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Abstract: The increase in available probabilistic information and its usefulness for understanding
the world has made it necessary to promote probabilistic literate citizens. For this, the binomial
distribution is fundamental as one of the most important distributions for understanding random
phenomena and effective decision making, and as a facilitator for the understanding of mathematical
and probabilistic notions such as the normal distribution. However, to understand it effectively,
it is necessary to consider how it has developed throughout history, that is, the components that
gave it the form and meaning that we know today. To address this perspective, we identify the
problem situations that gave origin to the binomial distribution, the operational and discursive
practices developed to find solutions, and the conflicts that caused a leap in mathematical and
probability heuristics, culminating in what is now known as the binomial distribution formula. As
a result, we present five historical links to the binomial phenomenon where problem situations of
increasing complexity were addressed: a case study using informal means (such as direct counting),
the formalization of numerical patterns and constructs related to counting cases, specific probability
calculus, the study and modeling of probability in variable or complex phenomena, and the use of the
distribution formula as a tool to approaching notions such as the normal distribution. The periods
and situations identified correspond to a required step in the design of binomial distribution learning
from a historical epistemological perspective and when solving conflicts.

Keywords: binomial distribution; epistemology; fields of problems; probability history;
probabilistic literacy

MSC: 60-03; 60E05

1. Introduction

The teaching and learning of probability have taken on great importance at the cur-
ricular and research levels over the past few decades as a consequence of technological
progress, the large amount of information available, and its easy accessibility. For this,
citizens should have the knowledge and dispositions that allow them to argue and critically
interpret probabilistic information [1]. The consideration of such relevance is evidenced by
recent changes in the focus of its teaching, from one based on formulas to one focused on
experimentation and its complementation with theories, as well as the introduction of prob-
abilistic ideas or concepts in early education [2–4]. This exposes challenges and weaknesses
such as the fact that most current teachers may not be familiar with the different meanings
of probability and the possible conflicts that their students may experience, having studied
probability from a theoretical perspective [4,5]. The lack of consideration of historical, cog-
nitive, and epistemological aspects of probability makes it easier for students to generate
early misconceptions, for example, (1) about representativeness, believing that the probabil-
ity for a sample depends on its similarity to the population distribution; (2) equiprobability
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bias, in which the student assumes that random events are equiprobable by nature; (3) the
belief that a random event depends on a force beyond their control; (4) believing that there
is complete human control over a random phenomenon; and (5) resolution errors, such
as carelessness or the use of incorrect strategies [5–8]. This focus on preparing students
for real-world probability scenarios is what Gal [1] calls probabilistic literacy, that is, the
ability to access, use, interpret, and critically argue probabilistic information, as well as
the control of problematic attitudes, in order to deal effectively with tasks and situations
involving uncertainty and risk in real life, for which five pillars of knowledge are needed:
analyzing big ideas, calculating probabilities, language, context, and critical questions.
Under this perspective, aspects that are promoted in general education in the 21st century
are also considered, such as theoretical epistemological knowledge, cognitive abilities, and
attitudes, in order to apply it effectively in problem solving and society, which requires a
conception of teaching based on the articulation between theory, practice, and context. This
implies a greater demand on teachers to act as interpreters and critics who use probability
to their advantage, modeling situations and generating predictions without falling into
biases such as disregarding the variability of real-life phenomena [9,10], while also opening
doors for its development from an early age to establish its role in active knowledge [11,12].

In the search for ways to promote this more meaningful learning of probability, learn-
ing the binomial distribution is essential since it enables the analysis of random phenomena
and is closely related to other distributions such as Poisson and normal distribution, mak-
ing it a notable research object of didactics in mathematics [13]. For example, Sánchez and
Landín [14,15] propose and validate a hierarchy on their understanding of the SOLO taxon-
omy, identifying as necessary the precise handling of the concepts and ideas behind it, such
as overcoming the idiosyncratic conception of probability, the representation of sequences,
the classical approach to probability, the product rule, the binomial coefficient, and the
binomial formula. Taufiq et al. [16] analyzed the learning of the binomial distribution in a
secondary-level textbook and identified (1) an incomplete structure in the discussion of the
binomial distribution by not addressing essential concepts such as discrete and continuous
random variables or probability distribution; and (2) a lack of discussion of statistics related
to the binomial distribution as well as their meaning. García-García et al. [17] addressed
the development of the notion of the binomial distribution in high school students, identi-
fying key elements for its understanding: the identification of patterns, the variability, the
probability law of large numbers, and the identification of binomial behavior in contextual
situations. These lines of research evidence a desire to characterize the understanding of
the binomial distribution and to analyze how it is approached by different subjects and in
educational resources.

Similar to the results of the research on probability, weaknesses in students and
teachers regarding comprehension of the epistemic aspect of the binomial distribution, its
fundamental components, and how they are related, have been identified. Alvarado and
Batanero [18] analyzed the theoretical and practical understanding of engineering students
after a teaching experiment and identified weaknesses in the application of the binomial
distribution in specific situations and confusion about statistical concepts, such as variance
and mean, which showed that they did not perceive the importance of the parameters of
the binomial phenomenon to approach the normal distribution (31%) and the consideration
of the mean of the binomial distribution as applicable in the prediction of phenomena only
when the value of the trials it involved was sufficiently high (90%). Pilcue and Martínez [19]
identified the difficulties experienced by undergraduate students in Basic Education with
an emphasis on mathematics in interpreting the data involved in a binomial situation and
understanding combinatorics using the factorial. Among the most worrying difficulties
found were those in identifying a binomial phenomenon, a probabilistic phenomenon,
and the parameters involved; making mistakes in components when calculating the value
of the combinatorial; or using other formulas without proper construction or argumen-
tation. Sánchez and Landín [20] proposed seven components of knowledge about the
binomial distribution: recognition of Bernoulli trials, recognition of the binomial random
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variable, use of combinatorial trees and representations of the sequences of results, use of
the classical definition of probability (Laplace), knowledge and handling of the product
rule of probability, use of combinatorics and the product rule in a joint manner, and the
proper use of the probability formula of the binomial distribution. They also identified in
high school students a minimal effective use of the binomial formula and its associated
parameters, a difficulty in linking the various components of the understanding of the
binomial distribution, and the necessity to promote the understanding of the product rule
and combinatorics in order to understand the binomial distribution formula. Consequently,
we can confirm a link between the study of the didactics of probability in general and the
one focused on the binomial distribution.

The above-mentioned research shares an important characteristic; it is based on the
identification of essential elements or components to evaluate the level of understanding of
the binomial distribution and to propose improvements, which is achieved by consider-
ing the binomial distribution in its formal form in the same way it is reflected in current
students’ abilities or educational resources. However, as with any mathematical notion,
the binomial distribution has developed throughout history, overcoming several conflicts
and modifications relating to new ideas and solving new problems. This suggests that the
historical development of the binomial distribution is an important component that needs
to be addressed and that has a high potential to support teachers or educational leaders
in solving learning conflicts [9], considering that part of this historical development will
be reflected in students’ understanding of the binomial distribution. This aspect, as also
mentioned by Batanero [4], is essential since it evidences how elements such as concepts
and propositions have been articulated in different levels of mathematical and probabil-
ity complexity to provide answers to a family of problem situations throughout history,
associated with the reasoning of students and the conflicts they have witnessed during
their learning processes. In conclusion, by addressing the epistemic aspect of the binomial
distribution from an historical perspective, epistemological guidelines that articulate the
weaknesses identified and how they are historically addressed could be generated, thus
contributing to the early investigational state of the binomial distribution [21] and propos-
ing a new didactic approach to its learning and the solving of epistemic conflicts. Thus,
we are presented with the following questions: What situations can be attributed to the
binomial distribution, and what knowledge of its historical evolution could optimize its
understanding in the teaching and learning processes?

To identify the essential elements in the historical construction of the binomial distri-
bution and thus facilitating its teaching and learning by considering the epistemological
historical aspect, we identify the problem situations that gave it its origins and the objects
involved in its evolution and formalization throughout history by conducting an Historical
Epistemological Study (HES). As the main conclusion of our study, we identified that the
binomial distribution took shape during five important periods in which the problems
addressed the increase in complexity and are the result of the development of probability
theory: (1) case count in ancient India and Greece, (2) the formalization of numerical
patterns and mathematical constructs such as the Pascal triangle, (3) the calculation of point
probabilities originated with probability theory in search of solutions to problem situations
such as the problem of points, (4) the informal construction of the binomial distribution
by Pascal and Fermat in search of more general solutions to probabilistic phenomena, and
(5) the formalization of the binomial distribution formula by Bernoulli and its use as a
modeling tool to approach other phenomena within probability theory. For the contribution
of this work, we propose a proper characterization of the binomial distribution from its
more informal ideas based on its uses throughout history and how these can be related to
students’ work in the classroom. This has potential for the longitudinal learning of this
construct within educational programs such as those in Chile [22], which propose that ideas
associated with the binomial phenomenon are introduced from 6th grade in an informal
way, leaving its formalization and use in decision making for the last years of high school,
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but without presenting a clear relationship between its components and how the formula
originated from mathematical and probabilistic principles.

2. Theoretical Framework

For promoting probability literacy related to the binomial distribution, it can be
considered that the disarticulation between the different applications of a mathematical and
a probabilistic notion will be problematic for the design of its teaching in essential aspects
such as problem solving and critical thinking. Batanero [5] stresses the importance of this
aspect, indicating that the teaching of probability cannot be limited to a single perspective
since they are all dialectically linked; thus, she invites research of a historical nature, closely
related to the experimentation and historical trials and errors that can also be presented in
the classroom.

For this task, we considered the realization of a Historical Epistemological Study (HES)
based on the epistemic principle of the Ontosemiotic Approach to Mathematical Knowledge
and Instruction (OSA) [23–25], used in probability research for the historical reconstruction
of the meaning of the central limit theorem [26] and the chi-squared statistic [27]. This
principle is also used in the development of the competencies of mathematics teachers,
who not only require formal disciplinary knowledge but also competencies and skills
for the adequate management of this construct for different problem situations to give
it a place in relation to other mathematical and probabilistic knowledge and solve the
learning conflicts of students [28]. From the OSA perspective, and to answer the epistemic
question of mathematics, mathematics is considered the product of the human being, a
series of practices originated to provide a solution to a problem situation, communicate that
solution, validate it, and use it to address new ones [29]. These practices can be operative
or discursive [30]; the first one corresponds to competence with respect to a mathematical
construct, for example, in the use of arithmetic operations or models to find an answer,
whereas the other is closely related to the social aspects of knowledge in terms of knowing
what a mathematical construct is and what it is for, in other words, its understanding. Both
are essential components of what Gal [1] referred to as probabilistic literacy and have a clear
role in the idea that probability is presented as a way of modeling the world, analyzing
random situations, and even seeking which of them are favorable, which is an important
part of the search for human welfare. Therefore, knowledge of the binomial distribution
can be evidenced in many ways depending on how people use it to approach problem
situations from a simple coin toss to the study of probability density or its mean, making a
historical study a potential provider of an overview of the reasoning of a student at various
stages in the construction of knowledge of this object.

For addressing the epistemic aspect of mathematical objects, from an historical perspec-
tive, the HES [31] has predominantly been used [4,28,32,33]. This type of study addresses
the nature, genesis, and consolidation of concepts or ideas, attributing a complexity due
to the different aspects that originated and formed them throughout history, and thus, as
part of the OSA’s theoretical and methodological framework, it is an effective approach to
identifying the elements needed to analyze the teaching–learning process of the binomial
distribution considering its historical epistemological aspect, that is, a chronological delimi-
tation of wise knowledge [34]. Witzke et al. [35] similarly indicated that the importance of
conducting this type of study lies in responding to the problem of the lack of consideration
of historical elements in teaching, that is, a historical decontextualization, which has gener-
ated an important discussion about the contributions about its genesis that would help to
understand its current teaching.

One of the primary examples of the use of an HES on probability learning was a
study by Batanero [4] who used an HES to analyze various historical meanings that have
been given to probability, for example, as a reason (favorable and unfavorable cases), as
evidence of empirical reality, as a personal belief and, formally, as a mathematical model
to understand the real world. Subsequently, from these elements and their articulation
within the notions of OSA, she identified elements that led to the identification of the
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meaning of probability and in contrast, analyze the way it is presented in educational
processes. Ruiz [36] presented her work based on the realization of an HES on the random
variable and identifies an informal stage prior to probability itself, which was approached
as probability theory developed with a focus on primitive games of chance and the study
of bets. Finally, we highlight the research conducted by Lemus-Cortez and Huincahue [37]
that consists of an HES on the normal distribution with the aim of analyzing and evaluating
an epistemic route for a conceptual approach and generating teaching–learning processes
from a multidisciplinary approach, particularly focused on the area of medicine, with the
intent of promoting the articulation between theory and practice in how students of 17 and
18 years model tasks and collect data.

Based on these premises and in relation to our objective, we conclude that identifying
the main problem situations that provided the origins and development of the binomial
distribution, as well as the practices for its resolution, will help us to understand its
comprehension by students and explore how it is presented in the curricula. Therefore,
the HES could help us to address this unexplored area of mathematical and probabilistic
constructs as the first step of an in-depth study with the objective of promoting the essential
elements for its adequate teaching and learning.

3. Methodology

The study presented is of a qualitative type [38] since it consists of the identification
and analysis of the problem situations that have given meaning to the binomial distribution
throughout history. In addition, it is conducted at an exploratory-descriptive level [39]
to understand the background of what is presented to us as the binomial distribution,
which has not yet been studied from a historical epistemological perspective, through the
analysis and organization of information that has been collected on it. For the latter, a
documentary design is followed [40] in which knowledge of the binomial distribution is
recovered, systematized, and analyzed from a bibliography that addresses its history.

For this first approach to identifying how the binomial distribution has developed
throughout history, our work consisted of three phases, each one with a specific objective:
(1) the selection and recollection of the appropriate bibliography, (2) its analysis and synthe-
sis, and (3) the proposal of a characterization of the binomial distribution from its historical
development and identified practices (operative and discursive).

The first phase consisted of the collection and analysis of the literature in which
the binomial distribution is explicitly addressed and presents the problem situations and
solution practices associated with the binomial phenomenon or its formula [41–44]. As our
focus is on the historical perspective of the binomial distribution, we did not consider the
literature in which it was presented exclusively as a finalized construct, that is, in a formal
way and as an instrument for the direct analysis of situations. Likewise, some articles that
addressed the binomial distribution were not considered for this analysis if they did not do
so from the desired perspective; however, they were considered in order to make a contrast
and highlight the potential of the HES and how it complements and is complemented
by them.

The second phase consisted of the organization and analysis of the information col-
lected, identifying the historical periods in the development of the binomial distribution,
the key events that caused an increase in the heuristics of the phenomena addressed, and
the operative and discursive practices involved. This was achieved using the hermeneutic
method [45], which considers that the human being has a consciousness of a historical
character and is full of prejudices of a theoretical and practical nature, which reflects the
experiences or senses associated with knowledge. Consequently, to understand the process
whereby preconceptions advanced in the search for meaning to be composed of intellect,
explanation, and application, which we consider key events in the development of the
binomial distribution, the resolution of problem situations required a new approach with
higher heuristics.
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Finally, as a result of the previous phase, a synthesis of the historical development of
the binomial distribution is proposed (see Figure 1). From this, we expect to represent the
sequence of its construction and the emergence of its essential elements that could help
with the development of the line of research from this perspective.
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and as a result of resolving conflicts in new problem situations.

4. The History of the Binomial Distribution

This historical epistemological study allowed us to identify five periods in the de-
velopment of the binomial distribution, characterized by the complexities of the problem
situations addressed. In the following subsections, we describe the problem situations
identified, their resolutive practices, and the events that signaled a new development in the
complexity and formality of the approach to binomial phenomena.

4.1. The First Approach to Binomial Phenomena: Early Combinatorics and Number Patterns from
Ancient India and Greece to Dante’s Divine Comedy (600 BCE—14th Century)

In this period, the first approaches by former experts to the study of probabilis-
tic phenomena, which can also be associated with binomial situations, were presented.
This is the basis for the study of random phenomena through empirical analysis, which
would give way to the generation and study of numerical patterns, essential for the de-
velopment of probability theory in the future and, therefore, for the formalization of the
binomial distribution.

The first challenge in the development of probability theory and the study of binomial
situations was to break the deterministic scheme of things and understand how mathemat-
ics could be used to model and predict real-life phenomena [42]. This meant overcoming
Aristotle’s ideology that random phenomena are unpredictable and inaccessible through
investigation in an empirical study that originally had mathematical imperfections and
little control of the phenomena, leading it to be a theory of axiomatic character. In the
Indian subcontinent, the study of the number of cases was recorded orally and documented
since the classical period of Indian history, mainly grounded in religious scriptures [46].

The earliest known record of a preliminary mention of combinatorial problems is
presented in the oral compilations of the encyclopedic work called the Bhagavati Sūtra
(Exposition of Explanations) (5th century BC), in which answers to several questions were
given in the form of a dialogue. As an extension of these problems, punctual examples
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were accumulated and studied for the identification of numerical patterns in an attempt to
formalize them, proposing recursive rules.

Another of the earliest bases for the development of probability is identified in Greek
mathematics. Porphyry presented the question of combinatorial nature by asking how
many ways can two things be selected from among n different things? [43], which was
solved by the direct counting of cases and recursive reasoning for the concrete case n = 5.
Associated with the combinatorial phenomenon and the study of possible cases regardless
of the order, it was answered with a combinatorial consideration of cases and recursive
reasoning, giving the answer as 4 + 3 + 2 + 1 = 10. In a similar way, closer to the first
steps in modeling general cases in probability, this occurred when Pappus of Alexandria
addressed the geometric problem of the number of intersections that could be generated
with n intersecting lines (with restriction), stating the solution to be equivalent to modern
expressions such as triangular figured numbers [44].

1 + 2 + 3 + 4 + 5 + . . . + (n− 1) =
1
2

n(n− 1) (1)

Although during the Middle Ages there was no evidence of the calculation of proba-
bilities and probability associated with the binomial distribution, mathematical constructs
related to the possible number of cases were already being addressed in India around 1150
in the form of permutations and combinatory with Bhaskara, and in Hindu and Arabic
mathematics from 1265 in the form of the binomial expansion and arithmetical triangle.
In Dante’s Divine Comedy (1320), the first indications of probability are identified in the
form of proportions [41], and around the same year (1321) Levi ben Gerson became the
first person in Europe to deliver the general formula of combinatorics and permutation,
demonstrating them by induction [42].

In this period, the transition from the study of random phenomena through empirical
ideas such as the direct counting of cases and their representation through symbolic or
common language is evident (see Table 1). From the constructivist perspective, it can
be associated with how students face random ideas for the first time, relating numerical
patterns with inductive reasoning to construct mathematical objects. Addressing elements
of the early state of probability (see Table 2), such as the sample space, these problem
situations would reach their maximum complexity in the generalization of these patterns.

Table 1. Historical problem situations (600 BCE—14th century).

Problem Situation (History
Period—Mathematician/Work) Conflict Identified Operational Practice Discursive Practice

In how many ways can a certain
number of tastes be combined from a

selection of six different flavors?
(5th century BCE—Bhagavati Sūtra)

In how many ways can 16 syllables be
ordered if they could be short or long?

(2nd century BCE—Pingala)

No determined way to study
number of cases

No determined way of
demonstrating or validating

a solution without
doing the experience

Exploration,
direct counting

Dialogue,
Axiomatic reasoning

In how many ways can n syllables be
ordered if they could be short or long?

(2nd century BCE—Pingala)

No determined way to
model number of

cases (combinatorics)
No determined way of

demonstrating or validate
a solution for general cases

Analyzing cases, finding
resolutive patterns, and

formalizing rules

Dialogue, Recursive and
Axiomatic reasoning

In how many ways can two things
be selected from among

five different ones?
(3rd century CE—Porphyry)

No determined way to
study number of cases
No determined way of

demonstrating or validating
a solution without

doing the experience

Exploration,
direct counting

Dialogue, Recursive and
Axiomatic reasoning
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Table 1. Cont.

Problem Situation (History
Period—Mathematician/Work) Conflict Identified Operational Practice Discursive Practice

How many intersections can be
generated with n intersecting lines

(with restriction)? (4th century
CE—Pappus of Alexandria)

No determined way to
model number of

cases (combinatorics)
No determined way of

demonstrating or validating
a solution for general cases

Mathematical modeling
from patterns

Dialogue (oral),
Arithmetic language,
inductive reasoning

What is the possibility of the results of
the sum of three dice?

(1320—Dante Alighieri)

No determined way to
express possibility

Exploration, direct
counting, and possibility
as a comparison between
number of cases (ratios

or proportions)

Normal language,
Axiomatic reasoning

How many ways can n things be taken
from m others?

(1321—Levi ben Gerson)

No determined way to
express generally the

combinations or permutations

Construction and
demonstration

Normal language,
Inductive reasoning

Table 2. How problem situations from historical problem situations (600 BCE—14th century) could
be proposed in the current curricula.

Problem Situation Associated Mathematical Practice Element of the Binomial
Phenomena Identified

In how many ways can two things be
selected from n other things?

Exploration, direct counting,
finding resolutive patterns, and

mathematically formalizing rules
Sample space

How many favorable and unfavorable
cases are possible in a specific

binomial phenomenon?

Analyzing particular cases, finding
resolutive patterns, and formalizing rules Number of specific cases

What are the ratios between
the possible cases?

Direct counting, use of
probability as proportions

Probability as proportions
(incomplete Laplace’s rule)

How many possible cases or favorable cases
have a specific binomial phenomenon? Construction and demonstration (induction) Combinatorics

4.2. Development and Formalization of Numerical Patterns for Counting Cases: From Stifel’s and
Pascal’s Triangles to Probability as a Numerical Notion by Arnauld and Nicole (15th Century–
16th Century)

The mathematical patterns identified in the previous period and their relationships
were formalized and presented in works such as Stifel’s triangle and Pascal’s triangle
(Figure 2). In the latter, figurate numbers, binomial coefficients, and combinatorics were
presented and related, for example, the triangular numbers (1, 3, 6, 10, 15, 21, ...) and the
tetrahedral numbers (1, 4, 10, 20, 35, 56) [44].
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Based on Figure 2 and considering the generating row and column as number 0, we
present some of the construction rules and properties proved by Pascal in verbal form with
the recursion formulas:

4.2.1.Row m and Column n Term (tm,n):

tm,n = tm−1,n + tm,n−1, m, n ∈ N∧ (m, n) 6= (0, 0) (2)

t0,n = tm,0 = t0,0 = 1 (3)

4.2.2.Addition of Elements from Row m to Column n

Rm,n =
n

∑
j=0

tm,j (4)

4.2.3.Addition of Elements from Column n to Row m

Cm,n =
m

∑
k=0

tk,n (5)

4.2.4.Addition of Elements of the Diagonal from the First Term of Row m to the nth Element
of the Diagonal

Dm,n =
n

∑
j=0

tm−j,j (6)

4.2.5.Addition of all Elements of the Diagonal

Dm = Dm,m (7)

4.2.6.Row and Column Properties

tm,n = Rm−1,n = Cm,n−1 (8)

tm,n−1 =
m−1

∑
k=0

Rk,n−1 =
n−1

∑
j=0

Cm−1,j (9)

4.2.7.Property of Symmetry

tm,n = tn,m (10)

4.2.8.Ratio Property, Proven by Induction

tm+1,n−1

tm,n
=

n
m + 1

(11)

4.2.9.Multiplicative Form of tm,n

Based on Equation (13), it can be proved that

tm,n =
(m + n)(m + n− 1) . . . (m + 1)

n(n− 1) . . . 1
= m+nCn (12)

4.2.10.Relation between Pascal’s Triangle Term and Combinatorics

The reasoning used by Pascal to relate the number of combinations to the term of his
arithmetic triangle is as follows: The n + 1 elements can be addressed as n plus one element
(A), then n+1Ck would be the combinations without A and with A. That way, the nCk would
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be the combinations without A and nCk-1 would be the combinations with A, since only k-1
can be selected besides A. With that, it can be proven by induction that

Rn−k,k = Ck,n+1 (13)

With that, based on Equation (13), it can be proved by induction that

n+1Ck = tn+1−k,k (14)

In a similar way, Pascal demonstrated the relationship between the binomial coeffi-
cients and the arithmetic triangle [42,44] allowing the Pascal triangle to be represented as
in Figure 3.

(a + b)k =
k

∑
i=1

tk−i,ia
k−ibi (15)
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With this, Pascal’s triangle could also be used for the study of the number of possible
cases. For example, in the toss of four coins, when observing the fourth diagonal it can be
observed that the number of possible results will be given by the sum of the coefficients
(1 + 4 + 6 + 4 + 1 = 16) and if the order does not matter (meaning that the case HTTH is
equivalent to HHTT), the number of possible results will be given by the number of terms
of the diagonal 5.

Until the end of the 16th century, probability was still considered a non-numerical
and purely epistemological concept, its calculation being part of algebra and framed by
the concept of chance and the proportion of cases while also being addressed in a verbal
style [42]. Arnauld and Nicole [47] broke this scheme in 1662 using mathematical principles
to present probability as a numerical value applicable to situations beyond games of chance
and established the theory of probability calculation and the application of mathematical
constructs to analyze the phenomena that follow random behavior.

With the above, the pursuit of the study of probability and case counting directly
with expressions constructed from numerical patterns is evident (see Table 3) and is an
example of the use of triangular numbers as an answer to the Pappus problem, as previously
addressed. This is associated with how students work in the classroom when modeling
binomial phenomena relying on binomial coefficients, Pascal’s triangle, or tree diagrams.
The construct presented can be wrongly used by teachers as the correct knowledge or
as a tool to verify the relationships between these elements, leaving as secondary the
comprehension of their origins and arguments behind their demonstration.

As shown in Table 4, the historical characterization of the problem situations presents
a pre-developing stage in the theory of probability, setting the base for analyzing the
number of cases and the probability using mathematical and graphic constructs and their
relationships. This, as evidenced in the study, could be achieved by encouraging students
to use their own representations, articulating them with those such as Pascal’s triangle, and
the identification and understanding of their construction rules and their arithmetization.
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Table 3. Historical problem situations (15th century–16th century).

Problem Situation (History
Period—Mathematician/Work) Conflict Identified Operational Practice Discursive Practice

What set of rules govern the
numerical patterns and

formulas generated? (16th
Century—Michael Stifel)

No determined way to
identify or demonstrate

general patterns

Graphic construction, visual
identification and verification

by recursive methods

Algebraic and graphical
language, inductive reasoning

How are these rules related to
mathematics theory? (16th and
17th Century—Michael Stifel

and Blaise Pascal)

How are the set of rules
and properties related to

other mathematical or
probability constructs?

Relate patterns with
constructs as combinatory
and figurative numbers,

demonstrating one-on-one
relations by induction or

comparing generating rules

Algebraic and graphical
language, inductive reasoning

How can these rules be used in
a meaningful way to study

random phenomena?
(1662—Antonie Arnauld

and Pierre Nicole)

Probability is considered
as a ratio or proportion

between the number of cases

Conceive of probability
as a numerical value

between 0 and 1.

Definition,
axiomatic reasoning

Table 4. How problem situations from historical problem situations (15th century–16th century)
could be proposed in the current curricula.

Problem Situation Associated Mathematical Practice Element of the Binomial
Phenomena Identified

What patterns can be identified in
counting cases or their ratios (possibility)?

Graphic construction, visual
identification, and verification

by recursive methods

Behavior of results in
a binomial phenomenon

How can counting cases be related to constructs
such as combinatorics and Pascal’s Triangle?

Demonstration by induction or
comparing generating rules
(generating one construct

by means of patterns identified)

Use of constructs for
calculating number of cases

What is the meaning of the ratio or
proportions between counting cases?

Direct counting, use of
probability as the proportions

Probability of a binomial
phenomenon (Laplace’s rule)

4.3. Use of Mathematical Constructs to Model Probability Situations from the Beginnings of
Probability Theory with the Problem of Points to the Incomplete Binomial Distribution by Pascal
and Fermat (15th–17th Centuries)

In this period, the deductive use of constructs such as combinatorics was presented,
allowing the direct calculation of the probability of concrete situations and the search for
solutions to more general situations. It corresponded to a major challenge, which the
student is only able to address adequately once he or she understands the usefulness of the
mathematical constructs already presented and articulates them with the various practices
in the meaningful study of random phenomena. At the end of this period, as probability
was defined as a contextualizable value and applicable to phenomena beyond games of
chance for the search for beneficial situations, this type of problem was approached as
a numerical value instead of as a proportion, still without unique terminology or any
recourse observations of relative frequencies.

The main problem situation in the origin of probability theory was the problem of
points. It consists of two players (A and B) who decide to play a series of games until one
of them has won a specific number (s). The game is stopped when A has won s1 games and
B has won s2 (both less than s). They then need to divide the money fairly. Its name comes
from the fact that instead of considering the number of games, its resolution is based on
associating each winner with a number of points and based on this, distributing the money,
as in the example shown in Figure 4.
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Figure 4. Problem of points for s = 3.

It was initially observed around 1494 by Pacioli in the specific case of s = 6, s1 = 5, and
s2 = 2 and based on the proportions, he concluded that with the minimum number of sets
being s and the largest number of sets being 2s − 1, the division should be s1

2s−1 and s2
2s−1 .

This proposal was criticized because of the absence of probability principles [42]. This type
of reasoning continued with other authors until Cardano approached it from the number
of games that each player is yet to win (a = s − s1, b = s − s2); that way, he could infer a
new play where A, starting from scratch, is the winner if A wins a games before B wins b
games, concluding that the division should be b(b + 1) to (a + 1). A complete solution was
given by Pascal and Fermat almost a century later [41,42].

Another important topic was the use of mathematical analysis for games of chance in
looking for favorable situations, modeling the conditions of a game, and identifying loaded
dice and frauds. These ideas were addressed by Cardano (1663), reaching the conclusion
that a six-sided die is honest when each of the faces has the same possibility of occurrence
and using the multiplication rule and the multiplication principles [42].

During the 17th century, Samuel Pepys and Isaac Newton analyzed the specific sit-
uations associated with the binomial phenomenon [42,44]. These were solved by the
enumeration of cases and using combinatorial principles and probability without explicit
reference to the binomial distribution and included (a) the probability that in six fair die
tosses, at least one six is obtained; (b) the probability that in twelve fair die tosses, at
least two sixes appear; and (c) the probability that in eighteen fair die tosses, at least
three sixes appear. The first two were solved by combinatorial principles, whereas the last
one was not solved but denoted as a value less than the one obtained in situation (b). For
situation (a), all the possibilities of throwing six dice were given by 66, whereas the number
of no-six appearances was 56. Therefore, the number of favorable events will be 31031.
This could also be constructed from combinatorics and the product principle of probability.(

6
0

)(
1
6

)0(5
6

)6
=

(
5
6

)6
= 0.33489797668038408779169519890261 (16)

A breakthrough in the study of probability began with questions about games of
chance asked by Antoine Gombaud to Blaise Pascal in 1654 and communicated to Fermat.
They added to the basic principles and rules of numeration the knowledge of combinatorial
theory, generating what would be known as combinatorial chance and, without using the
term probability, introduced the concept of value, later known as expectation.

One of the situations studied was from 1654: if one bets on rolling a six with one die,
the advantage of rolling it on four is 671 to 625, and if one bets on rolling two sixes with
two dice, there is a disadvantage in 24 throws. This can be obtained from the expression

1− qn

qn ≥ 1 o qn ≤ 1
2

(17)
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They also arrived at conclusions such as if in a dice game the participant bets to roll a
six in eight throws, the player should receive 1

6 of the total for not making the first throw,
1
6 of the remainder for not making the second throw, and so on, thus concluding that the
value of the kth throw is (

1
6

)1(5
6

)k−1
(18)

From this period, we can identify the arithmetization of probabilistic phenomena using
the constructs from the previous periods in the search for solutions to a more extensive
variety of problem situations (see Table 5). For the student, the historical development
suggests that it is necessary to become familiar with the mathematical constructs and
the principles of probability. With this ensured, the evidence shows the modeling of
various probabilistic problem situations at an arithmetic level with the direct calculation of
probabilities or at an algebraic level with the handling of equations or inequalities.

Table 5. Historical problem situations (15th century–17th century).

Problem Situation (History
Period—Mathematician/Work) Conflict Identified Operational Practice Discursive Practice

Problem of Points: Two players
(A and B) decide to play a series of
games until one of them has won 6.
The game stops when A has won
5 games and B has won 2. They
must divide the money fairly, so

how should the money be
distributed? (1494—Pacioli)

No determined way to
associate the value of a
game using probability

Associate the probability of
winning to a part of the bet,

use of proportion.

Arithmetic language, no
probability reasoning.

General problem of Points:
Two players (A and B) decide to

play a series of games until one of
them has won S. The game stops
when A has won s1 games and B
has won s2. They must divide the
money fairly, so how should the

money be distributed?
(1539—Cardano)

No determined way to
model the general random

phenomena or to
demonstrate such a model

Associate the part of the
stake corresponding to the

points needed to win, study
particular cases, identify

patterns and recursive laws,
use of constructs such

as combinatorics
(combinatorial chance)

Algebraic language,
inductive reasoning

When is a die honest?
(1663—Cardano)

No definition of when a
game of chance can be

called fair

Associate fairness with
equiprobability
and modeling,

comparing proportions.

Definition,
axiomatic reasoning

What is the probability of obtaining
the same result in a game of chance

n times? (1663—Cardano)

No determined general
rule to calculate

the referred probability

By trial and error in
particular cases and

comparing proportions,
associate and demonstrate
the multiplicative principle

of counting cases to
their probability.

Recursive reasoning,
arithmetic and

algebraic language

What is the probability that when
throwing 6 dice independently,

at least one 6 will appear?
(and other similar problems)

(17th century—Samuel Pepys
and Isaac Newton)

No determined way to
calculate the probability

of more than one case

Laplace rule, using
combinatoric and
direct counting.

Deductive reasoning,
arithmetic language

As shown in Table 6, the historical characterization of the problem situations presents
an early or informal stage of probability theory called the theory of chances. It is related to
a higher level of analysis where basic probability principles derived from the ones related
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to counting cases are used, with deductive and inductive reasoning that can be considered
to be of an algebraic type but with a language that is still of an arithmetic type.

Table 6. How problem situations from historical problem situations (15th century–17th century)
could be proposed in the current curricula.

Problem Situation Associated Mathematical Practice Element of the Binomial
Phenomena Identified

What part of the bet should go to each player
(A and B) in a game of chance if player A has

already won 2 times and B has won 0 times if the
game ends when one of the players has 3 points?

Graphic construction, deductive
reasoning, using Laplace rule, associating

proportion of the total bet to the
probability, recursive methods

Calculating probability of an
incomplete binomial situation

(part of an experiment)

When does a situation follow
a fair binomial behavior? Obtaining theoretical probability values Identifying the theoretical

values of p and q

What is the probability of obtaining the same
result n times in a game of chance?

Associate multiplicative principle for
counting cases with its probability.

Multiplicative principle
of probability

What is the probability of obtaining at least n
successes in a game of chance?

Calculating favorable or unfavorable
cases and using additive principles of

probability or the Laplace rule

Additive principle of
probability for studying an

interval of the random variable
in a binomial situation

What is the number of trials needed to have a
favorable probability of a particular number of

successes or failures?

Modeling and solving the probability
equation such as the probability of

obtaining the desired result is >50%
Negative binomial distribution

4.4. The Informal Binomial Distribution, from Its First Appearance in the Works of Pascal and
Fermat to Its Iterations in the Works of Huygens and Arbuthnot (17th Century–18th Century)

During this period, the generalization of expressions to model binomial situations
involving some unknown variable, such as the number of trials needed or particular cases,
is identified. It was no longer an attempt to model only the probability associated with a
probabilistic situation but also the situation itself.

Pascal also used the arithmetic triangle to study the problem of points, in specific
and then in general situations and developed the binomial distribution for p = 1

2 based on
combinatorics and recursive methods and Pascal’s triangle and its associated principles to
model the mentioned case as follows (see Figure 5): considering e(a,b) as the money that
would correspond to A if the game stops, with A needing to win a games and B needing to
win b games, in the case where the maximum number of games is three and A needs to
win one and B needs to win two, if A wins the next one, A should receive the total bet (1).
However, if A loses the next game since they each need to win one then they should each
be entitled to half the bet 1

2 . Averaging these cases, A should receive 3
4 of the total bet [42],

which could also be considered as A’s probability of winning.

Mathematics 2022, 10, x FOR PEER REVIEW 15 of 29 
 

 

4.4. The Informal Binomial Distribution, from Its First Appearance in the Works of Pascal and 
Fermat to Its Iterations in the Works of Huygens and Arbuthnot (17th Century–18th Century) 

During this period, the generalization of expressions to model binomial situations 
involving some unknown variable, such as the number of trials needed or particular cases, 
is identified. It was no longer an attempt to model only the probability associated with a 
probabilistic situation but also the situation itself. 

Pascal also used the arithmetic triangle to study the problem of points, in specific and 
then in general situations and developed the binomial distribution for p =  based on com-
binatorics and recursive methods and Pascal’s triangle and its associated principles to 
model the mentioned case as follows (see Figure 5): considering e(a,b) as the money that 
would correspond to A if the game stops, with A needing to win a games and B needing 
to win b games, in the case where the maximum number of games is three and A needs to 
win one and B needs to win two, if A wins the next one, A should receive the total bet (1). 
However, if A loses the next game since they each need to win one then they should each 
be entitled to half the bet . Averaging these cases, A should receive  of the total bet [42], 
which could also be considered as A’s probability of winning. 

 
Figure 5. Pascal recursive reasoning. From the study of s = 1, a value of s = 2 is obtained. In the same 
way, from the study of s = 2, values of s = 3 can be obtained. 

This formulation can be described by the following expressions relatable to a differ-
ential equation: e(0, n) = 1 (19)e(n, 0) = 0 (20)

e(n, n) = 12 (21)

e(a, b) = 12 [e(a − 1, b)  +  e(a, b − 1)] (22)

With this, for example, for the case s = 4, to obtain e(3,1), a recursive formula can be 
used: e(3,1)  =  12 [e(2,1)  +  e(3,0)]  =  12 14 + 0 = 18 (23)

Figure 5. Pascal recursive reasoning. From the study of s = 1, a value of s = 2 is obtained. In the same
way, from the study of s = 2, values of s = 3 can be obtained.



Mathematics 2022, 10, 2680 15 of 28

This formulation can be described by the following expressions relatable to a differen-
tial equation:

e(0, n) = 1 (19)

e(n, 0) = 0 (20)

e(n, n) =
1
2

(21)

e(a, b) =
1
2
[e(a− 1, b) + e(a, b− 1)] (22)

With this, for example, for the case s = 4, to obtain e(3,1), a recursive formula can
be used:

e(3, 1) =
1
2
[e(2, 1) + e(3, 0)] =

1
2

(
1
4
+ 0
)
=

1
8

(23)

Finally, Pascal identified that the values obtained are related to the terms in the
arithmetic triangle. By induction, using as the first case a + b = 2, he demonstrated that

e(a, b) =
Da+b−1,b

Da+b−1
(24)

That way, as an example, e(3,1) corresponds to D3,0
D3

=
(

1
8

)
. In letters, Pascal expressed

the key ideas of the Usage de Triangle Arithmetique and a table for different cases with a stake
of 512. The results proposed by Pascal are not general and consist of the use of recursive
and combinatorial methods referring to the binomial distribution for p = 1

2 . The results
given by Pascal can be represented as

e(a, b) =
Da+b−1,b

Da+b−1
=

b−1

∑
i=1

(a+b−1Ci)

(
1
2

)a+b−1
(25)

Studying special cases, he concluded that the amount of B’s stake that goes to A if
both give the same amount is given by 2[e(a,b) − 1

2 ]. With this, he gave some more results:

2
[

e(1, b)− 1
2

]
= t − 1

Db−1
= 1−

(
1
2

)b−1
(26)

2
[

e(b− 1, b)− 1
2

]
=

tb−1,b−1

D2b−2
=

(
2b− 2
b− 1

)(
1
2

)2b−2
(27)

2
[

e(b− 2, b)− 1
2

]
=

2tb−2,b−1

D2b−3
=

(
2b− 3
b− 2

)(
1
2

)2b−4
(28)

Using Equation (24) and the recursion methods, it can be proven that

2[e(a, b)− e(a + 1, b)] =
ta,b−1

Da+b−1
= a+b−1Ca

(
1
2

)a+b−1
(29)

This last equation, which was not proved or addressed by Pascal, would mean that
the amount of the stake that B gives to A is obtained from the binomial probability.

An association with combinatorics was made in some of the seven letters exchanged
between Fermat and Pascal in which Fermat addressed the problem of points. He stated
that if the players lack a and b games, respectively, the game will end in a maximum of
a + b − 1 games, then, imagining that all are played, there are 2(a+b−1) possible cases, and
the number of favorable cases for A relative to 2(a+b−1) will give the corresponding fraction
and the percentage of the money he or she should receive. For example, for (a,b) = (2,3)
there are 24 cases, of which 11 are favorable for A, obtaining the same result as Fermat’s
formula, e(2,3) = 11

16 .
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Fermat would give the general answer to the problem of points from the ideas shared
with Pascal although not explicitly giving a form of the negative binomial distribution,

e(a, b) =
b−1

∑
i=0

(a−1+1Ca−1)

(
1
2

)a+i
(30)

showing as an example that

e(2, 3) =
1
22 +

2
23 +

3
24 =

11
16

(31)

In 1657, Christiaan Huygens in de Ratiociniis in Ludo Aleae, which is called the
first published work on probability theory as formal as modern works, introduced what we
know today as mathematical expectation [41,42]. Specifically, using axioms about the values
of a fair game and previous theorems, he indicated that if a situation has two equiprobable
outcomes, the situation has value a+b

2 . Similarly, if the probability of obtaining a is p and
the probability of obtaining b is q, the situation has value pa+qb

p+q . He also registered his
reasoning on negative binomial situations, for example, about how many turns should one
take to obtain a six with a die or how many turns one should take to throw two sixes with
two dice. For the first one, let t be the amount bet by A and en be the expectation of A for n
throws, e1 = t

6 and en+1 = t
6 +

5
6 en can be modeled, leading to e2 = 11t

36 , e3 = 91t
216 and e4 = 671t

1296
being the ratio of probabilities of obtaining at least one six to obtaining none.

In his work, he addressed another problem similar to the problem of points also
addressed by Pascal and Fermat, the problem of the gambler’s ruin. The problem is about
A and B having 12 tokens and playing with three dice with the condition that if 11 points
are obtained, A gives a token to B, and if 14 are obtained, vice versa; the one who has all
the points wins. Knowing that the number of cases in which A wins a point is 15 and
the number of cases in which B wins a point is 27, the situation in which the game ends
when one player has two more points than the other can be addressed using a tree diagram
(Figure 6), this time, considering e(a,b) the probability of A winning when A has a points
and B has b points, therefore obtaining e(0,0) as the problem.
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two more points than the other, with the probability of player A’s success p = 15
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of player B’s success q = 27

42 (adapted from [42]).

As can be seen, this problem can go on infinitely. However, using similar reasoning to
the problem of points, it can be seen that

e(0,0) = e(1,1) = e(2,2) = e(n,n) (32)
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Then, using multiplication principles,

e(1,0) = pe(2,0) + qe(1,1) = p + qe(0,0) (33)

e(0,1) = pe(1,1)+ qe(0,2) = pe(0,0), (34)

These Equations can be used to demonstrate

e(0, 0) =
p2

(p2 + q2)
(35)

For the case of three points of difference, it could be reached by going from (0,0) to
(1,0) and then to (3,0) with p and p2 probability, respectively, generating the equations:

e(1, 0) =
p2e(3, 0) + q2e(1, 2)

p2 + q2 =
p2 + q2e(0, 1)

p2 + q2 (36)

e(0, 1) =
p2e(2, 1) + q2e(0, 3)

p2 + q2 =
p2e(1, 0)
p2 + q2 (37)

e(0,0) = pe(1,0) + qe(0,1) (38)

This can be used to demonstrate

e(0, 0) =
p3

p3 + q3 (39)

Finally, this solution could be extended to a six-point difference to e(0,0) = p6

p6+q6 . That

way, the answer to the problem would be p12

p12+q12 .
Another relationship between the probabilities of a binomial phenomenon and a

mathematical construct was given by John Arbuthnot, who presented an approach from
the extension of the expression (S + F)n, also homologous to the one generated by Bashkara
in the 12th century, and addressed the probabilities of a binomial phenomenon in which p
and q are not defined. As an example, the study of the binomial phenomenon with p = 1

2
and n = 3 is presented in Figure 7 [44].
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The general formula for an infinite number of cases, obtained from the binomial
expansion, also evidences the relationship between binomial coefficients and combinatorics.

Sn +
n
1

Sn−1F +
n
1
·n− 1

2
Sn−2F2 + · · · (40)

(
n
k

)
=

n!
k!(n− k)!

, 0 ≤ k ≤ n, n ≥ 0 (41)

(S + F)n =
n

∑
k=0

(
n
k

)
Sn−kFk (42)
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(S + F)n =
n

∑
k=0

(nCk)S
n−kFk = (nC0)SnF0 + (nC1)Sn−1F1 + (nC2)Sn−2F2 . . . + (nCn)S0Fn (43)

In this period, it is possible to identify the modeling of the probabilistic phenomena
associated directly and indirectly with the binomial distribution (see Table 7). Probabilistic
principles were used to construct models that allowed the calculation of the probability of
events in which variables began to appear and to study phenomena beyond the context
of games of chance. Although the binomial distribution was not presented the way it
is formally known, the calculation of expectation and other values involving binomial
reasoning can be identified, which is why some authors attribute the development of the
binomial distribution to Pascal [44]. An interesting aspect to mention is that the resolutive
and demonstrative methods by their mathematical nature complement each other, meaning
that graphical representations, induction, the study of cases, and recursive reasoning are
still used in conjunction with the new theory and inductive reasoning (from the particular
to the general).

Table 7. Historical problem situations (17th century–18th century).

Problem Situation (History
Period—Mathematician/Work) Conflict Identified Operational Practice Discursive Practice

General problem of Points:
Two players (A and B) decide
to play a series of games until
one of them has won S. The

game stops when A has won
s1 games and B has won s2.

They must divide the money
fairly, so how should the

money be distributed?
(1654—Pascal and Fermat)

No determined way to
model the general

random phenomena

Associate the part of the stake
corresponding to the points

needed to win, study particular
cases, identify patterns and

recursive laws using tools as
constructs such as combinatorics

and the Pascal triangle,
constructing from them the

probability of a binomial
phenomenon with p = 1

2 .

Recursive and inductive
reasoning, using graphical
and tabular language. It is
presented with algebraic

language but not in a formal
way such as probability books.

What is the value of a
probabilistic phenomenon

(1657—Huygens)

No determined way to
assign a value of a trial,
more than as a part of

the total of a bet

Defining the expectation of a
binomial trial as the sum of the
products of the probability of
every outcome and its value.

Axiomatic
reasoning, definition

Gambler’s ruin problem:
Players A and B have

12 tokens and play with
three dice with the condition
that if 11 points are obtained,

A gives a token to B and if
14 are obtained, vice versa; the

one who has all the points
wins. When does the game

end? (1657—Huygens)

New type of problem
when the game ends when
one of the players has no
points left, in comparison
with the problem of points

where it ended after a
specific number of wins.

Modeling though combinatory
and difference equations
from particular cases to

the one studied.

Deductive, inductive, and
recursive reasoning. Rich

probability language.

What is the relationship
between the probabilities in a
series of Bernoulli trials and

the binomial expansion
(binomial theorem)?

(17th Century-Arbuthnot)

No determined way
to directly use the

binomial expansion to
calculate probability

Relating probability principles
and combinatorics in a 1:1 way
with the different results from

a series of Bernoulli trials

Axiomatic reasoning

After achieving adequate handling of the principles of probability and the arithmetic
and algebraic principles for its calculation, history shows that the student should relate the
calculation of probabilities to mathematical or probabilistic constructs already addressed in
previous periods, for example, using tables to record calculated probabilities of particular
cases, tree diagrams to obtain estimates and analyze how these change as the number
of binomial trials increases, or identifying a relationship between the expansion of the



Mathematics 2022, 10, 2680 19 of 28

binomial distribution, reaching a new level of generalization. This new level of generality,
necessary to face problems that require the study of multiple cases or those cases with
multiple unknown parameters, would correctly be evidenced in the formation of the general
formula of the binomial distribution.

As shown in Table 8, the historical characterization of the problem situations presents
an already formal stage of probability theory, combining the previously addressed con-
structs with the modeling of random phenomena. The problem situations of this period can
be modeled directly, extending their study to questions beyond point probability. For their
correct reflection and resolution, algebraic language as well as a probabilistic formality and
the handling of problem situations from previous periods are essential.

Table 8. How problem situations from historical problem situations (17th century–18th century)
could be proposed in the current curricula.

Problem Situation Associated Mathematical Practice Element of the Binomial
Phenomena Identified

What part of the bet should go to each
player (A and B) in a game of chance if
player A has already won a times and

B has won b times if the game ends when
one of the players has s points?

Graphic exploration, creating and
proving models with recursive and/or

inductive methods

Calculating the probability of a binomial
situation with a determined p and q

What is the value of the toss of a die if
you obtain $500 if you roll a six and

lose $200 in any other case?

Associate the value of a random
phenomenon as the sum of the product of
the probability of every possible outcome

and its respective value.

Expectation

What is the probability of ending a
phenomenon after a successes and b
failures if a failure negates a success

and vice versa?

Modeling though combinatory and
difference equations, from particular

cases to general ones

Probability of having a specific higher
number of successes or failures

4.5. The Big Leap in Probability Theory: The Formal Binomial Distribution by Bernoulli and Its
Consolidation as Part of Mathematical and Probability Theory (18th Century Onwards)

The mathematical object is seen as a structural whole that can be identified from a set
of properties. It allows the analysis of infinite cases or cases with arbitrary variables, as
numerical substances and some algorithms of calculations are lost due to the passage to
maximum generality. It is important since it is based on extending the knowledge of the
concept, which ends up being defined as a set of its properties. This is the knowledge and
reasoning with which several mathematical concepts and objects are usually introduced in
teaching, especially at higher levels of education.

This period was started by Pierre Rémond de Montmort with his essay Essay d’Analyse
sur les Jeux de Hazard and followed by persons such as Nicholas and James Bernoulli, de
Moivre, and Arbuthnot. They considered probability from Laplace’s rule but only with
discrete probability spaces and developed previously used methods, such as combinatorics
and direct enumeration, and also demonstration methods such as induction. Other methods
related to the binomial phenomena included recursion by difference equations, which
originated from Pascal and Hyugens).

As an answer to Montmort, John Bernoulli remarked that the solution to the problem
of points for any value of p is obtained by expanding (p + q)(a+b−1), the sum of the last b
terms being the probability of the victory of A and vice versa. Based on this, he gave the
following general solution:

e(a, b) =
a+b−1

∑
i=a

(
a + b− 1

i

)
piqa+b−1−i (44)

which, when assigning n + 1 as a + i, with i = 0,1, . . . ,b − 1 becomes
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pa ∑b−1
i=0 (a−1+iCa−1)qi (45)

which is the generalization of Pascal’s formula replacing
(

1
2

)a+i
by paqi and corresponds

to what we know today as the time-waiting binomial or negative binomial distribution
since it is obtained by the expansion of pa(1− q)1−a.

In his work, James Bernoulli inserted the definition of two types of probability: a priori,
objective, statistical or aleatory probability, calculated by deductive principles, which is
the one that allows the study of phenomena with a finite number of cases; and a posteriori,
subjective, empiric, or personal probability, which under inductive principles consists of
the imperfect knowledge of events, contrastable with previous experience. Based on the
latter, he introduced a new concept, defined as the degree of knowledge about the truth
of a proposition [42], that led him to seek a demonstration of the phenomenon that the
relative frequencies of an event will be close to the theoretical truth if it is based on multiple
observations, which would result in the demonstration of the law of large numbers, the
first probability limit theorem proved, as presented below:

Theorem 1. Consider ‘n’ a number of independent trials, each with a probability p of success. The
number of successes sn is binomially distributed (n,p), 0 < p < 1. Assuming that np and nε are
positive integers and letting hn = sn

n , it follows that

Pn = P{|hn − p| ≤ ε } > c
c + 1

for any c > 0 (46)

if

n ≥ m(1 + ε)− q
(p + ε)ε

or
m(1 + ε)− p

(q + ε)ε
(47)

with m being the smallest integer satisfying

m ≥
log
[

c(q−ε)
ε

]
log
[

p + ε
p

] or
log
[

c(p − ε)
ε

]
log
[

q + ε
q

] (48)

With this, it can be stated that for n ≥ 25,550, the probability that the relative frequency of an
experiment with p = 0.6 is between 0.58 and 0.62 is greater than 1000/1001. This theorem can also
be presented in a more modern form [43].

Theorem 2. Considering ‘n’ independent trials, each with a ‘p’ probability of success and let Sn be
the number of binomially distributed successes and hn = sn

n the relative frequency, given ε and δ
are both small positive and ‘n’ is accordingly big

P = {|hn − p| ≤ ε} > 1 − δ (49)

This means that the absolute value of the difference hn − p will be less than ε with a probability
tending to 1 when n tends to infinity. This was the first limit theorem of probability theory and is
the key to statistical estimation theory. The n satisfying the theorem can be obtained by finding an n
such that

n ≥ 1 + ε
ε2 ln

(
1
δ

)
+

1
ε

(50)

For example, if 0.999 (1 − δ) is the desired probability that the difference between the
theoretical and empirical values is less than 0.01 (ε), n would be 69,869.

For the formalization of the binomial distribution, Bernoulli assumed the addition
principle and formulated the multiplication principle for independent events, which re-
sulted from the multiplication of the probability of each one of them. Thus, the probability
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of m successes and n-m failures is pmqm−n, then using combinatorial methods, it follows
that there are nCm different orders of m successes and n-m failures, which gave rise to the
formula of the binomial distribution for the k Bernoulli trials, named in recognition of his
achievements [42].

B (k,n,p) = nCk pkqn−k, 0 < p < 1 (51)

Generalizing one of Huygens’ problems, Bernoulli used the binomial formula to
model the expectation, also using the additive probability principle. Let x be the number
of successes and y the number of failures (with n= x + y) and let A win if x ≥m, then the
expectation of B winning e(m,n) is obtained by

e(m,n) = qn + nC1p1qn−1 + nC2 p2qn−2 + . . . + nCm−1 pm−1qn−m+1 (52)

Finally, another use for the formula of the binomial distribution can be found in the
search for the number of attempts that give good chances of having at least c successes.
Bernoulli pointed out that one wishes to search for n such that

P = {x ≤ c− 1} = ∑c−1
i=0 (nCx)pxqn−x =

1
2

(53)

The knowledge of the binomial phenomenon was also used to demonstrate natural
phenomena or divine providence. One of the more prominent examples of this was con-
ducted by Arbuthnott who indicated, based on the binomial coefficients of the expression
(M + F)n, that if the probability that a newborn is male (M) is equal to it being female (F),
so is the fact that the greater number of newborns in a year is male or female. Thus, since
between 1629 and 1710 the number of males was greater than the number of females, the
phenomenon was not random but predetermined. This way, one of the first hypothesis
tests using binomial distribution was identified.

It is possible that Moivre also worked out how many attempts must be made, with a
probability of a success and b failure to have an average probability of occurrence of at least
r times. Assuming there are x attempts, then the probability of failure x times in succession
is bx

(a + b)x , which is equal to the probability of at least once in x attempts. Furthermore, de
Moivre indicated the principle of calculating the complementary probability and tried to
arrive at the intermediate term of the binomial (coefficient) [41] and that in a game with a
probability of success in which the spectator wins |sn − np|, if the outcome is s successes
in n attempts (np being an integer), then the expected payoff corresponds to

Dn = E(|sn − np|) = 2npq
(

n
np

)
pnqqnq ∼=

√
2npq/π (54)

This is a quantity now known as the mean deviation of the binomial.
We identified in this period that once the binomial distribution was formally con-

structed, it was used to study and model mathematical and probabilistic ideas such as the
law of large numbers and the negative binomial distribution (see Table 9), as addressed in
the previous sections on the sources reviewed. Laudański [44] presents the comparison of
the proportions obtained empirically with the theoretical values obtained using the formula
or other models, the mean and variance of the binomial distribution, the study of the tails of
the binomial distribution, the law of large numbers and the approximation of the binomial
to the normal distributions, the Poisson distribution, the multinomial distribution, and the
negative binomial distribution. Hald [42] presents the use of graphs of the distribution
of the sum of points when throwing several dice, the approximation of the Poisson dis-
tribution, the study of phenomena that can be associated with the binomial distribution
(a tennis game), the law of large numbers, the probability associated with the tails of the
binomial distribution, and significance tests. Hald [43] presents the normal distribution
approximation, the law of large numbers, the confidence interval of the binomial parameter,
probabilistic inference, and the search for parameters that maximize or minimize probabili-
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ties. Finally, in a similar way, Todhunter [41] presents the negative binomial distribution,
the search for the intermediate value of the binomial expansion (the most probable value),
probabilistic inference, and the probability between two values of the random variable. In
this way, the binomial distribution becomes an active part of the body of knowledge by
presenting itself as a facilitator of the exploration of new mathematical and probabilistic
ideas at different levels of formality and their reconstruction at higher educational levels.
By taking this into consideration, the teacher can reinforce the learning of the binomial
distribution through its reconstruction based on the principles used by Bernoulli and its
use to explore related problem situations not exclusive to the binomial phenomenon, for
example, what happens when the number of trials approaches infinity? Or what would
happen if instead of two possible outcomes, there were three, four, or more? These topics,
although they correspond to approachable notions of the binomial distribution once it has
been constructed, involve mathematical and probabilistic principles with a history and
meaning of their own. One of the noteworthy examples usually addressed in the classroom
is the study of its parameters using confidence intervals [43].

Table 9. Historical problem situations (18th century onwards).

Problem Situation (History
Period—Mathematician/Work) Conflict Identified Operational Practice Discursive Practice

General problem of points with
different probabilities:

Two players (A and B) decide to
play a series of games until one of
them has won S. The game stops
when A has won s1 games and
B has won s2. They must divide

the money fairly. If A has a q
probability of winning, how

should the money be distributed?
(1713—Bernoulli)

No determined way to model
the completely general

random phenomena

Associate the binomial
expansion with the

probabilities of a binomial
phenomenon and with that,
with the combinatorics and

binomial coefficients.

Algebraic language,
axiomatic and

deductive reasoning.

What is the expectation of any
binomial phenomena?

(1713—Bernoulli)

No determined way to
model the expectation of

a completely general
random phenomena

Associate the notion of value
of a random phenomenon

with the general expression of
the binomial distribution

Algebraic language,
axiomatic and

deductive reasoning

How many trials are needed to
consider the binomial situation

near theoretical values?
(1713—Bernoulli)

No determined way to
generally demonstrate that
from a certain trial number,
the empirical values will be

similar to the theoretical ones.

Associate the binomial
formula with limit theory

Algebraic language,
deductive reasoning,

What is the number of attempts
that give good chances of having

at least ‘c’ successes?
(1713—Bernoulli)

No determined way to
generally search for several
trials favorable to having an
element of the sample space.

Associate the binomial
formula with the search of a
favorable number of trials

Algebraic language,
deductive reasoning.

What is the intermediate term of
the binomial extension, that is, the

intermediate or most probable
term in the sample space?
(18th century—de Moivre)

No determined formula to
address the middle term of

any binomial expansion or the
most probable element of the

sample space

Associate the binomial
formula with the
binomial theorem

Algebraic language,
deductive and

inductive reasoning

How close to the middle term or
most probable term in the

sample element space is the
relative frequency of a
binomial phenomenon

(18th century—de Moivre)

No determined formula to
address the difference
between the mean and

relative frequencies of any
binomial phenomena

Associate the binomial
formula with the

probabilistic variance

Algebraic language,
deductive and

inductive reasoning



Mathematics 2022, 10, 2680 23 of 28

The study of parameters using confidence intervals originates from the degree of
certainty with which probabilistic statements can be made and has been associated with
the binomial distribution since 1764 and 1776 from the work of Bayes and Lagrange, being
formalized by Laplace in 1785. Bayes used confidence intervals from what is known today
as Bayes’ theorem and obtained the conditional distribution of p given a particular Sn
(number of successes), known today as the beta distribution:

P(p1 < p < p2 |s n = a) =
(n + 1)!

a!b!

∫ p2

p1

paqbdp (55)

Louis Lagrange, while addressing the multinomial distribution using a multivariate
normal approximation, expressed the first dated non-Bayesian confidence interval associ-
ated with the p parameter (1776). Being h1 the relative frequency between an n1 number of
failures in n observations of a binomial nature, the interval of p1 was stated as

h1 − t

√
h1(1− h1)

n
< p1 < h1 + t

√
h1(1− h1)

n
, t > 0 (56)

with a probability of

P
(
|δ1| < t

√
h1(1− h1)

)
∼= φ(t)−φ(−t) (57)

where φ(t) corresponds to the cumulative binomial distribution and δ1 to a function of n, p,
and ε that tends exponentially to zero as n→ ∞ . This expression was followed by Laplace
in the construction of large-sample credibility and confidence intervals for the binomial
parameter, which would be also followed by other mathematicians in the task of deepening
the understanding of the binomial parameter, culminating with constructs such as Wilson’s
and Clopper–Pearson’s intervals.

This example shows the potential as an area of research of deepening the reconstruction
of the meaning of the binomial distribution from the relationship it presents with other
mathematical probabilistic ideas, such as confidence intervals and the normal distribution
(see Table 10), strengthening its active role in the theory and facilitating its teaching at
higher educational levels and with more focused intentions.

Table 10. How problem situations from historical problem situations (18th century onwards) could
be proposed in the current curricula.

Problem Situation Associated Mathematical Practice Element of the Binomial
Phenomena Identified

What is the probability of having a
success in n Bernoulli trials with a

probability of success of p and
a probability of q of failure?

Reconstruction of the binomial distribution
formula from combinatory and

multiplicative probability principles

Binomial distribution formula
(for any p, q and n)

What is the expected number of defective
coins in a batch of 1000 if the probability of

one of them being defective is 0.03?

Identify the term with the higher coefficient
in the binomial expansion and/or come

and its respective value.
Mean of the binomial distribution

What is the expected difference between
the number of tails obtained in 10 tosses
with the most expected value (mean)?

Associate the standard deviation with the
binomial formula, approximating values.

Standard deviation of
the binomial distribution

How do the results of tossing 5 coins
behave at a high number of repetitions?

What is the expected number of defective
coins in a batch of 1000 if the probability of

one of them being defective is 0.03?

Modeling though combinatory and
difference equations, from particular

cases to the general one?

Probability of have a specific higher
number of successes or failures
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Table 10. Cont.

Problem Situation Associated Mathematical Practice Element of the Binomial
Phenomena Identified

In how many Bernoulli trials can
one expect to have two successes

with a determined p?

Modeling through the binomial
distribution formula and searching for a

probability of the desired outcome to
be more than 0.5 (50%)

Favorable number of trials
in a binomial situation

5. Conclusions

In the work presented, in order to promote the essential elements for learning the
binomial distribution, an exploration and analysis of the problem situations that refer to it
throughout history were carried out. As a result, five historical periods were identified in
which the complexities of the problem situations were increasing and whose resolutions
required leaps in heuristics: (a) the first approach to binomial phenomena by counting
possible and favorable cases and generating formulas or expressions of arithmetic character
(600 BCE–14th century); (b) the formalization of these constructs for the counting of cases
and the relationships with other constructs such as Pascal’s triangle (15th century–16th
century); (c) the first cases of modeling random and binomial situations that gave rise to
the development of probability theory (15th century–17th century); (d) the generalization
of these models for the analysis of general binomial situations in which the construction of
probabilities from probability principles was presented as well as the binomial distribution
for particular cases such as p = 1

2 (17th century–18th century); and (e) the formalization of
the general formula of the binomial distribution and its use in analyzing more complex
situations, and then extending it to mathematical and probabilistic notions such as limits,
median, standard deviation, and confidence intervals (18th century onwards). In addition
to identifying that the historical development of the binomial distribution is closely related
to that of constructs such as combinatorics, as well as that of the meaning of probability
and expected value (or expectation), it was identified that, considering that some of the
contributions were published and known long after their creation, the development of
the binomial distribution follows a linear sequence associated with its probabilistic nature.
Within the educational process, this sequence, as well as the proposed example problems,
could be used for the development of the knowledge and comprehension of the binomial
distribution at different educational levels. In conclusion, it is recommended to begin with
the reconstruction of combinatorial and probabilistic principles (from logical reasoning,
graphic reasoning, and numerical patterns) applied to the counting of cases, an essential
practice in probability, ensuring the understanding of its primitive knowledge and its
relationship with mathematics. After this, it would be possible to work effectively on the
calculation of probabilities for specific binomial situations by building expressions from
probabilistic principles and their relationships with numerical patterns, promoting induc-
tive reasoning, and strengthening the understanding of probabilistic or mathematical ideas.
With this achieved, general expressions can be constructed from the principles mentioned
and specific situations analyzed above to analyze the same binomial phenomenon or apply
it to the study of other areas of mathematics and probability.

At a deeper level, key heuristic changes in the development of the binomial distri-
bution were also identified. The first conflict was the overcoming of the deterministic
conception of reality and allowing for the first stage of the study of a priori phenomenon as
well as the generation of the basic notions of probability such as the sample space (600 BCE–
14h century). Within the educational process, it could be presented in students’ activities
when faced with case counting as it is associated with the basic notions of probability, such
as favorable and unfavorable cases, and tasks such as the identification of patterns and the
recursive use of expressions. The change in heuristics occurs once the numerical patterns
identified in the counting of cases lead to constructs, such as combinatorics, allowing a more
efficient study of the sample space and the desired number of cases. The second historical
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period (15th to 16th century), which started with generalizations with only mathematical
objectives later given importance by figures such as Pascal and Cardano as modeling tools,
ended with the contribution of Arnauld and Nicole, who defined probability as a numerical
value applicable to any modelable situation, laying the foundations for the development
of probability theory. The third historical period (15th to 17th century), related to the
first approaches to solving probabilistic problems, started slowly since it was exceedingly
difficult to reach significant conclusions with no clear association between the probabilistic
phenomena and mathematical constructs of the previous period until authors such as Car-
dano, Pepys, Newton, and Fermat approached the topic with defined parameters extending
the properties of case counting to those of probability and looking for answers to problems,
such as the problem of points, ending this period with the binomial model for p = 1

2 and
the calculation of specific probabilities. The fourth historical period began with the leap
mentioned, which also gave way to the formal theory of probability, for which strategies
and notions would be extended to the study of other phenomena or problem situations that
share the same or similar behavior and would also be associated with the value of binomial
or random phenomena. Finally, the last period started in the works of Bernoulli, who gave
the first general expression of the binomial formula, with which the maximum level of the
generality of the methods and properties used was reached, reaching the minimum or null
use of specific values and resulting in a set of formulas applicable to the general number of
situations, but that require competence in the practices from previous periods. With this,
we also reaffirm that the importance of knowing the history of mathematics for an educator
goes beyond an anecdotal or cultural posture. The history of mathematics can be of use as
a pedagogical resource because it provides information on how some mathematical objects
were developed throughout history as well as their relationships with other objects.

These results, synthesized in Table 11, would allow us to generate criteria of epistemic
suitability to promote the understanding of the binomial distribution, that is, (1) in the
design of materials, (2) to encourage certain types of practices in the classroom, and (3) to
reflect on the obstacles that students may encounter in their learning; however, it also
provides a great challenge, that is, combining the history of mathematics dialogue with
modern mathematics and the curriculum [48]. These areas as possible future research
topics would be interesting to address within the Latin American context in the promotion
of the constructivist aspects of education as is intended, for example, in the Chilean
curriculum, where students are expected to intuitively estimate and accurately calculate
the probability of the occurrence of events, determine the probability of the occurrence of
events (experimentally and theoretically), and build probabilistic models, thus being able to
solve problem situations, make decisions effectively, and analyze probabilistic information
critically, aspects which are all linked to probabilistic literacy [22]. The articulation of the
historical and epistemological aspects of the binomial distribution in teacher education
and to students in early, primary, and secondary education using a longitudinal approach
could help to solve the weaknesses and learning conflicts identified in the performance of
Chilean students at various educational levels in standardized tests [49,50] and impart a
meaningful understanding of the principles of the binomial distribution formula and its
direct application as a modeling tool.

Table 11. Synthesis of historical study, contributions that generated a change in the heuristics, and
emerging elements of the binomial distribution.

Historical Period Type of Problems Analyzed Emerging Elements of the
Binomial Distribution

600 BCE–14th century Counting of combinations or results in
random and binomial phenomena

Sample space, specific cases,
probability as the proportions

(incomplete Laplace’s rule)
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Table 11. Cont.

Historical Period Type of Problems Analyzed Emerging Elements of the
Binomial Distribution

Change in heuristics: Formal numerical patterns (such as combinatorics and arithmetic triangles)

15th century–16th century
Mathematical properties of patterns

and models in case counting of
binomial phenomena

Behavior of results in a binomial
phenomenon, use of constructs for

calculating the number of cases.

Change in heuristics: Probability as a numerical value (complete Laplace’s rule)

15th century–17th century (16th–17th
considering only correct approaches)

Study of probability in specific
binomial probability using constructs

such as combinatorics and
probabilistic principles

Calculating the probability of an
incomplete binomial situation (part of an
experiment), identifying the theoretical

values of p and q, multiplicative principle
of probability, additive principle of

probability for studying an interval of the
random variable in a binomial situation,

negative binomial distribution

Change in heuristics: Answer to the problem of points for p = 1
2 (informal binomial distribution)

17th century–18th century

Generalization of probabilistic models
and its use in an algebraic way to

calculate or obtain different values such
as the expectation of a random or

binomial phenomena, or the study of
phenomena with no parameters defined,

such as the problem of points for
any value of p

Calculating the probability of a binomial
situation with determined p and q,
expectation, probability of having a

specific higher number of
successes or failures

Change in heuristics: Answer to the problem of points for any p (binomial distribution formula)

18th century–onwards

Use of the binomial distribution formula
for analyzing the characteristics of

binomial phenomena, such as the mean
and variance, and for approaching other

mathematical or probabilistic notions

Binomial distribution formula (for any p,
q, and n), mean of the binomial

distribution, standard deviation of the
binomial distribution, probability of
having a specific higher number of

successes or failures, favorable number of
trials in a binomial situation
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