eiθ)|

. (6)

A direct computation gives that

| sech(eiθ)|2 =

∣∣∣∣∣ cos(sin θ) cosh(cos θ)

sinh2(cos θ) + cos2(sin θ)
− i

sin(sin θ) sinh(cos θ)

sinh2(cos θ) + cos2(sin θ)

∣∣∣∣∣
2

=
1

cosh2(cos θ) + cos2(sin θ)− 1

:= φ1(θ)

and

| tanh(eiθ)|2 =

∣∣∣∣∣ sinh(cos θ) cosh(cos θ)

sinh2(cos θ) + cos2(sin θ)
− i

sin(sin θ) cos(sin θ)

sinh2(cos θ) + cos2(sin θ)

∣∣∣∣∣
2

=
cosh2(cos θ)− cos2(sin θ)

cosh2(cos θ) + cos2(sin θ)− 1

:= φ2(θ).

Since φi(−θ) = φi(θ) for i = 1, 2, we consider θ ∈ [0, π]. Then

max{φ1(θ)} =φ1

(π

2

)
= sec2(1)

min{φ1(θ)} =φ1(0) = φ1(π) = sech2(1)

max{φ2(θ)} =φ2

(π

2

)
= tan2(1)

min{φ2(θ)} =φ2(0) = φ2(π) = tanh2(1)

Therefore,
sech(1) ≤ | sech(eiθ)| ≤ sec(1) (7)
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and
tanh(1) ≤ | tanh(eiθ)| ≤ tan(1). (8)

On the account of (7) and (8) in (6), we have∣∣∣∣ R1(ζ0)− 1
A−BR1(ζ0)

∣∣∣∣ ≥ |β|k sech(1) tanh(1)
A−B + k|B||β|k sec(1) tan(1)

:=φ(k).

Then

φ′(k) =
(A−B)|β| sech(1) tanh(1)

(A−B + |β||B|k sec(1) tan(1))2 .

This shows that φ(k) is an increasing function of k ∈ [0, ∞). Thus, φ(k) ≥ φ(1).
Therefore, ∣∣∣∣ R1(ζ0)− 1

A−BR1(ζ0)

∣∣∣∣ ≥ |β| sech(1) tanh(1)
A−B + |B||β|k sec(1) tan(1)

> 1,

where we have used (5). This contradicts the hypothesis of the Theorem. Hence, there is no
ζ0 ∈ f such that |w(ζ0)| = 1. So, |w(ζ)| < 1 for all ζ ∈ f. This proves the Theorem.

Theorem 2. Let −1 ≤ B < tanh(1)
tan(1) ≤ A ≤ 1 and suppose

1 + β
ζp′(ζ)
p(ζ)

≺ 1 +Aζ
1 + Bζ , ζ ∈ f. (9)

If

|β| > A−B
tanh(1)− |B| tan(1)

, (10)

then
p(ζ) ≺ sech(ζ), ζ ∈ f.

Proof. Let p(ζ) = sech(w(ζ)), where w(ζ) is analytic in f with w(0) = 0. Let

R2(ζ) = 1 + β
ζp′(ζ)
p(ζ)

= 1− βζw′(ζ) tanh(w(ζ)).

Then ∣∣∣∣ R2(ζ)− 1
A−BR2(ζ)

∣∣∣∣ = ∣∣∣∣ βζw′(ζ) tanh(w(ζ))

A−B + Bβζw′(ζ) tanh(w(ζ))

∣∣∣∣.
Let ζ0 ∈ f such that max

|ζ|≤|ζ0|
|w(ζ)| = |w(ζ0)| = 1. Then in view of Lemma 1, there

exists k ≥ 1 such that ζ0w′(ζ0) = kw(ζ0). Let w(ζ0) = eiθ for θ ∈ [0, π]. Then∣∣∣∣ R2(ζ0)− 1
A−BR2(ζ0)

∣∣∣∣ =∣∣∣∣ β eiθ w′(eiθ) tanh(eiθ)

A−B + Bβ eiθ w′(eiθ) tanh(eiθ)

∣∣∣∣
≥ |β|k| tanh(eiθ)|
A − B + k|β| |B| | tanh(eiθ)|

≥ |β|k tanh(1)
A−B + |β| |B| k tan(1)

, (11)

where we have used (7) and (8). It is easy to see that the right side of the inequality (11) is
an increasing function of k ∈ [1, ∞). So,∣∣∣∣ R2(ζ0)− 1

A−BR2(ζ0)

∣∣∣∣ ≥ |β| tanh(1)
A−B + |β| |B| tan(1)

≥ 1,
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provided (10) holds. This contradicts the assumption of the Theorem. Hence, we obtain
our result.

Theorem 3. Let −1 ≤ B < tanh(1)
tan(1) ≤ A ≤ 1 and assume

1 + β
ζp′(ζ)
p2(ζ)

≺ 1 +Aζ
1 + Bζ , ζ ∈ f. (12)

If

|β| > (A−B) sec(1)
tanh(1)− |B| tan(1)

, (13)

then
p(ζ) ≺ sech(ζ), ζ ∈ f.

Proof. Let p(ζ) = sech(w(ζ)), where w(ζ) is analytic in f with w(0) = 0. Consider

R3(ζ) = 1 + β
ζp′(ζ)
p(ζ)

= 1− βζw′(ζ) tanh(w(ζ))

sech(w(ζ))
.

Then ∣∣∣∣ R3(ζ)− 1
A−BR3(ζ)

∣∣∣∣ = ∣∣∣∣ βζw′(ζ) tanh(w(ζ))

(A−B) sech(w(ζ)) + Bβζw′(ζ) tanh(w(ζ))

∣∣∣∣.
Let ζ0 ∈ f such that max

|ζ|≤|ζ0|
|w(ζ)| = |w(ζ0)| = 1. Then by Lemma 1, there exists

k ≥ 1 such that ζ0w′(ζ0) = kw(ζ0). Let w(ζ0) = eiθ for θ ∈ [0, π]. Then using (7) and (8),
we have ∣∣∣∣ R3(ζ0)− 1

A−BR3(ζ0)

∣∣∣∣ =∣∣∣∣ β eiθ w′(eiθ) tanh(eiθ)

(A−B) sech(eiθ) + Bβ eiθ w′(eiθ) tanh(eiθ)

∣∣∣∣
≥ |β|k| tanh(eiθ)|
(A−B)| sech(eiθ)|+ k|β| |B| | tanh(eiθ)|

≥ |β|k tanh(1)
(A−B) sec(1) + |β| |B| k tan(1)

(14)

It is not difficult to see that the right side of the inequality (14) is an increasing function
of k ∈ [1, ∞). So, ∣∣∣∣ R3(ζ0)− 1

A−BR3(ζ0)

∣∣∣∣ ≥ |β| tanh(1)
(A−B) sec(1) + |β| |B| tan(1)

≥ 1,

where we have used (13). This contradicts the assumption of the Theorem. Hence, the
result is proved.

Consider the Alexander integral operator

F(ζ) =
∫ z

0

h(s)
s

ds, h ∈ H. (15)

This operator was the first integral operator known in the field of Geometric function
theory. It is very important and resourceful in studying many geometric properties of
several subclasses of univalent functions. Therefore, in the next Theorem, we examine the
differential subordination of the sectant hyperbolic function under this integral transformation.

Theorem 4. Let −1 ≤ B < tanh(1)−sech(1)
tan(1)+sec(1) ≤ A ≤ 1 and suppose
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1 + β
zh′(ζ)
h(ζ)

≺ 1 +Aζ
1 + Bζ , ζ ∈ f. (16)

If

|β| > A−B
tanh(1)− sech(1)− |B|(tan(1) + sec(1))

, (17)

then
ζF′(ζ)
F(ζ)

≺ sech(ζ), ζ ∈ f.

Proof. Let ζF′(ζ)
F(ζ) = sech(w(ζ)) with w(ζ) analytic in f such that w(0) = 0. To achieve

the aim of this Theorem, we need to establish that |w(ζ)| < 1 in f. From the integral
transformation (15), we have

h(ζ) = ζF′(ζ),

and logarithmic differentiation gives

zh′(ζ)
h(ζ)

=
ζF′(ζ)
F(ζ)

+
z
(
ζF′(ζ)

F(ζ)

)′
ζF′(ζ)

F(ζ)

=−
(
ζw′(ζ) tanh(w(ζ))− sech(w(ζ))

)
.

Let

R4(ζ) = 1 + β
zh′(ζ)
h(ζ)

= 1− β
(
ζw′(ζ) tanh(w(ζ))− sech(w(ζ))

)
.

Then ∣∣∣∣ R4(ζ)− 1
A−BR4(ζ)

∣∣∣∣ = ∣∣∣∣ β(ζw′(ζ) tanh(w(ζ))− sech(w(ζ)))

A−B + Bβ (ζw′(ζ) tanh(w(ζ))− sech(w(ζ)))

∣∣∣∣.
Let ζ0 ∈ f such that max

|ζ|≤|ζ0|
|w(ζ)| = |w(ζ0)| = 1. Then by Lemma 1, there exists

k ≥ 1 such that ζ0w′(ζ0) = kw(ζ0). Let w(ζ0) = eiθ for θ ∈ [0, π]. Then using (7) and (8),
we have ∣∣∣∣ R4(ζ0)− 1

A−BR4(ζ0)

∣∣∣∣ ≥
∣∣∣∣∣ β

(
k eiθ tanh(eiθ)− sech(eiθ)

)
A−B + Bβ

(
k eiθ tanh(eiθ)− sech(eiθ)

) ∣∣∣∣∣
≥

|β|
(
k| tanh(eiθ)| − | sech(eiθ)|

)
A−B + |β||B|

(
k| tanh(eiθ)| − | sech(eiθ)|

)
≥ |β|(k tanh(1)− sec(1))
A−B + |β||B|(k tan(1)− sec(1))

:=φ(k),

where φ(k) is an increasing function of k ∈ [1, ∞). Therefore, φ(k) ≥ φ(1), and so,∣∣∣∣ R4(ζ0)− 1
A−BR4(ζ0)

∣∣∣∣ ≥ |β|(tanh(1)− sec(1))
A−B + |β||B|(tan(1)− sec(1))

> 1

when we used (17). This is a contradiction, and hence, the proof is completed.

Setting p(ζ) = ζ f ′(ζ)/ f (ζ) in Theorems 1–3, we arrive at the following results.

Corollary 1. Let f ∈ H. Then each of the following is sufficient for f ∈ S∗sech:
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(a)

1 + β
ζ f ′(ζ)

f (ζ)

(
(ζ f ′(ζ))′

f ′(ζ)
− ζ f ′(ζ)

f (ζ)

)
≺ 1 +Aζ

1 + Bζ , ζ ∈ f, −1 ≤ B <
sech(1) tanh(1)

sec(1) tan(1)
≤ A ≤ 1, (18)

for

|β| > A−B
sech(1) tanh(1)− |B| sec(1) tan(1)

.

(b)

1 + β

(
(ζ f ′(ζ))′

f ′(ζ)
− ζ f ′(ζ)

f (ζ)

)
≺ 1 +Aζ

1 + Bζ , ζ ∈ f, −1 ≤ B <
tanh(1)
tan(1)

≤ A ≤ 1 (19)

for

|β| > A−B
tanh(1)− |B| tan(1)

.

(c)

1 + β
f (ζ)

ζ f ′(ζ)

(
(ζ f ′(ζ))′

f ′(ζ)
− ζ f ′(ζ)

f (ζ)

)
≺ 1 +Aζ

1 + Bζ , ζ ∈ f, −1 ≤ B <
tanh(1)
tan(1)

≤ A ≤ 1 (20)

for

|β| > (A−B) sec(1)
tanh(1)− |B| tan(1)

.

As we set A = 1 and B = 0 in Corollary 1, we are led to the following results,
respectively:

Corollary 2. Let f ∈ H. Then, each of the following is sufficient for f ∈ S∗sech:

(a)

1 + β
ζ f ′(ζ)

f (ζ)

(
(ζ f ′(ζ))′

f ′(ζ)
− ζ f ′(ζ)

f (ζ)

)
≺ 1 + ζ, ζ ∈ f,

for

|β| > 1
sech(1) tanh(1)

.

(b)

1 + β

(
(ζ f ′(ζ))′

f ′(ζ)
− ζ f ′(ζ)

f (ζ)

)
≺ 1 + ζ, ζ ∈ f,

for

|β| > 1
tanh(1)

.

(c)

1 + β
f (ζ)

ζ f ′(ζ)

(
(ζ f ′(ζ))′

f ′(ζ)
− ζ f ′(ζ)

f (ζ)

)
≺ 1 + ζ, ζ ∈ f,

for

|β| > sech(1)
tanh(1)

.

Corollary 3. The following is sufficient for the transformation (15) to be a member of the secant
hyperbolic class when A = 0 and B = −1

1 + β
zh′(ζ)
h(ζ)

≺ 1
1− ζ

, ζ ∈ f,

for

|β| > 1
2 sec(1) + tan(1)− tanh(1)

.
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In view of Theorems 1–3 and Corollary 1, we conclude this section by the following
remark:

Remark 1. If for a real β such that β > 2
sech(1) tanh(1)−sec(1) tan(1) ≈ −0.83724, a function p ∈ P

satisfies

1 + β
ζp′(ζ)
(p(ζ))n ≺

1 + ζ

1− ζ
, n = 0, 1, 2,

then p(ζ) ≺ sech(ζ), and hence for the same β, if f ∈ H satisfies any of the conditions given
by (18), (19) and (20), then f ∈ S∗sech.

3. Convolution Properties

In this section, we prove the convolution conditions for the analytic functions f ∈ S∗sech.

Theorem 5. Let f ∈ H. Then

f ∈ S∗sech ⇐⇒
1
ζ

(
f (ζ) ∗ ζ− µζ2

(1− ζ)2

)
6= 0, (21)

for µ = sech(eiθ)
sech(eiθ)−1 , as well as µ = 1.

Proof. Let f ∈ S∗sech. Then f (ζ) is analytic in f, and so f (ζ)/ζ 6= 0 in f. This proves the
case µ = 1. On the other hand, there exists w(ζ) analytic in f with w(0) = 0 and |w(ζ)| < 1
in f such that ζ f ′(ζ)

f (ζ) = sech(w(ζ)). This is equivalent to ζ f ′(ζ)
f (ζ) 6= sech(eiθ), 0 ≤ θ ≤ 2π.

That is

0 6=1
ζ

(
ζ f ′(ζ)− f (ζ) sech(eiθ)

)
=

1
ζ

(
f (ζ) ∗ ζ

(1− ζ)2 − f (ζ) ∗ ζ

1− ζ
sech(eiθ)

)
=

1
ζ

[
f (ζ) ∗

(
ζ

(1− ζ)2 −
ζ

1− ζ
sech(eiθ)

)]

=
1− sech(eiθ)

ζ

 f (ζ) ∗
ζ− sech(eiθ)

sech(eiθ)−1ζ
2

(1− ζ)2

,

where we have used the fact that

ζ f ′(ζ) = f (ζ) ∗ ζ

(1− ζ)2 and f (ζ) = f (ζ) ∗ ζ

1− ζ
.

This completes the proof in the forward direction.
For the backward proof, let µ = 1. Then f (ζ)/ζ 6= 0 in f. Therefore, the function

V(ζ) = ζ f ′(ζ)/ f (ζ) is holomorphic in f along with V(0) = 1. In the first part of the proof,
we observe that

ζ f ′(ζ)
f (ζ)

6= sech(eiθ)

and
1
ζ

(
f (ζ) ∗ ζ− µζ2

(1− ζ)2

)
6= 0

are identical. Let X (ζ) = sech(eiθ) for ζ ∈ f. Then V ∩ X = ∅. Hence, a connected
part of C− X (∂f) contains the simply connected domain V(f). The univalence of the
function X , along with the fact X (0) = V(0) = 1, shows that V(ζ) ≺ X (ζ) and it means
that f ∈ S∗sech.
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Corollary 4. Let f ∈ H. Then

f ∈ S∗sech ⇐⇒
∞

∑
n=2

n− sech(eiθ)

sech(eiθ)− 1
anζ

n−1 6= 1, (22)

Proof. We have alrealdy established that f ∈ S∗sech if and only if (21) is satisfied. Thus, rewrite
the right side of (21) as

0 6=1
ζ

(
f (ζ) ∗ ζ− µζ2

(1− ζ)2

)
=

1
ζ

(
f (ζ) ∗ ζ

(1− ζ)2 − f (ζ) ∗ ζ2

(1− ζ)2µ

)
=

1
ζ

[
f (ζ) ∗ ζ

(1− ζ)2 − µ

(
f (ζ) ∗ ζ

(1− ζ)2 − f (ζ) ∗ ζ

1− ζ

)]
=(1− µ) f ′(ζ) + µ

f (ζ)
z

=1−
∞

∑
n=2

(n(µ− 1)− µ)anζ
n−1

=1−
∞

∑
n=2

n− sech(eiθ)

sech(eiθ)− 1
anζ

n−1.

Corollary 5. Let f ∈ H. If
∞

∑
n=2

∣∣∣∣n− sech(eiθ)

sech(eiθ)− 1

∣∣∣∣ |an| < 1, (23)

then f ∈ S∗sech.

Proof. Let µ be given as in (21). Then, consider∣∣∣∣∣1− ∞

∑
n=2

(n(µ− 1)− µ)anζ
n−1

∣∣∣∣∣ ≥1−
∞

∑
n=2

∣∣∣(n(µ− 1)− µ)anζ
n−1
∣∣∣

>1−
∞

∑
n=2
|n(µ− 1)− µ| |an|

=1−
∞

∑
n=2

∣∣∣∣n− sech(eiθ)

sech(eiθ)− 1

∣∣∣∣ |an|

>0,

when we apply (24). Therefore, on the account of Corollary 4, we have the result.

The next result is a direct consequence of Corollay 5.

Corollary 6. Let f ∈ H. If

|an| <
| sech(eiθ)− 1|
|n− sech(eiθ)|

, n ≥ 2 (24)

then f ∈ S∗sech.

Corollary 7. Let f ∈ S∗sech and |ζ| = r. Then

r−
(
| sech(eiθ)− 1|
|2− sech(eiθ)|

)
r2 ≤ | f (ζ)| ≤ r +

(
| sech(eiθ)− 1|
|2− sech(eiθ)|

)
r2.



Mathematics 2022, 10, 2697 10 of 13

Proof. Let f (ζ) = ζ+
∞
∑

n=2
anζ

n. Then

| f (ζ)| ≤ r +
∞

∑
n=2
|an|rn and | f (ζ)| ≥ r−

∞

∑
n=2
|an|rn. (25)

Since rn ≤ r2 for n ≥ 2 and r < 1, we have

| f (ζ)| ≤ r + r2
∞

∑
n=2
|an| (26)

and

| f (ζ)| ≥ r− r2
∞

∑
n=2
|an|. (27)

It follows from Corollary 5 that∣∣∣∣2− sech(eiθ)

sech(eiθ)− 1

∣∣∣∣ ∞

∑
n=2
|an| ≤

∞

∑
n=2

∣∣∣∣n− sech(eiθ)

sech(eiθ)− 1

∣∣∣∣ |an| < 1,

and from this inequality, we obtain

∞

∑
n=2
|an| <

∣∣∣∣ sech(eiθ)− 1
2− sech(eiθ)

∣∣∣∣.
Using this last inequality in (26) and (27), we obtain the required result.

Following the same line of proof as in Corollary 7, we obtain the following distortion
result for the class S∗sech.

Corollary 8. Let f ∈ S∗sech and |ζ| = r. Then

1− 2
(
| sech(eiθ)− 1|
|2− sech(eiθ)|

)
r ≤ | f ′(ζ)| ≤ 1 + 2

(
| sech(eiθ)− 1|
|2− sech(eiθ)|

)
r.

Corollary 9. Let f ∈ S∗sech, then f ∈ S∗(σ), 0 ≤ σ < 1 in the disc |ζ| < r∗, where

r∗ = inf
{
(1− σ)|n− sech(eiθ)|
(n− σ)| sech(eiθ)− 1|

} 1
n−1

, n ≥ 2.

Proof. To prove that f ∈ S∗(σ), it is enough to show that∣∣∣∣ζ f ′(ζ)
f (ζ)

− 1
∣∣∣∣ < 1− σ,

which implies
∞

∑
n=2

n− σ

1− σ
|an| rn−1 < 1,

where we deduce that f ∈ S∗(σ) if

|an| <
1− σ

(n− σ)rn−1 .

By the virtue of Corollary 6, f ∈ S∗(σ) if

| sech(eiθ)− 1|
|n− sech(eiθ)|

<
1− σ

(n− σ)rn−1 .
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Thus, we have

r <
(
(1− σ)|n− sech(eiθ)|
(n− σ)| sech(eiθ)− 1|

) 1
n−1

,

which conclude the proof.

4. Partial Sums of The Class S∗sech

Let f1(ζ) = z and fn(ζ) = ζ+
n
∑

k=2
akζ

k be the sequence of partial sum of the functions

f ∈ H, when the coefficients of f (ζ) are small enough to satisfy condition (24). In this
section, we determine the sharp lower bounds for the geometric quantities

Re
(

f (ζ)
fn(ζ)

)
, Re

(
fn(ζ)

f (ζ)

)
, Re

(
f ′(ζ)
f ′n(ζ)

)
and Re

(
f ′n(ζ)
f ′(ζ)

)
.

Theorem 6. Let f ∈ H satisfies condition (24), then

Re
(

f (ζ)
fn(ζ)

)
≥ 1− 1

µn+1
, ζ ∈ f (28)

and

Re
(

fn(ζ)

f (ζ)

)
≥ µn+1

µn+1 + 1
, ζ ∈ f, (29)

where

µn =

∣∣∣∣n− sech(eiθ)

sech(eiθ)− 1

∣∣∣∣. (30)

The result is sharp for every n with the leading function

f (ζ) = ζ+
ζn+1

µn+1
(31)

Proof. Consider

w(ζ) = (1 + µn+1)

[
f (ζ)
fn(ζ)

−
(

1− µn+1

1 + µn+1

)]
= 1 +

µn+1
∞
∑

k=n+1
akζ

k−1

1 +
n
∑

k=2
akζ

k−1
:=

1 + g(ζ)
1− g(ζ)

.

Then

g(ζ) =
w(ζ)− 1
w(ζ) + 1

=

µn+1
∞
∑

k=n+1
akζ

k−1

2 + 2
n
∑

k=2
akζ

k−1 + µn+1
∞
∑

k=n+1
akζ

k−1
.

To prove our result, we need to demonstrate that Re w(ζ) ≥ 0 in f, which is equivalent
to showing |g(ζ)| ≤ 1 in f. Therefore,

|g(ζ)| ≤
µn+1

∞
∑

k=n+1
|ak|

2− 2
n
∑

k=2
|ak| − µn+1

∞
∑

k=n+1
|ak|
≤ 1,

provided
n

∑
k=2
|ak|+ µn+1

∞

∑
k=n+1

|ak| ≤ 1. (32)
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Since f (ζ) satisfies (25), then to prove (34), it is enough to demonstrate that the left

side of the inequality (32) is bounded by
∞
∑

k=2
µk|ak|. This is equivalent to

n

∑
k=2

(1− µk)|ak|+
∞

∑
k=n+1

(µk − µn+1)|ak| ≥ 0. (33)

On the account of this inequality (33), the proof of the inequality (34) is completed.
To see the sharpness of the result, we consider the function in (31) and observe that for
ζ = r ei π

n , we have

f (ζ)
fn(ζ)

= f (ζ) = 1 +
ζn

µn
→ 1− 1

µn+1
, r → 1−.

Similarly, if we consider

w(ζ) = µn+1

[
fn(ζ)

f (ζ)
−
(

1− 1
µn+1

)]
= 1 +

µn+1
∞
∑

k=n+1
akζ

k−1

1 +
n
∑

k=2
akζ

k−1
:=

1 + g(ζ)
1− g(ζ)

.

Then

g(ζ) =
w(ζ)− 1
w(ζ) + 1

=

(1 + µn+1)
∞
∑

k=n+1
akζ

k−1

2 + 2
n
∑

k=2
akζ

k−1 + (µn+1 − 1)
∞
∑

k=n+1
akζ

k−1
.

Therefore,

|g(ζ)| ≤
(1 + µn+1)

∞
∑

k=n+1
|ak|

2− 2
n
∑

k=2
|ak| − (µn+1 − 1)

∞
∑

k=n+1
|ak|
≤ 1,

which leads us directly to the assertion (35) of Theorem 6. The bound of (35) cannot be im-
proved since the function given by (31) assumes the equality. This complete the proof.

The following results involving the ratio of derivative can be obtained mutatis mutandis
as in Theorem 6, thus we omit the proofs.

Theorem 7. Let f ∈ H satisfy condition (24), then

Re
(

f ′(ζ)
f ′n(ζ)

)
≥ 1− n + 1

µn+1
, ζ ∈ f (34)

and

Re
(

f ′n(ζ)
f ′(ζ)

)
≥ µn+1

n + 1 + µn+1
, ζ ∈ f, (35)

where µn is given by (30). The result is sharp for the function defined by (31).

5. Conclusions

These current findings are motivated by the various families of Ma and Minda’s class
connected to trigonometric functions, which have surfaced in the existing literature in
Geometric function theory. Here, in this article, we have successfully found the condition
on β ∈ C (given by (5), (10), (13) and (17) ) such that the following differential subordination
implication holds:
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1 + β
ζp′(ζ)
(p(ζ))n ≺

1 +Aζ
1 + Bζ =⇒ p(ζ) ≺ sech(ζ) ζ ∈ f, n = 0, 1, 2.

Consequently, we found the sufficient conditions for f ∈ H to be in the class S∗sech. On
this note, condition on β associated with certain differential subordination of the Janowski
type for which Alexander integral transformation is preserved was estimated.

Moreover, we investigated the convolution property related to the class S∗sech and
presented many of its geometrical properties, such as coefficient estimate, growth and
distortion results, radii of the starkness of order σ and partial sums results.

Other geometrical features related to secant hyperbolic functions such as the third and
fourth Hankel and Toeplitz determinants could be examined as future work.
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