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Abstract: As a popular passive investment strategy, a sparse index tracking strategy has advantages
over a full index replication strategy because of higher liquidity and lower transaction costs. Sparsity
and nonnegativity constraints are usually assumed in the construction of portfolios in sparse index
tracking. However, none of the existing studies considered sector risk exposure of the portfolios that
prices of stocks in one sector may fall at the same time due to sudden changes in policy or unexpected
events that may affect the whole sector. Therefore, sector neutrality appeals to be critical when
building a sparse index tracking portfolio if not using full replication. The statistical approach to
sparse index tracking is a constrained variable selection problem. However, the constrained variable
selection procedure using Lasso fails to produce a sparse portfolio under sector neutrality constraints.
In this paper, we propose a high-dimensional constrained variable selection method using TLP for
building index tracking portfolios under sparsity, sector neutrality and nonnegativity constraints.
Selection consistency is established for the proposed method, and the asymptotic distribution is
obtained for the sparse portfolio weights estimator. We also develop an efficient iteration algorithm
for the weight estimation. We examine the performance of the proposed methodology through
simulations and an application to the CSI 300 index of China. The results demonstrate the validity
and advantages of our methodology.

Keywords: constrained variable selection; high-dimensional variable selection; sparse index tracking;
sector neutrality; TLP; ADMM algorithm

MSC: 62H12; 62F12; 62F30; 62P05

1. Introduction

Despite various types and goals, portfolio managing strategies can be classified into
two main groups according to styles, namely, active and passive strategies. The former
ones attempt to beat the market by exploiting market inefficiency, whereas the latter ones
prefer to follow the market. However, the majority of actively managed funds do not
outperform the market in the long run [1]. On the contrary, passive funds provide market-
level profits without taking an active risk. Passive funds become more popular in recent
years. U.S. equity index fund assets have surpassed the assets of their actively managed
counterparts for the first time, according to Morningstar’s latest fund flows report. This
trend is also growing in other parts of the world.

The most commonly used passive investing strategy is index tracking, which aims
to mimic the performance of a specified basket of underlying assets. Without exposure to
active risk, an index tracking fund needs to follow the targeting index as closely as possible.
The performance of an index tracker is measured by tracking error [2], which is defined
as the divergence between the index tracker and the targeting index. Tracking error gives
investors a sense of how “tight” the index tracker goes after the index. Smaller tracking
error means less exposure to active risk.

A straightforward method to construct an index tracking portfolio is full replication,
which is to buy appropriate quantities of all assets composing the index. Theoretically, the
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performance of a full replication portfolio should match that of the targeting index perfectly.
However, full replication portfolios often incur higher transaction and administration costs
than portfolios of relatively fewer stocks. An alternative to full replication is sparse index
tracking, which is to replicate the performance of an index by holding a representative
sample of the securities in the index [3–5]. The challenge of building a sparse index tracking
portfolio lies in the trade-off between transaction costs and tracking efficiency. A sparse
index tracking portfolio manager attempts to hold as few securities as possible to reduce
the transaction costs and eliminate potential illiquid stocks and curb the tracking error to
maintain tracking efficiency at the same time. Sparse index portfolios are often constructed
via portfolio optimization. Such an algorithm-driven portfolio aims to minimize the
tracking error in both training samples and testing samples. Specifically, index tracking
optimization needs to incorporate certain constraints, such as no short selling and balance
among industrial sectors. The latter constraint aims at taming sector risk of sparse portfolios
that a set of factors particular to a sector drags down the sector’s overall performance in
financial risk management. Upon the occurrence of events affecting the entire sector, such as
sudden policy changes or technology innovation, the stock prices of many of the companies
in the same sector may undergo drastic changes simultaneously. Unbalanced allocation
of assets among different sectors can result in the failure of index tracking for a portfolio.
In Table 1, we present several periods when sector risk appears for China CSI300 Index.
The table shows the performance of the index, the sector gainers and losers during the
selected period. The large divergence between the index and the gainers or losers indicates
that inappropriate exposure to sector risk can inflate the tracking error and undermine
the portfolio performance. To manage the sector risk with index tracking, it is necessary
to build a sector-neutral portfolio in which the total weight of stocks within each sector
remains the same as that in the index. In particular, a sector-neutral strategy means not to
overweight or underweight any given sector compared to its weight in the index, so as to
ensure the performance of the portfolio will be stable and accordingly will be not affected
by style switch in the market. Therefore, a sector-neutral portfolio can closely fit and help
track the performance of a benchmark index, and essentially it turns out to be a passive
investment strategy.

Table 1. The periods with sector risk for CSI300 index from 2014 to 2018.

Period CSI300 Gainer Loser

October 2018–November 2018 −4.16% Financials 2.50% Consumer Staple −13.18%
February 2018–March 2018 −5.23% Information 6.44% Financials −9.17%
June 2017–August 2017 9.75% Consumer Staple 17.51% Utilities −3.77%
October 2015–December 2015 8.19% Information 26.40% Energy 3.18%
November 2012–January 2013 17.01% Financials 30.92% Consumer Staple −5.94%

To overcome the drawbacks of full replication and accommodate the sector risk in
traditional sparse portfolios, we propose a novel method to construct sparse index-tracking
portfolios, assuming that short positions are forbidden and no cash is allowed in the
constructed portfolios. Finally, we formulate the sparse index tracking problem with sector
neutrality as the minimization of the tracking error under constraints of nonnegativity,
sparsity, and sector neutrality.

2. Literature Review

There is a vast amount of research on quantitative methods for index tracking. Ref. [6]
studied the traditional Markowitz asset allocation problem and proposed an algorithm for
designing a sparse index fund. This algorithm yields a locally optimal index portfolio with
a fixed number of securities. Ref. [7] investigated the relation between error measures in
statistical tracking and asset allocation restrictions expressed as admissible weight ranges. It
addressed the relationship between tracking errors caused by active portfolio management
and given tactical asset allocation ranges. Ref. [8] imposed the no-short-sale constraint
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on the Markowitz mean-variance optimization and gave an insightful explanation and
demonstration of why the constraints help. Ref. [9] considered maximizing the index
fund’s tracking accuracy by rebalancing the composition of the index fund’s tracking
portfolio in response to new market information and cash deposits and withdrawals from
investors. Ref. [10] investigated the inclusion of portfolio liquidity constraints for the
construction of index tracking portfolios and proposed two liquidity modelling approaches
for index tracking.

Many statistical regularization methods have been applied to the index tracking prob-
lem recently. In general, a sparse index tracking portfolio can be constructed via variable
selection, which removes non-informative features and yields sparse models, especially
for the high-dimensional data, and consequently facilitates inference, interpretability and
prediction. Ref. [11] formulated sparse index tracking problem as an optimization problem
that minimizes the tracking error, subject to the number of selected assets less than or
equal to a preset threshold. Ref. [12] formulated the index tracking as a regression problem
whose objective was to minimise the tracking error and adds a L0 penalty on weights corre-
sponding to the amount to invest in each stock, then solved the optimization problem with
stochastic neural networks. Ref. [13] investigated the applications of sparse auto-encoder
deep-learning architectures with L1 regularization in selecting representative stocks from
the index constituents. Ref. [14] analyzed the constraints effect on covariance regularization
for index tracking, and developed an L1 and L2 norm constrained minimum-variance
portfolio. Ref. [15] reformulated the classical Markowitz mean-variance framework as a
constrained least-squares regression problem and added a penalty function to construct a
sparse index tracking portfolio. They emphasized that adding an L1 penalty on weights
to the objective function may bring several advantages, including promoting sparsity and
stabilizing the out-of-sample performance. Ref. [16] offered deep mathematical insights
into the utility approximations with the gross-exposure constraint and gave a theoretical
justification for the empirical results by [8]. These approaches consist in solving index
tracking problems through constraining portfolio norms, for example, the L1 norm as
implied in Lasso and the L2 norm as imposed in ridge regression. Besides, many other
variable selection methods introduced in various fields can be applied to the index tracking
problems as well. Truncated L1 penalty (TLP) [17] has advantages over Lasso [18] in that
Lasso gives biased parameter estimates and possibly inconsistent variable selection. Intu-
itively, unlike Lasso which penalizes all variables, TLP does not penalize variables of large
values, and thus enables us to incorporate more complicated constraints into optimization
as in Section 3. We asserted in Section 1 that the novelty of our method lies in the con-
struction of a sparse index tracking portfolio with exposure to sector risk. Sector neutrality
can be achieved by constrained variable selection procedures. The constrained Lasso [19]
introduced additional equality and inequality constraints to the traditional Lasso method
for asset allocation, which generalized the work of [16]. However, with the constrained
Lasso, the nonnegativity and sector neutrality constraints nullify the Lasso penalty and
cause the method fails to give sparsity. More details will be discussed further in Section 3.
Ref. [20] followed and added a ridge term into the objective function in constrained Lasso
so that it may work in a high-dimensional case where sparsity is necessary.

Computationally solving a constrained variable selection problem is not an easy task,
especially when complex penalty functions and constraints are used. The alternating direc-
tion method of multipliers (ADMM) algorithm [21] is an efficient and scalable optimization
algorithm for convex optimization. Ref. [22] exploited the structure of distributed opti-
mization framework and illustrated this framework via applications such as L1 mean and
variance filtering. The idea of the ADMM algorithm is to break the original optimization
into iterations of easier problems. However, optimization with the TLP term is not a con-
vex problem. To solve this nonconvex problem, ref. [17] presented an efficient algorithm
based on a difference of convex (DC) decomposition [23] and a coordinate descent (CD)
algorithm [24,25]. The DC method decomposes the nonconvex constraint into a difference
of two convex functions to produce a sequence of approximating convex constraints. Thus
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the original nonconvex optimization is broken down into a series of convex optimization
problems. In minimization of a multivariate function, the CD algorithm iteratively mini-
mizes the objective function with respect to each coordinate direction until convergence.
This is an efficient algorithm for large-scale convex optimization problems.

In this paper, we propose a novel method to solve the sparse index tracking problem
with sector neutrality. An error bound for variable selection is obtained for the method,
and then variable selection consistency and asymptotic distribution are established for
effective inference. An efficient minimization algorithm is developed by combining the
ADMM algorithm, DC decomposition and CD algorithm. The new procedure is tested
via numerical simulations under different data generation settings. An application is
given to index tracking in the Chinese stock market. Both the numerical experiments and
application confirm the good performance of our method in general.

This paper is organized as follows. Section 3 formulates the sparse index tracking
with sector neutrality as an optimization problem under constraints. Section 4 discusses
the theory for high-dimensional constrained variable selection. Section 5 describes the
algorithm for the optimization problem. Section 6 presents the results of the simulated
experiments. Section 7 shows the application of the proposed method to index tracking
portfolio construction. Summary and discussion are given in Section 8. Technical proofs
and some tables are relegated to the Appendix A.

3. Methodology

From a statistical point of view, index tracking is a linear regression problem:

Y = Xβ + ε, (1)

with the response Y ∈ Rn×1 and the covariates X ∈ Rn×p, where n is the sample size and p
is the dimension of covariates. β ∈ Rp is the parameter of covariates X, and ε is the error
term, we assume ε ∼ N(0, σ2 I), where I is the identity matrix. In index tracking, Y and
X represent the returns of an index and its constituents, respectively, and β is the weight
vector of the index’s constituents.

Suppose that there are q sectors. We rewrite the covariates X = (X1, . . . , Xq), where
Xi = (Xi,1, . . . , Xi,gi ) are the covariates in the i-th sector, and gi is the number of stocks
in the i-th sector, i ∈ {1, . . . , q}. Accordingly, we write β = (β>1 , . . . , β>q )

>, and βi =

(βi,1, . . . , βi,gi )
>.

For sparse index tracking, three categories of constraints are under consideration:

(1) the sparsity constraint within sector: ∑
q
i=1 ∑

gi
j=1 J(βi,j) ≤ K;

(2) the sector neutrality constraint: ∑
gi
j=1 βi,j = ωi, for i ∈ {1, . . . , q};

(3) the nonnegativity constraint: βi,j ≥ 0, for i ∈ {1, . . . , q}, j ∈ {1, . . . , gi}.
Here ωi are constants satisfying ∑

q
i=1 ωi = 1. Each ωi is the sum of the original

constituent weights in the i-th sector. These original non-sparse weights are pre-specified
by portfolio managers and hence are known in advance from the definition of the index.

The penalty function J(·) needs to be chosen carefully. The Lasso penalty is widely
used in variable selection problems because of its ease of computation. Nevertheless, it
turns out that the Lasso penalty fails to yield a sparse portfolio under sector neutrality and
nonnegativity constraints for index tracking, as explained below. Under the nonnegativity
constraint, the Lasso penalty ∑

q
i=1 ∑

gi
j=1 |βi,j| becomes ∑

q
i=1 ∑

gi
j=1 βi,j, while the sector neu-

trality constraint makes this sum a constant: ∑
q
i=1 ∑

gi
j=1 βi,j = ∑

q
i=1 ωi = 1. Therefore, the

Lasso penalty becomes invalid and gives no penalty on the portfolio size.
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To solve this problem, we take J(·) to be the truncated L1 penalty (TLP) function [17],
which can achieve sparse portfolio selection under the sector neutrality and nonnegativity
constraints. TLP can be thought of as a truncated version of the L1 penalty approximating
the L0-function. As a piecewise linear function, TLP permits efficient computation and
adaptive variable selection. TLP is defined as

J(|z|) = min(
|z|
τ

, 1),

where τ > 0 is a tuning parameter controlling the degree of approximation. With the TLP
function, the estimation of coefficients β is obtained by minimization:

min
β

TE(β) + λ
q

∑
i=1

gi

∑
j=1

J(|βi,j|). (2)

where TE(β) is the tracking error. This is the dual problem corresponding to the constrained
primal problem

min
β

TE(β), subject to
q

∑
i=1

gi

∑
j=1

J(|βi,j|) ≤ K.

The dual problem is not equivalent to the constrained primal problem in general.
However, with the TLP as the penalty function, the two optimization problems are equiva-
lent [17]. In the remainder of the paper, we will consider only the unconstrained dual prob-
lem for its computational advantages. Minimization of (2) reduces to a general weighted
Lasso problem, which can be solved by many efficient algorithms [18,26,27].

The tracking error TE(β) can assume many forms [28], for example, the empirical
tracking error (ETE), defined as

TE(β) =
1
n
‖Y − Xβ‖2

2. (3)

With TLP and the empirical tracking error, we can rewrite (2) as

minβ f (β) = n−1‖Y − Xβ‖2
2 + λ ∑

q
i=1 ∑

gi
j=1 min{ |βi,j |

τ , 1},
subject to:

∑
gi
j=1 βi,j = ωi, i ∈ {1, . . . , q},

βi,j ≥ 0, i ∈ {1, . . . , q}, j ∈ {1, . . . , gi}.

(4)

4. Theory

Let us first introduce some notations. The true value of β is denoted by β∗. Without
loss of generality, we assume that the last component β∗i,gi

of β∗i is nonzero for i ∈ {1, . . . , q}.
By virtue of the sector neutrality constraint, we can solve for the last component βi,gi in
each sector:

βi,gi = wi −
gi−1

∑
j=1

βi,j, i ∈ {1, . . . , q}. (5)

We write
β−q = (β1,1, . . . , β1,g1−1, . . . , βq,1, . . . , βq,gq−1)

>,

X−q = (X1,1, . . . , X1,g1−1, . . . , Xq,1, . . . , Xq,gq−1),

XG = (X1,1 − X1,g1 , . . . , X1,g1−1 − X1,g1 , . . . ,

Xq,1 − Xq,gq , . . . , Xq,gq−1 − Xq,gq).
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For any subscripts set A ⊂ {(i, j) : i ∈ {1, . . . , q}, j ∈ {1, . . . , gi − 1}}, we use XA
to denote the matrix consisting of the columns of XG with subscripts in A; likewise, βA
comprises all the elements of β−q with subscripts in A.

Let
A∗ = {(i, j) : β∗i,j > 0, i ∈ {1, . . . , q}, j ∈ {1, . . . , gi − 1}}

be the set of subscripts of all nonzero true coefficients in β∗−q. We denote the cardinality of
A∗ as p0 = |A∗|, and the minimal value of nonzero true coefficients as γmin = min{β∗i,j :
β∗i,j > 0, i ∈ {1, . . . , q}, j ∈ {1, . . . , gi}}.

By (5), the regression Equation (1) can be rewritten as

Y −
q

∑
i=1

wiXi,gi = X−qβ∗−q −
q

∑
i=1

Xi,gi

gi−1

∑
j=1

β∗i,j + ε

= XGβ∗−q + ε

= XA∗β∗A∗ + ε.

(6)

Define

β̂ols
A∗ = (X>A∗XA∗)

−1X>A∗(Y −
q

∑
i=1

wiXi,gi ).

We expand β̂ols
A∗ to be the oracle estimator β̂ols by letting β̂ols

i,j = 0 if β∗i,j = 0, and

obtaining β̂ols
i,gi

by Equation (5).

Let β̂tlp be the global minimizer of (4), and let

Â = {(i, j) : β̂
tlp
i,j > 0, i ∈ {1, . . . , q}, j ∈ {1, . . . , gi − 1}}.

be the estimated set of nonzero coefficients.
We now give two key assumptions when establishing theoretical results regarding

the error bound and asymptotic distribution of the coefficient estimator, and model
selection consistency.

Assumption 1. For some constants d0 > 0 and α > 1, Cmin ≥ d0σ2 log p
n , where

Cmin = inf
{βA : |A|≤α|A∗ |,A6=A∗}

∥∥XA∗β∗A∗ − XAβA
∥∥2

2
max(|A∗ \ A|, 1)

.

Assumption 2. For some constants d1 > 0 and d2 > 0,

d1 ≤ ηmin

(
1
n

X>X
)
≤ ηmax

(
1
n

X>X
)
≤ d2,

where ηmin(·) and ηmax(·) denote the minimum and maximum eigenvalues of a matrix, respectively.

Theorem 1. Assume that Assumption 1 holds, and 0 < τ ≤
√

λ

(n + 1)ηmax(
1
n X>X)

. Then

Pr
[

β̂tlp 6= β̂ols
]

is upper bounded by
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min


√

2p0n1/2τ

σ
√

πη−1/2
min

(
1
n XT
A∗XA∗

) exp

− n(γmin − τ)2

2σ2η−1
min

(
1
n XT
A∗XA∗

)
,

p0Φ

− n1/2(γmin − τ)

ση−1/2
min

(
1
n XT
A∗XA∗

)


+ 4 exp
(
−
(

nCmin

20σ2 − (α + 1) log(p + 1)− nλ

4σ2

))
+ 4 exp

(
−
(
(α− 1)nλ

6ασ2 −
(

1 +
1
α

)
(log(p + 1)− 5

3
)

))

+ p0Φ

− n1/2(γmin − τ)

ση−1/2
min

(
1
n XT
A∗XA∗

)
+ qΦ

− n1/2(γmin − τ)

p1/2
0 ση−1/2

min

(
1
n XT
A∗XA∗

)
,

where Φ(·) is the distribution function of N(0, 1).

Theorem 2. Assume there are constants aγ, aC, aλ, ap0 and alp satisfying

ap0 ≥ 0, alp ≥ 0, ap0 < aγ, aλ < aγ, alp − 1 < aλ, aλ < aC and

γmin � n−
1−aγ

2 , Cmin � naC , λ � naλ , p0 � nap0 , log(p) � nalp ,

where for two sequences {hn} and {gn} we say hn � gn if both sequences hn
gn

and gn
hn

are bounded.
Also assume that the conditions of Theorem 1 and Assumption 2 hold. Then

(A) Selection consistency:

Pr[Â 6= A∗] ≤ Pr[β̂tlp 6= β̂ols]→ 0, as n, p→ ∞.

(B) Asymptotic distribution: Let Fn(t) denote the distribution function of

√
n
(

X>A∗XA∗
n

) 1
2 (

β̂
tlp
A∗ − β∗A∗

)
, and Φp0(t) the distribution function of p0-dimensional stan-

dard multivariate normal distribution. We have

lim
n→∞

sup
t∈Rp0

∣∣Fn(t)−Φp0(t)
∣∣ = 0. (7)

Remark 1. Theorems 1 and 2 stabilize the index tracking problem. They encourage the non-
negativity and sector neutrality in constructing sparse index tracking portfolios in high dimensional
cases and allow practical and empirical work with only a moderate size of training data. The proofs
of Theorems 1 and 2 are displayed in Appendix A.1.

5. Computation

The minimization of (4) with TLP can be treated as a sequence of weighted Lasso
problems [17] and can be solved iteratively. However, the sector neutrality constraint
and the nonnegativity constraint in (4) are not easy to handle directly. Fortunately, the
alternating direction method of multipliers (ADMM) algorithm [21,22] can be applied to
solve the constrained minimization problem (4).

We are now to put our optimization problem in the ADMM framework. First, using the
Lagrangian multiplier method, we transform the original optimization into minimization
of the objective function

f (β) = n−1‖Y − Xβ‖2
2 + λ

q

∑
i=1

gi

∑
j=1

min{
|βi,j|

τ
, 1} (8)
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over the new parameter space C:

C = {β : βi,j ≥ 0,
gi

∑
j=1

βi,j = ωi, i ∈ {1, . . . , q}, j ∈ {1, . . . , gi}}.

It is straightforward to verify that the new parameter space C is convex and the
objective function f in (8) is a convex loss function plus a piecewise linear regularization
function. Using the results in [21,29], our optimization problem is equivalent to

min
β

f (β) + IC(α)

subject to: βi,j = αi,j, i ∈ {1, . . . , q} , j ∈ {1, . . . , gi}, (9)

where IC(α) is the indicator function of space C (i.e., IC(α) = 0 for α ∈ C, and IC(α) = ∞ for
α /∈ C). This is a standard starting form of the ADMM algorithm. Before following three
steps in the ADMM algorithm, we write the augmented Lagrangian for (9),

h(β) = n−1‖Y − Xβ‖2
2 + λ

q

∑
i=1

gi

∑
j=1

min{
|βi,j|

τ
, 1}+ ρ

2
‖β− α + µ‖2

2, (10)

where µ is a scaled dual variable associated with the constraint β = α. Here ρ > 0 is a
penalty parameter.

In each iteration of ADMM, we perform alternating minimization of the augmented
Lagrangian over β and α. At the k-th iteration we update variables β, α and µ by the
following steps:

βk+1 = arg min
β

n−1‖Y − Xβ‖2
2 + λ

q

∑
i=1

gi

∑
j=1

min{
|βi,j|

τ
, 1}+ ρ

2
‖β− αk + µk‖2

2 (11)

αk+1 = ∏
C
(βk+1 + uk) (12)

µk+1 = µk + (βk+1 − αk+1), (13)

where ∏C denotes the Euclidean projection onto space C. In the first step of ADMM, we
fix α and µ and update the value of β by minimization of the augmented Lagrangian; in
the second step, we fix β and µ and update the value of α by projection onto space C; and
finally, we we fix α and β and update the dual variable µ. Algorithm 1 summarizes the
framework of our algorithm and the details are referred to Appendix A.2.

Algorithm 1 ADMM algorithm for the minimization of (10).

(Initialization) Let β0, α0, µ0 ∈ Rp be the initial parameter vectors;
(Iteration) At each iteration k, Update β using Algorithm A1 (see Appendix A.2), α by
the projection (12), and µ by direct calculation (13);
(Termination) Stop when β, α, µ converge.

6. Simulation Results

In this section, we show the performance of our estimation procedure via simulations
and discuss the selection of appropriate tuning parameters λ, τ and ρ in the augmented
Lagrangian (10).

The detailed information about the simulation study, including the model and its
variations, the methods to conduct the experiments and the choice of tuning parameters
are given in Appendix A.3.

The performance of various methods is evaluated by both variable selection per-
formance and estimation accuracy. In terms of variable selection, we use four criteria:
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the mean true positive(TP), the mean false positive(FP), positive selection rate(PSR),
and negative selection rate(NSR) [30], respectively. The true positive(TP) is defined as
#TP = ∑

q
i=1 ∑

gi
j=1 I(β∗i,j 6= 0, β̂i,j 6= 0), which counts the variables with true non-zero

coefficients and estimated non-zero coefficients. The false positive(FP) is defined as
#FP = ∑

q
i=1 ∑

gi
j=1 I(β∗i,j = 0, β̂i,j 6= 0), which counts the variables with true zero coeffi-

cients but estimated as non-zero coefficients. Additionally, PSR is the ratio of TP and the
total number of the true non-zero coefficients. Similar to PSR, NSR is the ratio of FP and
the total number of the true zero coefficients. Regarding estimation accuracy, we adopt the
mean and the standard deviation of model errors (ME) as criteria, where the model error is
defined as ME(β̂) = (β̂− β∗)>E(XX>)(β̂− β∗), and the expectation is taken only with
respect to new observation (X, y). The running time of each method is evaluated using the
machine with Intel Core i5 CPU, 2.4 GHz, 8 GB RAM. All methods were implemented in R.

6.1. Case 1

In this case n > p, five methods are compared. The first one is our method, named as
constrained TLP method (CTLP). The second method uses the Lasso penalty for sparsity
constraint instead of TLP, and we name it the constrained L1 method (CL1). This method
will fail to give a sparse portfolio because of the neutrality constraint, as is pointed out in
Section 3; we present the results of CL1 here for confirmation. The third method uses TLP
for the sparsity constraint, but ignores the sector neutrality, and we refer to this method as
TLP. The fourth and fifth methods are the index tracking procedures in the following form,

minβ TE(β) + λ‖β‖0

subject to β>1 = 1 and β > 0,

with TE(β) being empirical tracking error (ETE) and Huber empirical tracking error (HETE),
which are denoted by ETE and HETE, respectively. In ETE, TE(β) is defined in (3), while in
HETE, TE(β) = 1

n 1>φ(y− Xβ) where φ(x) = (φ(x1), . . . , φ(xn))>, and

φ(x) =

{
x2 if |x| ≤ M
M(2|x| −M) if |x| > M,

(14)

with M being the Huber parameter. Note that ETE and HETE methods ignore the sector-
neutral constraints. These two methods can be carried out using R-package sparseIndex-
Tracking [31].

We first investigate the case when the covariates X have an independent structure.
Table 2 shows the simulation results for both σ = 1 and σ = 3 settings. For the σ = 1
setting, methods CTLP and CL1 have smaller model errors than ETE and HETE, and the
model errors of ETE and HETE are much smaller than that of TLP. When it comes to the
variable selection ability, all methods correctly select non-zero variables. CTLP, ETE and
HETE perform similarly, and better than CL1 in that CL1 tends to select too many trivial
variables and thus fails to produce sparse portfolios, which confirms our earlier assertion.
On the other hand, TLP makes the fewest mistakes in selecting both trivial and non-trivial
variables. When the variance of error terms becomes larger, the simulated data are noisier.
For the σ = 3 setting, CTLP and CL1 still have the smallest model error while TLP performs
quite poorly in terms of model errors. Every method selects almost all nontrivial variables
except for TLP, which selects slightly fewer nontrivial and trivial variables.

Now we investigate the simulation settings when the covariates X have AR(1) cor-
relation, without and with group structures. Similar conclusions can be reached from
Tables 3 and 4. In the large signal-to-noise ratio setting (σ = 1), the model errors of CTLP
and CL1 are similar and smaller than that of their competitors. Besides, CTLP, ETE and
HETE maintain a good balance between selections of trivial and nontrivial variables
whereas CL1 selects too many trivial variables. TLP gives good variable selection results but
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has poor estimation accuracy. In the small signal-to-noise ratio setting (σ = 3), the model
errors of all five methods become larger than those in the case of the large signal-to-noise
ratio setting above. However, the relative performances of the five methods are similar in
terms of model errors and variable selection ability as well.

Table 2. The comparison of five methods in the case of n > p, independent correlation matrix.

Method ME SE TP FP PSR NSR Runtime (s)

σ = 1

CTLP 0.0742 0.0025 14 18.85 100.00% 21.92% 2.78
CL1 0.0741 0.0025 14 52.36 100.00% 60.88% 1.10
TLP 0.1650 0.0042 14 6.77 100.00% 7.87% 0.12
ETE 0.0858 0.0026 14 18.76 100.00% 21.81% 0.02

HETE 0.0924 0.0026 14 18.8 100.00% 21.86% 1.45

σ = 3

CTLP 0.6415 0.0202 13.98 15.64 99.86% 18.19% 1.66
CL1 0.6712 0.0198 13.98 31.55 99.86% 36.69% 1.00
TLP 1.2989 0.0338 13.55 7.52 96.79% 8.74% 0.11
ETE 0.7673 0.0215 13.95 18.74 99.64% 21.79% 0.02

HETE 0.9818 0.0278 13.9 19.33 99.29% 22.48% 1.47

Table 3. The comparison of five methods in the case of n > p, AR(1) correlation matrix without
group structure.

Method ME SE TP FP PSR NSR Runtime (s)

σ = 1

CTLP 0.0697 0.0024 14 16.65 100.00% 19.36% 2.81
CL1 0.0696 0.0024 14 51.04 100.00% 59.35% 1.10
TLP 0.1382 0.0043 14 6.74 100.00% 7.84% 0.14
ETE 0.0796 0.0025 14 16.22 100.00% 18.86% 0.02

HETE 0.0884 0.0026 14 16.21 100.00% 18.85% 1.49

σ = 3

CTLP 0.5956 0.0171 13.98 12.92 99.86% 15.02% 1.95
CL1 0.6161 0.0179 13.97 29.21 99.79% 33.97% 1.12
TLP 1.0480 0.0268 13.81 7.26 98.64% 8.44% 0.13
ETE 0.7136 0.0196 13.95 16.2 99.64% 18.84% 0.02

HETE 0.9427 0.0285 13.91 17.73 99.36% 20.62% 1.43

Table 4. The comparison of five methods in the case of n > p, AR(1) correlation matrix with group
structure.

Method ME SE TP FP PSR NSR Runtime (s)

σ = 1

CTLP 0.0651 0.0020 14 15.26 100.00% 17.74% 2.75
CL1 0.0651 0.0020 14 50.32 100.00% 58.51% 1.04
TLP 0.1337 0.0039 14 6.28 100.00% 7.30% 0.14
ETE 0.0765 0.0022 14 15.32 100.00% 17.81% 0.02

HETE 0.0841 0.0025 14 15.4 100.00% 17.91% 1.42

σ = 3

CTLP 0.5740 0.0171 13.99 13.36 99.93% 15.53% 1.96
CL1 0.5836 0.0185 13.99 44.79 99.93% 52.08% 1.20
TLP 0.9061 0.0276 13.89 10.65 99.21% 12.38% 0.13
ETE 0.6742 0.0203 13.96 17.07 99.71% 19.85% 0.02

HETE 0.9259 0.0253 13.9 17.05 99.29% 19.83% 1.49

From the last columns in Tables 2–4 we see that CTLP takes more time than other
methods in training because of additional loops required to satisfy the sector neutrality
constraint. In contrast, TLP and ETE consume the least time among all methods.
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6.2. Case 2

When p > n, the variable selection becomes a high-dimensional problem and necessi-
tates sparsity. Theoretically, the CL1 method with the Lasso penalty fails to yield sparse
models due to sector neutrality and nonnegativity constraints. However, we can solve the
convex optimization problem using some common convex optimizers like CVXR [32] to
obtain an approximate solution CL∗1 . Tables 5–7 present the results of this case.

The results are similar to that of the low-dimensional case, but all four methods have
larger model errors and select fewer nontrivial variables. In the large signal-to-noise ratio
setting (σ = 1), CTLP has smaller model errors than other methods. CTLP, ETE and HETE
have a similar ability in variable selection. TLP has larger model errors and it tends to
select fewer nontrivial variables. The average model error of CL∗1 is between CTLP and
other methods. It usually selects about 20% trivial variables as in tables if we consider the
numbers less than 10−4 as 0. As the accuracy of numbers increases, more trivial variables
are selected. No estimated coefficients of variables are exactly 0 with moderate accuracy,
which proves that CL∗1 is just an approximate solution and the L1 term does not work. In
the small signal-to-noise ratio setting (σ = 3), there is no significant difference between
CTLP and ETE in terms of model errors, but CTLP selects fewer trivial variables. As to the
other two methods, HETE gives less accurate estimation, and TLP performs less well in
terms of both variable selection and estimation. Although CL∗1 yields the smallest model
errors, it cannot provide the exact solution with the sparsity that we need. All five methods
run faster than in the p < n case due to the smaller sample size. CTLP is still the slowest
one while ETE is the fastest one.

In conclusion, although CTLP takes more time to run, it performs similarly or better
than the competitors in terms of both model errors and variable selection ability.

Table 5. The comparison of four methods in the case of n < p, independent correlation matrix.

Method ME SE TP FP PSR NSR Runtime (s)

σ = 1

CTLP 0.1352 0.0114 13.61 18.27 97.21% 21.24% 2.35
CL∗1 0.1758 0.0101 13.65 19.10 97.50% 22.21% 0.64
TLP 0.3433 0.0299 11.09 12.77 79.21% 14.85% 0.10
ETE 0.1724 0.0134 13.34 18.39 95.29% 21.38% 0.07

HETE 0.1772 0.0134 13.32 18.2 95.14% 21.16% 0.33

σ = 3

CTLP 0.9915 0.0441 10.53 12.08 75.21% 14.05% 2.73
CL∗1 0.9599 0.0437 11.31 17.34 80.78% 20.16% 0.63
TLP 1.7058 0.0816 6.08 4.25 43.43% 4.94% 0.04
ETE 1.0885 0.0432 10.01 16.54 71.50% 19.23% 0.03

HETE 1.2494 0.0507 9.8 15.73 70.00% 18.29% 0.40

Table 6. The comparison of four methods in the case of n < p, AR(1) correlation matrix without
group structure.

Method ME SE TP FP PSR NSR Runtime (s)

σ = 1

CTLP 0.1268 0.0088 13.69 14.68 97.79% 17.07% 2.17
CL∗1 0.1328 0.0062 13.79 16.86 98.50% 19.60% 0.65
TLP 0.3060 0.0261 11.87 11.02 84.79% 12.81% 0.10
ETE 0.1643 0.0111 13.36 15.02 95.43% 17.47% 0.06

HETE 0.1628 0.0110 13.33 14.71 95.21% 17.10% 0.31

σ = 3

CTLP 1.0728 0.0772 10.79 11.67 77.07% 13.57% 2.67
CL∗1 0.8185 0.0304 11.24 15.54 80.29% 18.07% 0.64
TLP 1.8885 0.0644 7.03 4.53 50.21% 5.27% 0.05
ETE 1.0795 0.0439 10.86 15.4 77.57% 17.91% 0.03

HETE 1.2447 0.0507 10.39 15.27 74.21% 17.76% 0.37
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Table 7. The comparison of four methods in the case of n < p, AR(1) correlation matrix with group
structure.

Method ME SE TP FP PSR NSR Runtime (s)

σ = 1

CTLP 0.1189 0.0067 13.71 16.23 97.93% 18.87% 2.03
CL∗1 0.1328 0.0082 13.66 16.66 97.57% 19.37% 0.63
TLP 0.2726 0.0229 12.94 15.04 92.43% 17.49% 0.10
ETE 0.1600 0.0100 13.62 16.03 97.29% 18.64% 0.05

HETE 0.1625 0.0104 13.57 16 96.93% 18.60% 0.32

σ = 3

CTLP 1.0246 0.0526 10.7 11.09 76.43% 12.90% 2.24
CL∗1 0.8340 0.0472 11.36 15.41 81.14% 17.92% 0.62
TLP 1.9927 0.0993 6.72 4.12 48.00% 4.79% 0.05
ETE 1.0223 0.0412 10.88 14.78 77.71% 17.19% 0.03

HETE 1.0964 0.0404 10.53 13.94 75.21% 16.21% 0.39

7. Real Data Results

Now we are to apply the proposed methodology to sparse index tracking for the
CSI 300 Index. In this application, we use the daily return series of the CSI 300 Index
and all stocks in this index from 2014 to 2018. The CSI 300 is a capitalization-weighted
stock market index designed to replicate the performance of the top 300 stocks traded
in the Shanghai and Shenzhen stock exchanges. The index is compiled by the China
Securities Index and is considered a blue chip index for Mainland China stock exchanges.
The return series, the methodology of the CSI 300 Index, the names and weights of the
index constituents, and the corresponding sectors are available from China Securities Index
(http://www.csindex.com.cn/) (accessed on 31 September 2018).

According to the guidelines for the industry classification by the Global Industry
Classification Standard (GICS) and the weights of constituents making up the CSI 300
Index, the stocks can be divided into 11 major sectors, including Materials, Communication
services, Real estate, Industrials, Utilities, Financials, Consumer Discretionary, Energy,
Consumer Staples, Information Technology and Health Care. In the composition of the
CSI 300 index, the constituents, as well as their weights, are reviewed every six months.
As a consequence, every six months, the stock numbers and the weights of sectors will
change. Due to its dynamic properties, we must update our model periodically. We train
and tune the model on the first day after constituent adjustment is implemented with the
daily return series of the index and its renewed constituents before half a year. The total
weights within sectors are calculated based on the renewed weights as well. Then the
model will be tested with daily return series before the next adjustment day. These steps
are in accordance with the practical procedure.

We treat the estimated coefficients as the weights of stocks in building an index-
tracking portfolio. The daily tracking error or prediction error is adopted to evaluate the
model performance. The daily tracking error measures the deviation of the index daily
return from the portfolio daily return, defined as error = r̂t − rt, where rt is the daily return
of the index, r̂t is the daily return of the constructed portfolio. We will compare our method
CTLP with TLP, ETE and HETE as described in Section 6.1 in terms of tracking errors. Since
the training sample size is smaller than the number of index constituents, there is no exact
solution without sparsity, but an approximate solution by a common convex optimizer.
Thus, we show the CL∗1 solution as in Section 6.2. For an additional comparison in the
Lasso family, we give the performance of standard sparse group lasso [33] by SGL. To
give a more intuitive view of the advantages of the proposed method, we also present
the performance of portfolios created by traditional methods, including equal-weighted
portfolio (EW) and inverse volatility weighted portfolio (IVW). Both portfolios consist
of 300 stocks. The weights in the EW portfolio are equal while the weights in the IVW
portfolio are inversely proportional to their historical volatility.

http://www.csindex.com.cn/
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The CSI 300 index has been adjusted eight times from December 2014 to November
2018. Each time the constituents of the index were adjusted, we update the model and test
it with the return series for the next six months. Table 8 presents the mean and standard
deviation of the daily tracking errors in each test set. It also shows the number of stocks
building the portfolio. We highlight the method with the smallest mean daily tracking error
in each period. It is clear that in a majority of periods, CTLP has the smallest mean tracking
error among its competitors. Even in the period, such as 2017H1 and 2017H2, when CTLP
is not the best, it is still very close to the best one. In terms of the standard deviation of
tracking errors, CTLP has a slightly larger standard deviation than ETE and HETE, but
significantly smaller than TLP. However, TLP and HETE tend to yield sparser portfolios
than CTLP and ETE. As to tracking errors, CL∗1 performs not bad. But it has difficulties to
give a sparse portfolio in several periods which violates our motivation to propose this
research. The standard sparse group lasso (SGL) may provide negative coefficients but
satisfy sector-neutral constraints. Although it has sparse enough solutions, its tracking
errors are the largest. The traditional EW and IVW portfolios are not sparse and yield
unstable performance. In some periods they track the index tightly, while in other periods
they produce large tracking errors. We also present the average runtime of the first four
methods in Table 9, indicating that CTLP and HETE run more slowly than the other four
methods. Even though the computation of CTLP requires longer computation time due to
additional sector neutral constraints, it is still worthwhile for its competitive performance
and the fact that this computation is not a frequent task.

As illustration, we display analysis results for the most recent two periods – the first
and second half of 2018, in Figures 1 and 2, Tables 10 and 11. Figures 1 and 2 draw the
cumulative profit and loss of CTLP, TLP, ETE, HETE and the index. The closer of the
cumulative profit and loss line to the red line, which represents that of the index, the better
the method. It is clear that the CTLP replicates the index the best among all four methods.
Tables 10 and 11 present the number of stocks and the total weights of different sectors.
Compared with the index, all portfolios built by five methods are sparse. However, the
portfolio given by TLP consists of such a small number of stocks that it cannot track the
index well. In the TLP portfolio, some sectors even have zero weights. CTLP and CL∗1
selected a portfolio with sector weights strictly equal to that of the index because of the
sector neutrality constraint, whereas ETE and HETE produced sparse portfolios with sector
weights only roughly equal to that of the index.

Dec 06 2017 Jan 02 2018 Feb 01 2018 Mar 01 2018 Apr 02 2018 May 02 2018 Jun 01 2018

Cumulative P&L 2017−12−06 / 2018−06−08

0.95

1.00

1.05

1.10

0.95

1.00

1.05

1.10

CTLP
ETE
HETE
TLP
Index

Figure 1. The cumulative profit and loss of portfolios built by different methods and the index in
2018H1.
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In summary, the proposed CTLP method demonstrates its advantages over the compet-
itive methods in sparse index tracking. The sector neutrality constraint of CTLP guarantees
the resulted sparse portfolio has the same sector risk exposure as the index. Most of the
time, the CTLP method also gives smaller tracking errors. In addition, the non-negativity
and sparsity of the CTLP portfolios are often desired properties in practical applications.

Table 8. The performance of the selected portfolio. By different methods in eight periods. Mean, Std.
Dev and Num stand for the mean, the standard deviation of tracking error and the number of stocks
in the portfolio. In the columns of period, for example, 2018H1 stands for the first half year of 2018.

Period Method Mean Std. Dev Num Period Method Mean Std. Dev Num

2018H2

CTLP 0.018% 0.0016 124

2016H2

CTLP 0.015% 0.0013 107
CL∗1 0.028% 0.0016 297 CL∗1 0.027% 0.0007 300
SGL 0.123% 0.0126 57 SGL −0.073% 0.0056 65
TLP 0.081% 0.0046 42 TLP 0.020% 0.0020 52
ETE 0.031% 0.0013 188 ETE 0.023% 0.0009 219

HETE 0.026% 0.0013 98 HETE 0.016% 0.0011 128
EW 0.091% 0.0064 300 EW −0.016% 0.0022 300
IVW 0.087% 0.0066 300 IVW 0.055% 0.0060 300

2018H1

CTLP 0.008% 0.0031 116

2016H1

CTLP 0.002% 0.0022 75
CL∗1 0.014% 0.0017 126 CL∗1 0.025% 0.0021 120
SGL 0.043% 0.0093 57 SGL 0.062% 0.0109 90
TLP 0.024% 0.0051 34 TLP 0.031% 0.0033 49
ETE 0.022% 0.0013 129 ETE 0.031% 0.0018 140

HETE 0.024% 0.0013 79 HETE 0.033% 0.0017 121
EW 0.018% 0.0086 300 EW 0.052% 0.0040 300
IVW 0.027% 0.0079 300 IVW 0.052% 0.0035 300

2017H2

CTLP −0.008% 0.0019 123

2015H2

CTLP 0.055% 0.0034 117
CL∗1 −0.005% 0.0015 296 CL∗1 0.064% 0.0021 130
SGL −0.095% 0.0060 35 SGL 0.195% 0.0208 84
TLP −0.040% 0.0035 25 TLP 0.135% 0.0087 51
ETE −0.012% 0.0013 220 ETE 0.064% 0.0017 179

HETE −0.017% 0.0016 84 HETE 0.062% 0.0019 121
EW −0.015% 0.0048 300 EW 0.076% 0.0049 300
IVW 0.020% 0.0040 300 IVW −0.935% 0.0479 300

2017H1

CTLP −0.014% 0.0012 129

2015H1

CTLP 0.060% 0.0032 120
CL∗1 −0.016% 0.0009 299 CL∗1 −0.011% 0.0020 147
SGL 0.050% 0.0058 11 SGL −0.358% 0.0153 58
TLP −0.024% 0.0032 33 TLP −0.166% 0.0075 22
ETE −0.010% 0.0009 177 ETE 0.004% 0.0018 166

HETE −0.011% 0.0012 83 HETE −0.009% 0.0024 90
EW 0.017% 0.0023 300 EW 0.009% 0.0041 300
IVW 0.015% 0.0017 300 IVW 0.045% 0.0176 300

Bold means the method has the smallest mean daily tracking error in this period.

Table 9. The average runtime of different methods.

CTLP CL∗
1 SGL TLP ETE HETE

Runtime (s) 47.60 0.75 0.14 18.48 1.67 46.78
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Figure 2. The cumulative profit and loss of portfolios built by different methods and the index in
2018H2.

Table 10. The number of stocks and the sum of weights within sectors in selected portfolio by
different methods and the index in 2018H1.

Sector
Number of Stocks Sum of Weights

Index CTLP CL∗
1 TLP ETE HETE Index CTLP CL∗

1 TLP ETE HETE
Materials 25 11 14 3 12 7 0.062 0.062 0.062 0.004 0.068 0.077

Communication 2 1 2 0 1 1 0.008 0.008 0.008 0.000 0.004 0.005
Real Estate 20 6 8 2 6 5 0.057 0.057 0.057 0.074 0.049 0.056
Industrials 60 14 22 5 22 10 0.137 0.137 0.137 0.117 0.133 0.131

Utilities 8 3 2 1 4 3 0.025 0.025 0.025 0.006 0.041 0.047
Financials 58 22 24 10 27 17 0.353 0.353 0.353 0.340 0.323 0.323

Consumer dis. 42 12 17 4 19 12 0.114 0.114 0.114 0.103 0.127 0.139
Energy 11 3 5 0 5 3 0.023 0.023 0.023 0.000 0.026 0.008

Consumer sta. 14 5 6 1 7 5 0.075 0.075 0.075 0.070 0.085 0.078
Information 42 16 18 5 17 8 0.100 0.100 0.100 0.088 0.065 0.050
Health Care 18 8 8 3 9 8 0.047 0.047 0.047 0.198 0.079 0.086

Table 11. The number of stocks and the sum of weights within sectors in selected portfolio by
different methods and the index in 2018H2.

Sector
Number of Stocks Sum of Weights

Index CTLP CL∗
1 TLP ETE HETE Index CTLP CL∗

1 TLP ETE HETE

Materials 36 9 35 5 23 9 0.067 0.067 0.067 0.094 0.066 0.063
Communications 2 1 2 0 1 0 0.006 0.006 0.006 0.000 0.005 0.000

Real Estate 17 5 17 1 12 7 0.050 0.050 0.050 0.005 0.058 0.065
Industrials 57 14 57 10 25 12 0.122 0.122 0.122 0.132 0.118 0.128

Utilities 10 4 10 0 7 3 0.027 0.027 0.027 0.184 0.034 0.038
Financials 59 24 59 11 41 25 0.368 0.368 0.368 0.000 0.334 0.330

Consumer dis. 37 14 36 5 25 13 0.107 0.107 0.107 0.439 0.120 0.113
Energy 13 2 13 1 7 1 0.026 0.026 0.026 0.035 0.024 0.018

Consumer sta. 13 8 13 4 10 5 0.082 0.082 0.082 0.045 0.079 0.066
Information 34 10 33 4 23 14 0.080 0.080 0.080 0.046 0.098 0.108
Health Care 22 10 22 1 14 9 0.063 0.063 0.063 0.015 0.063 0.071
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8. Summary

Motivated by a sparse index tracking problem, we propose a new method to do sparse
variable selection under constraints. Our methodology extends the traditional variable
selection with added constraints. Constraints either represent the lower dimensional
structure of the data or special characteristics of practical applications.

In the sparse index tracking problem, sparsity, sector neutrality, and nonnegativity
constraints are necessary to build an efficient, sector-risk neutral portfolio with lower
transaction costs to track the performance of the index. We proved the consistency and
asymptotic distribution for the constrained high-dimensional variable selection using our
method. We also developed an efficient algorithm for the estimation of the stock weights of
the sparse portfolio. Both simulations and the real application confirmed the validity and
advantages of the new methodology.

In portfolio management applications, additional constraints may be incorporated
into index tracking, for example, low volatility or size neutrality constraints. We leave these
problems for future investigations.
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Appendix A

Appendix A.1. Proof of Theorems

Proof of Theorem 1. For (i, j) ∈ A∗, by the definition of β̂ols
A∗ , the variance of β̂ols

i,j is a

diagonal entry of matrix σ2(X>A∗XA∗)
−1. Therefore,

Pr[β̂ols
i,j ≤ τ] = Pr[n1/2(β̂ols

i,j − β∗i,j) ≤ −n1/2(β∗i,j − τ)]

≤ Φ

− n1/2(γmin − τ)

ση−1/2
min

(
1
n XT
A∗XA∗

)
.

The variance of β̂ols
i,gi

is σ2v>i (X>A∗XA∗)
−1vi, where vi is the coefficient vector for the

linear combination of β∗i,j on the right hand side of Equation (5) using only nonzero values
of β∗. Note that vi is a p0-dimensional vector consisting of 0’s and −1’s only, The variance
of β̂ols

i,gi
is bounded above by p0σ2η−1

min
(
XT
A∗XA∗

)
. Thus,

Pr[β̂ols
i,gi
≤ τ] = Pr[n1/2(β̂ols

i,gi
− β∗i,gi

) ≤ −n1/2(β∗i,gi
− τ)]

≤ Φ

− n1/2(γmin − τ)

p1/2
0 ση−1/2

min

(
1
n XT
A∗XA∗

)
.

It follows that

http://www.csindex.com.cn/
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Pr[β̂ols
i,j ≤ τ for some (i, j) with β∗i,j > 0]

≤ p0Φ

− n1/2(γmin − τ)

ση−1/2
min

(
1
n XT
A∗XA∗

)
+ qΦ

− n1/2(γmin − τ)

p1/2
0 ση−1/2

min

(
1
n XT
A∗XA∗

)
.

Using theorem 5 of [34] for the global minimizer of (4) without constraints in (4), we
obtain an upper bound for Pr

[
β̂ols 6= β̂tlp

]
:

min


√

2p0n1/2τ

σ
√

πη−1/2
min

(
1
n XT
A∗XA∗

) exp

− n(γmin − τ)2

2σ2η−1
min

(
1
n XT
A∗XA∗

)
,

p0Φ

− n1/2(γmin − τ)

ση−1/2
min

(
1
n XT
A∗XA∗

)


+ 4 exp
(
−
(

nCmin

20σ2 − (α + 1) log(p + 1)− nλ

4σ2

))
+ 4 exp

(
−
(
(α− 1)nλ

6ασ2 −
(

1 +
1
α

)
(log(p + 1)− 5

3
)

))

+ p0Φ

− n1/2(γmin − τ)

ση−1/2
min

(
1
n XT
A∗XA∗

)
+ qΦ

− n1/2(γmin − τ)

p1/2
0 ση−1/2

min

(
1
n XT
A∗XA∗

)
,

which completes the proof.

Proof of Theorem 2. We firstly show that P
[

β̂ols 6= β̂tlp
]
→ 0 as n → ∞. From Mill’s

ratio [35] it follows that

Φ(−x) ≤ 1√
2π

1
x

e−
x2
2 , x > 0.

Hence,

Φ

− n1/2(γmin − τ)

ση−1/2
min

(
1
n XT
A∗XA∗

)


≤ 1√
2π

σ

n1/2d1/2
1 (γmin − τ)

exp
(
−nd1(γmin − τ)2

2σ2

)
,

and

Φ

− n1/2(γmin − τ)

p1/2
0 ση−1/2

min

(
1
n XT
A∗XA∗

)


≤ 1√
2π

p1/2
0 σ

n1/2d1/2
1 (γmin − τ)

exp
(
−nd1(γmin − τ)2

2p0σ2

)
.

Since γmin � n−
1−aγ

2 , λ � naλ , p0 � np0 , aγ > aλ, aγ > ap0 ≥ 0, it follows that
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max


√

2p0n1/2τ

σ
√

πη−1/2
min

(
1
n XT
A∗XA∗

) exp

− n(γmin − τ)2

2σ2η−1
min

(
1
n XT
A∗XA∗

)
,

p0Φ

− n1/2(γmin − τ)

ση−1/2
min

(
1
n XT
A∗XA∗

)


≤max

{√
2p0n1/2d1/2

2 τ

σ
√

π
,

p3/2
0 σ

√
2πn1/2d1/2

1 (γmin − τ)

}
exp

(
−nd1(γmin − τ)2

2σ2

)
→ 0.

(A1)

Similarly,

qΦ

− n1/2(γmin − τ)

p1/2
0 ση−1/2

min

(
1
n XT
A∗XA∗

)


≤ p0√
2π

p1/2
0 σ

n1/2d1/2
1 (γmin − τ)

exp
(
−nd1(γmin − τ)2

2p0σ2

)
→ 0.

(A2)

Because alp − 1 < aλ < aC and alp ≥ 0, it follows that(
nCmin

20σ2 − (α + 1) log(p + 1)− nλ

4σ2

)
→ ∞, (A3)

and (
(α− 1)nλ

6ασ2 −
(

1 +
1
α

)
(log(p + 1)− 5

3
)

)
→ ∞. (A4)

Combining the limits (A1)–(A4), we obtain the selection consistency from Theorem 1.

Asymptotic properties: From Equation (6) we know that β̂ols
A∗ has a multivariate

normal distribution with mean β∗A∗ and covariance matrix σ2

n

(
X>A∗XA∗

n

)−1
. By the selection

consistency in part (A) we obtain the asymptotic distribution (7).

Appendix A.2. The Details of Algorithm

The objective function in the first minimization step (11) is a quadratic function plus a
TLP function. This is a non-convex minimization which can be solved by the difference
of the convex (DC) method [17,23]. The DC method is used to decompose a non-convex
function into the difference of convex functions so that the algorithms and properties of
convex optimization can be applied. By DC decomposition and some calculations, the
minimization subproblem (11) is equivalent to minimize (A5) with regard to β,

h(m)(β) = L(β) +
λ

τ

q

∑
i=1

gi

∑
j=1
|βi,j|I(β̂

(m−1)
i,j ≤ τ). (A5)

Let us begin with the DC decomposition of the objective function h(β) = h1(β)−
h2(β), where

h1(β) = L(β) + λ
p

∑
j=1

J1(|βi,j|), h2(β) = λ
q

∑
i=1

gi

∑
j=1

J2(|βi,j|)

L(β) = n−1‖Y − Xβ‖2
2 +

ρ

2
‖β− αk + µk‖2

2

J1(|βi,j|) =
|βi,j|

τ
, J2(|βi,j|) = max{

|βi,j|
τ
− 1, 0}.
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It is clear that L(β) is a convex function of β. Using the DC decomposition, a sequence
of linear approximations h(m)(β) of h(β) is constructed. Let ∇h2 be the subgradient of h2.
At the m-th iteration, replacing h2(β) by its majorization, we obtain

h(m)(β) = h1(β)− (h2(β̂(m−1)) + (|β| − |β̂(m−1)|)>∇h2(|β̂(m−1)|)),

where |β| denotes the vector obtained by replacing each component of β with its absolute
value. After ignoring the terms that are independent of β, the h(m)(β) becomes

h(m)(β) = L(β) +
λ

τ

q

∑
i=1

gi

∑
j=1
|βi,j|I(β̂

(m−1)
i,j ≤ τ). (A6)

Minimizing (A6) gives the updated value β̂(m). Repeat the process procedure until
convergence.

Then, for the minimizing of (A6), we can use the adaptive weights λi,j =
λ
τ I(|β̂

(m−1)
i,j | ≤ τ),

(A6) can be rewritten as

h(m)(β) = L(β) +
q

∑
i=1

gi

∑
j=1

λi,j|βi,j|. (A7)

Note that the second term in (A7) is a separable function in variable β. This property
enables us to use coordinate descent algorithm [24,25] for minimization. Similar to the
results of regular Lasso [36], the updating formula for β is

βi,j ← (
2
n

XT
i,jXi,j + ρ)−1S(Zi,j, λi,j), (A8)

were Zi,j =
2
n XT

i,jri,j − ρ(−αi,j + µi,j), ri,j = Y − X−(i,j)β−(i,j), Xi,j is the j-th column of Xi,
X−(i,j) is the matrix X with the j-th column of Xi deleted, and β−(i,j) is defined similarly.
S(z, λ) = Sign(z)(|z| − λ) is the soft-thresholding operator. Updating Formula (A8) is
cycled through all variables in turn. Repeated iteration of (A8) until convergence gives the
estimate β̂(m).

Finally, with the inner iteration (A8) and outer iteration Algorithm A1, we solve the
minimization subproblem (11).

We summarize the DC algorithm for minimization (11) below.

Algorithm A1 DC algorithm for the minimization of (11).

(Initialization) Use βk in k-th ADMM iteration as the initial estimate β̂(0).
(Iteration) At m-th DC iteration, compute β̂(m) by minimizing (A5).
(Termination) Stop when |h(β̂(m−1))− h(β̂(m))| < ε and no components of β̂(m) is at ±τ.

Next, we note that computing the projection (12) directly is not easy. Let C1 = {β :
∑j=1,...,gi

β j = ωi, i = 1, . . . , q}. We divide the projection into two easier sequential
projections: the first one is the projection from Rp onto space C1, and the second one is the
projection from C1 to C. The Theorem A1 below will guarantee the equivalence between
the direct projection on C and the two sequential projections.

Theorem A1. In Euclidean space, projection onto space C β
∏C−→ β2 is equivalent to the sequential

projections onto space C1 and space C:

β
∏C1−−→ β1

∏C−→ β2. (A9)

There exists a closed-form solution for β1 = ∏C1
β.
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Let β1 = (β11, . . . , β1p)
>. Assume there are mi elements in the i-th group gi. We have

β1j = β j +
ωi −∑

gi
j=1 β j

mi
, i ∈ {1, . . . , q}, j ∈ {1, . . . , gi}. (A10)

The computation of the second projection is given in the proof of Theorem A1. The
composition of these two sequential projections updates the value of α. The third step (13)
is a direct calculation.

Proof of Theorem A1. Without loss of generality, we assume that all variables belong to
the same group. The proof is similar to the case when the number of groups for variables is
more than 1. The parameter space C1 becomes C1 = {β : ∑j β j = 1}.

Denote β1 = ∏C1
β, and β2 = ∏C β1, where β1 = (β11, . . . , β1p)

>, and β2 =

(β21, . . . , β2p)
>. The closed-form formula for ∏C1

is given by (A10).
Now we are to calculate the projection ∏C2

. We assume that β1 has u positive elements,
v zero elements, and p− u− v negative elements:

β1j > 0 1 ≤ j ≤ u
β1j = 0 u + 1 ≤ j ≤ u + v
β1j < 0 u + v + 1 ≤ j ≤ p.

(A11)

Let cu =
1−∑u

j=1 β1j

u
. The projection β2 = ∏C β1 is given by

β2j =

{
β1j + cu 1 ≤ j ≤ u
0 u + v + 1 ≤ j ≤ p.

(A12)

It is possible that some of β2j, 1 ≤ j ≤ u are negative. If this is the case, we will
repeat the above procedure (A11) and (A12) until there are no negative elements in β2. This
completes the proof.

Appendix A.3. The Details of Simulation

In the simulation study, we consider the model y = Xβ + σε. The covariates X are
generated from a multivariate normal distribution with all marginal distributions being
standard normal distribution N(0, 1). The correlation matrix of X is denoted by R.

We assume three settings for the correlation matrix R:

(1) Independence structure: R is the identity matrix;
(2) AR(1) correlation without group structure: R = (rj,l)

p
j,l=1, where rj,l = 0.5|j−l| for

j, l = 1, . . . , p;
(3) AR(1) correlation with group structure: R = (rj,l)

p
j,l=1, where rj,l = 0.5|j−l| for j, l =

1, . . . , gi and rj,l = 0 for j = 1, . . . gi and l = 1, . . . , gi′ , i 6= i′.

As to the dimension of the covariates X, two cases n < p and n > p will be considered.
We use p = 100. The parameter vector β is divided into 5 groups, with 20 elements in each
group. The numbers of non-zero elements in each group are 3, 3, 1, 2, and 5, respectively.
The true values of β are

β0 = (0.12, 0.04, 0.05,
0, . . . , 0︸ ︷︷ ︸

17︸ ︷︷ ︸, 0.09, 0.02, 0.03,
0, . . . , 0︸ ︷︷ ︸

17︸ ︷︷ ︸, 0.17,
0, . . . , 0︸ ︷︷ ︸

19︸ ︷︷ ︸,
0.2, 0.12,

0, . . . , 0︸ ︷︷ ︸
18︸ ︷︷ ︸, 0.02, 0.04, 0.03, 0.02, 0.05,

0, . . . , 0︸ ︷︷ ︸
15︸ ︷︷ ︸).
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The sum of coefficients for each group are γ1 = 0.21, γ2 = 0.14, γ3 = 0.17, γ4 = 0.32,
and γ5 = 0.16, respectively. Besides, the numbers of zero elements in each group are
17, 17, 19, 18, and 15, respectively. The sample size n is set to be 50 and 2000, for low-
and high-dimensional cases. The distribution of error term ε is the normal distribution
N(0, 0.052), and the scaling parameter σ takes two values: σ = 1 and σ = 3.

In each experiment, we randomly divide a dataset into training, tuning, and testing
sets of 60%, 20%, and 20% of original sample sizes, respectively. We repeat the experiment
100 times and report the means of ME, TP, FP, PSR, NSR and the standard error of ME for
each of the simulation settings.

As to tuning parameter selection, we will use five-fold cross-validation. The optimal
choice of tuning parameters λ and τ can be found by grid search [17]. Finding an optimal
value for ρ is not a straightforward problem [22], however, ref. [21] provides many heuristics
that work well in practice. Here, we find out that a good choice of ρ is around 1.
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