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1. Introduction

Fractional Calculus (FC), which can be traced back to the 17th century, is derived from
integral calculus. A wide variety of concepts for fractional operators in the continuous
setting have been defined in the literature so far, such as Riemann–Liouville, Hadamard,
Caputo, proportional, Hilfer fractional operators, and so on; the reader can refer to [1–4]
and the references therein. Fractional models are of great theoretical significance and
practical value, compared to integer models, in real world problems. Therefore, FC has
been widely used in mathematics, physics, engineering, etc. For more recent developments
on fractional calculus, see the monographs [5–12].

It is generally known that Discrete Fractional Calculus (DFC) is the extension of FC.
The models for DFC play an important role in modeling complex problems of discontinuous
systems, which are far superior to their counterparts in continuous settings. Unlike FC
of the continuous system, whose history is more than hundreds of years old, the idea of
DFC is very recent. The theory of DFC has been investigated extensively since the 20th
century, when Chapman [13] presented the definitions of the fractional delta sequential
differences, in 1911. Similarly to the case of FC, there are many forms of definitions, such as
Riemann–Liouville, Caputo, Hilfer, proportional discrete fractional operators, and so on
(see [14–17]).

In addition to the study of fractional operators in FC or DFC, there have also been
many directions to develop, for instance, fractional inequalities, fractional equations, etc.
In particular, initial value problems with fractional differential or difference operators have
been extensively studied. In 2020, Jonnalagadda and Gopal [18] defined the nabla αth-order
and βth-type Hilfer fractional difference of f

∇α,β
a f (t) = ∇−β(n−α)

a+n ∇n∇−(1−β)(n−α)
a f (t), t ∈ Na+n,

where 0 ≤ β ≤ 1, n− 1 < α ≤ n with n ∈ N+, and ∇−α
a f (t) = ∑t

k=a
(t−k+1)α

Γ(α) f (k) is the
nabla Riemann–Liouville fractional sum defined in [19]. Furthermore, they explored the
solution of the following initial value problem
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{
∇α,β

a y(t) = f (t, y(t)), t ∈ Na+1,

∇−(1−γ)
a y(t)|t=a = y(a),

where 0 < α ≤ 1, 0 ≤ β ≤ 1 and γ = α + β− αβ. Recently, motivated by the generalized
proportional and Hilfer fractional continuous operators, which are defined in [20,21],
respectively, Ahmed et al. [22] introduced the Hilfer generalized proportional fractional
derivative of order α and type β of a function f

Dα,β,ρ
a f (x) = Iβ(n−α),ρ

a

[
Dρ
(
I (1−β)(n−α),ρ

a f
)]

(x),

where n − 1 < α < n, ρ ∈ (0, 1], 0 ≤ β ≤ 1 with n ∈ N1, Dρ f (x) = (1 − ρ) f (x) +
ρ f ′(x), and I is the generalized proportional fractional integral operator defined in [21].
Furthermore, they discussed the existence and uniqueness of the solution for the following
nonlinear differential equation with a nonlocal initial condition{

Dα,β,ρ
a+ y(t) = f (t, y(t)), t ∈ [a, T], T > a ≥ 0,

I1−γ,ρ
a+ y(t)|t=a = ∑m

i=1 cix(τi), γ = α + β− αβ, τi ∈ (a, T),

where 0 < α < 1, ci ∈ R, f : [a, T] × R → R is a continuous function and τi ∈ (a, T)
satisfying a < τi < · · · < τm < T for i = 1, . . . , m. For more studies that investigate
and extend the fractional differential or fractional difference equation, we refer the reader
to [16,17,23,24].

The goal of this paper is to introduce the Hilfer-type generalized proportional frac-
tional difference, which is a discrete counterpart of the fractional derivative defined in [22].
Moreover, we shall study the following initial value problem a∇α,β,ρ

h y(t) = f (t, y(t)), t ∈ Na+h,h,

a∇−(1−γ),ρ
h y(t)|t=a+h = h1−γ

(ρ−(ρ−1)h)1−γ y(a + h),
(1)

where 0 < α < 1, 0 ≤ β ≤ 1, 0 < ρ ≤ 1, γ = α + β− αβ, a∇α,β,ρ
h (·) is the new difference

operator of order α and type β (see Definition 7), and a∇−(1−γ),ρ
h (·) is the proportional

fractional sum operator of order (1− γ) (see Definition 4). The new operator can reduce to
some known operators. Additionally, our results can provide a powerful tool for studying
the qualitative properties for the solution of (1), such as existence, uniqueness, oscillation,
and so on.

The structure of this article is as follows: In Section 2, we review some basic definitions
and results of discrete calculus. In Section 3, two new fractional difference operators are
introduced, and some corresponding properties for the left case are proved based on the
definitions. We also prove the properties of the right case by Q-operator. Moreover, the h-
Laplace transform for the left Hilfer generalized proportional fractional difference operator
is developed. Additionally, the general solution of an initial value problem (1) with the
new operator is discussed. Finally, the conclusion of the paper is given in Section 4.

2. Preliminaries

In this section, some definitions and results are given for later use in the following sec-
tions. The sets considered in this paper are Na = {a, a + 1, a + 2, . . . },
bN = {. . . b− 2, b− 1, b}, Na,h = {a, a + h, a + 2h, . . . } and b,hN = {. . . b− 2h, b− h, b}
with the step h > 0.

For convenience, we give some of the notations to be used here. The h-backward
operator is given by ρh(t) = t− h for t ∈ Na,h. The nabla and delta h-difference operators
are given as

∇h f (t) =
f (t)− f (t− h)

h
, t ∈ Na+h,h,
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∆h f (t) =
f (t + h)− f (t)

h
, t ∈ b−h,hN.

For h = 1, we get the following nabla and delta difference operators

∇ f (t) = f (t)− f (t− 1), ∆ f (t) = f (t + 1)− f (t).

They are also called the backward and the forward difference operator, respectively.
The nabla and delta h-sums are given as

(
∇−1

h f
)
(t) =

∫ t

a
f (s)∇hs =

t
h

∑
k= a

h +1
f (kh)h, t ∈ Na+h,h,

(
∆−1

h f
)
(t) =

∫ b

t
f (s)∆hs =

b
h−1

∑
k= t

h

f (kh)h, t ∈ b−h,hN,

where ∇h and ∆h are derivative operators on the time scales {a, a + h, . . . , t} and
{t, . . . , b− h, b}, respectively.

For arbitrary t, α ∈ R, the generalized rising and falling h-factorial functions are
defined by

tα
h = hα Γ

( t
h + α

)
Γ
( t

h
) ,

t
h

,
t
h
+ α /∈ {· · · ,−2,−1, 0},

t(α)h = hα Γ
( t

h + 1
)

Γ
( t

h + 1− α
) ,

t
h
+ 1,

t
h
+ 1− α /∈ {· · · ,−2,−1, 0},

where Γ(·) is the Gamma function given as Γ(x) =
∫ ∞

0 ξx−1e−ξdξ. When h = 1, we obtain

the rising and falling factorial function: tα = Γ(t+α)
Γ(t) , t(α) = Γ(t+1)

Γ(t−α+1) . It is clear that

∇htα
h = α tα−1

h .

For ρ ∈ (0, 1] \ h
1−h , we introduce the h-proportional differences of order ρ defined

in [16]

(∇ρ
h f )(t) = (1− ρ) f (t) + ρ(∇h f )(t), t ∈ Na+h,h,

(	∆ρ
h f )(t) = (1− ρ) f (t)− ρ(∆h f )(t), t ∈ b−h,hN,

and

(∇n,ρ
h f )(t) =

(∇ρ
h ∇

ρ
h · · · ∇

ρ
h f )︸ ︷︷ ︸(t)

n times
, (	∆n,ρ

h f )(t) =
(	∆ρ

h 	∆ρ
h · · · 	∆ρ

h f )︸ ︷︷ ︸(t)
n times

.

When h = 1, we denote (∇ρ
1 f )(t) = f (t)− ρ f (t− 1) and (	∆ρ

1 f )(t) = f (t)− ρ f (t+ 1).
Next, we recall some definitions and properties of discrete fractional operators as follows.

Definition 1 ([25]). For α > 0, the nabla left and right h-Riemann–Liouville fractional sums of f
are given by

(
a∇−α

h f
)
(t) =

1
Γ(α)

∫ t

a
(t− ρh(s))α−1

h f (s)∇hs, t ∈ Na+h,h, (2)

(h∇−α
b f )(t) =

1
Γ(α)

∫ b

t
(s− ρh(t))α−1

h f (s)∆hs, t ∈ b−h,hN. (3)
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Definition 2 ([25]). For α > 0, the nabla left and right h-Riemann–Liouville fractional differences
of f are given by

(a∇α
h f )(t) = ∇n

h

(
a∇−(n−α)

h f
)
(t), t ∈ Na+h,h, (4)

(h∇α
b f )(t) = (−1)n∆n

h

(
h∇
−(n−α)
b f

)
(t), t ∈ b−h,hN, (5)

where n− 1 < α < n, n := [α] + 1, and [α] is the greatest integer that is less than or equal to α.

Definition 3 ([26]). For α > 0, the nabla left and right h-Caputo fractional differences are
defined by

(C
a∇α

h f )(t) = ah(α)
∇−(n−α)

h (∇n
h f )(t), t ∈ Na+nh,h, (6)

(C
h∇

α
b f )(t) = (−1)n

h∇
−(n−α)
bh(α)

(∆n
h f )(t), t ∈ b−nh,hN, (7)

where n = [α] + 1, and ah(α) = a + (n− 1)h, bh(α) = b− (n− 1)h.

Definition 4 ([16]). For α ∈ C, Re(α) > 0, the left and right generalized proportional fractional
sums are defined by

(a∇−α,ρ
h f )(t) =

1
ραΓ(α)

∫ t

a
h êp(t− τ + αh, 0)(t− ρh(τ))

α−1
h f (τ)∇hτ

=
h

ραΓ(α)

t
h

∑
k= a

h +1
h êp(t− kh + αh, 0)(t− ρh(kh))α−1

h f (kh), t ∈ Na+h,h,
(8)

(h∇
−α,ρ
b f )(t) =

1
ραΓ(α)

∫ b

t
h êp(τ − t + αh, 0)(τ − ρh(t))α−1

h f (τ)∆hτ

=
h

ραΓ(α)

b
h−1

∑
k= t

h

h êp(kh− t + αh, 0)(kh− ρh(t))α−1
h f (kh), t ∈ b−h,hN,

(9)

where the proportionality index ρ ∈ (0, 1], and the exponential function is given as

h êp(t, a) =
(

1
1− ph

) t−a
h

=

(
ρ

ρ− (ρ− 1)h

) t−a
h

, for p =
ρ− 1

ρ
.

Some properties of the exponential function that will be important in the development of this
article are described in the following remark.

Remark 1 ([16]). For t ∈ Na,h, α > 0, β > 0 and 0 < ρ ≤ 1, the following identities hold,

(i) h êp(t, a) = h êp(t− a, 0) = h êp(0, a− t).
(ii) ∇ρ

h
(
c · h êp(t, a)

)
= 0, for c is a constant.

(iii) ∇ρ
h(g(t) · h êp(t, 0)) = ρ(∇hg)(t) · h êp(t− h, 0).

(iv) a∇−α,ρ
h

(
h êp(t, 0)(t− a)β−1

h

)
= Γ(β)

Γ(β+α)ρα h êp(t + αh, 0)(t− a)α+β−1
h .

Definition 5 ([16]). For ρ ∈ (0, 1] and α ∈ C, Re(α) > 0, the left and right generalized
proportional fractional differences are defined by

(a∇α,ρ
h f )(t) = ∇n,ρ

h

(
a∇−(n−α),ρ

h f
)
(t), t ∈ Na+h,h, (10)

(h∇
α,ρ
b f )(t) = 	∆n,ρ

h

(
h∇
−(n−α),ρ
b f

)
(t), t ∈ b−h,hN, (11)
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where n = [Re(α)] + 1.

Remark 2 ([16]). Clearly, lim
α→0

(a∇α,ρ
h f )(t) = f (t), lim

α→1
(a∇α,ρ

h f )(t) = (∇ρ
h f )(t).

Definition 6 ([16]). For ρ ∈ (0, 1] and α ∈ C, Re(α) > 0, the left and right Caputo generalized
proportional fractional differences are defined by(

C
a∇

α,ρ
h f

)
(t) = ah(α)

∇−(n−α),ρ
h (∇n,ρ

h f )(t), (12)(
C
h∇

α,ρ
b f

)
(t) = h∇

−(n−α),ρ
bh(α)

(	∆n,ρ
h f )(t). (13)

where n = [Re(α)] + 1.

Theorem 1 (Composition Rule [16]). Assume α > 0, n = [α] + 1 and β > 0. Then for any
0 < ρ ≤ 1, we have

(i) a∇α,ρ
h

(
a∇−α,ρ

h f
)
(t) = f (t).

(ii) a∇−α,ρ
h

(
∇ρ

h f
)
(t) = ∇ρ

h

(
a∇−α,ρ

h f
)
(t)− (t−a)α−1

h h êp(t,a)
ρα−1Γ(α)

(
ρ

ρ−(ρ−1)h

)α−1
f (a).

(iii) a∇−α,ρ
h (a∇−β,ρ

h f )(t) = a∇−β,ρ
h (a∇−α,ρ

h f )(t) = (a∇−(α+β),ρ
h f )(t).

(iv)
(

ah(α)
∇−α,ρ

h ah(α)
∇α,ρ

h f
)
(t) = f (t)− h êp(t− (n− 1)h, a)

·∑n
j=1

(
ρ

ρ−(ρ−1)h

)α−1 (t−ah(α))
α−j
h

ρα−jΓ(α+1−j)

(
ah(α)
∇−(j−α),ρ

h f
)
(a + (n− 1)h).

3. Main Results

In this section, we define the left and right generalized proportional fractional differ-
ence operators in the Hilfer sense and discuss some of their properties. In addition, we
demonstrate a general solution of problem (1).

3.1. The Hilfer Generalized Proportional Fractional Difference and Some Related Operators

(1) First, like the nabla Hilfer-type fractional difference that is defined by the composition
of the nabla Riemann–Liouville fractional sum and nabla integral difference ([18]), the
Hilfer generalized proportional fractional difference operators are introduced as follows,
based on the generalized proportional fractional sum and h-proportional difference.

Definition 7. Let n− 1 < α < n with n ∈ N1, ρ ∈ (0, 1] and 0 ≤ β ≤ 1. Then the left and
right Hilfer generalized proportional fractional difference of order α and type β of a function f are
defined by (

a∇α,β,ρ
h f

)
(t) = a∇−β(n−α),ρ

h · ∇ρ
h · a∇−(n−α)(1−β),ρ

h f (t), t ∈ Na+h,h, (14)(
h∇

α,β,ρ
b f

)
(t) = h∇

−β(n−α),ρ
b · 	∆ρ

h · h∇
−(n−α)(1−β),ρ
b f (t), t ∈ b−h,hN, (15)

where a∇−β(n−α),ρ
h (·), h∇

−β(n−α),ρ
b (·) are generalized proportional fractional sum operators de-

fined in (8) and (9), respectively.
In particular, when n = 1, Definition 7 is equivalent with(

a∇α,β,ρ
h f

)
(t) = a∇−β(1−α),ρ

h · ∇ρ
h · a∇−(1−α)(1−β),ρ

h f (t), (16)(
h∇

α,β,ρ
b f

)
(t) = h∇

−β(1−α),ρ
b · 	∆ρ

h · h∇
−(1−α)(1−β),ρ
b f (t). (17)
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When n = 1 and h = 1, Definition 7 is equivalent with(
a∇α,β,ρ

1 f
)
(t) = a∇−β(1−α),ρ

1 · ∇ρ
1 · a∇−(1−α)(1−β),ρ

1 f (t), (18)(
1∇

α,β,ρ
b f

)
(t) = 1∇

−β(1−α),ρ
b · 	∆ρ

1 · 1∇
−(1−α)(1−β),ρ
b f (t). (19)

Remark 3. It is worth noting that:

(i) For the special value of β, (14) coincides with the generalized Riemann–Liouville and Caputo
type proportional fractional difference, respectively (see Definitions 5 and 6 with n = 1)

(
a∇α,β,ρ

h f
)
(t) =∇ρ

h · a∇−(1−α),ρ
h f (t) =

(
a∇α,ρ

h f
)
(t), β = 0,

a∇−(1−α),ρ
h · ∇ρ

h f (t) =
(

C
a∇

α,ρ
h f

)
(t), β = 1.

In addition, when β = 0, ρ = 1, we recover the h-Riemann–Liouville fractional difference
(see Definition 2), and when β = 1, ρ = 1, we get the h-Caputo fractional difference (see
Definition 3)

(
a∇α,β,ρ

h f
)
(t) =∇ρ

h · a∇−(1−α),ρ
h f (t) =

(
a∇α

h f
)
(t), β = 0, ρ = 1,

a∇−(1−α),ρ
h · ∇ρ

h f (t) =
(C

a∇α
h f
)
(t), β = 1, ρ = 1.

The corresponding results for the right case h∇
α,β,ρ
b are similar.

(ii) Clearly,

lim
α→0

(
a∇α,β,ρ

h f
)
(t) = f (t), lim

α→1

(
a∇α,β,ρ

h f
)
(t) =

(
∇ρ

h f
)
(t),

lim
α→0

(
h∇

α,β,ρ
b f

)
(t) = f (t), lim

α→1

(
h∇

α,β,ρ
b f

)
(t) =

(
	∆ρ

h f
)
(t).

Here are some properties for the left Hilfer generalized proportional fractional difference operator.

Theorem 2 (Composition Rule). Assume 0 < α < 1, 0 ≤ β ≤ 1, ρ ∈ (0, 1] and f is defined on
Na+h,h. Let γ = α + β− αβ. Then we obtain

(i)
(

a∇α,β,ρ
h f

)
(t) = a∇−β(1−α),ρ

h

(
a∇γ,ρ

h f
)
(t).

(ii) a∇−α,ρ
h

(
a∇α,β,ρ

h f
)
(t) = a∇−γ,ρ

h

(
a∇γ,ρ

h f
)
(t).

(iii) a∇α,β,ρ
h

(
a∇−α,ρ

h f
)
(t) = a∇−β(1−α),ρ

h

(
a∇β(1−α),ρ

h f
)
(t).

(iv) a∇α,β,ρ
h

(
a∇−α,ρ

h f
)
(t) = f (t) − h êp(t, a)

(
1

ρ−(ρ−1)h

)β−αβ−1 (t−a)β−αβ−1
h

Γ(β−αβ)(
a∇−(1−β+αβ),ρ

h f
)
(a).

Proof. According to (16), we have(
a∇α,β,ρ

h f
)
(t) = a∇−β(1−α),ρ

h · ∇ρ
h · a∇−(1−α)(1−β),ρ

h f (t)

= a∇−β(1−α),ρ
h

(
a∇γ,ρ

h f
)
(t).

The proof of (i) is completed.
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Using (iii) of Theorem 1 and Definition 5, we have

a∇−α,ρ
h

(
a∇α,β,ρ

h f
)
(t) = a∇−α,ρ

h

(
a∇−β(1−α),ρ

h · ∇ρ
h · a∇−(1−α)(1−β),ρ

h

)
f (t)

= a∇−α−β+αβ,ρ
h · ∇ρ

h

(
a∇−(1−α)(1−β),ρ

h f
)
(t)

= a∇−γ,ρ
h · ∇ρ

h

(
a∇−1+γ,ρ

h f
)
(t)

= a∇−γ,ρ
h

(
a∇γ,ρ

h f
)
(t).

The proof of (ii) is completed.
We use Theorem 1 (iii) and Definition 5 to prove (iii). Consider

a∇α,β,ρ
h

(
a∇−α,ρ

h f
)
(t) = a∇−β(1−α),ρ

h · ∇ρ
h · a∇−(1−β)(1−α),ρ

h

(
a∇−α,ρ

h f
)
(t)

= a∇−β(1−α),ρ
h · ∇ρ

h

(
a∇−[1−β(1−α)],ρ

h f
)
(t)

= a∇−β(1−α),ρ
h

(
a∇β(1−α),ρ

h f
)
(t).

The proof of (iii) is completed.
Consider the left-hand side of (iv). Using (iii) and Theorem 1 (iv) with n = 1, we have

a∇α,β,ρ
h

(
a∇−α,ρ

h f
)
(t)

= a∇−β(1−α),ρ
h

(
a∇β(1−α),ρ

h f
)
(t)

= f (t)− h êp(t, a)
(

ρ

ρ− (ρ− 1)h

)β−αβ−1 (t− a)β−αβ−1
h

ρβ−αβ−1Γ(β− αβ)

(
a∇−(1−β+αβ),ρ

h f
)
(a)

= f (t)− h êp(t, a)
(

1
ρ− (ρ− 1)h

)β−αβ−1 (t− a)β−αβ−1
h

Γ(β− αβ)

(
a∇−(1−β+αβ),ρ

h f
)
(a).

The proof of (iv) is completed.

(2) Now, we will consider the Q-operator, which is used to demonstrate the results corre-
sponding to Theorem 2 (i)–(iii) for the right case.

The Q-operator is defined as follows: Suppose a ≡ b mod 1 and f (t) is defined on
Na ∩ bN, then

(Q f )(t) = f (a + b− t),

which is used to connect the left and right fractional discrete operators.

Lemma 1 ([16]). Assume n− 1 < α < n with n ∈ N1, a ≡ b mod h and function f is defined
on Na+h,h ∩ b−h,hN. Then we have

(i) Q(∇ρ
h f )(t) = 	∆ρ

h(Q f )(t).
(ii) Q(a∇−α,ρ

h f )(t) = h∇
−α,ρ
b (Q f )(t).

(iii) Q(a∇α,ρ
h f )(t) = h∇

α,ρ
b (Q f )(t).

Theorem 3. Let n− 1 < α < n with n ∈ N1, 0 ≤ β ≤ 1, ρ ∈ (0, 1] and a ≡ b mod h. Suppose
f is defined on Na+h,h ∩ b−h,hN. Then,

Q(a∇α,β,ρ
h f )(t) = h∇

α,β,ρ
b (Q f )(t). (20)
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Proof. With the help of Lemma 1, we arrive at

Q(a∇α,β,ρ
h f )(t) = Q(a∇−β(n−α),ρ

h · ∇ρ
h · a∇−(n−α)(1−β),ρ

h f )(t)

= h∇
−β(n−α),ρ
b Q(∇ρ

h · a∇−(n−α)(1−β),ρ
h f )(t)

=
(

h∇
−β(n−α),ρ
b · 	∆ρ

h

)
Q(a∇−(n−α)(1−β),ρ

h f )(t)

=
(

h∇
−β(n−α),ρ
b · 	∆ρ

h · h∇
−(n−α)(1−β),ρ
b

)
(Q f )(t) = h∇

α,β,ρ
b (Q f )(t).

The proof is completed.

Theorem 4. Assume 0 < α < 1, 0 ≤ β ≤ 1, ρ ∈ (0, 1] and a ≡ b mod h. Let f be defined on
Na+h,h ∩ b−h,hN and γ = α + β− αβ. Then we obtain

(i)
(

h∇
α,β,ρ
b f

)
(t) = h∇

−β(1−α),ρ
b

(
h∇

γ,ρ
b f

)
(t).

(ii) h∇
α,β,ρ
b

(
h∇
−α,ρ
b f

)
(t) = h∇

−β(1−α),ρ
b

(
h∇

β(1−α),ρ
b f

)
(t).

(iii) h∇
−α,ρ
b

(
h∇

α,β,ρ
b f

)
(t) = h∇

−γ,ρ
b

(
h∇

γ,ρ
b f

)
(t).

Proof. Let t ∈ Na+h,h ∩ b−h,h. Then a + b− t ∈ Na+h,h ∩ b−h,h. If we apply Q-operator to
equations of Theorem 2 (i)–(iii), then we can get the following identities

h∇
α,β,ρ
b (Q f )(t) = h∇

−β(1−α),ρ
b · h∇

γ,ρ
b (Q f )(t),

h∇
α,β,ρ
b · h∇

−α,ρ
b (Q f )(t) = h∇

−β(1−α),ρ
b · h∇

β(1−α),ρ
b (Q f )(t),

h∇
−α,ρ
b · h∇

α,β,ρ
b (Q f )(t) = h∇

−γ,ρ
b · h∇

γ,ρ
b (Q f )(t),

which are equal to the desired equations. Thus we complete the proof.

(3) We review two types of the discrete Laplace transform to obtain the h-Laplace transform
for a∇α,β,ρ

h .

Definition 8 ([19]). Assume f : Na → R and s ∈ C \ {1}, then the Laplace transform of f is
defined by

F(s) = Na{ f (t)}(s) =
∞

∑
t=1

(1− s)t−1 f (t + a) =
∞

∑
t=a+1

(1− s)t−a−1 f (t). (21)

Definition 9 ([16]). Assume f : Na,h → R, then the h-Laplace transform of f is defined by

F(s) = Na,h{ f (t)}(s) = h
∞

∑
t= a

h +1
(1− hs)t− a

h−1 f (ht). (22)

Note that (22) is consistent with (21) when h = 1, and when a = 0, (22) is reduced to

N0,h{ f (t)}(s) = h
∞

∑
t=1

(1− hs)t−1 f (ht).

Lemma 2 ([16]). Let ρ ∈ (0, 1], α ∈ C, Re(α) > 0, and n = [Re(α)] + 1. Then the h-discrete
Laplace transforms for fractional proportional difference and sum are given by

Na,h

{(
a∇α,ρ

h f
)
(t)
}
(s) =

(
ρ

ρ− (ρ− 1)h

)n−α−1 Na,h{ f (t)}(s)
(ρs + 1− ρ)−α

,
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and

Na,h

{(
a∇−α,ρ

h f
)
(t)
}
(s) =

(
ρ

ρ− (ρ− 1)h

)α−1Na,h{ f (t)}(s)
(ρs + 1− ρ)α

.

After carefully checking, it is worth noting that there is a typing mistake in [16], Remark

3.2:
(

ρ
ρ−(ρ−1)h

)h(α−1)
, which should be

(
ρ

ρ−(ρ−1)h

)α−1
. By calculating, we find that the same

problem occurs in [16], Lemma 3.1, Theorems 4.1 and 4.3. We have revised it in Theorem 1 (ii) and
Lemma 2.

Theorem 5 (The h-Laplace transform for a∇α,β,ρ
h ). Assume 0 < α < 1, 0 ≤ β ≤ 1, ρ ∈ (0, 1],

and let f : Na+h,h → R. Then, we have the h-Laplace transform for the Hilfer generalized
proportional fractional difference operator given as

Na,h

{(
a∇α,β,ρ

h f
)
(t)
}
(s) =

(
ρ

ρ− (ρ− 1)h

)−α−1
(ρs + 1− ρ)αNa,h{ f (t)}(s). (23)

Proof. Set γ = α + β− αβ, then 0 < γ < 1. Using Lemma 2, we obtain

Na,h

{(
a∇α,β,ρ

h f
)
(t)
}
(s) =Na,h

{
a∇−β(1−α),ρ

h

(
a∇γ,ρ

h f
)
(t)
}
(s)

=

(
ρ

ρ− (ρ− 1)h

)β(1−α)−1Na,h

{(
a∇γ,ρ

h f
)
(t)
}
(s)

(ρs + 1− ρ)β(1−α)

=

(
ρ

ρ− (ρ− 1)h

)β(1−α)−1−γ

· (ρs + 1− ρ)γ−β(1−α)Na,h{ f (t)}(s)

=

(
ρ

ρ− (ρ− 1)h

)−α−1
(ρs + 1− ρ)αNa,h{ f (t)}(s).

Thus, we complete the proof.

3.2. The Initial Value Problem for the New Fractional Difference

Here, we give a general solution of an initial value problem for the new fractional
difference.

According to the generalized proportional fractional sum given in Definition 4, we
have the following identity

a∇−(1−γ),ρ
h y(t)|t=a+h =

h1−γ

(ρ− (ρ− 1)h)1−γ
y(a + h).

Hence, consider the following initial value problem for a nonlinear fractional differ-
ence equation,

a∇α,β,ρ
h y(t) = f (t, y(t)), t ∈ Na+2h,h, (24)

a∇−(1−γ),ρ
h y(t)|t=a+h =

h1−γ

(ρ− (ρ− 1)h)1−γ
y(a + h) , m, (25)

where 0 < α < 1, 0 ≤ β ≤ 1, 0 < ρ ≤ 1, γ = α + β− αβ, and m is a constant.

Theorem 6. Let f : Na+h,h → R be given and α ∈ (0, 1), β ∈ [0, 1], ρ ∈ (0, 1], γ = α + β− αβ.
Then the initial value problem (24) and (25) has a general solution

y(t) = a+h∇
−γ,ρ
h · a∇β(1−α),ρ

h f (t, y(t)) +
(t− a− h)γ−1

h
ργ−1Γ(γ) h êp(t, a + h)η(h, ρ, γ)m

+
h2−γ(γ− 1)(t− a)γ−2

h
Γ(γ) h êp(t, a + h)y(a + h),

(26)
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where η(h, ρ, γ) =
(

ρ
ρ−(ρ−1)h

)γ−1
.

Proof. Applying the operator a∇β(1−α),ρ
h to the both sides of (24), we have for t ∈ Na+2h,h,

a∇β(1−α),ρ
h · a∇α,β,ρ

h y(t) = a∇β(1−α),ρ
h f (t, y(t)). (27)

Let F(t, y(t)) = a∇β(1−α)ρ
h f (t, y(t)). Then using (16), we get

a∇β(1−α),ρ
h · a∇−β(1−α),ρ

h · ∇ρ
h · a∇−(1−α)(1−β),ρ

h y(t) = F(t, y(t)). (28)

Besides, with the help of Theorem 1 (i), we have

∇ρ
h · a∇−(1−γ),ρ

h y(t) = F(t, y(t)). (29)

where 0 < 1− γ < 1.

From the definition of the generalized proportional fraction sum given as (8), we get

(
a∇−(1−γ),ρ

h y
)
(t) =

h
ρ1−γΓ(1− γ)

t
h

∑
k= a

h +1
h êp(t− kh + (1− γ)h, 0)(t− ρh(kh))−γ

h y(kh)

=
h

ρ1−γΓ(1− γ)

t
h

∑
k= a+h

h +1
h êp(t− kh + (1− γ)h, 0)(t− ρh(kh))−γ

h y(kh)

+
h · (t− ρh(a + h))−γ

h
ρ1−γΓ(1− γ) h êp(t− a− h + (1− γ)h, 0)y(a + h)

=
(

a+h∇
−(1−γ),ρ
h y

)
(t)

+
h · (t− a)−γ

h
ρ1−γΓ(1− γ) h êp(t− a− h + (1− γ)h, 0)y(a + h),

(30)

where the properties for h êp(·, ·) are in Remark 1. Then, applying both sides of (29) by the
operator a+h∇

−γ,ρ
h , we obtain

a+h∇
−γ,ρ
h · ∇ρ

h

a+h∇
−(1−γ),ρ
h y(t) +

h · (t− a)−γ
h

ρ1−γΓ(1− γ) h êp(t− a− h + (1− γ)h, 0)y(a + h)


=G(t, y(t)),

(31)

with G(t, y(t)) = a+h∇
−γ,ρ
h F(t, y(t)). That is

a+h∇
−γ,ρ
h · ∇ρ

h · a+h∇
−(1−γ),ρ
h y(t)

+ a+h∇
−γ,ρ
h · ∇ρ

h

{
h · (t− a)−γ

h
ρ1−γΓ(1− γ) h êp(t− a− h + (1− γ)h, 0)y(a + h)

}
(32)

= G(t, y(t)).

For the convenience of calculations, we rewrite the above equation as

I + J = G(t, y(t)),
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where

I = a+h∇
−γ,ρ
h · ∇ρ

h · a+h∇
−(1−γ),ρ
h y(t),

J = a+h∇
−γ,ρ
h · ∇ρ

h

{
h · (t− a)−γ

h
ρ1−γΓ(1− γ) h êp(t− a− h + (1− γ)h, 0)y(a + h)

}
.

In the following, we come to deal with the above two terms one by one.
First, we consider I. It follows from (30) and the fact (h)−γ

h = h−γΓ(1− γ) that(
a+h∇

−(1−γ),ρ
h y

)
(t)|t=a+h

=

(
a∇−(1−γ),ρ

h y(t)−
h · (t− a)−γ

h
ρ1−γΓ(1− γ) h êp(t− a− h + (1− γ)h, 0)y(a + h)

)
t=a+h

= m− h1−γ

ρ1−γ h êp((1− γ)h, 0)y(a + h).

(33)

In addition, from lim
α→0

(a∇α,ρ
h f )(t) = f (t) (see Remark 2) and Definition 5, we have

∇ρ
h a+h∇

−1,ρ
h y(t) = lim

α→1−
∇ρ

h a+h∇
−α,ρ
h y(t) = lim

α→1−
a+h∇

1−α,ρ
h y(t) = y(t).

Therefore, with the help of Theorem 1 (ii)–(iii), we get

I = a+h∇
−γ,ρ
h · ∇ρ

h

(
a+h∇

−(1−γ),ρ
h y

)
(t)

= ∇ρ
h · a+h∇

−γ,ρ
h

(
a+h∇

−(1−γ),ρ
h y

)
(t)

− (t−a−h)γ−1
h

ργ−1Γ(γ) h êp(t, a + h)
(

ρ
ρ−(ρ−1)h

)γ−1{(
a+h∇

−(1−γ),ρ
h y

)
(t)|t=a+h

}
= ∇ρ

h · a+h∇
−1,ρ
h y(t)− (t−a−h)γ−1

h
ργ−1Γ(γ) h êp(t− a− h, 0)η(h, ρ, γ)

·
(

m− h1−γ

ρ1−γ h êp((1− γ)h, 0)y(a + h)
)

= y(t)− (t−a−h)γ−1
h

ργ−1Γ(γ) h êp(t− a− h, 0)η(h, ρ, γ)
(

m− h1−γ

ρ1−γ h êp((1− γ)h, 0)y(a + h)
)

.

(34)

Using the fact that

h êp(t− a− h, 0) · h êp((1− γ)h, 0) = h êp(t− a− γh, 0),

where we use the definition of the exponential function, then

I = y(t)−
(t− a− h)γ−1

h
ργ−1Γ(γ) h êp(t− a− h, 0)η(h, ρ, γ)m

+
h1−γ(t− a− h)γ−1

h
Γ(γ) h êp(t− a− γh, 0)η(h, ρ, γ)y(a + h).

(35)

Define the last term of the above equation as

Ψ(t, h, ρ, γ) =
h1−γ(t− a− h)γ−1

h
Γ(γ) h êp(t− a− γh, 0)η(h, ρ, γ)y(a + h),

hence, (35) becomes

I = y(t)−
(t− a− h)γ−1

h
ργ−1Γ(γ) h êp(t− a− h, 0)η(h, ρ, γ)m + Ψ(t, h, ρ, γ). (36)
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Now, consider the second term J in (32). Define

Φ(t, h, ρ, γ) = ∇ρ
h · a+h∇

−γ,ρ
h

{
h · (t− a)−γ

h
ρ1−γΓ(1− γ) h êp(t− a− h + (1− γ)h, 0)y(a + h)

}
.

Then, using Theorem 1 (ii) and Remark 1, we get

J = a+h∇
−γ,ρ
h · ∇ρ

h

 h · (t− a)−γ
h

ρ1−γΓ(1− γ) h êp(t− a− h + (1− γ)h, 0)y(a + h)


= ∇ρ

h · a+h∇
−γ,ρ
h

 h · (t− a)−γ
h

ρ1−γΓ(1− γ) h êp(t− a− h + (1− γ)h, 0)y(a + h)


−

(t− a− h)γ−1
h

ργ−1Γ(γ) h êp(t− a− h, 0)η(h, ρ, γ)

 h · (h)−γ
h

ρ1−γΓ(1− γ) h êp((1− γ)h, 0)y(a + h)

 (37)

= Φ(t, h, ρ, γ)−
h1−γ(t− a− h)γ−1

h
Γ(γ) h êp(t− a− γh, 0)η(h, ρ, γ)y(a + h)

= Φ(t, h, ρ, γ)−Ψ(t, h, ρ, γ).

Similar to (30), we have

a+h∇
−γ,ρ
h

{
h · (t− a)−γ

h
ρ1−γΓ(1− γ) h êp(t− a− h + (1− γ)h, 0)y(a + h)

}

= a∇−γ,ρ
h

{
h · (t− a)−γ

h
ρ1−γΓ(1− γ) h êp(t− a− h + (1− γ)h, 0)y(a + h)

}

−
h · (t− a)γ−1

h
ργΓ(γ) h êp(t− a− h + γh, 0)

(
h · (h)−γ

h
ρ1−γΓ(1− γ) h êp((1− γ)h, 0)y(a + h)

)

= a∇−γ,ρ
h

{
h · (t− a)−γ

h
ρ1−γΓ(1− γ) h êp(t− a− h + (1− γ)h, 0)y(a + h)

}

− h2−γ

ρΓ(γ)
(t− a)γ−1

h h êp(t− a, 0)y(a + h).

(38)

Using Remark 1 and ∇h(t− a)γ−1
h = (γ− 1)(t− a)γ−2

h N, it follows that

Φ(t, h, ρ, γ) = ∇ρ
h · a∇−γ,ρ

h

 h · (t− a)−γ
h

ρ1−γΓ(1− γ) h êp(t− a− h + (1− γ)h, 0)y(a + h)


−∇ρ

h

(
h2−γ

ρΓ(γ)
(t− a)γ−1

h h êp(t− a, 0)y(a + h)
)

=
h

ρ1−γΓ(1− γ) h êp(−a− h + (1− γ)h, 0)y(a + h)

· ∇ρ
h · a∇−γ,ρ

h

{
h êp(t, 0)(t− a)−γ

h

}
(39)

− h2−γ

ρΓ(γ) h êp(−a, 0)y(a + h) · ∇ρ
h

{
h êp(t, 0)(t− a)γ−1

h

}
=

h
ρ

y(a + h) · ∇ρ
h h êp(t− a, 0)− h2−γ

Γ(γ) h êp(t− a− h, 0)y(a + h) · ∇h(t− a)γ−1
h

= −
h2−γ(γ− 1)(t− a)γ−2

h
Γ(γ) h êp(t− a− h, 0)y(a + h).
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Thus,

J = −
h2−γ(γ− 1)(t− a)γ−2

h
Γ(γ) h êp(t− a− h, 0)y(a + h)−Ψ(t, h, ρ, γ). (40)

Finally, substituting (36) and (40) back in (32) and arranging, we can obtain the general
solution representation

y(t) = G(t, y(t)) +
(t− a− h)γ−1

h
ργ−1Γ(γ) h êp(t− a− h, 0)η(h, ρ, γ)m−Ψ(t, h, ρ, γ)

+
h2−γ(γ− 1)(t− a)γ−2

h
Γ(γ) h êp(t− a− h, 0)y(a + h) + Ψ(t, h, ρ, γ).

(41)

That is,

y(t) = a+h∇
−γ,ρ
h · a∇β(1−α),ρ

h f (t, y(t)) +
(t− a− h)γ−1

h
ργ−1Γ(γ) h êp(t, a + h)η(h, ρ, γ)m

+
h2−γ(γ− 1)(t− a)γ−2

h
Γ(γ) h êp(t, a + h)y(a + h).

(42)

The proof of Theorem 6 is complete.

Example 1. For a given function g(t) : Na+2h,h → R and a constant λ 6= 0, we give two examples
to illustrate Theorem 6.

(i) Consider the initial value problem{
a∇α,β,ρ

h y(t) = g(t), t ∈ Na+2h,h,

a∇−(1−γ),ρ
h y(t)|t=a+h , m.

(43)

Then we deduce from Theorem 6 that the general solution of the above initial value problem is
given by

y(t) = a+h∇
−γ,ρ
h · a∇β(1−α),ρ

h g(t) +
(t− a− h)γ−1

h
ργ−1Γ(γ) h êp(t, a + h)η(h, ρ, γ)m

+
h2−γ(γ− 1)(t− a)γ−2

h
Γ(γ) h êp(t, a + h)y(a + h).

(44)

(ii) Consider the initial value problem{
a∇α,β,ρ

h y(t) = λy(t), t ∈ Na+2h,h,

a∇−(1−γ),ρ
h y(t)|t=a+h , m.

(45)

From Theorem 6, the general solution is given by

y(t) =λ a+h∇
−γ,ρ
h · a∇β(1−α),ρ

h y(t) +
(t− a− h)γ−1

h
ργ−1Γ(γ) h êp(t, a + h)η(h, ρ, γ)m

+
h2−γ(γ− 1)(t− a)γ−2

h
Γ(γ) h êp(t, a + h)y(a + h).

(46)

With a similar proof to Theorem 6, we obtain the following corollary.
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Corollary 1. Consider the initial value problem a−h∇
α,β,ρ
h y(t) = f (t, y(t)), t ∈ Na+h,h,

a−h∇
−(1−γ),ρ
h y(t)|t=a =

h1−γ

(ρ−(ρ−1)h)1−γ y(a) , c,
(47)

where 0 < α < 1, 0 ≤ β ≤ 1, 0 < ρ ≤ 1, γ = α + β− αβ and c is a constant. We can get the
general solution representation

y(t) = a∇−γ,ρ
h · a−h∇

β(1−α),ρ
h f (t, y(t)) +

(t− a)γ−1
h

ργ−1Γ(γ) h êp(t, a)η(h, ρ, γ)c

+
h2−γ(γ− 1)(t− a + h)γ−2

h
Γ(γ) h êp(t, a)y(a).

(48)

where η(h, ρ, γ) =
(

ρ
ρ−(ρ−1)h

)γ−1
.

Remark 4. Corollary 1 is more general compared with corresponding results of the initial value
problem with existing difference operators.

(i) Let β = 0 in the initial problem (47). Then the initial value problem{
a−h∇

α,ρ
h y(t) = f (t, y(t)), t ∈ Na+h,h,

a−h∇
−(1−α),ρ
h y(t)|t=a =

h1−α

(ρ−(ρ−1)h)1−α y(a) , c,
(49)

has the following general solution representation

y(t) = a∇−α,ρ
h f (t, y(t)) +

(t− a)α−1
h

ρα−1Γ(α) h êp(t, a)η(h, ρ, α)c

+
h2−α(α− 1)(t− a + h)α−2

h
Γ(α) h êp(t, a)y(a).

(50)

where 0 < α < 1, η(h, ρ, α) =
(

ρ
ρ−(ρ−1)h

)α−1
and c is a constant.

(ii) Let β = 0, ρ = 1, and h = 1 in (48). Then we obtain

y(t) =
(t− a + 1)α−1

Γ(α)
y(a) + a∇−α f (t, y(t)), (51)

which is the general solution representation of the following initial value problem [24]{
a−1∇αy(t) = f (t, y(t)), t ∈ Na+1,

a−1∇−(1−α)y(t)|t=a = y(a),
(52)

where 0 < α < 1. a−1∇−(1−α)(·) and a−1∇α(·) are defined by Definition 1 and 2 for h = 1,
respectively.

Remark 5. Here we only discuss the case of the left Hilfer generalized proportional fractional
operator. The corresponding results for the right one can be obtained similarly.

4. Conclusions

In this paper, we proposed the generalized proportional fractional difference in the
sense of Hilfer, which is considered to be the analogy of the Hilfer generalized proportional
fractional derivative. Also, our definition can reduce to some known operators, such as
h-Riemann–Liouville, h-Caputo and generalized proportional fractional differences that
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are defined in [16,25,26] respectively. We derived some important properties of the left
Hilfer proportional fractional difference. We also employed the Q-operator that enables us
to prove properties for the right Hilfer proportional fractional difference based on the left
one and considered the h-Laplace transform. Finally, following the newly left difference,
we obtained a general solution of an initial value problem for 0 < α < 1. In the future,
high-order case for α ≥ 1 can be considered. Furthermore, the general solution is one of
most important ways to studying the qualitative properties of the solutions of difference
equations, such as existence, uniqueness, oscillation, and so on.
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