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1 FIS, Bulevar Milutina Milankovića 136b, 11000 Belgrade, Serbia; srdjan.jelinek@fisglobal.com
2 Faculty of Organizational Sciences, University of Belgrade, Jove Ilića 154, 11000 Belgrade, Serbia;
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Abstract: Nowadays, the sovereign credit rating is not only an index of a country’s economic
performance and political stability but also an overall indicator of development and growth, as well as
the trust factor that is associated with the country. Due to its importance, the vast amount of available
information, and the lack of a closed-form solution, prediction models based on machine learning
(ML) and computation intelligence (CI) techniques are being increasingly used to complement
traditional financial approaches. In this paper, we aim to introduce a novel ML-CI approach for
sovereign credit rating prediction based on a differential evolution (DE) algorithm and interpolative
Boolean algebra (IBA). In fact, the proposed approach is based on a pseudo-logical function in the IBA
framework derived from the historical data of publicly available indicators using the DE algorithm.
Such functions are easily interpreted and enable a subtle gradation among countries. It is shown
that the IBA-DE approach outperforms back-propagation neural networks on the observed problem
while also providing a deeper insight into each of the indicators used for prediction and its respective
influence on the prediction rating on the other.

Keywords: sovereign credit rating; forecasting; differential evolution; interpolative Boolean algebra

MSC: 68T20

1. Introduction

Credit risk is a risk that rises from the possibility of a borrower failing to repay a
loan or required payments, or meeting its contractual obligations, and is determined by
a borrower’s ability to repay a loan according to its original terms [1]. Credit rating is a
quantified assessment of credit risk and is therefore used to evaluate the credit risk of an
individual, corporation, or state [2]. It can be determined and calculated by any entity
using the internal and publicly available data and models, or, more commonly, by a credit
rating agency [3]. The credit rating agency specializes in calculating credit ratings using
its internal models and both publicly available and non-public information. A sovereign
credit rating is a credit rating assigned to a country. Due to a large amount of available
information and the importance and implications that a sovereign credit rating has on
a country due to quantifying its financial, industrial, social, and political stability [4], a
sovereign credit rating is usually determined by the trustworthy credit rating agencies
which are overseen and regulated [5]. The three biggest agencies that control nearly 95% of
the credit rating business are Moody’s Investors Service (Moody’s), Standard and Poor’s
(S&P), and Fitch Ratings (Fitch).

One of the major concerns about credit ratings is the lack of transparent models used
in order to determine the ratings. In today’s financial world where most of the basic
instruments and derivatives such as futures, forwards, swaps, and options have explicit
and verified pricing models, it is a considerable drawback not to have a similar publicly
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available transparent and closed-form solution for credit ratings. Therefore, this can lead to
a violation of a non-arbitrage principle and cause serious economic issues for a country and
its debtors and creditors if its rating is incorrectly determined. The non-transparency of the
models used by credit rating agencies has resulted in many internally developed models
for credit rating prediction by both other participants in the market as well as researchers
for academic purposes.

Custom credit rating approaches and models can be utilized for the validation and
deeper understanding of the models implemented by credit rating agencies [3,6]. Even
though these agencies are supervised [5,7], it is inadvisable that the only publicly rec-
ognized credit rating models are essentially black boxes. Having several independently
developed models reduces the potential information incompleteness and ensures a no-
arbitrage principle in the credit risk market. Further, the benchmarks used for the training
of the custom models are mostly taken from the published reports of the credit rating agen-
cies [8]. Therefore, the obtained results emulate ratings of the credit rating agencies and
usually cannot be as precise as theirs. On the other hand, the trained models can be used
for forecasting ratings of the companies and entities not listed on the stock exchange [9].

In the 1990s, the majority of custom-made credit rating approaches were based on
traditional financial modeling and econometrics. The first methods presented in the lit-
erature utilized either linear [10] or multiple regression [11], followed by models based
on ordered logistics and probit [12–14] regression, as well as their generalized version
G-logit [15]. These models were also compared against each other [16], as well as against
other methods, such as case-based reasoning [17] and partially ordered set [18], where no
best model could be clearly determined. Even though these models were easy to implement
and understand, some of the most common drawbacks of these models are underfitting,
inability to fully capture the nonlinear nature of the problem, and the assumptions neces-
sary for methods to apply to the desired problems, which then led to the more frequent
application of the machine learning (ML) and computation intelligence (CI) methods. Given
the complexity of the problem [10,13,19], the fact that models used by credit rating agencies
are non-transparent, and the rising popularity of the ML and CI over the last decade, these
methodologies were a natural choice for deriving custom forecasting models that use pub-
licly available microeconomic and macroeconomic indicators [11,20–22]. Nowadays, the
majority of the custom-made models for credit rating forecasting are based on ML and CI
techniques or as a hybridization of several methods. Most of the models built this way are
based on an input-output logic, meaning that the model is provided with the chosen inputs
and desired outputs, and it is expected to form a relation between the two in the training
process in order to later apply that relation on newly provided inputs to predict the desired
outcome. The model construction can therefore be split into several steps, for example,
choosing the financial or economic dataset and time frame, choosing the appropriate fore-
casting technique, model training, and model testing. The main idea of using the machine
learning techniques for credit rating analysis and forecasting, such as neural networks
(NN), is used both solely [8,23,24] and in hybrid models with a genetic algorithm [25] and
fuzzy logic [26,27]. There were also attempts on using unconventional NN models for
credit rating forecasting such as emotional neural networks [28] and networks with unusual
learning schemes [29]. Other ML techniques for credit rating forecasting include support
vector machines (SVM) [30–32], genetic algorithms [33–36], and fuzzy logic [37–39]; all of
these methods tend to improve the forecasting obtained by classic econometric methods.
NNs are not only used for credit rating forecasting, but also in close fields, such as forecast-
ing credit risk [40] and credit rating for bonds [41]. Each of the techniques mentioned has
some disadvantages, e.g., the inability to interpret results for NNs, computational efficiency
for genetic algorithms, the need for vast knowledge and expertise in order to use fuzzy
logic to deal with a certain problem, etc. Therefore, ML techniques that can be used solely
as predictors, such as NNs and support vector machines, which are later used in this paper
as benchmark models, are combined with fuzzy logic and genetic algorithms in order to
eliminate downsides and create superior hybrid models. Further, the drawback of several
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models proposed in the literature is that there are no clear conclusions whether they are
better than their comparison models, as well as using too short data time frames with a
time span of only several years, which makes the predicted results questionable in any
other time period. Therefore, when the new model is introduced, it is vital that it clearly
outperforms the target models in a longer time frame in order to claim its efficiency and
performance improvement compared to the benchmark models.

In this paper, we propose the usage of Differential Evolution (DE) and interpolative
Boolean algebra (IBA) to extract an aggregation function, logical by its nature, for fore-
casting sovereign credit ratings. DE is a biological-inspired optimization heuristic from a
family of evolutionary computational algorithms [42]. In our approach, DE is used to detect
patterns, interactions, and co-dependencies in historical data as a search algorithm. On the
other hand, IBA is a consistent-valued realization of Boolean algebra [43] which preserves
all the laws of the BA. Therefore, IBA provides a real-valued logic-based framework that is
consistent with Boolean axioms. In the IBA-DE approach, logical and pseudo-logical IBA
functions are employed as an aggregation function and further used for prediction. These
functions have clear-cut meaning and they are easy to understand and analyze. Thus, the
proposed approach is transparent and allows deeper insight into the observed problem.
This approach can be divided into three main steps: selecting appropriate indicators and
their transformation using IBA for inputs suitable for the DE algorithm; using the DE
algorithm on the input data in order to obtain optimal IBA structure vectors; and apply-
ing IBA logical aggregation on the inputs and structure vectors to obtain the forecasted
credit ratings.

This paper extends and continues the research started in [44], where the idea of using
the DE algorithm for the optimization of a prediction model structure in the IBA framework
is presented for the first time. In this paper, the IBA-DE algorithm is elaborated on in detail
and used for sovereign credit rating prediction. The model is a pseudo-logical function
that uses publicly available macroeconomic indicators to predict sovereign credit ratings.
Compared to the research presented in [44], where only the financial inputs have been
used, the inputs used in this paper are extended to encompass the industrial and social
country aspects. The function which is obtained as a model output is easily analyzed and
interpretable due to the fuzzy gradation of its elements. Additionally, the performance of
the proposed approach exceeds back-propagation NNs.

The paper is organized in the following manner. In Section 2, we give a brief overview
of the theoretical background, i.e., the two main methodologies used in the hybrid model,
the DE algorithm and the IBA logical framework. The basic idea behind the IBA-DE
approach and the main steps of the algorithms are presented in Section 3. Section 4 is
devoted to the application of the IBA-DE approach to sovereign credit rating prediction.
We present the two model realizations, along with their inputs, parameters, benefits, and
limitations. The testing results are presented in Section 5, together with a parameter
optimization process and a detailed interpretation of the results. The models’ performances
are further compared with the neural networks. Finally, in Section 6, we outline the main
conclusions and give ideas regarding model improvements and future work.

2. Theoretical Background

This section provides a summary of Differential Evolution and interpolative Boolean
algebra as the two main components of a hybrid IBA-DE model. DE is an evolutionary
optimization algorithm proposed in [42] and is used for finding the optimal vector by
minimizing the objective function. On the other hand, IBA [43] is a real-valued [0, 1]
realization of Boolean algebra which, unlike any other multivalued logic, satisfies all the
laws of Boolean algebra (including two laws of complementarity).

2.1. Differential Evolution

DE, proposed by Storn and Price [42], is a well-known metaheuristic approach for
solving nonlinear continuous optimization problems. It is flexible and easy to implement,
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and suitable for solving various problems that conventional optimization methods are not
suitable for. The main steps of the DE algorithm are explained in the following.

DE algorithm starts with initialization in the first iteration when a set of m initial
d-dimensional solutions (target vectors) are randomly or pseudo-randomly generated. The
set size m, commonly referred to as population size, is usually predetermined and kept
constant over time. After the initial generation is created, the iterative process begins so
that each iteration consists of three steps: mutation, crossover, and selection.

Mutation is a process where every target vector from the population is altered in order
to create the respective mutation vector. There are a vast number of mutation algorithms
in the literature that differ by the crossover scheme, i.e., the number of difference vectors
used to create a mutation vector, etc. One of the most used algorithms is DE/rand/1/bin,
where the mutation vectors are generated as shown in the Equation (1):

Mj,k+1 = Xr1,k + F ·
(
Xr2,k − Xr3,k

)
(1)

where r1, r2 and, r3 are random indexes between 1 and d, with the exception of the index
of the target vector that is being mutated. The indexes are also mutually exclusive to
ensure the diversity of the structure vectors used in the mutation process, resulting in the
m ≥ 4 condition for the population size. The parameter F is a mutation factor, which is a
predefined real number that satisfies the 0 ≤ F ≤ 2 condition and is used to control the
amplification of the vector difference.

The crossover phase takes place after the mutation and is used to increase the diversity
between vectors in the generation. In this phase, a trial vector is generated for every target
vector and its respective mutation vector. Binomial and exponential crossover are the two
most commonly used strategies in practice. For every pair of target and mutation vector
elements, a trial vector element is generated as shown in Equation (2).

cj
l =

{
uj

l , randj,l(0, 1) ≤ Cr or l = rand(1, m)

xj
l , otherwise

(2)

where j = 1, . . . , m. The parameter Cr is a crossover rate, which is a predefined real number
that satisfies the condition: 0 ≤ Cr ≤ 1. The low value Cr ensures a smaller diversity in the
new generation (and vice versa) as the likelihood of choosing the element from the target
vector is higher than from the mutant vector. The DE algorithm can be modified to allow
variations of the Cr value as the number of iterations increases. However, a constant value
Cr during the whole optimization process is appropriate for many optimization problems.

Selection is the last phase in the iterative process. For every target vector in the current
generation, a decision is made whether to keep it in the next generation or to replace it with
the respective trial vector. The decision is based on comparing fitness function values for
the vectors, as shown in the Equation (3):

Sj
k+1 =

 Cj
k, fde

(
Cj

k

)
≤ fde

(
Sj

k

)
Sj

k, fde

(
Sj

k

)
> fde

(
Cj

k

) (3)

In case the structure and crossover vectors yield the same objective function values, a
trial vector is chosen to ensure the higher diversity among the suboptimal solutions.

There are many variations and modifications of the classic DE algorithm applied to
the different optimization problems, e.g., [45]. So far, there is very little research on the
application of DE to credit rating modeling and forecasting [46,47].

2.2. Interpolative Boolean Algebra

Fuzzy logic is a mathematical framework for modeling uncertainty, inaccuracy, or
missing information, which is often the case when dealing with real-world problems. The
main advantage of fuzzy logic is being able to accurately model and explain problems with
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inaccurate or missing data, while one of the main downsides is not being in the Boolean
frame, i.e., not obeying the laws of excluded middle and contradiction.

This led to the creation of interpolative Boolean algebra (IBA), defined by Radoje-
vić [43]. IBA is a consistent real-valued [0, 1] realization of the Boolean algebra which
satisfies all the Boolean axioms and theorems, which can be applied to both logic and
sets [48], as well as to relations [49]. IBA is a finite algebra consisting of two levels: sym-
bolic and value. These levels are introduced via the principle of structural functionality, as
opposed to the truth functionality principle, which states that the structure of every element
in IBA is directly determined by the structure of its components [50]. In fact, this princi-
ple separates the symbolic from the value level and insists on structural transformation
(calculating a structure) before the values are introduced.

On a symbolic level, an atom is defined as the simplest element in an IBA, and by
definition, it cannot contain any element other than itself and 0 [48]. On the other hand,
IBA attributes represent any real values such as height, color, inflation, and any other
numerical or categorical variable. From n attributes, there can be formed 22n

elements
(logical functions), out of which 2n are atoms. The structure of any element in IBA is
determined by a structure vector, S, of size n, whose elements can take values of 0 and 1,
depending on the presence of a certain atom in the element [51]. In fact, every element of
Boolean algebra can be represented as a product of a corresponding structure vector and
transposed vector of atoms (atomic vector). Therefore, in the realization of IBA, the main
focus is on atoms rather than on attributes.

On the value level, values are introduced to the respective structures by mapping each
element of the Boolean algebra into the corresponding generalized Boolean polynomial
(GBP) [48]. The GBP is a polynomial whose elements are values of the attributes from
the unit range and operators of standard +, −, and generalized product ⊗, where the
generalized product is defined as a function with a [0, 1]× [0, 1]→ [0, 1] mapping [51]
and is a t-norm subclass with the additional non-negativity condition. Analogous to the
representation of any IBA element via the product of the corresponding structure vector
and atomic vector, GBP can be represented as a product of the corresponding structure
vector and transposed atomic vector values. This is one of the main postulates which will
be used later in the paper during the credit rating modeling via the IBA approach.

Honoring all the Boolean axioms and theorems has resulted in several methodologies
based on IBA. The most prominent one is a logical aggregation (LA), an aggregation
procedure based on IBA [51]. The main steps of LA are data normalization followed by
aggregation of the normalized values via logical function using GBP, or via a pseudo-
logical function using pseudo-GBP. With the LA being implemented as the weighted sum
of structure vectors in the case of mutually dependent attributes, it will be used later in the
paper when credit ratings are derived from the predetermined attributes. LA has been used
multiple times as a suitable tool for financial problems such as modeling [52], financial
analysis [53,54], and credit score forecasting [55].

3. IBA-DE Approach

In this section, we introduce the IBA-DE hybrid approach. It is a logic-based ML
approach that utilizes the extensive modeling benefits of the IBA framework and its
presentation potential.

There have been a few attempts to hybridize the IBA framework with some optimiza-
tion heuristic in order to learn a LA function from the data. In fact, a variable neighborhood
search [56] and genetic algorithm [57] were used to optimize binary values of the IBA struc-
ture vector on different datasets, showing promising results. However, the full potential of
the IBA framework is not utilized in these cases, i.e., the final model is a simple LA and not
a pseudo-LA function.

In an IBA-DE approach, the aim is to obtain a structured vector of the pseudo-LA
function as an output aggregation function that is more general compared to LA. IBA-DE
is the first attempt to perform optimization of the structure vectors in the continuous space.
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The main idea is to use IBA to transform raw data points into suitable inputs for the DE
algorithm, and then to use DE to find an optimal solution for the observed problem. Since
the final model is a pseudo-LA function, IBA-DE may be considered a white-box model,
i.e., it can be easily analyzed and interpreted.

Herein, we present the step-by-step implementation details and give pseudo code for
non-vanilla parts of the hybrid algorithm.

3.1. The Main Steps of the IBA-DE Algorithm

The IBA-DE approach consists of four main steps:

1. Input preparation;
2. Model training;
3. Model testing;
4. Model interpretation.

A more detailed presentation of the algorithm is given in Figure 1.
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Input preparation: The first step in the IBA-DE approach refers to the input prepa-
ration, and it consists of the normalization of training inputs and generating IBA atomic
vectors. Since we are modeling and inferring in the IBA framework, all elements of input
vectors must be valued on an [0, 1] interval. Any normalization function can be used for
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this purpose. Still, classical min-max normalization along with some methods for handling
outliers is a common choice. Data preparation for optimization is performed by generating
and valuing IBA atomic vectors. Let V be the g-dimensional input vector and let A be the
d-dimensional atomic vector. Each element of the input vector is an IBA attribute, while
each element of the atomic vector is an IBA atom. Every element of the atomic vector

represents one distinctive combination of attributes. It is represented as a product,
g

∏
i=1

yi,

where yi ∈ {vi, 1− vi} and vi is a normalized value of an attribute. In Section 2.1, it was
stated that the relationship between the dimensions of input and the atomic vector is d = 2g,
i.e., the number of atomic elements will exponentially increase with the increasing number
of inputs. For instance, an atomic vector created from the two-dimensional input vector
consists of four elements and it is shown in Equation (4).

[v1, v2]→ [v1v2, v1(1− v2), (1− v1)v2, (1− v1)(1− v2)] (4)

Therefore, for the dataset of m g-dimensional input vectors, the result of IBA transfor-
mation is a dataset of m d-dimensional atomic vectors. This is the input in the DE algorithm
where an optimization process will take place. The pseudo-code for generating atomic
vectors from the input vectors is given in Appendix A.

Model training: After the inputs are prepared in a manner suitable for DE optimiza-
tion, the model training step may begin. The main goal of this phase is to obtain the optimal
structure vector which will minimize the objective function, e.g., mean squared error (MSE)
of prediction. In our case, elements of a structured vector are in the unit interval. Therefore,
the pseudo-logical aggregation function [51] is obtained as a final output. This function is
easy to interpret since it is basically a weighted sum of several logical functions. The DE
algorithm used for optimization is the basic one with the steps described in Section 2.1. In
addition to a typical stopping condition defined as a maximal number of iterations, we
have included an early stopping, a standard machine learning mechanism to avoid model
overfitting. Three DE control parameters may be considered as hyper-parameters important
for model training: F, Cr, and the population size. Their values should be assessed during
the training phase in order to maximize the potential of the IBA-DE approach.

Model testing: The trained model is assessed and utilized in the model testing step
of IBA-DE. A product of the atomic vector of an observed instance and the transposed
optimal structure vector are the numerical values that are being forecasted, as explained in
Section 3.2. All attributes should be scaled to a unit interval using the same normalization
function as in the model training step. The final prediction may be validated by comparing
the benchmarks, or re-evaluated if some input data changes in time.

Model interpretation: The final phase of the IBA-DE approach is the model interpre-
tation step. The output of the DE algorithm is an optimal structure vector whose atoms are
used to create the appropriate weight factors for each of the inputs. The weights show the
impact of every input, compared to all other inputs, on the forecasted credit ratings. With
this information, all inputs can be ranked and the ones with the lowest impact discarded or
replaced with new ones. The model is therefore not only predicting the credit ratings but
also giving the information necessary for further decision-making, and, therefore, cannot
be considered a black box but rather an instrument that can be used not only for forecasting
but also for the interpretation of the obtained results.

3.2. Benefits and Limitations

The IBA-DE hybrid algorithm is part of a general approach to utilize the IBA frame-
work in a machine learning context. The final model is easy-to-understand, transparent, and
universal since it utilizes a pseudo-LA function. Thus, the range of possible applications is
very wide, i.e., any small-scale forecasting problem.

In our approach, the basic DE algorithm [42] is used, rather than some of its modifi-
cations. Many proposed hybrid DE algorithms are not easily reproduced due to various
reasons. Even though the pseudo-code is provided for the majority of hybrid algorithms,
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the source code is not always available. Some algorithms are also created using overly
complicated premises, where hybrid models are enhanced with additional techniques
such as Adaptive Pursuit and Probability Matching [58]. This makes these models a bit
difficult to understand and implement. Finally, many of the mentioned algorithms have
not been tested on real-world problems but were rather made in order to improve gen-
eral DE premises and/or to test them against other hybrid models in various yearly CEC
DE competitions where different problems and hypothetical objective functions are de-
fined [59,60]. These are all the reasons for not using any hybrid DE models which update
control parameters and strategies during the iteration process.

The main drawback of the IBA approach is that it is not well suited for high-dimensional
inputs due to the exponential growth of atomic vector size and therefore makes DE op-
timization slower. However, the trade-off for using IBA and the LA in the process is the
interpretability of the forecasted results. Many machine learning techniques, such as NNs,
are black-boxes and their results are not easily explainable. Thus, the interpretation of their
results is a serious problem in many practical situations. This is evident in areas such as
finance where a decision must be understood and explained before any action is taken.
Therefore, the exponential increase in complexity with the linear increase in the inputs
is a cost willingly paid for the interpretability of the end results and seeing how much
each of the inputs influences the output. In addition, with the many dimension reduction
methodologies, such as principal component analysis or different kinds of regression, it is
possible to reduce the number of inputs and allow the IBA-DE model to provide results
without losing valuable information in the process.

4. Forecasting Sovereign Credit Ratings with the IBA-DE Approach

In this section, we present the application of the IBA-DE approach for sovereign credit
rating prediction. The approach was first used for credit rating prediction in [44]. However,
the inputs used were from a very narrow domain and many aspects of the economy were
not considered. Further, the parameters of the DE algorithm were obtained empirically,
without sensitivity analysis or testing different combinations of parameters. In this paper,
we extended the input space to include a broader domain of economic factors and also
to take into consideration historical credit ratings. The latter is especially important for
improving forecasting performance since the changes in credit ratings are considered
rare events.

In the first part of this section, we discuss the input space and give an overview of the
input variables. Input space was divided into two categories: historical credit ratings and
macroeconomic factors. Three groups of macroeconomic factors were used in this study to
take into account different aspects of a country’s economic strength and to discover those
with the highest influence on credit ratings.

In the second part, we present two different forecasting approaches:

• A single-aspect approach where different groups of macroeconomic factors (stability,
activity, and social) are used separately to forecast sovereign credit ratings;

• A multi-aspect approach that uses all groups of input variables to include a broader
perspective in the prediction model;

These forecasting approaches were used to run two types of forecasts: with and with-
out historical credit ratings. First, our goal was to run our models only with macroeconomic
inputs to understand the influence of different factors on sovereign credit ratings. Second,
we replaced the worst performing factor within our model with the historical credit ratings
and ran the model again (train and test).

4.1. Inputs

Most studies that dealt with the credit rating determinants show that financial and
economic indicators have the highest impact on the credit ratings [13,61]. Some of the
factors which are highly correlated with the sovereign credit ratings are GNP, GDP, GNI,
inflation, government income and debt, unemployment, and default history [13,62–64].
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Indicators are usually selected based on their correlation to credit ratings data, or derived
using some method such as a principal component analysis [65]. Some studies show that
financial and economic factors are not the only ones to influence credit ratings [13,66].
Consequentially, unorthodox factors such as monetary policy credibility, government debt
structure, financial sector depth, foreign currency dependence, and others are included in
the recent studies [19]. In most papers, authors investigate how individual factors influence
sovereign credit ratings, but do not consider the influence of groups of factors.

In this study, we used two types of inputs for our IBA-DE model: macroeconomic
factors and historical credit rating. Macroeconomic factors are grouped into three groups:
stability, activity, and social. Our idea was to enable our model’s broader perspective so
that no individual group of factors would have a dominant influence on a credit rating.
Each group consists of four indicators (Figure 2). Indicators were carefully selected based
on two criteria: availability of data and their ability to outline a broader view of the aspect
that characterizes the group. We have a limited number of inputs per group of four to keep
the model as simple as possible and to avoid exponential growth in the size of IBA’s atomic
vector size (explained in Section 3.2).
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The first group of indicators represent economic stability determinants. These factors
are frequently used by researchers and are proven to be the ones to impact a country’s credit
ratings the most. In this paper, we have used the following indicators: GDP per capita, as
one of the best indicators of a country’s economic strength and development; inflation of
consumer prices, to include a measure of the quality of life of an average household; total
reserves of a country, including gold, to represent the country’s ability to face unpredicted
events and crises; and gross savings, as an indicator of country’s investment strength.

The second group of indicators represents economic activity determinants. When
choosing these variables, our idea was to take into consideration the export, import, and
credit activity of a country. The following indicators were used: ore and metal exports
and fuel exports, as an indicator of a country’s strategic independence on energy and raw
materials, due to increasing prices caused by supply chain bottlenecks, high inflation, and
the latest geopolitical changes; domestic credit given to the private sector as an indicator
of the country’s willingness to support its private sector; total merchandise imports, as an
indicator of country’s dependence on import of goods.

The third group of factors provides an overview of the social aspects of a country’s
economy. The following four indicators were selected as measures of a country’s social
policies and overall quality of life: total unemployment, which shows how effectively a
country deals with unemployment; life expectancy at birth, as one of the best indicators
of the quality of life; population growth, which is an indicator of the potential for future
economic growth; and expense, measuring the government’s spending.

All the above-mentioned input data were obtained from the World Bank
(data.worldbank.org (accessed on 30 September 2020)). Our dataset covers 83 countries
(listed in Appendix B) and 19 years of data, from 2000 to 2018. The countries were se-

data.worldbank.org
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lected based on the availability of indicator data, to achieve as much variety as possible
regarding the location and population size. Even so, there were some gaps (missing data)
in the dataset due to such a long time range. These missing points are filled using linear
interpolation and flat extrapolation.

4.2. Output

Sovereign credit ratings data were obtained from the Fitch Ratings (https://countrye
conomy.com/ratings (accessed on 30 September 2020)) because they are publicly available
for the countries used in this study and for a time span of 19 years. Given the similarity
of the published ratings between the three top credit rating agencies, no information is
lost by choosing any one of them. Fitch’s ratings are divided into categories (Table 1). We
transferred credit rating categories into representative numerical values from the [0, 100]
interval. The reason for using a numerical rather than a categorical variable was to increase
precision and enable fuzzification of credit ratings. Using numerical values will cause this
classification problem to transform into a forecasting problem. The representative values
are assigned in a way to maximize the distance between the ratings within a category, and
therefore to maximize the forecasting accuracy. Further, the fuzzification of credit ratings is
done by adding representative intervals around the representative values (Table 1).

Table 1. Credit Rating Numerical Values.

Rating Rep. Value Rep. Interval Rating Rep. Value Rep. Interval Rating Rep. Value Rep. Interval

AAA
AA+ 88 (86.66, 90) A+ 78 (76.66, 80)

100 (91, 100) AA 85 (83.33, 86.66) A 75 (73.33, 76.66)
AA− 82 (80, 83.33) A− 72 (70, 73.33)

BBB+ 68 (66.66, 70) BB+ 58 (56.66, 60) B+ 48 (46.66, 50)
BBB 65 (63.33, 66.66) BB 55 (53.33, 56.66) B 45 (43.33, 46.66)

BBB− 62 (60, 63.33) BB− 52 (50, 53.33) B− 42 (40, 43.33)

CCC+ 38 (36.66, 40) CC 28 (25, 30) RD 15 (10, 20)
CCC 35 (33.33, 36.66) C 22 (20, 25)

CCC− 32 (30, 33.33)

D 8 (6.66, 10)
DD 5 (3.33, 6.66)

DDD 2 (0, 3.33)

In the IBA-DE approach, credit ratings are forecasted as numerical values which are
then sorted into numerical intervals and finally converted back to the appropriate credit
rating categories. In addition, numerical outputs could be used for confidence interval
extraction, based on the absolute difference between the forecasted values and the center of
the credit rating’s representative intervals.

4.3. Forecasting Models

Using the hybrid IBA-DE approach, we built two types of forecasting models. First,
we used three groups of input data separately, each group representing a different aspect
of a country’s economic strength, to make separate (specialized) predictions of sovereign
credit ratings. Second, we used all three groups of input data together to make broader-
perspective predictions of sovereign credit ratings that take into account multiple aspects
of the country’s economic strength.

4.3.1. Single-Aspect Model

Single-aspect models use only one group of input factors to predict sovereign credit
ratings. They are meant for two reasons:

https://countryeconomy.com/ratings
https://countryeconomy.com/ratings
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1. To investigate whether specific aspects of a country’s economic strength could produce
satisfactory predictions and therefore reduce input space or substitute some group(s)
of factors instead;

2. To provide the aggregated (multi-aspect) model with optimal inputs.

Input data were used to create IBA atomic vectors which are further used as input
variables for the DE algorithm. Then, the DE algorithm optimizes the structure vector to
minimize the objective function which is the mean square difference (MSE) between credit
rating forecasts and targeted (real) numerical values. The initial population of structure
vectors was generated in a random way. Credit rating forecasts, R(fcst)

i , were obtained from
quadruplets of input data by multiplying the corresponding atomic vector, Ai, with the
transposed optimal structure vector, ST, as shown in the Equation (5):

R(fcst)
i = Ai × ST (5)

4.3.2. Multi-Aspect Model

The multi-aspect model represents an aggregated approach for credit rating prediction
which considers different aspects of a country’s economic strength. This model uses the
previously explained single-aspect models as components, more precisely, their optimal
structure vectors. Therefore, to run this model, one must first run three separated (single-
aspect) models, one for each group of input factors. The obtained vectors of the structure
are linearly aggregated in a weighted sum to obtain multi-aspect predictions. The credit
ratings are forecasted as shown in Equation (6):

R(fcst)
i = A(sta)

i ×
(

p(sta)S
T
(sta)

)
+ A(act)

i ×
(

p(act)S
T
(act)

)
+ A(soc)

i ×
(

p(soc)S
T
(soc)

)
(6)

where p(sta), p(act) and p(soc) represent weightings for single-aspect structure vectors. The
objective function is the same as for the single-aspect models, while the optimization is
now done to obtain the optimal vector of weights, rather than the optimal structure vector.

5. Experiment and Results

In this section, we test the two models proposed in Section 4.3. The models are tested
against the benchmark ratings obtained from the Fitch credit rating agency. First, we
describe the dataset used for this study. Further, we deal with parameter optimization
and model training: analyzing the impact of the DE control parameters on the training
process and obtaining optimal structure vectors on the training set. After model training,
we aim to investigate the resulting IBA structure vectors to provide a deeper insight into the
significance of inputs as well as their co-dependencies. Finally, the forecasting performance
of IBA-DE models is compared with NNs, given that NNs are one the most used machine
learning techniques for credit rating prediction.

As explained earlier, our models use three groups of macroeconomic inputs to take
into account three different aspects of a country’s economic strength: stability, activity, and
social aspect. Indicator values were calculated on an annual basis and normalized on the
unit interval.

5.1. Data

Our dataset consists of 19 years of macroeconomic data for 83 world countries. There
are three groups of input data with each group consisting of four macroeconomic indicators–
in total, 4731 quadruplets of input data or 18,924 input observations. On the other side,
there is only 1 output variable with 1577 observations.

We split the dataset into two subsets: training and testing. We used 17 years of data
(2000–2016) to train our models, which counts as 16,932 input and 1411 output observations.
The last two years (2017–2018) were used for testing purposes, yielding 1992 input and
166 output observations.
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Therefore, we split our dataset on training and test sets using a higher than usual
90–10 split ratio. This could create a risk of overfitting for NNs, which are used as bench-
mark techniques for the proposed IBA-DE models. However, the risk of overfitting is
relatively small due to slow changes in credit ratings over the years.

5.2. Hyper-Parameter Optimization and Training

As usual in machine learning, the model selection is performed in two phases. Bearing
in mind that the IBA part of the IBA-DE approach is non-parametric, only the DE control
parameter: F, Cr, and the population size are considered as the model’s hyper-parameters.
In the first phase, we aimed to assess the training convergence speed depending on the
values of hyper-parameters and, subsequently, to determine their impact on the model
output. The second phase was devoted to an appropriate training procedure in order to
obtain the optimal structure vectors, avoiding model overfitting and biased predictions.

In the first phase of model selection, we employed a grid search by varying values
of the control parameters F and Cr between 0.1 and 0.9 with a 0.1 step. In addition, three
values of the population size are considered: 10, 100, and 1000. Thusly, we performed
3× 9× 9 = 273 optimizations, i.e., model training processes, for each of three input sets:
stability, activity, and social. This procedure was conducted on the training set, while the
stopping criterion was defined as the fixed number of iterations, i.e., 300, in order to observe
the model convergence over a longer period of time. Additional termination conditions are
if the absolute difference between 100 consecutive objective functions is less than 10−4, or if
the objective function reaches 0. Due to the stochastic nature of DE, five simulations were
conducted per combination of the control parameters with random starting points.

The DE algorithm has reached the same optimal solution for each parameter set in
97.5% of cases. In addition, the convergence paths with respect to the MSE presented in
Figures 3 and 4 are reasonably similar. However, in the other 2.5% cases, the algorithm
became stuck in local minima that are rather close to the best result. Still, these results
emphasize that the values of hyper-parameters F and Cr are not crucial for the final results
of the optimization. This can be seen in Figure 3, where no significant co-dependency
can be seen between parameters’ values and model behavior. There is also no significant
difference between model results for the population sizes of 100 and 1000, even though
the latter converges a bit faster on average but not fast enough to justify a 10 times larger
population size (see Figure 4). The model with a population size of 10 has slightly worse
results, although for some control parameter combinations the model performs as well
as the ones with higher population sizes. However, when inputs are amended with the
historical credit ratings, the model with a population size of 10 achieves significantly worse
results compared to the models using population sizes of 100 and 1000. Therefore, in our
case, the recommendation is to use a medium population size when one of the inputs has
a strong co-dependency with the output. Otherwise, the model can be defined as non-
parametric. Finally, the results of the chaining forward cross-validation have supported
this conclusion.
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Therefore, we performed a model training with the following hyper-parameters values:
F = 0.5, Cr = 0.5, and the population size equal to 100. We employed an early stop
stopping criterion in order to avoid model overfitting. The best results on the training
data set, including the objective function values and the number of iterations necessary to
achieve them, are presented in Table 2.

Table 2. The best IBA-DE performance on the training set.

Series Non-Historical Historical

Inputs Stability Activity Social Multi-Aspect Stability Activity Social Multi-Aspect

MSE 333.03 320.63 339.04 311 12.01 11.99 11.92 11.82
Iterations 189 189 197 6 167 175 174 5

As can be seen from the table, the multi-aspect model performs slightly better than the
single-aspect models, which is to be expected. The model using solely the activity inputs
performs better than the models using stability and social inputs, while when the historical
credit ratings are added, the differences between the models are negligible due to the high
impact of the historical time series.

Finally, the main output of the optimization process is the IBA structure vector which
is then used in generating forecasted credit ratings.

5.3. Test Results and Interpretation

In financial decision making, the transparency of models and interpretation of the data
often play a crucial role. Sometimes, the most accurate models are not applied if they are not
transparent or too complex for understanding. When introducing the IBA-DE approach we
addressed this issue. Namely, IBA-DE is considered a white-box model, since its structure
vector can be quickly analyzed to determine the significance of individual input factors and
their co-dependencies [67]. The IBA structure vector consists of weights representing atoms’
importance in the model–the higher the weights, the higher the influence on predictions. In
this section, we presented and discussed structure vectors of the two most accurate models
(model based on macroeconomic stability inputs with and without the addition of historical
credit ratings).

The four macroeconomic inputs used were GDP per capita (in1), consumer price
inflation (in2), country’s total reserves (in3), and gross savings (in4). As a result of DE
optimization, we obtained a 16-dimensional optimal structure vector of weights. Table 3
presents structure vectors for the two most accurate models achieved with and without
using historical credit ratings as inputs.
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Table 3. Optimal structure vectors.

Structure Vectors

Inputs s1 s2 s3 s4 s5 s6 s7 s8 s9 s10 s11 s12 s13 s14 s15 s16

Macro 0.71 0.88 0.62 0.94 1.00 0.68 0.81 0.65 0.64 0.67 0.51 0.79 0.91 0.58 0.59 0.63
Macro + Hist. ratings 1.00 0.99 1.00 0.96 1.00 0.96 0.99 1.00 0.01 0.00 0.03 0.05 0.03 0.01 0.00 0.02

Using these optimal structure vectors, we were able to derive weights for each input
variable (Table 4). The weight equations were designed to take into consideration how
atomic vectors were generated (in Appendix A). The resulting weights are similar in value
when historical credit ratings were not used as input variables. However, when historical
credit ratings were included as inputs instead of the first macroeconomic indicator, the
resulting weights showed historical credit ratings have dominantly influenced model
predictions. This is easy to explain since there is a very low probability the credit ratings
will change during a year. Table 5 presents the test results obtained after parameter
optimization was performed and optimal structure vectors were generated. These results
were obtained with the best performing set of parameters.

Table 4. Weights/importance of specific input group.

Weight w1 (in1) w2 (in2) w3 (in3) w4 (in4)

Equation
8
∑

i=1
si/

16
∑

i=1
si ∑

i=1,9,

i+3
∑
j=i

s1/
16
∑

i=1
si ∑

i=1,5,9,13

i+1
∑
j=i

s1/
16
∑

i=1
si

16
∑

i=1
imod2=1

si/
16
∑

i=1
si

Macro 0.541 0.495 0.523 0.499
Macro + Hist. ratings 0.983 0.502 0.496 0.505

Table 5. Best IBA-DE forecasting performance.

Input Macro Macro + Hist. Ratings

Model Stability Activity Social Multi-Aspect Stability Activity Social Multi-Aspect

MSE 303.15 317.79 319.21 324.37 6.52 6.53 7.34 7.22

Results showed clearly, as expected, that using historical credit ratings improves fore-
casting performance significantly. The best results when not using historical credit ratings
were obtained for higher values of hyper-parameters, indicating the higher diversification
of the population matters. Among single-aspect models, the best performing was the
one that used macroeconomic stability indicators. Even though the IBA-DE multi-aspect
approach performed the best on the training dataset, it yielded the worst results over the
testing dataset. One possible explanation could be that introducing the multi-aspect model
caused overfitting of IBA-DE since the multi-aspect model aggregates optimal structures of
single-aspect models without optimizing aggregate structure. This is because it would be
extremely time and resource consuming to optimize the structural vector for 12 inputs. The
size of such vector would be 212.

Finally, Table 6 presents the credit rating forecasts for each country for the best perform-
ing model, the IBA-DE single-aspect model with historical credit ratings, along with the real
Fitch ratings. The overall hit rate was satisfactory with 79.52% of ratings correctly predicted.
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Table 6. Forecasting results for the single-aspect stability model using historical credit ratings.

Country Year
Credit Rating

Country Year
Credit Rating

Country Year
Credit Rating

Real Forecast Real Forecast Real Forecast

Argentina 2017 B B Hungary 2017 BBB− BBB−
Peru

2017 A− A−
2018 B B 2018 BBB− BBB− 2018 A− A−

Australia
2017 AAA AAA

Iceland
2017 A A− Philippines 2017 BBB BBB−

2018 AAA AAA 2018 A A 2018 BBB BBB

Austria
2017 AA+ AA+

India
2017 BBB− BBB−

Poland
2017 A− A

2018 AA+ AA+ 2018 BBB− BBB− 2018 A− A−

Belgium 2017 AA− AA
Indonesia

2017 BBB− BBB− Portugal 2017 BB+ BB+
2018 AA− AA− 2018 BBB BBB− 2018 BBB BB+

Bolivia
2017 BB− BB−

Ireland
2017 A A

Romania
2017 BBB− BBB−

2018 BB− BB− 2018 A+ A 2018 BBB− BBB−

Brazil
2017 BB− BB−

Israel
2017 A+ A+

Russia
2017 BBB− BBB−

2018 BB− BB− 2018 A+ A+ 2018 BBB− BBB−

Bulgaria 2017 BBB− BBB− Italy 2017 BBB BBB+
Rwanda

2017 B+ B+
2018 BBB BBB− 2018 BBB BBB 2018 B+ B+

Cameroon
2017 B B

Jamaica
2017 B B Saudi

Arabia
2017 A+ AA−

2018 B B 2018 B B 2018 A+ A+

Canada
2017 AAA AAA Japan 2017 A A

Serbia
2017 BB BB−

2018 AAA AAA 2018 A A 2018 BB BB

Chile
2017 A+ AA−

Kazakhstan
2017 BBB BBB Seychelles 2017 BB− BB−

2018 A+ A+ 2018 BBB BBB 2018 BB BB−

China
2017 A+ A+ Kenya 2017 B+ B+ Singapore 2017 AAA AAA
2018 A+ A+ 2018 B+ B+ 2018 AAA AAA

Colombia
2017 BBB BBB+ Korea, Rep. 2017 AA− AA−

Slovakia
2017 A+ A+

2018 BBB BBB 2018 AA− AA− 2018 A+ A+
Congo,

D. p.
2017 CCC CCC

Latvia
2017 A− A−

Slovenia
2017 A− BBB+

2018 CCC CCC 2018 A− A− 2018 A− A−

Costa Rica
2017 BB BB+

Lithuania
2017 A− A− South

Africa
2017 BB+ BBB−

2018 BB BB 2018 A− A− 2018 BB+ BB+

Croatia
2017 BB BB Luxemburg 2017 AAA AAA Spain 2017 BBB+ BBB+
2018 BB+ BB 2018 AAA AAA 2018 BBB+ BBB+

Cyprus 2017 BB− BB− Malaysia 2017 A− A−
Sri Lanka

2017 B+ B+
2018 BBB− BB− 2018 A− A− 2018 B+ B+

Czech Rep. 2017 A+ A+
Malta

2017 A+ A
Sweden

2017 AAA AAA
2018 AA− A+ 2018 A+ A+ 2018 AAA AAA

Denmark
2017 AAA AAA

Mexico
2017 BBB+ BBB+

Switzerland
2017 AAA AAA

2018 AAA AAA 2018 BBB+ BBB+ 2018 AAA AAA
Dominican

Rep.
2017 BB− BB− Mongolia 2017 B− B

Thailand
2017 BBB+ BBB+

2018 BB− BB− 2018 B B− 2018 BBB+ BBB+

Egypt 2017 B B
Morocco

2017 BBB− BBB−
Tunisia

2017 B+ BB
2018 B B 2018 BBB− BBB− 2018 B+ BB−

El Salvador
2017 CCC B+

Namibia
2017 BBB− BBB− Turkey 2017 BBB− BBB−

2018 B− CCC 2018 BB+ BBB− 2018 BB+ BBB−

Estonia
2017 A+ A+

Netherlands
2017 AAA AAA Uganda 2017 B+ B+

2018 A+ A+ 2018 AAA AAA 2018 B+ B+

Finland
2017 AA+ AA New

Zealand
2017 AA+ AA+

Ukraine
2017 B− CCC+

2018 AA+ AA+ 2018 AA+ AA+ 2018 B− B

France
2017 AA AA Nigeria 2017 B+ B+ United

Kingdom
2017 AA AA

2018 AA AA 2018 B+ B+ 2018 AA AA

Georgia 2017 BB− BB− N.
Macedonia

2017 BB BB+ United
States

2017 AAA AAA
2018 BB− BB− 2018 BB BB 2018 AAA AAA

Germany 2017 AAA AAA Norway 2017 AAA AAA Uruguay 2017 BBB− BBB−
2018 AAA AAA 2018 AAA AAA 2018 BBB− BBB−

Greece
2017 C CC

Panama
2017 BBB BBB

Zambia
2017 B B

2018 B CC 2018 BBB BBB 2018 B B

Hong Kong 2017 AA+ AA+ Paraguay 2017 BB+ BB+
2018 AA+ AA+ 2018 BB+ BB+
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5.4. Comparison with Neural Networks and Support Vector Machine Algorithms

A neural network is a well-known unsupervised machine learning algorithm often
used for forecasting in finance and the economy. We have chosen NNs as a benchmark
to compare against IBA-DE performance for several reasons: (a) NNs are one of the most
popular and most used machine learning algorithms for credit rating prediction and
bankruptcy prediction; (b) NNs can model both linear and nonlinear relations between the
input data and do not require expert knowledge nor deeper understanding of the inputs;
(c) NNs has many variations, which allow using different architectures to increase the
confidence of the results; and (d) finally, the premise of updating the weights and biases
of the inner neuron layers is simple and can be looked at as a basic optimization problem,
similarly to the DE premise.

On the other hand, NNs can be prone to overfitting, which can be problematic when
forecasting is done on a time series that has a high autocorrelation, such as sovereign
credit ratings. Therefore, a support vector machine (SVM) algorithm is used as a second
benchmark model to ensure no bias is present in the forecasted time series and to increase
the validity of the IBA-DE forecasting results.

The neural network architecture used in this study is a feed-forward backpropagation
NN due to its simplicity both for understanding and implementation. We employed
seven different gradient descent algorithms for NN training: Levenberg–Marquardt (LM),
Bayesian regularization (BR), resilient backpropagation algorithm (RB), Broyden–Fletcher–
Goldfarb–Shanno (BFGS), gradient descent with momentum backpropagation (GDM), one
step secant (OSS), and scaled conjugate gradient backpropagation (SCG). The NN contains
one hidden layer with two neurons as there is no reason for implementing more since
there are four macroeconomic inputs within each group and there is only one output. To
avoid overfitting, we employed an early stopping criterion. To compare the IBA-DE with
NN models, we tested both approaches on the same two datasets: first, we used only
macroeconomic indicators as input variables; second, we used historical credit ratings
together with macroeconomic indicators. The best training performance was achieved with
BFG, LM, and RB algorithms (Table 7).

Table 7. Neural network training results summary.

NN Learning
Algorithm

Series Non-Historical Historical

Inputs Stability Activity Social Multi-Aspect Stability Activity Social Multi-Aspect

BFG
MSE 328.49 329.92 359.07 316.42 16.61 18.61 17.99 11.82

Iterations 27 26 17 37 59 45 42 38

LM
MSE 329.16 317.93 351.10 314.35 14.32 14.88 17.92 13.39

Iterations 70 30 22 27 138 53 40 37

RB
MSE 343.75 331.57 347.42 327.26 11.97 15.37 15.21 14.87

Iterations 24 80 13 8 39 91 42 34

The three SVM kernel functions used in this paper are linear, polynomial, and Gaussian
radial basis function (RBF). The training was also performed for the various values of the
penalty parameter; the best performing models are shown in Table 8.

In Tables 7 and 8, we present the best performing NN and SVM learning algorithms.
It is important to notice that these results represent average training performances, making
it possible some of the other algorithms could perform better on a specific time series. The
best results per input groups are marked in bold.
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Table 8. Support vector machine training results summary.

SVM Kernel
Function

Series Non-Historical Historical

Inputs Stability Activity Social Multi-Aspect Stability Activity Social Multi-Aspect

Linear
MSE 344.99 362.83 363.82 322.08 14.27 14.27 14.19 11.32

Iterations 647 701 701 582 311 363 363 295

Gaussian RBF
MSE 323.47 308.61 325.13 295.46 12.27 12.47 12.21 9.08

Iterations 755 809 755 643 415 519 467 386

Polynomial MSE 334.07 317.74 337.22 304.25 13.16 13.59 13.53 10.29
Iterations 755 755 701 629 571 519 519 489

Finally, in Table 9, we compare the test results of the IBA-DE model and the best
performing NN and SVM models. In general, the single-aspect IBA-DE model based
on macroeconomic stability indicators outperforms other models, including multi-aspect
IBA-DE, NN, and SVM. These results have also indirectly confirmed that macroeconomic
stability determinants have the highest impact on credit ratings, followed by activity
determinants. It is important to emphasize that overfitting did not occur, since there were
no significant deviations of MSEs on training and test sets for all algorithms, respectively.
The best results per input groups are marked in bold.

Table 9. IBA-DE vs. neural network and support vector machines test results summary.

Model
Series Non-Historical Historical

Inputs Stability Activity Social Multi-Aspect Stability Activity Social Multi-Aspect

IBA-DE
MSE

303.15 317.79 319.21 324.37 6.52 6.53 7.34 7.22
NN 311.90 314.73 343.56 307.26 6.61 6.64 14.59 6.57

SVM 305.46 330.12 320.93 309.08 7.24 7.83 7.60 6.86

Bearing in mind that NNs are the black-box models, these results additionally speak
in favor of the IBA-DE model. Namely, the transparency of the solution obtained by the
IBA-DE approach is a vast advantage compared to NN and SVM from the application
aspect and decision making.

6. Conclusions

In this paper, we proposed a hybrid IBA-DE model for forecasting sovereign credit
ratings. Since credit rating agencies do not disclose their models, this topic attracts machine
learning researchers to extract data-driven models to help them better understand the
main sources of credit risk. The proposed model is based on two approaches: interpolative
Boolean algebra, used for input processing and interpretation of results, and differential
evolution, used for optimization and forecasting. This is the very first attempt to utilize the
full potential of IBA by learning pseudo-LA functions from the data. The idea of this paper
was to use machine learning and computational intelligence to increase the transparency of
credit ratings modeling as well as to improve forecasting performance.

Data used for this study was obtained from the publicly available domain and con-
sisted of four groups of macroeconomic indicators: economic stability, economic activity,
the social aspect of the economy, and historical credit ratings. The dataset consisted of
19 years of data, from 2000 to 2018. The IBA was used to model macroeconomic inputs and
translate them into atomic vectors which were further used as inputs for the DE algorithm.
The output of the DE algorithm was a structure vector, while the final output of the model
was an easily interpretable pseudo-logical function in the form of a weighted sum of several
logical functions. The structure vector was further used to determine the impact of each
input and improve the model by excluding those factors with the smallest impact on the
final output. The proposed IBA-DE approach was used to build two types of models,
single-aspect and multi-aspect models. The single-aspect models are specialized, i.e., they
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use one group of macroeconomic indicators with the goal to optimize structure vectors. In
contrast, the multi-aspect models use these optimal structure vectors as inputs to aggregate
different aspects into one variable.

The main results emphasize the importance of economic stability indicators since
the single-aspect model performed better than both the multi-aspect model and neural
networks in almost every case. Additionally, unlike the neural networks, IBA-DE offers
a possibility to analyze the impact of each indicator and interpret the obtained solution.
Therefore, IBA-DE is particularly useful for financial experts and other decision makers.

Finally, combining IBA with DE was part of a general approach to utilize the IBA
framework in a machine learning context. The idea was to expand the application of the IBA
framework to other machine learning techniques for problems that require optimization
over continuous space, as well as to try to identify the tools and methodologies used by
credit rating agencies by comparing other machine learning techniques against the IBA-DE
model and identifying the best performing ones. The DE algorithm can be further improved
by applying some modifications to its hyper-parameters during the optimization process,
as well as applying different strategies for the mutation, crossover, and selection processes.
Finally, improvement can be made by addressing the high autocorrelation in the credit
ratings time series by including the credit rating transition matrices modeled using the DE
algorithm which were first presented in a recent study [68].
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Appendix A

Pseudo code for generating atomic vector from a regular vector
GenerateAtomicVector(iVector)
{

n = size(iVector); // number of input vector elements [a b ... z]
cVector = zeros(2*n); // define complete vector
// complete vector is of form [a 1-a b 1-b ... z 1-z]
for (i=0,i<n,i++)
{

cVector[2*i]=iVector[i];
cVector[2*i+1]=1-iVector[i];

}
cMatrix = zeros(2ˆn,n); // coefficient matrix
for (i=1,i<n+1,i++)
{

for (j=0,j<2ˆn,j++)
{

cMatrix[j,i-1]=mod(fix(j/(2ˆ(n-i))), 2) + 2*i-1;
}

}

data.worldbank.org
data.worldbank.org
https://countryeconomy.com/ratings
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oVector = zeros(2ˆn); // define output vector
hVector = zeros(n); // define helper vector
for (i=0,i<2ˆn,i++)
{

for (j=0,j<n,j++)
{

hVector[j] = cVector[cMatrix[i, j]];
}

oVector[i] = prod(hVector); // multiply hVector elements
}
return oVector;

}

Appendix B

The total number of countries used in this paper is 83. The countries are grouped into
four regions: Europe, North and South America, Asia, and Africa. There are 37 countries
from Europe (Austria, Belgium, Bulgaria, Croatia, Cyprus, Czech Republic, Denmark,
Estonia, Finland, France, Georgia, Germany, Greece, Hungary, Iceland, Ireland, Italy,
Latvia, Lithuania, Luxemburg, Malta, Netherlands, North Macedonia, Norway, Poland,
Portugal, Romania, Russian Federation, Serbia, Slovak Republic, Slovenia, Spain, Sweden,
Switzerland, Turkey, Ukraine, and the United Kingdom), 15 from North and South America
(Argentina, Bolivia, Brazil, Canada, Chile, Colombia, Costa Rica, Dominican Republic, El
Salvador, Mexico, Panama, Paraguay, Peru, United States, and Uruguay), 16 from Asia
(Australia, China, Hong Kong SAR, China, India, Indonesia, Israel, Japan, Kazakhstan,
Korea, Rep., Malaysia, Mongolia, New Zealand, Philippines, Singapore, Sri Lanka, and
Thailand), and 15 from Africa (Cameroon, Congo, Dem. Rep., Egypt, Arab Rep., Jamaica,
Kenya, Morocco, Namibia, Nigeria, Rwanda, Saudi Arabia, Seychelles, South Africa,
Tunisia, Uganda, and Zambia).
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