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Abstract: The Brazilian disc test is a popular tensile strength test method for engineering materials.
The fracture behavior of specimens in the Brazilian disc test is closely related to the validity of the
test results. In this paper, the fracture process of granite discs under different loading configurations
is simulated by using a coupled finite–discrete element method. The results show that the maximum
tensile stress value is located within 18 mm (0.7 times the disc radius) of the vertical range of the disc
center under different loading configurations. In small diameter rods loading, the invalid tensile
strength is obtained because the crack initiation and plastic strain is at the end of the disc. The crack
initiation points of flat platen loading and curved jaws loading are all within the center of the disc,
and the valid tensile strength can be obtained. The tensile strength test results under different loading
configurations show that the error of small diameter rods loading is 13%, while the errors of flat
platen loading and curved jaws loading are both 1%. The curved jaws loading is the most suitable for
measuring the tensile strength of brittle materials such as rock, followed by flat platen loading. The
small diameter rods loading is not recommended for the Brazilian test.

Keywords: Brazilian disc test; numerical simulation; crack evolution; failure mode; indirect
tensile strength

MSC: 65Z05

1. Introduction

The tensile strength of brittle materials such as rock is far less than the compressive
strength. The initiation and development of a tensile crack is an important factor leading to
brittle materials failure [1–5]. The brittle materials fail in tension under the uniaxial tension
or Brazilian test [6–8]. In addition, the macroscopic shear cracks of brittle materials under
uniaxial compression or dynamic impact are mainly caused by the development of internal
tensile micro-cracks [9–12]. In order to measure the tensile strength of brittle materials, the
Brazilian test was put forward by Carneiro and Akazawa [13,14]. At present, the Brazilian
disc test is still a popular tensile strength test method because its specimen preparation and
test procedures are much more convenient than the uniaxial tensile test [15–19].

The loading configuration for the Brazilian disc test were originally flat loading platens.
In the Brazilian tensile test with flat loading platens, Hudson, Swab et al. observed that the
crack initiation point and the maximum tensile strain of the Brazilian disc are frequently
away from the center of the disc under flat platen loading [20,21]. It may lead to the
invalid estimation of tensile strength because it does not accord with the assumptions
of the Brazilian disc test and the Griffith criterion. As a supplement, the Brazilian tests
with different loading configurations were proposed in the past. In addition to flat platen
loading, the other two popular configurations are a small diameter rod and curved jaw
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loading. The small diameter rod loading can make the disc have a relatively complete
splitting failure along the loading direction [22]. The curved jaw loading can reduce the
shear stress concentration at the end of the disc [23].

Among the tensile strength test values, the tensile strength obtained by small diameter
loading rod is the smallest, the tensile strength obtained by flat platen loading is the second,
and the tensile strength obtained by curved jaw loading is the largest [24,25]. It should be
noted that the tensile strength of the small diameter loading rod is significantly lower than
that of the other two kinds of loading, and the tensile strength of curved jaw loading is only
slightly higher than that of flat platen loading. According to the basic assumption of the
Brazilian disc test recommended by ISRM, the crack initiation point must be at the location
of maximum tensile stress [26]. That is, the valid tensile strength can be calculated only
when the tensile failure occurs first at the position of maximum tensile stress under the
peak load. In the Brazilian disc test under different loading configurations, the analytical
solution and numerical simulation results show that the maximum tensile stress appears
in a certain range of the center of the disc in the loading direction [27–30]. Yanagidani
et al. observed that the crack originated in the center of the disc under flat platen loading
through the strain gages as a crack detector [31]. Through numerical simulation and digital
image correlation technology, Li and Stirling et al. [15,24,32] found that the maximum
tensile strain occurs far away from the center of disc under small diameter rod loading and
flat platen loading, even at the end of the disc, and the maximum tensile strain appears in
the center of disc under curved jaw loading. There are still some debates about the validity
of the Brazilian disc test under different loading configurations.

The tensile strength of materials is an important parameter for engineering stability
analysis and is often obtained through Brazilian tests. Considering that the Brazilian tests
of three loading configurations are widely used, some loading configurations may lead to
an invalid tensile strength value of brittle materials. In general, the existing studies mainly
evaluate the validity of the Brazilian test by the maximum tensile stress distribution and
the crack initiation point. Few studies have considered the development of the damage
zone or plastic strain in the disc. Some studies have shown that cracks originate in the
fracture process zone (damage zone), which is an important basis for judging the initiation
and propagation of cracks [33–35]. In this research, a coupled finite−discrete element
method (FDEM) is used to study the crack propagation, stress field, and damage (plastic)
zone of Brazilian discs under three loading configurations. The validity of three loading
configurations is evaluated and some new insights into the Brazilian disc test are presented.
This is helpful for testers to select the appropriate loading configuration to obtain an
effective tensile strength value of brittle materials.

2. Numerical Method and Model
2.1. FDEM Method

The coupled finite–discrete element method (FDEM) can realize the real simulation
of material failure process by combining finite and discrete elements and introducing
the principle of fracture mechanics. The unique feature of the method is to simulate
the transition from continuous state to discontinuous state by explicitly simulating the
fracturing and crushing process [36]. A hybrid code ELFEN has been increasingly used to
simulate the fracture process of brittle materials under laboratory tests [37–40], which is also
the code used in this research. The code can simulate the fracture initiation, propagation,
and penetration of brittle material under increasing strain. If the failure criterion of intact
model (initially expressed as finite element domain) is satisfied, cracks will occur, and the
model will become discrete element. As shown in Figure 1, the code allows new fractures
to pass through the existing grid element, and the insertion of discrete fractures can be
intra−element fracturing and inter−element fracturing. As shown in Figure 1b, using
the intra−element fracturing method with small grid size, a single small fracture can be
inserted according to the appropriate fracture stress direction, thereby obtaining a more real
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fracture propagation behavior. Some studies show that this method successfully simulates
the fracture process of rock under static and dynamic loading [41–43].
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Figure 1. The crack insertion procedure: (a) failure plane, (b) intra−element fracture, (c) inter−
element fracture.

The ELFEN formula assumes that the new crack in the quasi−brittle material model
is related to tensile deformation. The model under compressive load will expand in the
orthogonal direction of the loading direction due to the Poisson effect, and the crack
originates on the loading path and expands along the loading direction. Cai believes that
the formation of typical shear bands observed in compression tests is actually a secondary
process of interaction polymerization of extension cracks [12].

The Mohr–Coulomb with Rankine tensile yield criterion is used to judge the failure of
Brazilian discs under different loading configurations. The model includes five material
parameters: cohesion (c), friction angle (ϕ), expansion angle (ψ), tensile strength (σt), and
fracture energy (Gf). Compared with the traditional Mohr–Coulomb criterion, the modified
criterion can better describe the shear and tensile failure of the material, as shown in
Figure 2.
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Figure 2. Mohr–Coulomb with Rankine tensile yield surface.

The Mohr–Coulomb with Rankine tensile yield criterion combines the Mohr–Coulomb
yield criterion and the Rankine tensile yield criterion. The Mohr–Coulomb yield criterion
is used to judge shear failure and is described by:

τ = c− σn tan ϕ (1)



Mathematics 2022, 10, 2681 4 of 19

where τ is the shear stress, c is the cohesion, σn is the normal pressure, and ϕ is the friction
angle. The Rankine tensile yield criterion is used to judge tensile failure and is described by:

σi − σt = 0 i = 1, 2, 3 (2)

where σi is the principal stress and σt is the tensile strength. The cohesion of model
decreases after plastic strain occurs, and the tensile strength is softened by the decrease in
cohesion, as shown in Equation (3). This ensures that there is always normal stress on the
failure shear surface.

σt ≤ c(1− sin ϕ)/ cos ϕ (3)

The stress−strain relationship of the discrete crack model is shown in Figure 3, which
includes an elastic part and a softening (plastic) part [44], and damage begins after peak
intensity. The cracks can be introduced in a direction perpendicular to the principal strain
and are assumed to rotate upon further loading to maintain this orthogonal relationship.
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In the post−peak region, the rotational crack formulation shows the anisotropic
damage evolution by decreasing the elastic modulus in the direction of major principal
stress, and is formulated as:

σnn = Edεnn = (1−ω)Eεnn (4)

where n-s is the local coordinate related to the principal stress, Ed is the elastic damage
secant modulus, E is the Young’s modulus, and ω is the damage parameter. The scalar
damage evolution of the linear strain softening curve is defined by:

ω =
ψ(ε)− 1

ψ(ε)
(5)

where ψ(ε) is a function of strain described by [45]:

For ε ≤ σt
E ψ(ε) = 1 ω = 0

For σt
E < ε ≤ σt

E + σt
Et

ψ(ε) = E2ε
Etσt+Eσt−EtEε 0 < ω < 1

For ε > σt
E + σt

Et
ψ(ε)→ ∞ ω = 1

(6)
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where Et is the tangential softening modulus. The fracture energy Gf is an important
parameter for fracture development. It refers to the energy required to generate continuous
cracks per unit area, which is defined as:

G f =
∫

σdu =
∫

σε(s)ds (7)

where σ is the tensile stress and u is the tensile displacement. The fracture energy is related
to the stress intensity factor (KIC) and elastic modulus (E):

G f =
K2

IC
E

(8)

The localized bandwidth lc of the linear slope softening model is integrated to obtain:

Et = −
σ2

t lc
2G f

(9)

2.2. Numerical Model

The three loading configurations commonly used in Brazilian testing are small diame-
ter rod, flat plate, and curved jaw. As shown in Figure 4, three Brazilian disc models with
different loading configurations are built: small diameter loading rods (Type I), flat loading
platens (Type II), and curved loading jaws (Type III). The diameter of Brazilian discs is
50 mm and the thickness is 25 mm. The two rods of Type I test are 2 mm in diameter. The
loading speed is set to 0.5 mm/s and the corresponding strain rate is 0.01, which can be
regarded as quasi−static loading.
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Figure 4. Three Brazilian disc models and meshes under different loading configurations. (a) small
diameter loading rods (Type I), (b) flat loading platens (Type II), and (c) curved loading jaws (Type
III). Note: The loading rod of Type I is composed of a small semicircle and a small rectangle. The
semicircle part contacts the disc to transmit the load, and the upper right corner of the rectangle is
used to record the load–displacement data.
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The mechanical parameters of a granite are selected as the parameters of the Brazilian
disc and the mechanical parameters of loading platen and granite disc are shown in Table 1.
The material properties of the granite disc come from Li’s research [24,46]. The failure
energy of hard and brittle materials are the range of 0.01 N/mm to 0.3 N/mm [47], and
0.05 N/mm is used as the failure energy of granite in this study. The normal penalty is
generally 1.0 times the elastic modulus, and the tangential penalty is 0.1 times the normal
penalty. The friction refers to the friction between the disc and loading plate. The element
size of model is 0.5 mm, and the diameter of disc is 100 times the element size, which
ensures that the element size can obtain accurate crack propagation. The influence of the
mesh size is shown in Appendix A.

Table 1. Material properties adopted in Brazilian test.

Name Granite Disc Loading Platen

Young’s modulus (E, GPa) 43.2 211.00
Poisson’s ratio (ν) 0.23 0.29

Shear modulus (G, GPa) 17.5 -
Density (ρ, Ns2/mm4) 2.8 × 109 7.84 × 109

Cohesion (c, MPa) 50 -
Friction angle (ϕ ) 34◦ -

Tensile strength (σt , MPa) 12.0 -
Fracture energy (Gf, N/mm) 0.05 -

Discrete contact parameters
Normal penalty (Pn, N/mm2) 43,200 211,000

Tangential penalty (Pt,
N/mm2) 4320 21,100

Friction (γ) 0.1 0.1
Mesh size (mm) 0.5 0.5

Contact type Node−Edge Node−Edge

3. Results
3.1. Load Versus Displacement Curve

The load and displacement are recorded through the loading plate. The horizontal
direction is the X direction and the vertical direction is the Y direction. Figure 5 is the
load–displacement curve for the Type I Brazilian disc testing. The peak load and peak
displacement are 20.7 kN and 0.189 mm, respectively. The load–displacement curve before
the peak value is approximately a straight line, and the vertical stress at the contact
part between the rod and disc is much greater than that at other positions. Due to the
small contact area between the rod and the disc, there is a large local compression stress
concentration. When the macro crack almost penetrates the disc after the peak load, there
is a certain vertical stress on both sides of the crack, and the vertical stress in other areas is
very small.

Figure 6 is the load−displacement curve for the Type II Brazilian disc testing. The peak
load and peak displacement are 23.8 kN and 0.126 mm, respectively. The load–displacement
curve of the Type II test is similar to that of Type I. The stress concentration of the disc
before the peak load under the Type II test is less than that of Type I. After the peak load,
the vertical stress distribution of the disc is more evenly distributed on both sides of the
crack. There are some arc−shaped stress zones around the vertical main crack, and the
value of the arc−shaped stress zone decreases from the center to the circumference. The
crack inside the disc is consistent with the loading direction and the occurrence of a straight
crack is related to the spreading of stress propagation.
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Figure 7 is the load–displacement curve for the Type III Brazilian disc testing. The peak
load and peak displacement are 24.1 kN and 0.103 mm, respectively. The load–displacement
curve of the Type III test before peak value is similar to that of Type II and Type I. After the
crack penetrates the disc, the disc still has a certain bearing capacity, due to the contact area
being larger than the Type II and Type I test. The stress concentration of the disc before
the peak load of the Type III test is less than that of Type II and Type I, and the vertical
stress distribution of the disc is more uniform in the whole loading stage. A more dense
arc−shaped stress zone appears around the vertical main crack.
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3.2. Fracture Process

In order to express the whole fracture process of the disc, the crack propagation process
is divided into four parts: crack initiation, crack propagation, crack penetration, and final
failure. Figure 8 is the fracture process for the Type I Brazilian disc testing. The crack of the
Type I test starts at the end of the disc, then develops towards the center of the disc, and
finally penetrates the disc. The disc is finally divided into two halves by the main crack.
Although the final failure mode is good under Type I testing, the crack initiation point is
located at the end of the disc due to the high degree of compressive stress concentration. It
was also found by the digital image correlation method in Li’s physical test of five types of
rocks [24].
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Figure 9 is the fracture process for the Type II Brazilian disc testing. The crack in
the Type II test starts from the center of the disc, then develops to both ends of the disc,
and finally penetrates the disc. The disc was eventually divided into two halves, and the
damage degree of the end of the disc is greater than that of the center. Although the end
failure of the disc is serious under the Type II testing, the crack initiation point is close to
the center of the disc, which is consistent with the hypothesis of the Brazilian disc test.
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Figure 10 is the fracture process for the Type III Brazilian disc testing. The crack in
the Type III test starts from the center of the disc and then develops to both ends of the
disc. When the main crack penetrates the disc, the secondary cracks are generated on both
sides of the main crack. The disc is finally divided into two parts, accompanied by obvious
secondary cracks. Although four secondary cracks appeared at the end of the disc under
Type III testing, the starting point of the main crack was close to the center of the disc,
which was also consistent with the hypothesis of the Brazilian disc test.
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3.3. Stress Distribution in Central Line

As shown in Figure 11, a horizontal stress monitoring line is arranged in the center
of the Brazilian disc. Figure 12 is the horizontal stress X-X distribution in the monitoring
line for Type I testing under an external load of 10 kN. It shows that the horizontal stress
distribution within the range of less than 20 mm from the center is relatively uniform, and
the horizontal tensile stress is approximately 5.08 MPa. When the distance from the center
is more than 20 mm, the horizontal stress changes rapidly from tensile stress to compressive
stress with a large value. When the distance from the center is 24.5 mm, the horizontal
compressive stress reaches 90 MPa.
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Figure 13 is the horizontal stress X-X distribution in the monitoring line for Type II
testing under an external load of 10 kN. It shows that the horizontal stress is approximately
a tensile stress of 5.02 MPa within the range of less than 18 mm from the center. When the
distance from the center is more than 18 mm, the horizontal stress changes rapidly from
tensile stress to compressive stress with a large value. When the distance from the center is
24.5 mm, the horizontal compressive stress reaches 78 MPa.
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Figure 13. The stress X−X distribution in the monitoring line for Type II testing under external load
of 10 kN.

Figure 14 is the horizontal stress X-X distribution in the monitoring line for Type III
testing under an external load of 10 kN. It shows that the horizontal stress is approximately
a tensile stress of 4.96 MPa within the range of less than 18 mm from the center. When the
distance from the center is more than 18 mm, the horizontal stress changes rapidly from
tensile stress to compressive stress with a large value. When the distance from the center is
24.5 mm, the horizontal compressive stress reaches 77 MPa.
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of 10 kN.

Comparing Figures 12–14, it can be seen that under the same load, the stress con-
centration on the stress monitoring line of the Type I test is the most obvious. The stress
concentration of Type II and Type III tests decrease in turn, which can also be seen from
Figures 5–7. Under the same external load, the difference of the maximum tensile stress
within 18 mm (0.7 times the disc radius) of the center for the three Types of tests is small,
and the difference is mainly reflected in the compressive stress at the end of the disc. Type
III testing is beneficial for reducing stress concentrations at the ends of the disc, which is
conducive to the initiation of cracks in the center of the disc.



Mathematics 2022, 10, 2681 12 of 19

3.4. Evolution of Fracture Process Zone

The plastic strain law in the model has been described in Figure 3. The strain generated
after the peak elastic strain is defined as the plastic strain, which is used to characterize
the fracture process zone before fracture. Figure 15 is the plastic strain evolution with load
for the Type I loading. When the external load is 6.8 kN, two plastic zones appear in the
contact part between the disc and the rod. When the external load is 20.6 kN, the plastic
strain at the end of the disc is approximately 0.2%, which indicates that the damage at the
end is obvious. As the loading progresses, the crack initiates from the plastic zone at the
bottom of the disc. At 19.2 kN, after the peak load, the plastic zone develops rapidly to the
center of the disc, and the crack develops rapidly in the plastic zone. Finally, the plastic
zone continues to develop rapidly throughout the disc, resulting in a rapid decrease in the
load−carrying capacity of the disc.
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Figure 16 is the plastic strain evolution with load for the Type II loading. When the
external load is 17.5 kN, the plastic zone appears in the contact part between the disc and
the flat platen. When the external load is 22.0 kN, the plastic zone develops rapidly in the
center of the disc. As the loading progresses, the crack initiates from the center of the plastic
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zone of the disc. At 20.0 kN, after the peak load, the plastic zone continues to develop
rapidly throughout the disc and a crack develops rapidly in the plastic zone. At 7.7 kN,
after the peak load, two triangular plastic zones are formed at the end of the disc, which is
the cause of shear failure at the end of the disc under Type II loading.
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Figure 17 is the plastic strain evolution with load for the Type III loading. When the
external load is 23.6 kN, a plastic zone appears in the center of the disc. When the external
load is 23.9 kN, the plastic zone develops rapidly in the center of disc towards both ends of
the disc. As the loading progresses, the crack initiates from the center of the plastic zone. At
11.4 kN, after the peak load, the crack developed rapidly in the plastic zone and penetrated
the disc, and the secondary plastic zones and cracks were produced at the end of the disc.
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4. Discussion
4.1. Failure Mode Transition

Figures 18 and 19 are the failure mode transitions of the Brazilian disc test with
different loading configurations. It can be seen that the Brazilian disc under the Type I test
mainly suffered tensile failure and a small shear failure at the end. The Brazilian disc under
the Type II test mainly suffered tensile failure and an obvious conical shear failure zone
at the end. The Brazilian disc under the Type III test mainly suffered tensile failure, and
obvious secondary cracks are associated on both sides of the main tensile crack.
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Figure 19. The failure mode of disc with different loading configurations in physical test [24].

It is worth noting that although the disc of Type I testing has a relatively good splitting
failure, the crack is initiated at the end of the disc, which does not meet the assumptions of
the Brazilian disc test. The shear conical failure zone at the end of the disc under the Type
II test occurs after the peak load and does not affect the magnitude of the peak load; that
is, it does not affect the validity of the tensile strength. The secondary cracks at the end
of the disc under the Type III test also occurred after the peak load and did not affect the
magnitude of the peak load and the validity of the tensile strength.

4.2. Validity of Tensile Strength

The tensile strength for Type I and Type II testing can be calculated according to
Equation (10), and the tensile strength for Type III testing can be calculated according to
Equation (11) [27]. The 2α is the angle of the circular arc of the contact area between the
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curved jaw and the disc, which is 12◦ in this model. The calculation results are shown in
Table 2. It can be seen that the error of tensile strength for Type I is 13%, while the errors
of tensile strength for Type II and Type III are both 1%. It shows that the Type I test is not
suitable for testing the tensile strength, while the Type II and Type III tests are suitable for
testing the tensile strength.

σt =
2P

πDt
(10)

σt =
2P

πDt

(
sin 2α

α
− 1
)

(11)

Table 2. The tensile strength and error of three loading types.

Loading
Type P/kN α/◦ Tested Tensile

Strength/MPa
Actual Tensile
Strength/MPa Error

Type I 20.7 0 10.5
12.0

13%
Type II 23.8 0 12.1 1%
Type III 24.1 6 12.1 1%

5. Conclusions

The main conclusions were obtained as follows:

(1) The Brazilian disc under the Type I test mainly suffered tensile failure and small shear
failure at the end. The Brazilian disc under the Type II test mainly suffered tensile
failure and an obvious conical shear failure zone at the end. The Brazilian disc under
the Type III test mainly suffered tensile failure, and obvious secondary cracks are
associated on both sides of the main tensile crack.

(2) The maximum tensile stress value is located within 18mm (0.7 times the disc radius) of
the center of the disc under different loading configurations. Therefore, the Brazilian
disc test is valid only where the crack initiation point is within 18 mm of the vertical
range of the disc center, which means that the crack initiation is located in the area of
maximum tensile stress.

(3) In the Type I test, the invalid tensile strength is obtained because the crack initiation
and plastic strain point is at the end of the disc. The crack initiation points of the
Type II and Type III tests are all within the center of the disc, and the valid tensile
strength can be obtained. The tensile strength test results under different loading
configurations show that the error of the Type I test is 13%, while the errors of the
Type II and Type III tests are both 1%.

(4) The plastic strain of the Type III test is also initiated at the center of the disc, and the
plastic strain of the Type II test is initiated at the end of the disc. It can be considered
that the Type III test is better than the Type II. In summary, the curved jaws loading
(Type III) is the most suitable for measuring the tensile strength of brittle materials
such as rock, followed by the flat platens loading (Type II). The small diameter rods
loading (Type I) testing is not suitable for testing the tensile strength of materials.
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Appendix A

The influence of mesh size on the loading curve for the Brazilian testing is shown
in Figures A1–A3. It can be seen that the mesh size has little effect on the loading curve.
Considering that a smaller mesh size is conducive to obtain a more accurate damage zone
and crack propagation, a mesh size of 0.5 mm is set to analyze the fracture process of
Brazilian discs under different loading configurations.
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