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Abstract: Rational function approximation is commonly used to fit the transmission line impedance
over a wide frequency range. Nevertheless, it is computationally costly and challenging to implement
in practical applications due to the high number of approximations required to fit the impedance
curve for the high-frequency range. Therefore, a novel fitting method of multiconductor transmission
line (MTL) based on the analytical impedance equation of a transmission line using the impedance
frequency response measurement is presented in this paper. The proposed fitting method is a
function of the transmission line length since it is based on the analytical impedance equation of
a finite transmission line. Furthermore, the proposed model uses a constant set of equations and
calculated parameters to fit the impedance frequency response for a wide range of frequencies.
Moreover, the proposed model parameters are calculated using derived resonance equations and the
impedance frequency response measurement. In addition, an algorithm is developed to further fit the
proposed model to the impedance frequency response measurement of the transmission line. MTL
impedance frequency response is measured using a real-time digital simulator (RTDS). To ensure the
accuracy of the proposed model, a comparison between the proposed model and vector fitting (VF)
is presented.

Keywords: frequency response analysis; frequency domain model; multiconductor transmission
lines; transmission line

MSC: 00A06

1. Introduction

A transmission line is one of the major electrical components in a power system.
Transmission lines are power guide components to deliver electric power from the source to
the load. One of the key characteristic of a transmission line that differs from any electrical
component is that transmission lines may cover long distances from the source to the load.
Due to the length of a transmission line, a standing wave in a transmission line may occur.
In addition, a wide range of different transient phenomena may affect transmission lines,
such as lightning discharge, switching, and faults. Therefore, developing an accurate model
of a transmission line is essential to predict the behavior of transmission lines in different
transient scenarios.

Vector Fitting (VF) is a general methodology used to fit the measured or simulated
transient frequency response of electric equipment or an n-port network. VF uses a rational
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function approximation method to fit measured data to the rational function [1]. In [2–4],
the authors presented a transient model of multiconductor transmission line (MTL) using
VF. In [5], a hybrid phase domain transmission line transient model is introduced, which
utilizes the transpose of a transmission line to have a lower computational time without
loss of accuracy. VF has been used in time domain modeling as well as frequency-domain
modeling of a transmission line. In [6], time-domain modeling of partial discharge on
medium voltage cables using the VF Method is presented. The proposed model in [6] uses
the VF method to incorporate the skin effects and dielectric losses into the state matrices.
In [7], a fast realization of the modal VF method (MVF) is presented. MVF has a faster
pole and residue identification step and a lower number of iterations required to obtain the
state-space model. In [8], a frequency-dependent cable model (FDCM) is presented, which
solves an issue associated with the eigenvalues by reducing the rank of the propagation
matrix to obtain a smooth fitting model.

Some research papers focus more on the low-frequency range or DC transient mod-
eling. In [9], an enhanced fitting technique for the transient response of the transmission
line is presented. The proposed model uses low-order fitting of a function error for every
line parameter to obtain an accurate DC transient model of transmission lines. Moreover,
a frequency domain transient transmission line model is presented in [10], which empha-
sizes the low-frequency transient response. The presented transient model in [10] consists
of two-stage, low-frequency, and high-frequency models. In addition, the authors in [10]
focus on minimizing the error of a curve fitting for the low-frequency range due to the
instability of the poles at low-frequency.

Many papers address a specific transient phenomenon to be integrated into the tran-
sient modeling of transmission lines. Gunawardana and Kordi, in [11], address the issue
of the transient behavior of transmission lines crossing. The developed model utilizes
the electromagnetic scattering theory to calculate space varying per unit length (PUL)
parameter matrices close to the conductor crossing. The presented model in [11] considers
different crossing angles for lossless and frequency-independent transmission lines. In [12],
accurate transient modeling of skin effect of MTL is proposed, where the authors take into
account the transient behavior of transmission line skin effects.

In addition to the frequency domains model, many different time-domain models
have been presented in the research. For instance, in [13], a transient model of MTLs using
the Time-Domain Finite-Element (TDFE) method is presented. The proposed model in [13]
is used for loose MTLs with frequency-dependent parameters to simulate the transient
behavior of MTLs. In addition, a real-time optimized transient modeling of a transmission
line is presented in [14], where the developed method subdivided the transmission line
modeling (TLM) into individual nonlinear elements to reduce the simulation time. More-
over, a time-domain model of multiphase nonuniform lines (NULs) is introduced in [15],
where the proposed model is based on traveling waves and takes into account the frequency
dependence of the line parameters. In [16], a time-domain macromodeling method for
the transient responses of underground cables is presented. The frequency-dependent
variables are modeled using frequency response and then converted to the time domain
transient model.

An estimation algorithm for mutually coupled transmission line parameters is de-
veloped in [17]. The presented model deals with the mutually coupled transmission line
as a black box and measures the voltages and the currents at the sending end during a
transient event. Then, the proposed algorithm obtains the unknown transmission line
parameters during the transient event from the measured voltages and currents. In [18],
frequency-dependent line model is developed, which utilizes the concept of frequency-
adaptive simulation of transients in which the Fourier spectra are adaptively shifted in the
frequency domain to reduce the discretization time-steps in the time domain. In [19], a new
Frequency-Dependent Line Model (FDLM) is proposed based on the Revised Multicon-
ductor Transmission Line (RMTL) equations. The proposed model postulated the physical
constraint that the voltage and current waves should travel collocated.
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Transmission line impedance fitting commonly uses a rational function approximation
to fit the model to the measurements. VF is a well-known and developed rational approxi-
mation function used in transmission line impedance fitting. Table 1 shows some of the
advantages and disadvantages of the VF method. VF is not a function in transmission line
length. Therefore, changing the length of the transmission line will require retaking the
impedance frequency response of the transmission line and developing a new model for
the transmission line. In contrast, the proposed model is developed based on the analytical
impedance equation of finite transmission lines. Therefore, the proposed model will not re-
quire retaking the impedance frequency response and developing a new model. VF method
obtains a two ports system for a transmission line. Therefore, changing the frequency range
of the impedance frequency response will require developing a new model. In contrast,
the proposed model is developed based on the transmission line lumped model. Thus,
the proposed model will remain the same for a wide range of frequencies with a low error
between the measurement and the fitted impedance. VF method uses a rational function
to fit the impedance frequency response as-is. Therefore, a low sampling rate in the high-
frequency range, even though fitted to a high degree of accuracy, will not give an accurate
representation of the transmission line impedance. On the other hand, the presented model
in this paper uses the transmission line impedance equation to fit the impedance frequency
response. Therefore, the proposed model will give a better representation of the impedance
frequency response, even with a lower sampling rate for a high-frequency range.

Table 1. Vector fitting method advantages and disadvantages.

Advantages Disadvantages

VF model can be used in time
domain and frequency domain.

The rational function approximation
is not a function in the transmission line length.

VF Capable of fitting the impedance
to a high degree of accuracy.

The rational function approximation
is a mathematical function that is not
correlated to the impedance of the
transmission line. Thus, it fits the data as-is.

VF enforces passivity to obtain
a passive model.

VF required high computation power to
obtain the model.

VF is a general mathematical
model capable of fitting any physical
quantity with an amplitude and angle (Vector).

The obtained model changes with the
frequency range.

This paper presents a novel fitting method of MTL based on the analytical impedance
equation of a transmission line using the impedance frequency response measurement.
To test the accuracy of the proposed model, a comparison between the proposed model
and a well-known and developed VF is presented. The impedance frequency response of
transmission lines is measured using a real-time digital simulator (RTDS).

The main contributions of the article are:

• Develop a fitting method for MTL impedance based on the analytical impedance equa-
tion. This will ensure that the proposed method behaves similarly to the transmission
line impedance.

• Develop a fitting method for MTL impedance which is a function of transmission line
length. This is to ensure that the proposed model will have an accurate representation
of the transmission line impedance for different transmission line lengths.

• Develop a fitting method capable of fitting MTL impedance for a wide range of
frequencies without modifying the model for higher frequencies.

Section 2 shows the basic fundamentals on which the rest of the research is based on.
Section 3 presents how the measurement of impedance frequency response is conducted
and the transmission line data. In addition, a comparison between a single-phase and
MTL measurement is presented. Moreover, the proposed model for MTL impedance fitting
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equation is presented as the reason for selecting the proposed model as well. Section 4
presents the deviation of resonance equations from the proposed model and how the
parameters of the proposed model are calculated from the impedance frequency response
and derived equations. In addition, a comparison between the measured impedance
frequency response and fitted impedance based on the model parameters calculation is
presented. Section 5 presents a developed algorithm used to improve the impedance fitting
of the proposed model and the impedance frequency response measurement. In addition,
Section 5 shows the error between the calculated parameters and the fitted parameters.
Section 6 presents the simulation and results. Section 7 details the features of the proposed
model over rational function approximation. Section 8 concludes the paper.

2. Wave Characteristics on Finite Transmission Lines

The wave characteristics of finite transmission lines impedance are determined by the
impedance equation of the transmission line. The impedance of the transmission line is
given by [20]:

Z = Z0
ZL + Z0 × tanh (γl)
Z0 + ZL × tanh (γl)

(1)

For short-circuit transmission line where the load impedance ZL = 0:

Z = Z0 × tanh (γl) (2)

where the characteristic impedance of the line is given by:

Z0 =

√
R + jωL
G + jωC

(3)

and, the propagation constant is given by:

γ = α + jβ =
√
(R + jωL)(G + jωC) (4)

where:

• α, attenuation constant, in Np/m.
• β, phase constant, in rad/m.
• R, resistance per unit length, in Ω/m.
• L, inductance per unit length, in H/m.
• G, conductance per unit length, in S/m.
• C, capacitance per unit length, in F/m.
• l, length of the transmission line, in m.

For lossless transmission line:

Z0 = R0 =

√
L
C

(5)

γ = jβ = jω
√

LC (6)

tanh (γl) = tanh (jβl) = j tan (βl) (7)

Therefore, the impedance of a lossless short-circuited transmission line is given by
(ZL = 0):

Z = jR0 tan (βl) (8)

Figure 1 shows the impedance frequency response of short-circuited transmission line
as described by (8). The impedance of short-circuited transmission line oscillates between
inductive and capacitive depending on the value of βl, which is frequency dependent, see
Table 2.
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Figure 1. Reactance profile of Short−Circuited lossless Line [20].

Table 2. Reactance range of Short−Circuited lossless Line [20].

l βl ZTL

(n− 1) λ
2 < l < (2n− 1) λ

4 (n− 1)π
4 < βl < (2n− 1)π

2 Inductive
(2n− 1) λ

4 < l < n λ
2 (2n− 1)π

2 < βl < nπ Capacitive
n λ

2 nπ 0

where n = 1, 2, 3, . . .

3. The Frequency Response of Transmission Lines Impedance and the Proposed
Model of MTL

In the previous section, the impedance frequency response of short-circuited transmis-
sion line has been shown using the analytical solution, see (8). Frequency Response Analysis
(FRA) is a methodology used to measure the frequency response of an impedance function
or a transfer function. A similar tool in RTDS called frequency scan “_rtds_FREQSCAN” is
used to obtain the impedance frequency response of short-circuited transmission line over
a wide range of frequencies. The frequency scan has a maximum range of 1MHz. The fre-
quency scan output a text file containing all the impedance matrices at their measured
frequencies. Therefore, RTDS is used to obtain the FRA impedance measurements of a
short-circuited transmission line. The data of the transmission line, which will be modeled
and studied, is shown in Table 3. Figure 2 shows the circuit diagram of FRA measurement
in RTDS.

Table 3. Transmission line Bergeron model parameters.

Model Bergeron (RLC Data Entry)

Line Length 100 [Km]
Transposition Ideally Transposed
Frequency 60 [Hz]
Ground Resistivity 100 [Ω- m]
Number of Phases 3
Positive Sequence Series Resistance 0.018547 [Ω/Km]
Positive Sequence Series Ind. Reactance 0.37661 [Ω/Km]
Positive Sequence Shunt Cap. Reactance 0.22789 [MeagaΩ× Km]
Zero Sequence Series Resistance 0.3618376[Ω/Km]
Zero Sequence Series Ind. Reactance 1.227747 [Ω/Km]
Zero Sequence Shunt Cap. Reactance 0.34513 [MeagaΩ× Km]
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Figure 2. RTDS circuit Line Diagram of FRA measurements.

The FRA measurements of transmission line impedance are obtained in a symmetrical
matrix format from RTDS. The impedance matrix of the transmission line at every measured
frequency point is in the form of: Z11 Z12 Z13

Z21 Z22 Z23
Z31 Z32 Z33

 (9)

The impedance matrices of the transmission line are measured at different frequency
points in a defined frequency range. To obtain a higher sampling rate and present clear
graphs, the shown measurements were taken up to 2 kHz with 200 k samplings. The imagi-
nary and real values of the transmission line impedance measurements of Z11 are shown in
Figures 3 and 4, respectively.

Figure 3. Frequency response measurements of transmission line imaginary impedance.

Figure 4. Frequency response measurements of transmission line real impedance.
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Figure 3 shows sharp changes in the imaginary part of the transmission line impedance
from maximum positive to minimum negative values (inductive to capacitive) at fo1 = 500 Hz
and at fo2 = 733 Hz, and slower changes from capacitive to inductive at 600 Hz and at
1200 Hz. Since the sharp changes from inductive to capacitive or vice versa ( fo1 and fo2)
are associated with high real impedance values, then it will be considered as the resonance
frequency of the transmission line. By analyzing Figures 3 and 4, we can see that the reso-
nance frequencies take place when the imaginary part of the transmission line impedance
is equal to zero, and the real part of the transmission line impedance is at maximum.
Moreover, Figure 3 shows two sets of resonance frequencies, while Figure 5 shows only one
resonance. This is because (2) is for a single-phase transmission line, while FRA impedance
measurement shown in Figures 3 and 4 are for MTLs. Therefore, by changing the number
of phases to one and maintaining the same parameters, see Table 4, a single resonance of a
single-phase transmission line resonance will appear as shown in Figures 5 and 6.

Table 4. Transmission line Bergeron model parameters.

Model Bergeron (RLC Data Entry)

Line Length 100 [Km]
Frequency 60 [Hz]
Ground Resistivity 100 [Ω-m]
Number of Phases 1
Positive Sequence Series Resistance 0.018547 [Ω/Km]
Positive Sequence Series Ind. Reactance 0.37661 [Ω/Km]
Positive Sequence Shunt Cap. Reactance 0.22789 [MeagaΩ× Km]

Figure 5. Frequency response measurements of a single phase transmission line imagi-
nary impedance.

Figure 6. Frequency response measurements of a single phase transmission line real impedance.
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Therefore, due to the mutual coupling between the phases, a second resonance appears
in addition to the first resonance of a single transmission line. Moreover, both resonances
have the same repeated pattern (2n + 1)× f0, which is associated with the tanh function.
Therefore, a more accurate representation of the MTL impedance equation (in the case Z11)
is proposed to be:

Z11 = Zo1 × tanh γ1l + Zo2 × tanh γ2l (10)

let
Z1 = Zo1 × tanh γ1l (11)

Z2 = Zo2 × tanh γ2l (12)

where Z1 represents the lumped mutual coupling impedance of the transmission line and
Z2 represents the lumped self impedance of the transmission line. Equation (10) will be
used to model the MTLs impedance instead of (2). The added second term in (10) is because
the frequency response of MTLs impedance (for Z11) has a second resonance, and due
to the similarity and nature of both resonances, the same function (tanh) is used. In the
next section, the parameters of the proposed model (10) will be calculated using derived
resonance equations and the impedance frequency response of MTL.

4. Parameters of MTLs Proposed Impedance Equation

To obtain the parameters of the proposed transmission line impedance equation (in this
case for Z11), a set of equations must be derived from the complex nonlinear transmission
line impedance equation:

Z11 = Z1 + Z2 (13)

Z11 = Zo1 × tanh γ1l + Zo2 × tanh γ2l (14)

where

Zo1 =

√
R1 + jωL1

G1 + jωC1
Zo2 =

√
R2 + jωL2

G2 + jωC2
(15)

γ1l =
√
(R1 + jωL1)(G1 + jωC1) (16)

γ2l =
√
(R2 + jωL2)(G2 + jωC2) (17)

The transmission line length is multiplied by the per unit length parameters. Thus, the
parameters shown are for the entire length of the transmission line. Therefore, the trans-
mission line impedance of Z11:

Z11 =

√
R1 + jωL1

G1 + jωC1
× tanh

√
(R1 + jωL1)(G1 + jωC1) +

√
R2 + jωL2

G2 + jωC2
× tanh

√
(R2 + jωL2)(G2 + jωC2) (18)

Since the air resistance between phases and between phase and ground is very high
(109 Ω

m ), then let:
G1 = G2 = 10−9 (19)

Since the capacitance in µF and the measured impedance frequency range is 10−6 Hz
to 2 MHz, then at low-frequency

tanh
√
(R1 + jωL1)(G1 + jωC1) =

√
(R1 + jωL1)(G1 + jωC1) (20)

tanh
√
(R2 + jωL2)(G2 + jωC2) =

√
(R2 + jωL2)(G2 + jωC2) (21)

Therefore, (18) at low-frequency will be:

R1 + R2 + jω(L1 + L2) = Z11 (22)
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Let,

RT = R1 + R2 LT = L1 + L2 (23)

where
RT = Real(Z11)at10−6 Hz (24)

LT =
Im(Z11)at10−6 Hz

ω
(25)

where RT and LT are the total resistance and inductance, respectively, obtained from
transmission line FRA measurement at 10−6 Hz. Figure 7 shows two resonances ( f01 = 500
and f02 = 733) where the imaginary part of the transmission line impedance equals
zero, and the real part is at maximum. Moreover, Figure 7 shows two distinct maximum
values of the real part. Each one of them is associated with a term in (18). Therefore,
Equation (18) must be written in rectangular complex format (real and imaginary) to obtain
the transmission line parameters. From equating the imaginary part of (18) to zero and
the real part by the relative maximum values, a set of equations must be derived first.
The derivation of the resonance equations will be presented in the next section.

Figure 7. Frequency response measurements of transmission line impedance.

4.1. Derivation of Resonance Equations

To obtain the parameters of the proposed transmission line impedance equation (in this
case for Z11), a set of equations must be derived from the complex nonlinear transmission
line impedance equation at the resonance, ( f01 = 500 and f02 = 733). Since the imaginary
part of Z11 equals to zero at resonance ( f01 = 500 and f02 = 733) then,

Im(

√
R1 + jωL1

G1 + jωC1
× tanh

√
(R1 + jωL1)(G1 + jωC1) +

√
R2 + jωL2

G2 + jωC2
× tanh

√
(R2 + jωL2)(G2 + jωC2)) = 0 (26)

First we take the first part of (26),

Im(

√
R1 + jωL1

G1 + jωC1
× tanh

√
(R1 + jωL1)(G1 + jωC1)) (27)

let,

γ1 =
√
(R1 + jωL1)(G1 + jωC1) (28)

Using De Moivre’s theorem:

r =

√√
(R1G1 −ω2L1C1)2 + (ωL1G1 + ωC1R1)2 (29)
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θ =
1
2

tan−1(
ωL1G1 + ωC1R1

R1G1 −ω2L1C1
) (30)

Therefore,
γ1 = −r sin θ + i r cos θ (31)

Similarly

Z01 =

√
R1 + jωL1

G1 + jωC1
=

√
(R1 + jωL1)(G1 + jωC1)

(G1 + jωC1)(G1 + jωC1)
(32)

Let
A =

1
G2

1 + ω2C2
1

(33)

Then

Z01 = (−AG1r sin θ + ωAC1r cos θ)+

i(AG1r cos θ + ωAC1r sin θ)
(34)

Let
h = (−AG1r sin θ + ωAC1r cos θ) (35)

k = (AG1r cos θ + ωAC1r sin θ) (36)

a = −r sin θ b = r cos θ (37)

Then

Z01 = h + i k γ1 = a + i b (38)

Therefore
Z1 = (h + i k) tanh(a + i b) (39)

Since

tanh(x) =
ex − e−x

ex + e−x (40)

Z1 = (h + i k)
ea+i b − e−a−i b

ea+i b + e−a−i b (41)

Solving for the numerator first

Z1 = (h + i k)(eaei b − e−ae−i b) (42)

Let

A1 = ea A2 = e−a (43)

Then
Z1 = (h + i k)[(A1 − A2) cos b + i (A1 + A2) sin b] (44)

Let

x = (A1 − A2) cos b y = (A1 + A2) sin b (45)

Therefore,
Z1 = (hx− ky) + i (hy + kx) (46)

hy + kx = AG1rA1 cos(θ + b)− AG1rA2 cos(θ − b)+

ωAC1rA1 sin(θ + b)−ωAC1rA2 sin(θ − b)
(47)
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hx− ky = −AG1rA1 sin(θ + b) + AG1rA2 sin(θ − b)+

ωAC1rA1 cos(θ + b)−ωAC1rA2 cos(θ − b)
(48)

Let the real parts of the equation equal to:

A5 = AG1r(A2 sin(θ − b)− A1 sin(θ + b)) (49)

A6 = ωAC1r(A1 cos(θ + b)− A2 cos(θ − b)) (50)

Let the imaginary parts of the equation equals to:

A7 = AG1r(A1 cos(θ + b)− A2 cos(θ − b)) (51)

A8 = ωAC1r(A1 sin(θ + b)− A2 sin(θ − b)) (52)

Let,

γ = θ − b β = θ + b (53)

For the denominator

ea+i b + e−a−i b = A1 cos b + A2 cos b + i(A1 sin b− A2 sin b) (54)

Multiplying by the complex conjugate, the denominator will be

D = [(A1 + A2) cos b]2 + [(A1 − A2) sin b]2 (55)

Multiplying the numerators (Equations (49)–(52)) by the complex conjugate of the
denominator:

A1 cos b + A2 cos b− i(A1 sin b− A2 sin b) (56)

We get:

Real11 = AG1r(A2
1 sin(−θ)− A1 A2 sin(θ + 2b)+

A1 A2 sin(θ − 2b) + A2
2 sin(θ))

(57)

Real22 = ωAC1r(A2
1 cos(−θ)− A2 A1 cos(θ − 2b)+

A1 A2 cos(θ + 2b)− A2
2 cos(θ))

(58)

Therefore
Real(Z1) =

Real22 + Real11

D
(59)

For the imaginary part:

Im11 = AG1r(A2
1 cos(−θ)− A2 A1 cos(θ − 2b)+

A1 A2 cos(θ + 2b)− A2
2 cos(θ))

(60)

Im22 = ωAC1r(A2
1 sin(θ)− A2 A1 sin(θ − 2b)+

A1 A2 sin(θ + 2b)− A2
2 sin(θ))

(61)

Im(Z1) =
Im22 + Im11

D
(62)

Z1 = Zo1 × tanh γ1l =
Real22 + Real11

D
+ j

Im22 + Im11

D
(63)

Similarly, for the second part of (26):

Z2 = Zo2 × tanh γ2l =
Real33 + Real44

D1
+ j

Im33 + Im44

D1
(64)
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At the resonance frequency the imaginary value goes to zero while the real value will
be at maximum, therefore:

Im22 + Im11

D
+

Im33 + Im44

D1
= 0 (65)

Since Im11 and Im33 is multiplied by G1 and G2, respectively (where both are equal to
10−9), then (65) will be:

Im22D1 + Im44D = 0 (66)

Since ωAC1rD1 cannot be zero, then

A2
1 sin(θ)− A2 A1 sin(θ − 2b) + A1 A2 sin(θ + 2b)− A2

2 sin(θ) = 0 (67)

To make (67) equal to zero then,

θ = 0 b =
π

2
(68)

One characteristic of the transmission line imaginary impedance is the sharp change
at resonance; this is due to the tanh function. Solving for a single-phase transmission line
impedance will result in Im22 equals to zero at resonance. Therefore, by adding a second
term Im44D, the resonance frequency will increase or decrease by a small value due to the
sharp change at resonance. In addition, the peak to peak value of the first term of (66) at
the first resonance compared to the impedance of the second term is very high. The second
characteristic is that the resonance of both terms is repeated according to (2n + 1) since
it is a tanh function. Therefore, the two resonances will come close and separate apart at
different frequency points through the frequency range. Therefore, the effects of the second
resonance on the first resonance will change through the frequency range. Thus, taking the
measurement of the resonance location with minimum effects from the second resonance
will give an accurate result. This will not affect the derived equations but will emphasize the
impact of the selected measurement throughout the frequency range. Therefore, the second
part of (66) is forced to be zero, assuming no effects on the first resonance. Since

b = r cos(θ) =
π

2
(69)

Then,

r =

√√
(R1G1 −ω2L1C1)2 + (ωL1G1 + ωC1R1)2 =

π

2
(70)

L2
1 =

π4

16 −ω2C2
1 R2

1 − R2
1G2

1

ω4C2
1 + ω2G2

1
(71)

Since G1 has a very small value, then:

L2
1 =

π4

16 −ω2C2
1 R2

1

ω4C2
1

(72)

Since the value of C is in µF, and the first resonance takes place under 1 kHz, then

π4

16
>> ω2C2

1 R2
1 (73)

Then

L2
1ω4C2

1 =
π4

16
(74)



Mathematics 2022, 10, 2677 13 of 32

π2

4ω2 = L1C1 (75)

Similarly, for the second resonance:

π2

4ω2
2
= L2C2 (76)

Solving for the real part, we can ignore the real part associated with Z2 to solve for Z1
and vice versa. This is due to the high real part impedance value of Z1 at resonance ( fo1)
compared to the real value of Z2 at fo1. Since the real part of Z1 will equal to a maximum at
f01 when θ equals zero and b equals to π/2, then

Real(Z1) =
Real22 + Real11

D
(77)

Since Real11is multiplied by G1, then

Real11 ≈ 0 (78)

Since θ equals zero and b equals to π/2

Real22 = ωAC1r(A2
1 cos(−θ)− A2 A1 cos(θ − 2b)+

A1 A2 cos(θ + 2b)− A2
2 cos(θ))

(79)

Then
Real22 = ωAC1r(A2

1 − A2
2) (80)

Since
D = (A1 − A2)

2 (81)

Let the maximum impedance of the real part be equal to:

Real(Z1) = ZR1 (82)

Then

ZR1 = ωAC1r
(A2

1 − A2
2)

(A1 − A2)2 (83)

ZR1 = ωAC1r
(A2

1 − A2
2)

(A2
1 + A2

2 − 2)
(84)

ZR1 = ωAC1r
e−2r sin(θ) − e2r sin(θ)

e−2r sin(θ) + e2r sin(θ) − 2
(85)

Since

− coth(
1
2

x) =
e−x − ex

e−x + ex − 2
(86)

Then,

ZR1 = −ωAC1r coth(
1
2

2r sin(θ)) (87)

coth(x) =
cosh(x)
sinh(x)

(88)

Since the angle θ is very small at resonance, then,

cosh(x) = 1 sinh(x) = x (89)
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Therefore
ZR1 = ωAC1r

1
r sin(θ)

(90)

Since
A =

1
G2

1 + ω2C2
1

(91)

And the values of G1 and θ are small, then

ZR1 = − 1
ωC

1
θ

(92)

where,

θ =
1
2

tan−1(
ωL1G1 + ωC1R1

R1G1 −ω2L1C1
) (93)

Initially the value of θ made to equal zero to solve for the imaginary part. Substituting
θ by zero in (92) will result in infinity. The impedance value during resonance is high but
not infinite. In addition, Equation (93) can not equal zero due to the summation of two
positive number in the numerator, thus the value of θ should be small (close to zero). Since
G1 has a small value as well as (ωL1G1+ωC1R1

R1G1−ω2L1C1
) at resonance, then

θ =
1
2
(

ωC1R1

−ω2L1C1
) (94)

θ =
R1

−2ωL1
(95)

Therefore, the real part of the impedance at the crossover frequency will be:

ZR1 =
2L1

C1R1
(96)

Similarly for the second resonance,

ZR2 =
2L2

C2R2
(97)

Therefore, the derived resonance equations are:

L1C1 =
π2

4ω2
1

L2C2 =
π2

4ω2
2

(98)

ZR1 =
2L1

C1R1
ZR2 =

2L2

C2R2
(99)

where:
ZR1: is the maximum peak of the real part of the transmission line impedance at fo1.
ZR2: is the maximum peak of the real part of the transmission line impedance at fo2.
Equation (99) and Figure 8 show that the maximum real impedance of transmission line
(ZR1) and (ZR2) at resonance is dependent on transmission line parameters (R, L, and C)
and not on the frequency.
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Figure 8. Frequency response measurements of transmission line real impedance.

4.2. Model Parameters Calculation of Z11

Through mathematical derivation and the measured frequency response of transmis-
sion line impedance, six equations were obtained with six unknowns. Solving (23), (98),
and (99) for L2 will yield:

L2
2(a) + L2(b) + c = 0 (100)

a = 2ZR1π2 + 2
π2ω2

1
ω2

2
ZR2 (101)

b = −4LT
π2ω2

1
ω2

2
ZR2 (102)

c = 2L2
T

π2ω2
1

ω2
2

ZR2 −
π4

4ω2
2

ZR1RTZR2 (103)

Since Z11 at 10−6 Hz:

Z11 = 13.297721647936953 + 0.000001099829278iΩ (104)

Then,
RT = 13.297721647936953Ω (105)

LT = 0.175043266078569H (106)

where
ZR1 = 7.815850394108994e + 03Ω (107)

ZR2 = 6.171053383188052e + 04Ω (108)

At:

fo1 = 499.55 Hz fo2 = 733.15 Hz (109)

ω1 = 2π fo1 ω2 = 2π fo2 (110)

By solving the second-order (100), the proposed model parameters of Z11 are calcu-
lated, see Table 5.
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Table 5. Proposed model calculated parameters for Z11.

Transmission Line Parameters Calculation

R1 12.070792 [Ω]
L1 0.108695 [H]
C1 2.304245 [µF]
R2 1.226930 [Ω]
L2 0.066348 [H]
C2 1.752583 [µF]

By substituting the calculated proposed model parameters from Table 5 in (18),
the transmission line measured and the fitted impedance for both real and imaginary
of Z11 are shown in Figures 9 and 10, respectively.

Figure 9. Frequency response measurements and the proposed model calculation of transmission
line real impedance (Z11).

Figure 10. Frequency response measurements and the proposed model calculation of transmission
line imaginary impedance (Z11).

4.3. Model Parameters Calculation of Z12

The FRA impedance measurements of the transmission line are obtained in a symmet-
rical matrix format from RTDS. The impedance matrix of the transmission line at every
single measured frequency point is in the form:Z11 Z12 Z13

Z21 Z22 Z23
Z31 Z32 Z33

 (111)

where
Z12 = Z21 = Z13 = Z31 = Z23 = Z32 (112)

Z11 = Z22 = Z33 (113)
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From the mathematical formula derived in the last section, the parameters of Z12 can be
calculated using the FRA impedance measurements of Z12. Figures 11 and 12 show the FRA
of transmission line impedance of Z11 and Z12 for both real and imaginary part respectively.
Therefore, comparing Z11 and Z12 in Figures 11 and 12 show that at the first resonance,
fo1 = 500 Hz, both the real and imaginary part of Z11 and Z12 have the same val-
ues. In contrast, the second resonance, fo2 = 733 Hz, both the real and imaginary part
of Z11 and Z12 have a different values with an opposite sign. Therefore, by compar-
ing both Figures 11 and 12, we can derive the impedance equation which describes Z12.
Therefore, since

Z11 = Zo1 × tanh γ1l + Zo2 × tanh γ2l (114)

Which is simplified to
Z11 = Z1 + Z2 (115)

Then for Z12,
Z12 = Z3− Z4 (116)

and since both of Z11 and Z12 have the same real and imaginary values for the first resonance
fo1 then,

Z3 = Z1 (117)

Figure 11. Frequency response measurements of transmission line real impedance (Z11 and Z12).

Figure 12. Frequency response measurements of transmission line imaginary impedance (Z11

and Z12).

Therefore, to obtain the parameters of Z12, the Equations (23) must change to:

RT = R3 − R4 LT = L3 − L4 (118)

Using Equations (98), (99) and (118), L4 can be calculated:

L2
4(a) + L4(b) + c = 0 (119)
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a = 2ZR3π2 − 2
π2ω2

3
ω2

4
ZR4 (120)

b = −4LT
π2ω2

3
ω2

4
ZR4 (121)

c = −2L2
T

π2ω2
3

ω2
4

ZR4 +
π4

4ω4
4

ZR3RTZR4 (122)

Since Z12 at 1× 10−6 Hz:

Z12 = 11.443021182700990 + 0.000000472154060iΩ (123)

Then,
RT = 11.443021182700990Ω (124)

LT = 0.075145652597228H (125)

ZR3 = 7.810237767027844e + 03Ω (126)

ZR4 = 3.084092525461649e + 04Ω (127)

fo3 = 499.55 Hz fo4 = 733.14 Hz (128)

ω3 = 2π fo3 ω4 = 2π fo4 (129)

By solving the second order equation, the proposed model parameters of Z12 can be
calculated. Table 6 shows that R3, L3, and C3 have the same values as R1, L1, and C1 of
Z11 from Table 5. Therefore, the calculation carried out to find all the parameters was not
necessary, but shows that the values of Z1 and Z3 are equal in (117). Since the values of R3,
L3, and C3 are already obtained in Table 5, then Equations (98), (99) and (118) can be used
to calculate R4, L4, and C4 for Z12.

Table 6. Proposed model calculated parameters for Z12, Z13, and Z23.

Transmission Line Parameters Calculation

R3 12.068966 [Ω]
L3 0.1086480 [H]
C3 2.3052476 [µF]
R4 0.6259449 [Ω]
L4 0.0335024 [H]
C4 3.4709012 [µF]

Moreover, another method to obtain the line parameters for Z2 is by taking the ratio
of ZR2 to ZR4. Therefore, let

α =
ZR2

ZR4
= 2.000930040924867 ≈ 2 (130)

To maintain the same resonance at fo2, and reduce the value of ZR2 from (108) by
α, then

L4 =
L2

α
C4 = C2α R4 =

R2

α
(131)

Once these sets of Equations (131) are met, then the resonance frequency will remain
the same (98), while the magnitude of ZR2 will drop to match the measured value of Z12
(99). Comparing the vales of R4, L4, and C4 from Table 6 with the values of R2, L2, and C2
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from Table 5 shows that the values of R4 and L4 were halved while the value of C4 was
doubled. Therefore, the impedance of Z12 (116), can be written using the parameters of Z11:

Z12 = Z3− Z4 = Z1− Z2
α

(132)

From the calculated model parameters in Table 6, and by using equation:

Z12 =

√
R3 + jωL3

G3 + jωC3
× tanh

√
(R3 + jωL3)(G3 + jωC3)−

√
R4 + jωL4

G4 + jωC4
× tanh

√
(R4 + jωL4)(G4 + jωC4) (133)

where (G3 = G4 = G1).
The real and imaginary impedance of the measured and the fitted impedance of Z12

are shown in Figures 13 and 14, respectively.

Figure 13. Frequency response measurements and the proposed model calculation of transmission
line real impedance (Z12).

Figure 14. Frequency response measurements and the proposed model calculation of transmission
line imaginary impedance (Z12).

5. Developed Algorithm for an Accurate Fitting

An algorithm is developed to minimize the error between the measured impedance
frequency response and the proposed model. The calculation of the proposed model
parameters has some initial approximation. Therefore, the presented algorithm uses the
calculated parameters of the proposed model as initial values to obtain a better fit of the
MTL impedance. The proposed algorithm is shown in Algorithm 1.

The parameters of the proposed model which fit the measured impedance of Z11, Z12,
and Z23 more accurately are shown in Tables 7, 8 and 9, respectively.

Tables 7–9 show the error between the calculated and the fitted parameters of the
proposed model for Z11, Z12, and Z23. Even though some approximation was made in
solving the transmission line impedance equations, the maximum error between the fitted
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and the calculated parameters is within 1%. The parameters obtained from the algorithm
are shown in Tables 7–9, which are used to fit the impedance of the MTLs in a 1 MHz range.

Algorithm 1 Developed Algorithm for an accurate model.

Require: The calculated initial values (R1, L1, C1, R2, L2, and C2)
Calculate the Error and ∑ Error
while Error<x || ∑ Error is +ve > (x1) || ∑ Error is -ve < (-x1) do

while Error<x do
Calculate the Error
Calculate dL1, dC1, dL2, and dC2
Calculate the new error after changing L1 = L1 + dL1
Calculate the new error after changing C1 = C1 + dC1
Calculate the new error after changing L2 = L2 + dL2
Calculate the new error after changing C2 = C2 + dC2
Change the parameters which give the minimum error

end while
if ∑ Error is +ve > (x1) then

R1 = R1 − dR1
R2 = R2 + dR2

else if ∑ Error is -ve < (-x1) then
R1 = R1 + dR1
R2 = R2 − dR2

end if
end while

Table 7. The calculated and fitted parameters of the proposed model for Z11.

TL Parameters Calculated Fitted Error %

R1 12.070792 [Ω] 12.06 [Ω] 0.0895
L1 0.108695 [H] 0.108547 [H] 0.1371
C1 2.304245 [µF] 2.305941 [µF] 0.0735
R2 1.226930 [Ω] 1.237722 [Ω] 0.8719
L2 0.066348 [H] 0.066593 [H] 0.3678
C2 1.752583 [µF] 1.746129 [µF] 0.3696

Table 8. The calculated and fitted parameters of the proposed model for Z12.

TL Parameters Calculated Fitted Error %

R3 12.068966 [Ω] 12.06 [Ω] 0.0743
L3 0.1086480 [H] 0.108546 [H] 0.0944
C3 2.3052476 [µF] 2.305959 [µF] 0.0309
R4 0.6259449 [Ω] 0.618861 [Ω] 1.1447
L4 0.0335024 [H] 0.033297 [H] 0.6179
C4 3.4709012 [µF] 3.492238 [µF] 0.6110

Table 9. The calculated and fitted parameters of the proposed model for Z23.

TL Parameters Calculated Fitted Error %

R5 12.068966 [Ω] 12.06 [Ω] 0.0743
L5 0.1086480 [H] 0.108546 [H] 0.0944
C5 2.3052476 [µF] 2.305959 [µF] 0.0309
R6 0.6259449 [Ω] 0.618861 [Ω] 1.1447
L6 0.0335024 [H] 0.033296 [H] 0.6191
C6 3.4709012 [µF] 3.492282 [µF] 0.6122
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The parameters of Z23 are slightly different from Z12 and Z13. This is due to the
difference in the impedance measurement obtained from RTDS. Therefore, to have a more
accurate fit for the proposed model, the algorithm is used for Z23 as well. Comparing the
Tables 8 and 9 shows that the difference between the parameters of Z23 and Z12 is small.
Figure 15 shows the implementation procedure of the proposed model.

Figure 15. Implementation procedure of the proposed model.

6. Simulation Results

To ensure the accuracy of the proposed model, a well-known and developed fitted
method to fit MTL impedance is used—VF. VF is a robust method of rational function
approximation. VF is a general methodology to fit the measured or simulated transient
frequency response of electric equipment or an n-port network. VF has been used to model
the transient behavior of transmission lines and underground cables. The rational function
approximation of VF is given by [2]:

f (s) =
N

∑
n=1

cn

s− an
+ d + s.h (134)

where, Cn: Residues, an: poles, d and h : real numbers, and n: the number of approximation.
Therefore, to have a better fit of the measured data, the number of approximation (n) must
have a higher value.

The proposed model uses the set of equations derived from the frequency response
measurement of MTL impedance based on the analytical impedance equation. Equation (18)
and the parameters obtain from the fitting algorithm in Table 7 are used to calculate Z11, Z22,
and Z33. For Z12, Z21, Z13, Z31, Z23, and Z32 Equation (133), the parameters in Tables 8 and 9
are used for Z12 and Z23, respectively.

The impedance fitting of the transmission line for different frequency ranges will
be shown for the presented model and VF method. For the proposed analytical model,
the parameters and the equations will be fixed under different frequency ranges. In addition,
the error between the measured and the fitted impedance for both models will be presented.
The measurement of the transmission line impedance was carried out on RTDS. The used
model and data in the simulated transmission line are shown in Table 10. The RTDS circuit
line diagram is shown in Figure 16. Table 10 shows the parameters of the entire transmission
line shown in Figure 16. Therefore, each section of the transmission line shown in Figure 16
is 50 km long.
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Table 10. Transmission line Bergeron model parameters.

Model Bergeron (RLC Data Entry)

Line Length 100 [Km]
Transposition Ideally Transposed
Frequency 60 [Hz]
Ground Resistivity 100 [Ω-m]
Number of Phases 3
Positive Sequence Series Resistance 0.018547 [Ω/Km]
Positive Sequence Series Ind. Reactance 0.37661 [Ω/Km]
Positive Sequence Shunt Cap. Reactance 0.22789 [MeagaΩ×Km]
Zero Sequence Series Resistance 0.3618376[Ω/Km]
Zero Sequence Series Ind. Reactance 1.227747 [Ω/Km]
Zero Sequence Shunt Cap. Reactance 0.34513 [MeagaΩ×Km]

Figure 16. RTDS circuit Line Diagram of FRA measurements.

6.1. Case 1: MTL Impedance Fitting for up to 10 kHz Frequency Range

In this case, the tested frequency range is 1−6 to 10 kHz. The number of approximations
used for the VF is set to 50 (n = 50). Figures 17 and 18 show the magnitude and the angle of
the proposed model and the measurement of the transmission line impedance, respectively.
The green line in Figure 17 shows the error between the measured and fitted impedance
of the three-phase transmission line using the proposed model with a maximum error
of 0.1111%.

Figures 19 and 20 show the magnitude and the angle of the VF method and the
measurement of the transmission line impedance, respectively. The green lines in Figure 19
show the error between the measured and fitted impedance of the three-phase transmission
line using the VF method with a maximum error of 0.0222%.

6.2. Case 2: MTL Impedance Fitting for up to 100 kHz Frequency Range

In this case, the tested frequency range is up to 100 kHz. The number of approxima-
tions for the VF is set to 750 (n = 750). Figures 21 and 22 show the magnitude and the
angle of the proposed model and the measurement of the transmission line impedance,
respectively. The green lines in Figure 21 show the error between the measured and fitted
impedance of the three-phase transmission line using the proposed model with a maximum
error of 0.1309%.
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Figure 17. The magnitude of the measured and fitted impedance using the proposed model, |Z11|,
|Z12|, and |Z23|.

Figure 18. The angle of the measured and fitted impedance using the proposed model impedance,
∠Z11, ∠Z12, and ∠Z23.
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Figure 19. The magnitude of the measured and fitted impedance using VF, |Z11|, |Z12|, and |Z23|.

Figure 20. The angle of the measured and fitted impedance using VF , ∠Z11, ∠Z12, and ∠Z23.
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Figure 21. The magnitude of the measured and fitted impedance using the proposed model, |Z11|,
|Z12|, and |Z23|.

Figure 22. The Angle of the measured and fitted impedance using the proposed model, ∠Z11, ∠Z12,
and ∠Z23.
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Figures 23 and 24 show the magnitude and the angle of the VF method and the
measurement of the transmission line impedance, respectively. The green lines in Figure 23
show the error between the measured and fitted impedance of the three-phase transmission
line using the VF method with a maximum error of 0.1039%.

Figure 23. The magnitude of the measured and fitted impedance using VF, |Z11|, |Z12|, and |Z23|.

Figure 24. The angle of the measured and fitted impedance using VF , ∠Z11, ∠Z12, and ∠Z23.
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6.3. Case 3: MTL Impedance Fitting for up to 1 MHz Frequency Range

In this case, the tested frequency range is up to 1 MHz. Assuming a linear relationship
between the frequency range and the number of approximation (n) from the previous
cases, then the number of approximations required to fit the impedance curve using VF
for the 1 MHz range is 11,250. Simulating this high number of approximations is highly
computational costly. Therefore, for cases 3 and 4, only the proposed model results will
be shown. Figures 25 and 26 show the magnitude and the angle of the proposed model
and the measurement of the transmission line impedance, respectively. The green lines in
Figure 25 show the error between the measured and fitted impedance of the three-phase
transmission line using the proposed model with a maximum error of 0.1530%.

Figure 25. The magnitude of the measured and fitted impedance using the proposed model, |Z11|,
|Z12|, and |Z23|.

6.4. Case 4: Changing the Transmission Line Length for 1 MHz Frequency Range

Since the proposed model is based on the analytical impedance equation of a finite
transmission line, then the model must correlate to the transmission line length. Therefore,
changing the length of the line will not increase the error level between the measured and
calculated transmission line impedance. The new length of the simulated transmission
line is (150 km). Since the added length of the line is half of the original length, then all
the parameters of Z11, Z12, and Z23 in Tables 7–9 are multiplied by (1.5). Figures 27 and 28
show the magnitude and the angle of the proposed model and the measurement of the
transmission line impedance, respectively. The green lines in Figure 27 show the error
between the measured and fitted impedance of the three-phase transmission line using the
proposed model with a maximum error of 0.1660%.
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Figure 26. The angle of the measured and fitted impedance using the proposed model, ∠Z11, ∠Z12,
and ∠Z23.

Figure 27. The magnitude of the measured and fitted impedance using the proposed model, |Z11|,
|Z12|, and |Z23|.
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Figure 28. The angle of the measured and fitted impedance using the proposed model, ∠Z11, ∠Z12,
and ∠Z23.

6.5. Computational Time Comparison between the Proposed Method and VF

In this section, the computational time comparison between the proposed method and
VF is presented. The fitted impedance of MTL using the VF method was not obtained due to
the high computational power requirement for the 1 MHz range. Therefore, the conducted
comparison is under the assumption of a linear relationship between the measured time for
a lower approximation number (N = 3000) of VF and the required approximation number
to fit the impedance curve (N = 11,250). Table 11 presents the computer specifications that
have been used to fit the MTL impedance. The maximum number of approximations for
VF method that could be fitted using the computer specifications is 3000. Therefore, the VF
method required higher computation power to obtain the fitted model. Thus, Table 12
shows the approximation computational time for VF and the exact computational time of
the proposed method.

Table 11. The computer specifications.

Computer Specs

RAM 32 GB, 3200 MHz
CPU i7-11700F
Operating system Windows 11

Table 12. Computational time.

Method Computational Time [S]

VF 24,663.37
Proposed Model 516.75
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6.6. Comparison between VF and the Proposed Method

VF method is capable of fitting the transmission line impedance to a very high degree
of accuracy. On the other hand, it is required high computational power to develop the
model, as shown in the previous cases. In contrast, the proposed model uses a set of
constant parameters that are calculated from the impedance frequency response. Therefore,
the proposed model does not require a high computational requirement to calculate the
model parameters, see Table 13. In addition, the proposed model is based on the impedance
equation of a finite transmission line. Thus, the proposed model is a function of transmis-
sion line length. However, the VF method is based on the rational function approximation,
which is not a function in transmission line length.

Table 13. Comparison between VF and the proposed model.

Frequency [kHz]
Number of Parameters Computational Power

Vector Fitting Proposed Model Vector Fitting Proposed Model

10 50 24 Low Low
100 750 24 Medium Low
1000 NA 24 High Low

Moreover, the VF method required retaking the frequency response impedance mea-
surements in case the frequency range is changed and developing a new model for MTL,
see cases 1, 2. The proposed model uses the same equations and the same parameters for a
wide range of frequencies, see cases 1, 2, and 3.

7. Features of the Proposed Method

Many different fitting methods have the capability of fitting a set of data to a very
high degree of accuracy with minimum error. The fitting is achieved through a set of
mathematical equations which may not be correlated to the fitted data. In addition, if the
sampling number of the fitted data is small, then the obtained fitted curve, even though
fitted to a very high degree, will not give accurate values of the data. For example, Figure 29
shows two different sampling rates of a transmission line impedance (200 and 200 k). This
problem manifests when taking the frequency response for a high-frequency range while
being limited by a set of the sampling rate. Due to the low sampling rate of the data,
the fitted curve does not reflect the correct values.

Figure 29. Frequency response measurement of the transmission line imaginary impedance (Z11)
with different sampling rates.

In contrast, using the analytical impedance equation to describe the impedance of
the transmission line, even with a reduction of sampling rates, will result in a better
representation of a transmission line impedance.

In addition, the proposed method is based on finite transmission line impedance,
which is a function of the transmission line length. Therefore, changing the length of
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the transmission line will not require any changes in the model, as shown in case 4,
unlike different fitting methods, which required retaking the frequency response of the
transmission line and generating new parameters for a mathematical function.

Moreover, curve fitting methods require a high number of approximations to fit the
impedance curve of the transmission line for a high-frequency range, which in turn reflects
in the high number of terms the mathematical function required to fit the curve. Moreover,
the higher number of approximations will require more computational power to fit the
impedance curve. In contrast, the proposed analytical solution has a constant set of terms
and parameters which will not change with the frequency range, see cases 1, 2, and 3.

8. Conclusions

In this paper, a novel fitting method of MTL based on the analytical impedance
equation of a transmission line using the impedance frequency response measurement is
presented. The impedance frequency response of MTL is measured using a RTDS. Moreover,
the parameters of the proposed model are calculated using derived resonance equations and
the impedance frequency response measurement. In addition, an algorithm is developed
to further fit the proposed model to the impedance frequency response measurement of
MTL. The error between the calculated model parameters using the derived resonance
equations and the fitted ones is within 1%. The proposed fitting model is a function of the
transmission line length, since it is based on the analytical impedance equation of a finite
transmission line. Therefore, changing the transmission line length will not require retaking
the impedance frequency response of MTL, as shown in case 4. Furthermore, the proposed
model uses a fixed set of equations (Z11, Z12, and Z23) and constant parameters (R, L, C,
and G) to fit the impedance frequency response for a wide range of frequencies, as shown
in cases 1, 2, and 3.
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