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Abstract: New local linear estimators are proposed for a wide class of nonparametric regression
models. The estimators are uniformly consistent regardless of satisfying traditional conditions of
dependence of design elements. The estimators are the solutions of a specially weighted least-squares
method. The design can be fixed or random and does not need to meet classical regularity or
independence conditions. As an application, several estimators are constructed for the mean of dense
functional data. The theoretical results of the study are illustrated by simulations. An example of
processing real medical data from the epidemiological cross-sectional study ESSE-RF is included. We
compare the new estimators with the estimators best known for such studies.
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1. Introduction

In this paper, we consider a nonparametric regression model, where bivariate observa-
tions {(X1, z1), . . . , (Xn, zn)} satisfy the following equations:

Xi = f (zi) + εi, i = 1, . . . , n, (1)

where { f (t), t ∈ [0, 1]}, is an unknown random function (process) which is almost surely
continuous, the design {zi; i = 1, . . . , n} consists of a set of observable random variables
with possibly unknown distributions lying in [0, 1], and the design points are not necessarily
independent or identically distributed. We will consider the design as a triangular array,
i.e., the random variables {zi; i = 1, . . . , n} may depend on n. In particular, this scheme
includes regression models with fixed design. The random regression function f (t) is not
supposed to be design-independent. We will give below some fairly standard conditions
for the regression analysis on the random errors {εi; i = 1, . . . , n}. In particular, they are
supposed to be centered, not necessarily independent or identically distributed.

The paper is devoted to constructing uniformly consistent estimators for the regression
function f (t) under minimal assumptions on the correlation of design points.

The most popular kernel estimation procedures in the classical case of nonrandom
regression function are apparently related with the estimators of Nadaray–Watson, Priest-
ley–Zhao, Gasser–Müller, local polynomial estimators, as well as their modifications (e.g.,
see [1–5]). We are primarily interested in the dependence conditions of design elements
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{zi}. In this regard, a huge number of publications in the field of nonparametric regression
can be conditionally divided into two groups. We will classify papers with a random design
to the first one, and to the second one with a fixed design.

In the papers dealing with random design, either independent and identically dis-
tributed quantities are considered or, as a rule, stationary sequences of observations that
satisfy one or another known form of dependence. In particular, various types of mixing
conditions, schemes of moving averages, associated random variables, Markov or mar-
tingale properties, and so on have been used. In this regard, we note, for example, the
papers [3,6–22]. In the recent papers [23–26], nonstationary sequences of design elements
with one or another special type of dependence are considered (Markov chains, autoregres-
sion, partial sums of moving averages, etc.). In the case of fixed design, in the overwhelming
majority of works, certain conditions for the regularity of the design are assumed (e.g.,
see [9,10,27–33]). So, the nonrandom design points zi are most often given by the formula
zi = g(i/n) + o(1/n) with some function g of bounded variation, where the error o(1/n)
is uniform in all i = 1, . . . , n. If g is linear then we obtain a so-called equidistant design.
Another version of the regularity condition is the relation maxi≤n(zi − zi−1) = O(1/n)
(here it is assumed that the design elements ranged in increasing order).

The problem of uniform approximation of a regression function has been studied by
many authors (e.g., see [7,9,10,14,15,17,20,22,26,30,34–36], and the references there).

In connection with studying the random regression function f (t), we note, for example,
the papers [37–46] where the mean and covariance functions of the random regression
function f are estimated in the case when, for N independent copies f1, . . . , fN of the
function f , noisy values of each of these trajectories are observed for some collection of
design elements (the design can be either common to all trajectories or different from
series to series). Estimation of the mean and covariance functions is an actively developing
area of nonparametric estimation, especially in the last couple of decades, which is both
of independent interest and plays an important role for some subsequent analysis of
the random process f (e.g., see [39,40,45,47–49]). We consider one of the variants of this
problem as an application of the main result.

The purpose of this article is to construct estimators that are uniformly consistent (in
the sense of convergence in probability) not only in the above-mentioned review of cases
of dependence, but also for significantly different correlations of observations when the
conditions of ergodicity or stationarity are not satisfied, as well as the classical mixing
conditions and other well-known dependence restrictions. Note that the proposed estima-
tors belong to the class of local linear kernel estimators, but with some different weights
than in the classical version. In this case, instead of the original observations, we consider
their concomitants associated with the variational series based on the design observations,
and their spacings are taken as the additional weights for the corresponding weighted
least-square method generating the above-mentioned new estimators. It is important to
emphasize that these estimators have the property of universality regarding the nature
of dependence of observations: the design can be either fixed and not necessarily regu-
lar, or random, while not necessarily satisfying the traditional correlation conditions. In
particular, the only condition for design points that guarantees the uniform consistency
of new estimators is the condition for dense filling of the domain of definition of the re-
gression function. In our opinion, this condition is very clear and in fact, it is necessary
to restore the function on the area of defining design elements. Previously, similar ideas
were implemented in [50] for slightly different evaluations (in detail, see Section 4). Similar
conditions for design elements were also used in [51,52] in nonparametric regression, and
in [53–55]—in nonlinear regression.

The paper has the following structure. Section 2 contains the main results. Section 3
discusses the problem of estimating the mean function of a stochastic process. Comparison
of the universal local linear estimators with some known ones is given in Section 4. Section 5
contains some results of computer simulation. In Section 6, we compare the results of using
the new universal local linear estimators with the most common approaches of data analysis
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based on the epidemiological research ESSE-RF. In Section 7, we briefly summarize the
results of the study. The proofs of the results from Sections 2–4 are referred to Section 8.

2. Main Results

We need a number of assumptions.
(D) The observations X1, . . . , Xn are represented in the form (1), where the unknown ran-

dom regression function { f (t), t ∈ [0, 1]}, is almost surely continuous. The design points
{zi; i = 1, . . . , n} are a set of observable random variables with values in [0, 1], having, generally
speaking, unknown distributions, not necessarily independent or equally distributed. Moreover, the
random variables {zi; i = 1, . . . , n} may depend on n, i.e., can be considered as an array of design
observations. The random function f (t) may be design-dependent.

(E) For all n ≥ 1, the unobservable random errors {εi; i = 1, . . . , n} satisfy with probability
1 the following conditions for all i, j ≤ n and i 6= j:

EFn εi = 0, sup
i≤n

EFn ε2
i ≤ σ2, EFn εiε j = 0, (2)

where the constant σ2 > 0 may be unknown and does not depend on n, the symbol EFn stands for
the conditional expectation given the σ-field generated both by the paths of the random process f (·)
and by the random variables {zi; i = 1, . . . , n}.

(K) A kernel K(t), t ∈ R, is equal to zero outside the interval [−1, 1] and is the density
of a symmetric distribution with the support in [−1, 1], i.e., K(t) ≥ 0, K(t) = K(−t) for all
t ∈ [−1, 1], and

∫ 1
−1 K(t)dt = 1. We assume that the function K(t) satisfies the Lipschitz condition

with constant 1 ≤ L ≤ ∞ and K(±1) = 0.
In the future, we denote by κj, j = 0, 1, 2, 3, the absolute jth moment of the distribution

with density K(t), i.e., κj =
∫ 1
−1 |u|

jK(u)du. Put Kh(t) = h−1K(h−1t). It is clear that Kh(s)
is a probability density with support lying in [−h, h]. We need also the notation

‖K‖2 =

1∫
−1

K2(u)du, κj(α) =

α∫
−1

tjK(t)dt, α ∈ [0, 1], j = 0, 1, 2, 3.

Remark 1. We emphasize that assumption (D) includes a fixed-design situation. We consider
the segment [0, 1] as an area of design change solely for the sake of simplicity of exposition of the
approach. In the general case, instead of the segment [0, 1], one can consider an arbitrary Jordan
measurable subset of R.

Further, we denote by zn:1 ≤ . . . ≤ zn:n the order statistics constructed by the sample
{zi; i = 1, . . . , n}. Put

zn:0 := 0, zn:n+1 := 1, ∆zni := zn:i − zn:i−1, i = 1, . . . , n + 1.

For every i, the response variable and the random error from (1) associated with the
order statistic zn:i will be denoted by Xni and εni, respectively. It is easy to see that the
new errors {εni; i = 1, . . . , n} satisfy condition (E) as well. Next, by Op(ηn) we denote a
random variable ζn such that, for all M > 0, one has

lim sup
n→∞

P(|ζn|/ηn > M) ≤ β(M),

where limM→∞ β(M) = 0 and {ηn} are positive (maybe random or not) variables and the
function β(M) that may depend on the kernel K and σ2. We agree that, throughout what
follows, all limits, unless otherwise stated, are taken for n→ ∞.

Let us introduce one more constraint, which is the crucial condition of the paper (in
particular, the only condition on design points that guarantees the existence of a uniformly
consistent estimator; see also the comments at the end of the section).
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(D0) The following limit relation holds: δn := max
1≤i≤n+1

∆zni
p→ 0.

Finally, for any h ∈ (0, 1), we introduce into consideration the following class of
estimators for the regression function f :

f̂n,h(t) := I(δn ≤ c∗h)
n

∑
i=1

wn2(t)− (t− zn:i)wn1(t)
wn0(t)wn2(t)− w2

n1(t)
XniKh(t− zn:i)∆zni, (3)

where I(·) is the indicator function,

c∗ ≡ c∗(K) :=
κ2 − κ2

1
96L(6L + κ2 + κ1/2)

<
1

864L
; (4)

hereinafter, we use the notation

wnj(t) :=
n

∑
i=1

(t− zn:i)
jKh(t− zn:i)∆zni, j = 0, 1, 2, 3.

Remark 2. It is easy to see that the difference κ2 − κ2
1 is the variance of a non-degenerate distribu-

tion; thus, this is strictly positive.

Remark 3. It is easy to verify that kernel estimator (3), without the indicator factor, is the first
coordinate of the two-dimensional estimate of the weighted least-squares method, i.e., of the two-
dimensional point (a∗, b∗) at which the following minimum is attained:

min
a,b

n

∑
i=1

(
Xni −

(
a + b(t− zn:i)

))2Kh(t− zn:i)∆zni. (5)

Thus, the proposed class of estimators in a certain sense (in fact, by construction) is close to the
classical local linear kernel estimators, but in the weighted least squares method (5) we use slightly
different weights.

Remark 4. In the case when there are multiple design points, some spacings ∆zni vanish, and we
lose some of the sample information in the estimator (3). In this case, it is proposed, before using the
estimator (3), to slightly reduce the sample by replacing the observations Xi with the same points
zi with their sample mean and leaving only one design point out of multiples in the new sample.
In this case, the averaged observations will have less noise. So, despite the smaller size of the new
sample, we do not lose the information contained in the original sample.

Let us further agree to denote by Cj, j ≥ 1, absolute positive constants, and by C∗j ,
positive constants depending only on the kernel K. The main result of this section is
as follows.

Theorem 1. Let conditions (D), (E), and (K) be satisfied. Then, for any fixed h ∈ (0, 1/2), with
probability 1 it is satisfied

sup
t∈[0,1]

| f̂n,t(t)− f (t)| ≤ C∗1 ω f (h) + ζn(h), (6)

where ω f (h) := sup
u,v∈[0,1]:|u−v|≤h

| f (u)− f (v)| and the random variable ζn(h) meets the relation

P(ζn(h) > y, δn ≤ c∗h) ≤ C∗2 σ2 Eδn

h2y2 , (7)

with the constant c∗ from (4).
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Remark 5. As follows from the proof of Theorem 1, the constants C∗1 and C∗2 have the follow-
ing structure:

C∗1 = C1
L2

κ2 − κ2
1

, C∗2 = C2
L4

(κ2 − κ2
1)

2
.

Remark 6. Since δn ≤ 1, then under condition (D0) the limit relation Eδn → 0 holds. Therefore,
taking into account Theorem 1, we can assert that ζn(h) = Op(h−1(Eδn)1/2). Thus, the bandwidth
h can be determined, for example, by the relation

hn = sup
{

h > 0 : P
(

ω f (h) ≥ h−1(Eδn)
1/2
)
≤ h−1(Eδn)

1/2
}

. (8)

It is easy to see that, when (D0) is satisfied, the limit relations hn → 0 and h−1
n (Eδn)1/2 → 0

hold. In fact, the value of hn equalizes in h the order of smallness in probability of both terms on
the right-hand side of the relation (6). Note also that, for nonrandom f , one can choose h ≡ hn as a
solution to the equation

h−1(Eδn)
1/2 = ω f (h). (9)

It is clear that this solution tends to zero as n grows.
The relations (8) and (9) allow us to obtain the order of smallness of the optimal bandwidth h,

but not the optimal value of h. In practice, h can be chosen, for example, by cross-validation.

From Theorem 1 and Remark 6 it is easy to obtain the following corollary.

Corollary 1. Let the conditions (D), (D0), (K), and (E) be satisfied, the regression function f (t)
be nonrandom, and C be an arbitrary subset of equicontinuous functions in C[0, 1] (for example, a
precompact set). Then

γn(C) = sup
f∈C

sup
t∈[0,1]

| f̂n,h̃n
(t)− f (t)| p→ 0,

where h̃n is defined by equation (9), in which the modulus of continuity ω f (h) is replaced with
the universal modulus ωC(h) = sup f∈C ω f (h). Moreover, the asymptotic relation γn(C) =

Op(ωC(h̃n)) holds.

Remark 7. It is easy to see that for a nonrandom f (t) the modulus of continuity in (9) can be
replaced by one or another upper bound for ωC(h), obtaining the corresponding upper bound
for γn(C). Consider the case Eδn = O(1/n). If C consists of functions f (t) satisfying the

Hölder condition with exponent α ∈ (0, 1] and a universal constant then h̃n = O
(

n−
1

2(1+α)

)
and ωC(h̃n) = O

(
n−

α
2(1+α)

)
. In particular, if the functions from C satisfy the Lipschitz condition

(α = 1) with a universal constant then γn(C) = Op(n−1/4).

From Theorem 1 and Remark 6 we obtain the following corollary.

Corollary 2. Let the conditions (D), (D0), (K), and (E) be satisfied and let the modulus of
continuity ω f (h) of the random regression function f (t) with probability 1 admit the upper bound
ω f (h) ≤ ζd(h), where ζ > 0 is a random variable and d(h) is a positive continuous nonrandom
function such that d(h)→ 0 as h→ 0. Then

sup
t∈[0,1]

| f̂n,ĥ(n)(t)− f (t)| p→ 0, (10)

where the value ĥn is defined in (9) after replacement d(h).
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Let us discuss in more detail condition (D0). Obviously, condition (D0) is satisfied
for any nonrandom regular design (this is the case of nonidentically distributed {zi}
depending on n). If {zi} are independent and identically distributed and the interval [0, 1]
is the support of distribution of z1, then condition (D0) is also satisfied. In particular, if the
distribution density of z1 is separated from zero on [0, 1], then δn = O(log n/n) holds (see
details in [50]). If {zi; i ≥ 1} is a stationary sequence with a marginal distribution with
the support [0, 1], satisfying an α-mixing condition, then condition (D0) is also satisfied
(see Remark 8 below). Note that the dependence of the random variables {zi} satisfying
condition (D0) can be much stronger, which is illustrated in the following example.

Example 1. Let the sequence of random variables {zi; i ≥ 1} be defined by the relation

zi = νiul
i + (1− νi)ur

i , (11)

where {ul
i} and {ur

i } are independent and uniformly distributed on [0, 1/2] and [1/2, 1], respec-
tively, the sequence {νi} does not depend on {ul

i}, {ur
i } and consists of Bernoulli random variables

with success probability 1/2, i.e., the distribution of random variables zi is an equilibrium mixture
of two uniform distributions on the corresponding intervals. The dependence between the random
variables νi for any natural number i is defined by the equalities ν2i−1 = ν1 and ν2i = 1− ν1. In
this case, the random variables {zi; i ≥ 1} in (11) form a stationary sequence of random variables
uniformly distributed on the segment [0, 1], satisfying condition (D0). On the other hand, for all
natural numbers m and n,

P(z2m ≤ 1/2, z2n−1 ≤ 1/2) = 0.

Thus, all the known conditions for the weak dependence of random variables (in particular, the
mixing conditions) are not satisfied here.

According to the scheme of this example, it is possible to construct various sequences of
dependent random variables uniformly distributed on [0, 1] by choosing sequences of Bernoulli
switches with the conditions νjk = 1 and νlk = 0 for infinite numbers of indices {jk} and {lk}.
In which case, condition (D0) will also be satisfied, but the corresponding sequence {zi} (not
necessarily stationary) may not even satisfy the strong law of large numbers. For example, this
is the case when νj = 1− ν1 for j = 22k−1, . . . , 22k − 1, and νj = ν1 for j = 22k, . . . , 22k+1 − 1,
where k = 1, 2, . . . (i.e., we randomly choose one of the two segments [0, 1/2] and [1/2, 1], into
which we randomly throw the first point, and then alternate the selection of one of the two segments
by the following numbers of elements of the sequence: 1, 2, 22, 23, etc.). Indeed, we can introduce
the notation nk = 22k − 1, ñk = 22k+1 − 1, Sm = ∑m

i=1 zi and note that, for all elementary events
from the event {ν1 = 1}, one has

Snk

nk
=

1
nk

∑
i∈N1,k

ul
i +

1
nk

∑
i∈N2,k

ur
i ,

where N1,k and N2,k are the sets of indices, for which the observations {zi, i ≤ nk} lie in the intervals
[0, 1/2] or [1/2, 1], respectively. It is easy to see that #(N1,k) = nk/3 and #(N2,k) = 2#(N1,k).
Hence, Snk /nk → 7/12 almost surely as k → ∞ due to the strong law of large numbers for the
sequences {ul

i} and {ur
i }. On the other hand, as k→ ∞, for all elementary events from {ν1 = 1}

one has
Sñk

ñk
=

1
ñk

∑
i∈Ñ1,k

ul
i +

1
ñk

∑
i∈Ñ2,k

ur
i →

5
12

, (12)

where Ñ1,k and Ñ2,k are the sets of indices, for which the observations {zi, i ≤ ñk} lie in the
intervals [0, 1/2] or [1/2, 1], respectively. Proving the convergence in (12), we took into account
that #(Ñ1,k) = (22k+2 − 1)/3 and #(Ñ2,k) = 2nk/3, i.e., #(Ñ1,k) = 2#(Ñ2,k) + 1.

Similar arguments are valid for all elementary events from {ν1 = 0}.
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Remark 8. In the case of i.i.d. random variables {zi}, condition (D0) will be fulfilled if, for all
δ ∈ (0, 1),

pn(δ) ≡ sup
|∆|=δ

P
( ⋂

i≤n
{zi /∈ ∆}

)
→ 0, (13)

where the supremum is taken over all intervals ∆ ⊂ [0, 1] of length δ. Indeed, for any natural
N > 1, we divide the interval [0, 1] into N subintervals ∆k, k = 1, . . . , N, of length 1/N. Then
one has

P
(

max
1≤i≤n+1

∆zni >
2
N

)
≤

N

∑
k=1

P
( ⋂

i≤n
{zi /∈ ∆k}

)
≤ N max

k
P
( ⋂

i≤n
{zi /∈ ∆k}

)
≤ Npn(1/N),

since the event
{

max1≤i≤n+1 ∆zni > 2/N
}

implies the existence of an interval ∆k of length 1/N
that does not contain any points from the collection {zi}. Thereby, condition (13) implies the
limit relation maxi≤n+1 ∆zni

p→ 0, which is equivalent to convergence with probability 1 due
to the monotonicity of the sequence maxi≤n+1 ∆zni. In particular, if {zi} are independent then
pn(δ) = e−c(δ)n and c(δ) > 0, i.e., as n→ ∞, the finite collection {zi} with probability 1 forms a
refining partition of the finite segment [0, 1]. It is easy to show that if {zi; i ≥ 1} is a stationary
sequence satisfying an α-mixing condition and having a marginal distribution with the support
[0, 1] then (13) will be valid.

3. Estimating the Mean Function of a Stochastic Process

Consider the following statement of the problem of estimating the expectation of an
almost surely continuous stochastic process f (t). There are N independent copies of the
regression Equation (1):

Xi,j = f j(zi,j) + εi,j, i = 1, . . . , n, j = 1, . . . , N, (14)

where f (t), f1(t), . . . , fN(t), t ∈ [0, 1], are independent identically distributed almost surely
continuous unknown random processes, the set {εi,j; i = 1, . . . , n} satisfies condition (E)
for any j, the set {zi,j; i = 1, . . . , n}meets conditions (D) and (D0) for any j (here and below
the index j for the considered random variables means the number of copy of Model (1)).
In particular, under the assumption that condition (K) is valid, by f̂n,h,j(t), j = 1, . . . , N,
we denote the estimator given by the relation (3) when replacing the values from (1) with
the corresponding characteristics from (14). Finally, an estimator for the mean-function is
determined by the equality

f̂N,n,h(t) =
1
N

N

∑
j=1

f̂n,h,j(t). (15)

As a consequence of Theorem 1, we obtain the following assertion.

Theorem 2. Let Model (14) satisfy the above-mentioned conditions and, moreover,

E sup
t∈[0,1]

| f (t)| < ∞, (16)

while the sequences h ≡ hn → 0 and N ≡ Nn → ∞ meet the restrictions

h−2Eδn → 0 and NP(δn > c∗h)→ 0. (17)

Then
sup

t∈[0,1]

∣∣∣ f̂N,n,h(t)−E f (t)
∣∣∣ p→ 0. (18)

Remark 9. If condition (16) is replaced with a slightly stronger constraint

E supt∈[0,1] f 2(t) < ∞
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then, under conditions similar to (17), one can prove the uniform consistency of the estimator

M̂N,n,h(t1, t2) =
1
N

N

∑
j=1

f̂n,h,j(t1) f̂n,h,j(t2), t1, t2 ∈ [0, 1],

for the unknown mixed second moment E f (t1) f (t2) where h ≡ hn and N ≡ Nn satisfy (17). The
arguments in proving this fact are quite similar to those in proving Theorem 2 and they are omitted.
In other words, under the above-mentioned restrictions, the estimator

ĈovN,n,h(t1, t2) = M̂N,n,h(t1, t2)− f̂N,n,h(t1) f̂N,n,h(t2)

is uniformly consistent for the covariance of the random regression function f (t).

Remark 10. The problem of estimating the mean and covariance functions plays a fundamental
role in the so-called functional data analysis (see, for example, [39,40,47,48]). The property of
uniform consistency of certain estimates of the mean function, which is important in the context of
the problem under consideration, was considered, for example, in [37,40,43,45,47]. For a random
design, as a rule, it is assumed that all its elements are independent identically distributed random
variables (see, for example, [37,38,40,42–46,56,57]). In the case where the design is deterministic,
certain regularity conditions discussed above in the Introduction are usually used. Moreover, in
the problem of estimating the mean function, it is customary to subdivide design elements into
certain types depending on the density of filling with the design points the regression function
domain. The literature focuses on two types of data: or the design is in some sense “sparse” (for
example, the number of design elements in each series is uniformly limited [37,38,40,56,57]), or
the design is somewhat “dense” (the number of elements in each series grows with the number
of series [37,40,44,57,58]). Theorem 2 considers the second of the specified types of design under
condition (D0) in each of the independent series. Note that our formulation of the problem of
estimating the mean function also includes the situation of a general deterministic design.

Note that the methodologies for estimating the mean function used for dense or sparse data are
often different (see, for example, [48,49]). In the situation of a growing number of observations in
each series, it is natural to preliminarily estimate trajectories of a random regression function in
each series, and then average over all series (e.g., see [38,44,56]). This is exactly what we do in (15)
following this conventional approach.

4. Comparison with Some Known Approaches

In [50], under the conditions of the present paper, the following estimators were studied:

f ∗n,h(t) =
∑n

i=1 XniKh(t− zn:i)∆zni

∑n
i=1 Kh(t− zn:i)∆zni

≡ ∑n
i=1 XniKh(t− zn:i)∆zni

wn0(t)
. (19)

Notice that

f ∗n,h(t) ≡ arg min
a

n

∑
i=1

(Xni − a)2Kh(t− zn:i)∆zni. (20)

It is interesting to compare the new estimators f̂n,h(t) with the estimators f ∗n,h(t)
from [50] as well as with other estimators (for example, the Nadaraya–Watson estimators
f̂NW(t) and classical local linear estimators f̂LL(t)). Throughout this section, we assume that
conditions (D), (K), and (E) are satisfied and the regression function f (t) is nonrandom.
Moreover, we need the following constraint.

(IID) The regression function f (t) in Model (1) twice continuously differentiable, the errors
{εi} are independent, identically distributed, centered, and independent of the design {zi}, whose
elements are independent and identically distributed. In addition, the distribution function of the
random variable z1 has a strictly positive density p(t) continuously differentiable on (0, 1).

Such severe restrictions on the parameters of the regression model are explained both
by problems in calculating the asymptotic representation for the variances of the estimators
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f̂n,h(t) and f ∗n,h(t) as well as by properties of the Nadaraya–Watson estimators, which are
very sensitive to the nature of the correlation of design elements.

For any statistical estimator f̃n(t) of the regression function f (t), we will use the
notation Bias f̃n(t) for its bias, i.e., Bias f̃n(t) := E f̃n(t)− f (t). Put f = supt∈[0,1] | f (t)| and
for j = 0, 1, 2, 3, introduce the notation

wj(t) =
1∫

0

(t− z)jKh(t− z)dz =
∫

z∈[0,1]:|t−z|≤h

(t− z)jKh(t− z)dz, t ∈ [0, 1]. (21)

The following asymptotic representation for the bias and variance of the estimator
f ∗n,h(t) was obtained in [50].

Proposition 1. Let condition (I ID) be fulfilled and inft∈[0,1] p(t) > 0. If n→ ∞ and h→ 0 so
that (log n)−1h

√
n→ ∞, h−2Eδn → 0, and h−3Eδ2

n → 0 then, for any t ∈ (0, 1), the following
asymptotic relations are valid:

Bias f ∗n,h(t) =
h2κ2

2
f ′′(t) + o(h2), Var f ∗n,h(t) ∼

2σ2

hnp(t)
‖K‖2.

Note that the first statement concerning the asymptotic behavior of the bias in Proposition 1
was actually proved for arbitrarily dependent design elements when condition (D0) is met. The
following two propositions and corollaries are also obtained without any assumptions about
correlation of design elements, only conditional centering and conditional orthogonality of the
errors from condition (E) are used.

Proposition 2. Let h < 1/2. Then, for any fixed t ∈ [h, 1− h],

Bias f̂n,h(t) = Bias f ∗n,h(t) + γn,h(t), Var f̂n,h(t) = Var f ∗n,h(t) + ρn,h(t),

where
|γn,h(t)| ≤ C∗3 f h−1Eδn, |ρn,h(t)| ≤ C∗4

(
σ2 + f

2)
h−1Eδn.

Proposition 3. Let the regression function f (t) be twice continuously differentiable. Then, for any
fixed t ∈ (0, 1),

Bias f̂n,h(t) =
f ′′(t)

2
B0(t) + O(Eδn/h) + o(h2), (22)

where

B0(t) =
w2

2(t)− w3(t)w1(t)
w0(t)w2(t)− w2

1(t)
. (23)

Moreover,

Bias f ∗n,h(t) = − f ′(t)
w1(t)
w0(t)

+
f ′′(t)

2
w2(t)
w0(t)

+ O(Eδn) + o(h2), (24)

besides, the error terms o(h2) and O(·) in (22) and (24) are uniform in t.

Corollary 3. Let the regression function f (t) be twice continuously differentiable, h → 0, and
h−3Eδn → 0. Then, for each fixed t ∈ (0, 1) such that f ′′(t) 6= 0, the following asymptotic
relations are valid:

Bias f̂n,h(t) ∼ Bias f ∗n,h(t) ∼
f ′′(t)

2
κ2h2.

Corollary 4. Suppose that, under the conditions of the previous corollary, f has nonzero first and
second derivatives in a neighborhood of zero. Then for any fixed positive α < 1 such that κ1(α) < 0,
the following asymptotic relations hold:
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Bias f̂n,h(αh) ∼ 1
2

h2D(α) f ′′(0+), Bias f ∗n,h(αh) ∼ −h
κ1(α)

κ0(α)
f ′(0+),

where

D(α) =
κ2

2(α)− κ3(α)κ1(α)

κ0(α)κ2(α)− κ2
1(α)

.

Note that, due to the Cauchy–Bunyakovsky inequality and the properties of the density
K(·), the strict inequality κ0(α)κ2(α)− κ2

1(α) > 0 holds for any α ∈ [0, 1].

Remark 11. Similar relations take place in a neighborhood of the right boundary of the segment
[0, 1], when t = 1− αh for any α ≤ 1. In this case, in the above asymptotics, one simply needs to
replace the right-hand derivatives at zero by analogous (non-zero) left-hand derivatives at point 1,
and instead of the quantities κj(α) must be substituted κ̃j(α) =

∫ 1
−α viK(v)dv = (−1)jκj(α). In

this case, the coefficient D(α) will not change, and the corresponding coefficient on the right-hand
side of the second asymptotics will only change its sign.

Thus, the qualitative difference between the estimators f ∗n,h(t) and f̂n,h(t) is observed
only in neighborhoods of the boundary points 0 and 1: for the estimator f ∗n,h(t), in the h-

neighborhoods of the indicated points, the order of smallness of the bias is h, and for f̂n,h(t)
this order is h2. Such a connection between the estimators (3) and (19) seems to be quite
natural in view of the relations (5) and (20), and the known relationship at the boundary
points between Nadaraya–Watson estimators f̂NW(t) and locally linear estimators f̂LL(t).

Remark 12. If condition (I ID) is satisfied, then, for the bias and variance of estimators f̂NW(t) and
f̂LL(t), the following asymptotic representations are well known (see, for example, [1]), which are
valid for any t ∈ (0, 1) under broad conditions on the parameters of the model under consideration:

Bias f̂NW(t) =
h2κ2

2p(t)
(

f ′′(t)p(t) + 2 f ′(t)p′(t)
)
+ o(h2), Var f̂NW(t) ∼ σ2

hnp(t)
‖K‖2,

Bias f̂LL(t) =
h2κ2

2
f ′′(t) + o(h2), Var f̂LL(t) ∼

σ2

hnp(t)
‖K‖2.

The above asymptotic representations show that if the assumptionss (I ID) are valid then
the variance of the Nadaraya–Watson estimator f̂NW(t) and the locally linear estimator f̂LL(t)
under broad conditions is asymptotically half the variance of the estimators f ∗n,h(t) and f̂n,h(t),
respectively. However, the mean-square error of any estimator is equal to the sum of the variance
and squared bias, which for the compared estimators is asymptotically determined by the quantities
f ′′(t)p(t) + 2 f ′(t)p′(t) or f ′′(t)p(t), respectively. In other words, if the standard deviation σ of
the errors is not very large and∣∣ f ′′(t)p(t) + 2 f ′(t)p′(t)

∣∣ > ∣∣ f ′′(t)p(t)
∣∣, (25)

then the estimator f ∗n,h(t) or f̂n,h(t) may be more accurate than f̂NW(t). The indicated effect for the
estimator f ∗n,h(t) is confirmed by the results of computer simulations in [50].

Note also that in order to choose in a certain sense the optimal bandwidth h, the orders of the
smallness of the bias and the standard deviation of the estimator are usually equated. In other words,
if the assumptions (I ID) are fulfilled, for all four types of estimators considered here, we need to
solve the equation h2 ≈ (nh)−1/2. Thus the optimal bandwidth has the standard order h ≈ n−1/5.

Remark 13. Estimators of the form f̂n,h(t) and f ∗n,h(t) given in (3) and (19) can define a little
differently, depending on the choice of one or another partition with highlighted points {zi; i=1,. . . ,n}
of the domain of the regression function underlying these estimators. For example, using the Voronoi
partition of the segment [0, 1], an estimator of the form (19) can be given by the equality
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f̃ ∗n,h(t) =
∑n

i=1 XniKh(t− zn:i)∆̃zni

∑n
i=1 Kh(t− zn:i)∆̃zni

, (26)

where ∆̃zn1 = ∆zn1 + ∆zn2/2, ∆̃znn = ∆znn/2 + ∆znn+1, ∆̃zni = (∆zni + ∆zni+1)/2 for
i = 2, . . . , n− 1. Looking through the proofs from [50] it is easy to see that in this case all properties
of the estimator f̃ ∗n,h(t) are preserved, except for the asymptotic representation of the variance.
Repeating (with obvious changes) the arguments in proving Proposition 1 in [50], we have

Var f̃ ∗n,h(t) ∼
1.5σ2

hnp(t)
‖K‖2.

Thus, in the case of independent and identically distributed design points, the asymptotic
variance of the estimator can be somewhat reduced by choosing one or another partition.

Similarly, in the definition (3), the estimators f̂n,h(t), the quantities {∆zni} can be replaced by
the Voronoi tiling {∆̃zni}. It is also worth noting that the indicator factor involved in the determi-
nation (3) of the estimator f̂n,h(t), does not affect the asymptotic properties of the estimator given in
Theorem 1, and we only needed it to calculate the exact asymptotic behavior of the estimator bias.

5. Simulations

In the following computer simulations, instead of estimator (3), we used the equivalent
estimator f̂n,h(t) of the weighted least-squares method defined by the relation

( f̂n,h(t), b̂(t)) = arg min
a,b

n

∑
i=1

(Xni − a− b(t− zn:i))
2Kh(t− zn:i)∆̃zni, (27)

where the quantities ∆̃zni are defined in (13) above. Estimator (27) differs from estimator (3)
by excluding the indicator factor and replacing ∆zni with ∆̃zni, which is not essential (see
Remark 13). If we had several observations at one design point, then the observations
were replaced by one observation presenting their arithmetic mean (see Remark 4 above).
Although the notation f̂n,h(t) in (27) is somewhat different from the same notation in (3),
we retained the notation f̂n,h(t), which will not lead to ambiguity.

In the simulations below, we will also consider the local constant estimator f̃ ∗n,h(t)
from (26), which can be defined by the equality

f̃ ∗n,h(t) ≡ arg min
a

n

∑
i=1

(Xni − a)2Kh(t− zn:i)∆̃zni. (28)

Here we also replace the observations corresponding to one design point by their
arithmetic mean.

Recall that the Nadaraya–Watson estimator differs from (28) by the absence of the
factors ∆̃zni in the weighting coefficients:

f̂NW(t) = ∑n
i=1 XniKh(t− zn:i)

∑n
i=1 Kh(t− zn:i)

. (29)

The Nadaraya–Watson estimators are also weighted least-squares estimators:

f̂NW(t) ≡ arg min
a

n

∑
i=1

(Xni − a)2Kh(t− zn:i). (30)

In the following examples, estimators (27) and (28), which will be called universal local
linear (ULL) and universal local constant (ULC), respectively, will be compared with the
estimator of linear regression (LR), the Nadaraya–Watson (NW) estimator, LOESS of order
1, as well as with estimators of generalized additive models (GAM) and of random forest
(RF). For LOESS estimators, the R loess() function was used. Calculating the ULL estimator
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with the custom script was on average 3.2 times slower than the LOESS estimator calculated
by the R loess() function. That may be explained by the fact that the ULL estimator was
implemented in R language (in contrast to R loess() whose body is implemented in C and
Fortran) and was not optimized for performance.

It is worth noting that, in the examples below, the best results were obtained by the
new estimators ULL (27) and ULC (28), LOESS estimator of order 1, and the Nadaraya–
Watson estimator.

With regard to the simulation examples, the main difference between the ULL (27)
and ULC (28) estimators, and the Nadaraya–Watson and LOESS ones is that ULL (27) and
ULC (28) are “more local”. This means that if a function f (z) is evaluated on a design
interval A with a “small” number of observations adjacent to a design interval B with a
“large” number of observations, the Nadaraya–Watson and LOESS estimators will primarily
seek to adjust to the “large” cluster of observations on the interval B. At the same time,
ULL (27) and ULC (28) will equally consider observations on intervals of equal lengths,
regardless of the distribution of design points on the intervals.

In the examples below, for all of the kernel estimators that are the Nadaraya–Watson
ones, LOESS, ULL (27), and ULC (28), we used the tricubic kernel

K(t) =
70
81

max{0, (1− |t|3)3}.

We chose the tricubic kernel because that kernel is employed in the R function loess()
which was used in the simulations.

The accuracy of the models was estimated with respect to the maximum error and the
mean squared error. In all the examples below, except Example 3, the maximum error was
estimated on the uniform grid of 1001 points on the segment [0, 10] by the formula

max
j=1,...,1001

| f̌ (tj)− f (tj)|,

where tj are the grid points of segment [0, 10], t1 = 0, t1001 = 10, f̌ (tj) are the values of the
constructed estimator at the points of the partition grid, and f (tj) are the true values of
the estimated function. In Example 3, a grid of 1001 points was taken on the interval from
the minimum to the maximum point of the design. That was done in order to to avoid
assessing the quality of extrapolation, since, in that example, the minimum design point
could fall far from 0.

The mean squared error was calculated for one random splitting of the whole sample
into training and validation samples in a proportion of 80% to 20%, according to the formula

1
m

m

∑
j=1

(
f̌ (zj)− Xj)

)2
,

where m is the validation sample size, zj are the validation sample design points, Xj are
the noisy observations of the predicted function in the validation sample, f̌ is the estimate
calculated by the training sample. The splittings into training and validation samples were
identical for all models.

For each of the kernel estimators, the parameter h of the kernel Kh was determined
using cross-validation, minimizing the mean squared error, where the set of observa-
tions was partitioned into 10 folds randomly. The same partitions were taken for all the
kernel estimators.

When calculating the root mean square error, the cross-validation for choosing h was
carried out on the training set. To calculate the maximum error, the cross-validation was
performed on the whole sample. For the Nadaraya–Watson models as well as for ULL (27)
and ULC (28), the parameter h was selected from 20 values located on the logarithmic grid
from max{0.0001, 1.1 maxi ∆zni} to 0.9. For LOESS, the parameter span was chosen in the
same way from 20 values located on the logarithmic grid from 0.0001 to 0.9.
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The simulations also included testing basic statistical learning algorithms: linear
regression without regularization, generalized additive model, and random forest [59]. The
training of the generalized additive model was carried out using the R library mgcv.

Thin-plate splines were used, the optimal form of which was selected using general-
ized cross-validation. Random forest training was done using the R library randomForest.
The number of trees was chosen to be 1000 based on the out-of-bag error plot for a random
forest with five observations per leaf. The optimal number of observations in a random for-
est leaves was chosen using 10-fold cross-validation on a logarithmic grid out of 20 values
from 5 to 2000.

In each example, 1000 realizations of different training and validation sets were per-
formed, for each of which the errors were calculated. In each of the training and validation
sets realizations, 5000 observations were generated. The results of the calculations are
presented below in the boxplots, where every box represents the median and the 1st and
3rd quartiles. The plots do not show the results of linear regression, since in the examples,
the results appeared to be significantly worse than those of the other models. The mean
squared and maximum errors of ULL (27) were compared with the errors of LOESS estima-
tor by the paired Wilcoxon test. The summaries of the errors on the 1000 realizations of
different train and validation sets are reported as median (1st quartile, 3rd quartile).

The examples of this section were constructed so that the distribution of design points
is “highly nonuniform”. Potentially, this could demonstrate the advantage of the new ULL
estimator (27) over known estimation approaches.

Example 2. Let us set the target function

f (z) = (z− 5)2 + 10, 0 ≤ z ≤ 10 (31)

and let the noise be centered Gaussian with standard deviation σ = 2 (Figure 1). In each realization,
we draw 4500 independent design points uniformly distributed on the segment z ∈ [0, 5], and 500
independent design points uniformly distributed on the segment z ∈ [5, 10].

Figure 1. Example 2. Sample observations, target function, and two estimators.

The results are presented in Figure 2. For the maximum error, the advantage of the estimators of
order 1 (LOESS and ULL (27)) over the estimators of order 0 (the Nadaraya–Watson and ULC (28)) is
noticeable, while ULL (27) turns out to be the best of all considered estimators, in particular, ULL (27)
performs better than LOESS: 0.6357 (0.4993, 0.8224) vs. 0.6582 (0.5205, 0.8508), p = 0.019.
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Figure 2. The maximum (left) and mean squared (right) errors in Example 2. For the mean squared
error, the random forest model performed worse (10.97 (10.55, 11.39)) than the GAM model and the
kernel estimators, so the results of the random forest model “did not fit” into the plot.

For the mean squared error, all models, except random forest and linear regression, show similar
results. Moreover, ULL (27) turns out to be the best of the considered ones, although the difference
between ULL (27) and LOESS is not statistically significant: 4.017 (3.896, 4.139) vs. 4.030 (3.906,
4.154), p = 0.11.

Example 3. The piecewise linear target function is shown in Figure 3. For the sake of simplicity of
presentation, we do not present the formula for the definition of this function. Here, the centered
Gaussian noise has the standard deviation σ = 2. The design points are independent and identically
distributed with density proportional to the function (z− 5)2 + 2, 0 ≤ z ≤ 10.

Figure 3. Example 3. Sample observations, target function, and two estimators.

The results are presented in Figure 4. The Nadaraya–Watson estimator appears to be the best
model both for the maximum error and for the mean squared error. For the both errors, ULL (27) is
better than LOESS (p < 0.0001 for the maximum error, p = 0.0030 for the mean squared error).
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Figure 4. The maximum (left) and mean squared (right) errors in Example 3. For the mean-squared error, the
random forest model performed worse (6.699 (6.412, 7.046)) than the GAM model and the kernel estimators, so
the results of the random forest model “did not fit” into the plot.

Example 4. In this example, the design points are strongly dependent. We will define them as
follows: zi := s(Ai), i = 1, ..., n, where A is a positive number such that A/π is irrational (we
chose A = 0.0002 in this example),

s(t) := 10
∣∣∣∑100

k=1 ηk cos(tk)
∣∣∣ with ηk := k−1ψk

(
∑100

j=1 j−1ψj

)−1
,

and ψj are independent uniformly distributed on [0, 1] random variables independent of the noise.
It was shown [50] that the random sequence s(Ai) is asymptotically everywhere dense on [0, 10]
with probability 1.

The target function is

f (z) = 0.2
(
((z− 5)2 + 25) cos((z− 5)2/2) + 60

)
,

shown in Figure 5.

Figure 5. Example 4. Sample observations, target function, and two estimators.
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The results are presented in Figure 6. For maximum error, ULL (27) turns out to be the best of
all the considered estimators. In particular, ULL (27) is better than LOESS: 1.757 (1.491, 2.053) vs.
2.538 (2.216, 2.886), p < 0.0001.

The median mean squared error for ULL (27) also turns out to be the smallest of those
considered. In that sense, ULL (27) is better than LOESS, but the difference is not significant: 4.166
(4.025, 4.751) vs. 4.219 (4.096, 4.338), p = 0.92.

Figure 6. The maximum (left) and mean squared (right) errors in Example 4. As before, for the mean
squared error, the results of the random forest model (13.95 (11.69, 16.18)) are not shown in full on
the graph. In addition, the outliers for the GAM, NW, ULC, and ULL estimators are “cut off” in
this graph.

Example 5. In this example, the target function was the same as in Example 4. The difference
from the previous example is that 50,000 design points were generated by the same technique, and
then 5000 points of the 50,000 ones were selected. This allowed us to fill the domain of f with
design elements “more uniformly” than in the previous example, while preserving the clusters of
design points.

The results are presented in Figure 7. For maximum error, ULL (27) turns out to be the best of
all the considered estimators. In particular, ULL (27) is better than LOESS: 2.872 (2.369, 3.488) vs.
9.435 (5.719, 10.9), p < 0.0001.

For the mean squared error, the best estimator is LOESS. ULL (27) is worse than LOESS:
5.108 (4.535, 6.597) vs. 4.378 (4.229, 4.541), p < 0.0001, but it is better than the other estima-
tors considered.
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Figure 7. The maximum (left) and mean-squared (right) errors in Example 5. As before, for the
mean-squared error, the results of the random forest model are not shown in full on the graph. In
addition, the outliers for the NW, ULC, and ULL estimators are “cut off” in this graph.

6. Real Data Application

In this section, we consider an application of the models considered in the previous
section to the data collected in the multicenter study “Epidemiology of cardiovascular
diseases in the regions of the Russian Federation”. In that study, representative samples
of unorganized male and female populations aged 25–64 years from 13 regions of the
Russian Federation were studied. The study was approved by the Ethics Committees of the
three federal centers: State Research Center for Preventive Medicine, Russian Cardiology
Research and Production Complex, Almazov Federal Medical Research Center. Each
participant provided written informed consent for the study. The study was described in
detail in [60].

One of the urgent problems of modern medicine is to study the relationship between
heart rate (HR) and systolic arterial blood pressure (SBP), especially for low observation
values. Therefore we will choose SBP as the outcome, and HR as the predictor. The
association between these variables was previously estimated to be nonlinear [61]. The
general analysis included 6597 participants from four regions of the Russian Federation.
The levels of SBP and HR were statistically significantly pairwise different between the
selected regions. Thus, the hypothesis of the independence of design points was violated.

In this section, the maximum error cannot be calculated because the exact form of the
relationship is unknown, so only the mean squared error is reported. The mean squared
error was calculated for 1000 random partitions of the entire set of observations into training
(80%) and validation (20%) samples.

The results are presented in Figure 8. Here, the GAM estimator and the kernel
estimators showed similar results, which were better than the results of both the linear
regression and random forest.

The best estimator turned out to be ULC (28), although its difference from the
Nadaraya–Watson estimator was not statistically significant: 220.2 (215.4, 225.9) vs. 220.4
(215.4, 225.8), p = 0.91. The difference between ULL (27) and LOESS was not significant
too: 220.4 (215.4, 225.9) vs. 220.6 (215.6, 226.1), p = 0.52.
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Figure 8. Mean-squared prediction error of the dependence of BP from HR.

7. Conclusions

In this paper, for a wide class of nonparametric regression models with a random
design, universal uniformly consistent kernel estimators are proposed for an unknown
random regression function of a scalar argument. These estimators belong to the class
of local linear estimators. However, in contrast to the vast majority of previously known
results, traditional conditions of dependence of design elements are not needed for the
consistency of the new estimators. The design can be either fixed and not necessarily
regular, or random and not necessarily consisting of independent or weakly dependent
random variables. With regard to design elements, the only condition that is required is the
dense filling of the regression function domain with the design points.

Explicit upper bounds are found for the rate of uniform convergence in probability of
the new estimators to an unknown random regression function. The only characteristic
explicitly included in these estimators is the maximum spacing statistic of the variational
series of design elements, which requires only the convergence to zero in probability of
the maximum spacing as the sample size tends to infinity. The advantage of this condition
over the classical ones is that it is insensitive to the forms of dependence of the design
observations. Note that this condition is, in fact, necessary, since only when the design
densely fills the regression function domain is it possible to reconstruct the regression
function with some accuracy. As a corollary of the main result, we obtain consistent
estimators for the mean function of continuous random processes.

In the simulation examples of Section 5, the new estimators were compared with
known kernel estimators. In some of the examples, the new estimators proved to be the
most accurate. In the application to real medical data considered in Section 6, the accuracy
of new estimators was also comparable with that of the best-known kernel estimators.

8. Proofs

In this Section, we will prove the assertions stated in Sections 2–4. Denote

βn,i(t) :=
wn2(t)− (t− zn:i)wn1(t)

wn0(t)wn2(t)− w2
n1(t)

. (32)

Taking into account the relations Xni = f (zn:i) + εni, i = 1, . . . , n, and the identity

n

∑
i=1

βn,i(t)Kh(t− zn:i)∆zni ≡ 1, (33)
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we obtain the representation

f̂n,h(t) = f (t) + f (t)I(δn > c∗h) + r̂n,h( f , t) + ν̂n,h(t), (34)

where

r̂n,h( f , t) = I(δn ≤ c∗h)
n

∑
i=1

βn,i(t)( f (zn:i)− f (t))Kh(t− zn:i)∆zni,

ν̂n,h(t) = I(δn ≤ c∗h)
n

∑
i=1

βn,i(t)Kh(t− zn:i)∆zniεni.

We emphasize that, in view of the properties of the density Kh(·), the domain of
summation in the last two sums as well as in all sums defining the quantities wnj(t) from (4)
coincides with the set An,h(t) = {i : |t− zn:i| ≤ h, 1 ≤ i ≤ n}, which is a crucial point for
further analysis.

Lemma 1. For h < 1/2, the following equalities are valid:

inf
t∈[0,1]

(w0(t)w2(t)− w2
1(t)) =

1
4
(κ2 − κ2

1)h
2, inf

t∈[0,1]
w0(t) = 1/2, (35)

sup
t∈[0,1]

|wj(t)| =
(

1
2

)j−2[j/2]
κjhj, j = 0, 1, 2, 3. (36)

Moreover, on the set of elementary events such that δn ≤ c∗h, the following inequalities hold:

sup
t∈[0,1]

|wnj(t)| ≤ 3Lhj, sup
t∈[0,1]

|wnj(t)− wj(t)| ≤ 12Lδnhj−1, j = 0, 1, 2, 3, (37)

inf
t∈[0,1]

(wn0(t)wn2(t)− w2
n1(t)) ≥

1
8
(κ2 − κ2

1)h
2, inf

t∈[0,1]
wn0(t) ≥ 1/4, (38)

∀t1, t2 ∈ [0, 1] |wnj(t2)− wnj(t1)| ≤ 18Lhj−1|t2 − t1|, j = 0, 1, 2. (39)

Proof. Let us prove (35) and (36). First of all, note that, due to the Cauchy–Bunyakovsky–
Schwartz inequality, w0(t)w2(t)− w2

1(t) ≥ 0 for all t ∈ [0, 1] and this difference is continu-
ous in t. First, consider the simplest case where h ≤ t ≤ 1− h. For such t, after changing
the integration variable in the definition (21) of the quantities wj(t) we have

wj(t) =
t+h∫

t−h

(t− z)jKh(t− z)dz = hj
1∫
−1

vjK(v)dv, (40)

i.e., w0(t) ≡ 1, w1(t) ≡ 0, and w2(t) ≡ h2κ2. In other words, on the segment [h, 1− h], the
following identity is valid:

w0(t)w2(t)− w2
1(t) ≡ h2κ2. (41)

We now consider the case t = αh for all α ∈ [0, 1]. Then

wj(αh) =

(1+α)h∫
0

(αh− z)jKh(αh− z)dz = hjκj(α). (42)
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Next, by (42), we obtain

d
dα

h−2(w0(αh)w2(αh)− w2
1(αh)) =

d
dα

(κ0(α)κ2(α)− κ2
1(α))

= K(α)

α2
α∫
−1

K(v)dv +

α∫
−1

v2K(v)dv− 2α

α∫
−1

vK(v)dv

 ≥ 0

in view of the relation
∫ α
−1 vK(v)dv ≤ 0 since K(v) is an even function. Similarly we study

the symmetrical case where t = 1− αh for all α ∈ [0, 1]. From here and (41) we obtain the
first relation in (35):

inf
t∈[0,1]

{w0(t)w2(t)− w2
1(t)} = w0(0)w2(0)− w2

1(0) =
1
4

h2(κ2 − κ2
1).

The second relation in (35) directly follows from (42). Moreover, the above-mentioned
arguments and the representations (40) and (42) imply (36).

Further, the first estimator in (37) is obvious by the above remark about the domain of
summation in the definition of functions wnj(t), and the relations

sup
s∈[0,1]

K(s) ≤ L, ∑
i∈An,h(t)

∆zni ≤ 2h + δn ≤ 3h. (43)

The second estimator in (37) immediately follows from the well-known estimate of the
error of approximation by Riemann integral sums of the corresponding integrals of smooth
functions on a finite closed interval:∣∣∣ ∑

i∈An,h(t)
gt,j(zn:i)∆zni −

∫
z∈[0,1]:|t−z|≤h

gt,j(z)dz
∣∣∣ ≤ (2h + δn)δnLgt,j , (44)

where the functions gt,j(z) = (t − z)jKh(t − z), j = 0, 1, 2, 3, are defined for all z ∈
[0 ∨ t − h, 1 ∧ t + h], and Lgt,j is the Lipschitz constant of the function gt,j(z); It easy to
verify that supt∈[0,1] Lgt,j ≤ 4Lhj−2 for all h ∈ (0, 1/2) and j = 0, 1, 2, 3. So, on the set of
elementary events such that {δn ≤ c∗h} (recall that c∗ < 1), the right-hand side in (44) can
be replaced with 12Lδnhj−1.

In addition, taking (36) and (37) into account, we obtain

|wn0(t)wn2(t)− w0(t)w2(t)|
≤ wn0(t)|wn2(t)− w2(t)|+ w2(t)|wn0(t)− w0(t)| ≤ 9Lδn(3L + κ2)h,

|w2
n1(t)− w2

1(t)| ≤ |wn1(t)− w1(t)|(|wn1(t)|+ |w1(t)|) ≤ 9Lδn(3L + κ1/2)h.

Hence follows the estimate

|wn0(t)wn2(t)− w2
n1(t)− w0(t)w2(t) + w2

1(t)| ≤ 9Lδn(6L + κ2 + κ1/2)h. (45)

The inequalities in (38) follow from (35), (45), and the definition of the constant c∗.
To prove (39), note that

wnj(t2)− wnj(t1) =
n

∑
i=1

{
(t2 − zn:i)

jKh(t2 − zn:i)− (t1 − zn:i)
jKh(t1 − zn:i)

}
∆zni

= ∑
i∈An,h(t1)∪An,h(t2)

{
(t2 − zn:i)

jKh(t2 − zn:i)− (t1 − zn:i)
jKh(t1 − zn:i)

}
∆zni
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where we can use the estimates |(t2 − zn:i)
j − (t1 − zn:i)

j| ≤ 2hj−1|t2 − t1| for j = 0, 1, 2,
|tk − zn:i| ≤ h for k = 1, 2, and also the inequalities

|Kh(t2 − zn:i)− Kh(t1 − zn:i)| ≤ Lh−2|t2 − t1|,

∑
i∈An,h(t1)∪An,h(t2)

∆zni ≤ 4h + 2δn ≤ 6h. (46)

Thus, Lemma 1 is proved.

Lemma 2. For any positive h < 1/2, the following estimate is valid:

sup
t∈[0,1]

|r̂n,h( f , t)| ≤ C∗1 ω f (h), with C∗1 = C1
L2

κ2 − κ2
1

.

Proof. Without loss of generality, the required estimate can be derived on the set of ele-
mentary events determined by the condition δn ≤ c∗h. Then, the assertion of the lemma
follows from the inequality

|r̂n,h( f , t)| ≤
ω f (h)wn2(t)

wn0(t)wn2(t)− w2
n1(t)

∑
i∈An,h(t)

Kh(t− zn:i)∆zni

+
ω f (h)|wn1(t)|

wn0(t)wn2(t)− w2
n1(t)

∑
i∈An,h(t)

|t− zn:i|Kh(t− zn:i)∆zni, (47)

the estimates from (43), and Lemma 1.

Lemma 3. For any y > 0 and h < 1/2, on the set of elementary events such that δn ≤ c∗h, the
following estimate is valid:

PFn

(
sup

t∈[0,1]
|ν̂n,h(t)| > y

)
≤ C∗2 σ2 δn

h2y2 , with C∗2 = C2
L4

(κ2 − κ2
1)

2
,

where the symbol PFn denotes the conditionsl probability given the σ-field Fn.

Proof. Put

µn,h(t) = ∑
i∈An,h(t)

h−2αn,i(t)Kh(t− zn:i)∆zniεni, (48)

where αn,i(t) = wn2(t)− (t− zn:i)wn1(t), and note that from Lemma 1 and the conditions
of Lemma 3 it follows that, firstly, h−2|αn,i(t)| ≤ 6L if only i ∈ An,h(t), and secondly,

|ν̂n,h(t)| ≤ 8(κ2 − κ2
1)
−1|µn,h(t)|. (49)

The distribution tail of the random variable supt∈[0, 1] |µn,h(t)| will be estimated by
the so-called chaining proposed by A.N. Kolmogorov to estimate the distribution tail of
the supremum norm of a stochastic process with almost surely continuous trajectories
(see [62]). First of all, note that the set [0, 1] under the supremum sign can be replaced by
the set of dyadic rational points

R = {j/2k; j = 1, . . . , 2k − 1; k ≥ 1}.

Thus,
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sup
t∈[0,1]

|µn,h(t)| = sup
t∈R
|µn,h(t)| ≤ max

j=1,...,2m−1
|µn,h(j2−m)|

+
∞

∑
k=m+1

max
j=1,...,2k−2

∣∣µn,h((j + 1)2−k)− µn,h(j2−k)
∣∣,

where the natural number m is defined by the equality m = d| log2 h|e (here dae is the
minimal natural number greater than or equal to a. One has

PFn

(
sup

t∈[0,1]
|µn,h(t)| > y

)
≤ PFn

(
max

j=1,...,2m−1
|µn,h(j2−m)| > amy

)
+

∞

∑
k=m+1

PFn

(
max

j=1,...,2k−2

∣∣µn,h((j + 1)2−k)− µn,h(j2−k)
∣∣ > aky

)
≤

2m−1

∑
j=1

PFn(|µn,h(j2−m)| > amy)

+
∞

∑
k=m+1

2k−2

∑
j=1

PFn

(∣∣µn,h((j + 1)2−k)− µn,h(j2−k)
∣∣ > aky

)
, (50)

where am, am+1, ... is a sequence of positive numbers such that am + am+1 + ... = 1.
Let us now estimate each of the terms on the right-hand side of (50). Using Markov’s

inequality for the second moment and the estimates (43), we obtain

PFn(|µn,h(j2−m)| > amy) ≤ (6L)2

(amy)2 ∑
i∈An,h(j2−m)

K2
h(j2−m − zn:i)(∆zni)

2σ2

≤ (6L)2σ2(amy)−2δn(2h + δn)h−2 ≤ C3L2σ2(amy)−2δnh−1. (51)

Further,

PFn

(∣∣µn,h((j + 1)2−k)− µn,h(j2−k)
∣∣ > aky

)
≤ (aky)−2h−4

×
n

∑
i=1

EF
((

αn,i((j + 1)2−k)Kh((j + 1)2−k − zn:i)− αn,i(j2−k)Kh(j2−k − zn:i)
)
∆zniεni

)2

≤ σ2(aky)−2h−4

×
n

∑
i=1

(
αn,i((j + 1)2−k)Kh((j + 1)2−k − zn:i)− αn,i(j2−k)Kh(j2−k − zn:i)

)2
(∆zni)

2

≤ Lh−2|u− v| ≤ C4σ2L4(aky)−22−2kδn(4h + 2δn)h−4 ≤ C5σ2L4(aky)−22−2kδnh−3. (52)

Here, we took into account that the summation range in (52) coincides with the set{
i : i ∈ An,h((j + 1)2−k) ∪ An,h(j2−k)

}
,

and hence, due to the relation |(j + 1)/2k − j/2k| = 2−k ≤ h for k > m, the estimate (46) is
valid for t1 = j2−k and t2 = (j + 1)2−k. Moreover, we used the estimates

sup
t

Kh(t) ≤ Lh−1, |Kh(u)− Kh(v)| ≤ Lh−2|u− v|,

and took into account the following inequalities in the above range of parameter changes
(see Lemma 1):

|αn,i((j + 1)2−k)− αn,i(j2−k)| ≤ C6Lh2−k, |αn,i(j2−k)| ≤ C7Lh2,

|αn,i((j + 1)2−k)Kh((j + 1)2−k − zn:i)− αn,i(j2−k)Kh(j2−k − zn:i)| ≤ C8L2−k.
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We now obtain from (50)–(52) that

PFn

(
sup

t∈[0,1]
|µn,h(t)| > y

)
≤ C9y−2σ2L4δnh−1

(
2ma−2

m + h−2
∞

∑
k=m+1

2−k+1a−2
k

)
.

The optimal sequence ak minimizing the right-hand side of this inequality is am = c2m/3

and ak = ch−2/32(−k+1)/3 for k = m + 1, m + 2, ..., where c is defined by the relation
am + am+1 + ... = 1. For the indicated sequence, we conclude that

PFn

(
sup

t∈[0,1]
|µn,h(t)| > y

)

≤ C10y−2σ2L4δnh−1
(

2m/3 + h−2/32−m/3(2 + 21/3 + 22/3))3
≤ C11y−2σ2L4δnh−2.

The assertion of the lemma follows from (49).

Proof of Theorem 1. The assertion follows from Lemmas 2 and 3 if we set

ζn(h) = sup
t∈[0,1]

|ν̂n,h(t)|+ sup
t∈[0,1]

| f (t)|I(δn > c∗h)

and take into account the relation

P
(
ζn(h) > y, δn ≤ c∗h

)
= EI

(
δn ≤ c∗h

)
PFn

(
ζn(h) > y

)
,

which was required.

To prove Theorem 2 we need the two auxiliary assertions below.

Lemma 4. If the condition (16) is fulfilled then limε→0 Eω f (ε) = 0 and for independent copies
of the a.s. continuous random process f (t) the following strong law of large numbers is valid: As
N → ∞, then

sup
t∈[0,1]

∣∣ f N(t)−E f (t)
∣∣ p→ 0, where f N(t) = N−1

N

∑
j=1

f j(t). (53)

Proof. The first assertion of the lemma follows from (16) and Lebesgue’s dominated
convergence theorem. We put

ω f N
(ε) = sup

t,s:|t−s|≤ε

∣∣ f N(t)− f N(s)
∣∣, ωE f (ε) = sup

t,s:|t−s|≤ε

∣∣E f (t)−E f (s)
∣∣.

For any fixed k > 0 and i = 0, . . . , k, one has

sup
t∈[0,1]

∣∣ f N(t)−E f (t)
∣∣ ≤ max

0≤i≤k

∣∣∣ f N
(
i/k
)
−E f

(
i/k
)∣∣∣

+ max
1≤i≤k

sup
(i−1)/k≤t≤i/k

∣∣∣ f N(t)− f N
(
i/k
)∣∣∣+ max

1≤i≤k
sup

(i−1)/k≤t≤i/k

∣∣E f (t)−E f
(
i/k
)∣∣

≤ max
0≤i≤k

∣∣∣ f N
(
i/k
)
−E f

(
i/k
)∣∣∣+ ω f N

(1/k) + ωE f (1/k). (54)

Put ω f j
(ε) = sup

t,s:|t−s|≤ε

∣∣ f j(t)− f j(s)
∣∣ and note that ωE f (ε) ≤ Eω f (ε), and as N → ∞,

f N
(
i/k
) p→ E f

(
i/k
)
, ω f N

(ε) ≤ 1
N

N

∑
j=1

ω f j
(ε)

p→ Eω f (ε).
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Therefore, the right-hand side in (54) does not exceed Eω f (1/k) + op(1) and by the
arbitrariness of k and the first statement of the lemma, the relation (53) is proved.

Lemma 5. Under the conditions of Theorem 2 the following limit relation holds:

1
N

N

∑
j=1

∆n,h,j
p→ 0, where ∆n,h,j = sup

t∈[0,1]
| f ∗n,h,j(t)− f j(t)|. (55)

Proof. Let the sequences h = hn → 0 and N = Nn → ∞ be such that condition (17).
Introduce the event Bn,h,j = {δn,j ≤ c∗h}, where j = 1, . . . , N. For any positive ν one has

P
{

1
N

N

∑
j=1

∆n,h,j > ν

}
≤ P

{
1
N

N

∑
j=1

∆n,h,j I(Bn,h,j) > ν

}
+ NP(Bn,h,1). (56)

Next, from Theorem 1 we obtain

E∆n,h,j I(Bn,h,j) ≤ C∗1Eω f (h) +
∞∫

0

P(ζn(h) > y, δn ≤ c∗h)dy

≤ C∗1Eω f (h) + h−1(Eδn)
1/2 +

∞∫
h−1(Eδn)1/2

P(ζn(h) > y, δn ≤ c∗h)dy

≤ C∗1Eω f (h) + (1 + C∗2 σ2)h−1(Eδn)
1/2.

To complete the proof of the lemma, it remains for the first probability on the right-
hand side of (56) to apply Markov’s inequality, use the last estimate, limit relations (17),
and the first statement of Lemma 4.

Proof of Theorem 2. The proof of Theorem 2 follows from Lemmas 4 and 5.

Proof of Proposition 2. For the estimator f ∗n,h(t) defined in (19), we need the following
representation:

f ∗n,h(t) = f (t) + r∗n,h( f , t) + ν∗n,h(t), (57)

where

r∗n,h( f , t) = w−1
n0 (t)

n

∑
i=1

( f (zn:i)− f (t))Kh(t− zn:i)∆zni,

ν∗n,h(t) = w−1
n0 (t)

n

∑
i=1

Kh(t− zn:i)∆zniεni.

In view of the representations (34) and (57), we obtain

Bias f̂n,h(t) = Er̂n,h( f , t) + f (t)P(δn > c∗h)

=
n

∑
i=1

E{I(δn ≤ c∗h)βn,i(t)( f (zn:i)− f (t))Kh(t− zn:i)∆zni}+ f (t)P(δn > c∗h), (58)

Bias f ∗n,h(t) = Er∗n,h( f , t)

=
n

∑
i=1

E{I(δn ≤ c∗h)w−1
n0 (t)( f (zn:i)− f (t))Kh(t− zn:i)∆zni}+ τn, (59)

where |τn| ≤ ω f (h)P(δn > c∗h). Further, it follows from Lemma 1 that, under the condition
δn ≤ c∗h, for any point t ∈ [h, 1− h] one has

sup
i∈An,h(t)

|βn,i(t)− w−1
n0 (t)| ≤ C∗5 δnh−1. (60)
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When deriving the relation (60), we also took into account that w0(t) = 1 and w1(t) = 0
for all t ∈ [h, 1− h] (see the proof of Lemma 1). Now, reckoning with the relations (43),
(58), (59), (60), and Lemma 1, it easy to derive the first assertion of the lemma since

|Bias f̂n,h(t)− Bias f ∗n,h(t)| ≤ C∗5 h−1ω f (h)E
{

δn I(δn ≤ c∗h)
n

∑
i=1

Kh(t− zn:i)∆zni

}
+ (| f (t)|+ ω f (h))P(δn > c∗h) ≤ C∗6 ω f (h)h−1Eδn + (| f (t)|+ ω f (h))P(δn > c∗h). (61)

To prove the second assertion, first of all, note that

Var f̂n,h(t) = Varν̂n,h(t) +Var(r̂n,h( f , t) + f (t)I(δn > c∗h))

= Varν̂n,h(t) +Varr̂n,h( f , t) + f 2(t)P(δn > c∗h)P(δn ≤ c∗h),

Var f ∗n,h(t) = Varν∗n,h(t) +Varr∗n,h( f , t).

Thus, we need to compare the two variances on the right-hand side of the first equality
with the corresponding variances of the second one. Using (43) and (60), we obtain

|Varν̂n,h(t)−Varν∗n,h(t)| ≤ σ2

∣∣∣∣∣E n

∑
i=1

I(δn ≤ c∗h)(β2
n,i(t)− w−2

n0 (t))K
2
h(t− zn:i)(∆zni)

2

∣∣∣∣∣
+ σ2P(δn > c∗h) ≤ C∗7 σ2h−1E

{
δn I(δn ≤ c∗h)

n

∑
i=1

hK2
h(t− zn:i)∆zni

}
+ σ2P(δn > c∗h) ≤ C∗8 σ2h−1Eδn;

when deriving this estimate, we took into account that

n

∑
i=1

w−2
n0 (t))K

2
h(t− zn:i)(∆zni)

2 ≤ 1.

To estimate the difference |Varr̂n,h(t)−Varr∗n,h(t)|, note that the bound C∗9 f
2
h−1Eδn

for the modulus of the difference between the squares of the displacements of the random
variables r̂n,h( f , t) and r∗n,h( f , t) is essentially contained in (47) and (61). Estimation of
the difference of the second moments of the specified random variables is done similarly
with (43), (60), and (61):

|Er̂2
n,h( f , t)−Er∗2n,h( f , t)| ≤ E|r̂n,h( f , t)− r∗n,h( f , t)||r̂n,h( f , t) + r∗n,h( f , t)| ≤ C∗10 f

2
h−1Eδn,

which completes the proof.

Proof of Proposition 3. From the definition of βn,i(t) in (32) it follows that, for any t ∈ [0, 1],

n

∑
i=1

βn,i(t)(zn:i − t)Kh(t− zn:i)∆zni = 0,

n

∑
i=1

βn,i(t)(zn:i − t)2Kh(t− zn:i)∆zni = D−1
n (t)(w2

n2(t)− wn3(t)wn1(t)) =: Bn(t),

where Dn(t) := wn0(t)wn2(t)− w2
n1(t). Expanding the function f (·) by the Taylor formula

in a neighborhood of the point t (up to the second derivative), from the above identities we
obtain, using (32), (58), and Lemma 1, that for any point t we have
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Bias f̂n,h(t) = EI(δn ≤ c∗h)
n

∑
i=1
{βn,i(t)( f (zn:i)− f (t))Kh(t− zn:i)∆zni}+ f (t)P(δn > c∗h)

=
f ′′(t)

2
EI(δn ≤ c∗h)Bn(t) + f (t)P(δn > c∗h) + o(h2)

=
f ′′(t)

2
B0(t) + O(Eδn/h) + o(h2); (62)

moreover, the O- and o-symbols on the right-hand side of (62) are uniform in t. Note that
B0(t) = O(h2) holds for any t.

Next, since for j = 1, 2 we have |wj(t)|w−1
0 (t) ≤ hj and |wnj(t)|w−1

n0 (t) ≤ hj for all
natural n, the following asymptotic representation holds:

Bias f ∗n,h(t) =
n

∑
i=1

Ew−1
n0 (t)( f (zn:i)− f (t))Kh(t− zn:i)∆zni

= − f ′(t)Ewn1(t)
wn0(t)

I(δn ≤ c∗h) +
f ′′(t)

2
Ewn2(t)

wn0(t)
I(δn ≤ c∗h) + O(hP(δn > c∗h)) + o(h2)

= − f ′(t)
w1(t)
w0(t)

+
f ′′(t)

2
w2(t)
w0(t)

+ O(Eδn) + o(h2). (63)

Proof of Corollary 3. Without loss of generality, we can assume that t ∈ [h, 1− h]. Then,
as noted in the proof of Lemma 1, for the indicated t, one has w0(t) = 1, w1(t) = 0, and
w2(t) = κ2h2, i.e., B0(t) = κ2h2.

Proof of Corollary 4. This assertion follows from Proposition 3 and (42).
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