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Abstract: Zipper-coupled tubes are a broadly applicable, deployable mechanism with an angular
surface that can be smoothed by attaching an additional smooth sheet pattern. The existing design
for the smooth sheet attachment, however, leaves small gaps that can only be covered by adding
flaps that unfold separately, limiting applicability in situations requiring a seamless surface and
simultaneous deployment. We provide a novel construction of the smooth sheet attachment that
unfolds simultaneously with zipper-coupled tubes to cover the entire surface without requiring
additional actuation and without inhibiting the tubes’ motion up to an ideal, unfolded state of
stability. Furthermore, we highlight the mathematics underlying the design and motion of the new
smooth sheet pattern, thereby demonstrating its rigid-foldability and compatibility with asymmetric
zipper-coupled tubes.

Keywords: zipper-coupled tubes; Miura-ori pattern; deployable mechanism; origami inspired design;
smooth sheet attachment

MSC: 74-10; 51E24

1. Introduction

Origami is the basis for many deployable mechanisms, including self-scaling, modular
robots [1], satellite reflectarray antennas that pack efficiently [2], and multimodal biomed-
ical devices that actuate electromagnetically [3]. Zipper-coupled tubes are multistable
origami structures that fold up compactly and unfold bidirectionally to fill space and resist
compression [4]. An asymmetric generalization of zipper-coupled tubes with smooth sheet
attachments was introduced previously [5]. Together, these origami-based mechanisms
form a deployable device with a smooth surface that is advantageous in applications, such
as prefab architecture, when drivability and walkability are important, and in smooth
medical devices, when sharp edges could harm the body. The smooth sheet attachment we
presented previously, however, does not fully cover the surface of zipper-coupled tubes
without additional flaps that actuate separately [5]. We rectify this problem by offering an
alternative, Miura-ori inspired [6–8], construction of a smooth sheet attachment that fully
covers the surface of, and deploys simultaneously with, asymmetric zipper-coupled tubes.

In this paper we briefly review the design of asymmetric zipper-coupled tubes and
then demonstrate how to (1) construct a Miura-ori inspired smooth sheet attachment
without gaps that attaches to the mountain folds of asymmetric zipper-coupled tubes and
(2) handle design variations in the symmetric case. We present a mathematically robust
design method, decomposing the attachment into pairs of compatible, tessellating cells
inspired by the Miura-ori pattern and then defining the cells’ vertices throughout the
folding motion, thereby confirming rigid-foldability of the smooth sheet attachment and
highlighting the mathematical processes involved in mechanism design. Our Miura-ori-
based smooth sheet attachment expands the utility of asymmetric zipper-coupled tubes;
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combined, these origami-inspired mechanisms are ideal for applications requiring a rigidly
deployable structure with a smooth surface.

2. Zipper-Coupled Tubes Review

Zipper-coupled tubes are an origami pattern consisting of two or more deployable
tubes coupled together in a zipper fashion that makes their motion compatible. Designed by
Filipov et al., this structure is remarkable for its ability to deploy from a flat, stowable form
into a stable, space-filling structure with only one degree of freedom [4]. In this section
we review briefly the construction of asymmetric zipper-coupled tubes from two tube
segments that are each, in turn, composed of two degree-four vertex cells; the interested
reader may refer to our previous work for a thorough treatment of the construction [5].

Throughout this paper we use the notational convention that an arbitrary vector x has
unit length direction vector x̂ with length x, and hence

x = xx̂

Thus, the notation x̂ always represents a unit length vector associated with a vector denoted
x, where x = xx̂.

The building blocks for zipper-coupled tubes are the compatible degree-four vertex
cells C1 and C2 illustrated in Figures 1 and 2. When combined, they form a single tube seg-
ment [5]. To couple correctly and satisfy rigid and flat-foldability [9], the design constraints
of these degree-four vertex cells include:

α3 = π − α1 α1 + α3 = α2 + α4 α1 < α2

α4 = π − α2 d sin a4 = b sin a1 α1 + α2 ≤ π

If α1 + α2 < π, the zipper-coupled tubes are called asymmetric, having a characteristic
tilt and a customizable unfolding motion. In the special case that α1 + α2 = π and c = a,
the two cells in Figure 1 are congruent, symmetric Miura-ori cells and the resulting zipper-
coupled tubes are those constructed by Filipov et al. [4].

Figure 1. (a) Vectors defining the basic asymmetric degree-four vertex cell, C1. (b) Vectors defining
the complementary degree-four vertex cell, C2. (Adapted from [5]).
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Figure 2. (a) Vertices of the basic asymmetric degree-four vertex cell, C1. (b) Vertices of the comple-
mentary degree-four vertex cell, C2. The points X∗i identify with Xi. (Adapted from [5]).

Like a Miura-ori cell, the basic degree-four vertex cell has one degree of freedom in
its motion. Let the basic and complementary cells lie flat in the xz-plane when unfolded,
as depicted in Figures 1 and 2, and let the angles between the xz-plane and panels σ1 and σ4,
respectively, be equal as σ1 and σ4 fold toward each other (see Figure 1a). Call this motion
parameter γ. Then, placing F0 at the origin and fixing F1 on the negative z-axis in R3 (see
Figure 2a), the motion of the basic cell is determined by the following vector paths:

â(γ) = [0, 0, −1]T

b̂(γ) = [− sin α1 cos γ, sin α1 sin γ, − cos α1]
T

ĉ(γ) =

[
axc3 + bx

k cos γ
,

ayc3 + by

k sin γ
, −

axbx sin2 γ + ayby cos2 γ + k2 sin2 γ cos2 γ

a2
x sin2 γ + a2

y cos2 γ + k2 sin2 γ cos2 γ

]T

d̂(γ) = [sin α4 cos γ, sin α4 sin γ, − cos α4]
T

where

ax = sin α1 cos α4 − sin α4 cos α1 bx = sin α1 cos α3 − sin α4 cos α2

ay = sin α1 cos α4 + sin α4 cos α1 by = sin α1 cos α3 + sin α4 cos α2

k = 2 sin α1 sin α4 ĉ = 〈c1, c2, c3〉

The same vectors define the motion of both basic and complementary cells. By combin-
ing one basic cell (C1) and one complementary cell (C2), we obtain the first tube segment in a
zipper-coupled pair, illustrated in Figure 3a. Its vertices, identified with their corresponding
position vectors, are given by:

E0(γ) = d(γ) F0(γ) = 0 G0(γ) = b(γ)

E1(γ) = a(γ) + d(γ) F1(γ) = a(γ) G1(γ) = a(γ) + b(γ)

E2(γ) = a(γ) + c(γ) + d(γ) F2(γ) = a(γ) + c(γ) G2(γ) = a(γ) + b(γ) + c(γ)

E3(γ) = c(γ) + d(γ) F3(γ) = c(γ) G3(γ) = b(γ) + c(γ)
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Figure 3. (a) The vertices in the first origami tube segment in the construction of an asymmetric
zipper-coupled tube segments pair. (b) The vertices in the second origami tube segment in the
construction of an asymmetric zipper-coupled tube segments pair. (Adapted from [5]).

The second tube segment is a copy of the first, but rotated 180◦ about the y-axis and
then shifted by an offset vector so that it attaches to the first tube segment along the vertical
creases (illustrated in Figure 3b). Let C3 and C4 denote the copies of C1 and C2, respectively,
comprising the second tube segment. To define the motion of the second tube segment, let
x̄ denote the 180◦ rotation of a vector x about the y-axis and define the offset vector:

s(γ) =
(

1 +
b cos α1 + d cos α4

2a

)
a(γ) + c(γ)

Then the vertices of the second tube segment are defined by:

E′0(γ) = d̄(γ) + s(γ) F′0(γ) = s(γ) G′0(γ) = b̄(γ) + s(γ)

E′1(γ) = ā(γ) + d̄(γ) + s(γ) F′1(γ) = ā(γ) + s(γ) G′1(γ) = ā(γ) + b̄(γ) + s(γ)

E′2(γ) = ā(γ) + c̄(γ) + d̄(γ) + s(γ) F′2(γ) = ā(γ) + c̄(γ) + s(γ) G′2(γ) = ā(γ) + b̄(γ) + c̄(γ) + s(γ)

E′3(γ) = c̄(γ) + d̄(γ) + s(γ) F′3(γ) = c̄(γ) + s(γ) G′3(γ) = b̄(γ) + c̄(γ) + s(γ)

The pair of tube segments, with vertices positioned as indicated above, form a single
component in a pair of zipper-coupled tubes (Figure 3b), which will be denoted as Z0.
The zipper-coupled tubes can be extended by taking multiple copies of Z0 and attaching
them end-to-end. In particular, for i = 1 . . . n, let

Zi = Z0 + i(d− b)

Then

Z =
n⋃

i=0

Zi

denotes zipper-coupled tubes with n + 1 components.
Of critical importance, at a certain point in the motion of Z , the upper (or lower)

creases simultaneously become coplanar, as bolded in Figure 4b. This state is the ideal state,
and it occurs at a parameter value:

γ0 = cos−1


√√√√ ayby − a2

x + k2 +
√(

ayby + a2
x + k2

)2 − 4a2
yaxbx

2k2


The value γ0 will be the terminal value for the deployment of Z with a smooth sheet

attachment. Thus, by construction, the smooth sheet attachment lies flat on the surface of
the zipper-coupled tubes when γ = γ0 and folds up with the zipper-coupled tubes until
γ = π/2, at which point the entire structure lies in a plane and has no volume.
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Figure 4. (a) The top smooth sheet attachment (S1 is lightly shaded, S4 is darkly shaded, and co-
planar ridges are bolded). (b) Adding the top and bottom smooth sheet attachments to asymmetric
zipper-coupled tubes (co-planar ridges are bolded). (c) The bottom smooth sheet attachment (S3 is
lightly shaded, S2 is darkly shaded, co-planar ridges are bolded).

3. Asymmetric Smooth Sheet Attachment

In this section we design a Miura-ori inspired smooth sheet attachment that actuates
simultaneously with the asymmetric zipper-coupled tubes pattern, folding up flat and
unfolding into a rigid sheet without gaps in the ideal state. This additional pattern broad-
ens the potential applications of the zipper-coupled tubes structure and expands on the
design of the attachment described previously [5]. As with the zipper-coupled tubes, we
decomposed the overall structure into its basic units: four distinct smooth sheet cells that
tesselate. We define the vectors used to construct each cell to describe the motion of the
cell’s vertices and confirm its compatibility with the zipper-coupled tubes structure.

The seamless smooth sheet attachment consists of four distinct cells denoted Si, for
i = 1, 2, 3, 4. In Figure 4a, the lightly shaded cell is S1 and the darkly shaded cell is S4,
while in Figure 4c, the lightly shaded cell is half of S3 and the darkly shaded cell is S2.
Cells S1 and S3 share the same configuration, but like the zipper-coupled tube segments,
one is rotated 180◦ about the y-axis; the same is true of S2 and S4. The manner in which
the smooth sheet cells attach to Z in the ideal state (γ = γ0) is highlighted in Figure 4b.
When the mechanism is fully deployed, cells on the top sheet meet along their jagged edges,
as seen in Figure 4a. The cells on the bottom sheet, however, meet along their straight edges,
as seen in Figure 4c—this is a key feature in defining a design that will cover zipper-coupled
tubes without gaps and deploy without restricting the tubes’ motion up to the ideal state.

Regarding the single component Z0, the cell Si attaches to Ci. However, whereas the
cells S2 and S4 form a bridge between a pair of creases in Z0, the cells S1 and S3 form
a bridge between a crease of Z0 and a crease of Z1 (bolded in Figure 4b). Upon careful
examination of the zipper-coupled tubes, we observed that S1 can be designed as though it
bridged two creases of C4 and then moved to bridge creases of the copies of C1 in Z0 and
Z1; this strategy eliminates some complexity in defining S1. In contrast, S4 is designed
directly, transversing the two creases of C4 where it attaches. Designing both cells atop C4
allows us to re-use the same vectors and enables the interested reader to easily compare the
Miura-ori inspired cells and the original smooth sheet cells with gaps [5].

3.1. Design of S1

The first smooth sheet cell, S1, has two panels that fold toward each other as the
zipper-coupled tubes fold up. We first discuss the design of S1 when built atop C4—the
desired relation between S1 and C4 is shown in Figure 5a. The vectors that define S1 in this
temporary configuration will be re-used to define S4, allowing the edges of these two cells
to mesh when placed opposite each other. After construction, the smooth sheet cell S1 will
be moved to attach to C1, as seen in Figure 5b.
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In preparation of the design of S1, let the displacement between G′2(γ) and E′2(γ) be
described by

q̄(γ) = d̄(γ)− b̄(γ)

and
q̄⊥(γ) = q̄(γ)− (q̄(γ) · ˆ̄c(γ)) ˆ̄c(γ)

Figure 5. (a) Placing S1 on C4. (b) Attaching S1 to asymmetric zipper-coupled tubes.

As depicted in Figure 6a,b, q̄⊥(γ) is the component vector of q̄(γ) orthogonal to c̄(γ),
the displacement between E′1(γ) and E′2(γ) (or equivalently, the displacement between
G′1(γ) and G′2(γ)). In the ideal state of the zipper-coupled tubes, the distance between the
ridges of Z on which the smooth sheet will be attached is

∆ = ‖q̄⊥(γ0)‖

Figure 6. (a) Vectors in S1. (b) Vector components of ū and v̄. (c) Relation between h and w in the
ideal state.

Note that, of necessity and by design, the top edges of both S1 and S4 are parallel
with q̄(γ0). To remove gaps between zipper-coupled tubes stacked laterally to Z0 and in
anticipation of the behavior depicted in Figure 4c, we extended the side edges of S1 in the
direction of c̄ by the length ε, as shown in Figures 5a and 6a, where

ε =
b sin α1 sin γ0

2|c2(γ0)|

Toward this end, let
ε̄εε(γ) = ε ˆ̄c
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The smooth sheet cell is determined by the vectors ū, v̄, and w̄ illustrated in Figure 6a.
As highlighted in Figure 6b, let

u1 =
d sin α1 − b sin α4 + ∆

2
(1)

v1 =
b sin α4 − d sin α1 + ∆

2
(2)

Note that ∆ = u1 + v1. Examining the components of ū and v̄ in the ideal state,
as shown in Figure 6a,b, we see that u2 + v2 = ||q̄(γ0)− q̄⊥(γ0)||. Since

u2

u2 + v2
=

u1

u1 + v1
=

u1

∆
and

v2

v1
=

u2

u1

it follows that

u2 =
u1

∆
||q̄(γ0)− q̄⊥(γ0)|| (3)

v2 = v1
u2

u1
(4)

Rodrigues’ rotation formula [10] rotates a vector x by angle θ in a counter-clockwise
direction about a unit vector k, and is given by:

R[k, θ](x) = x cos θ + (k× x) sin θ + k〈k, x〉(1− cos θ)

Let

û1(γ) = R[− ˆ̄c(γ), λ(γ)]( ˆ̄q⊥(γ))

û2(γ) = − ˆ̄c(γ)

where

λ(γ) = cos−1

(
‖q̄⊥(γ)‖2 + u2

1 − v2
1

2‖q̄⊥(γ)‖u1

)

Then we define ū(γ) and v̄(γ) as

ū(γ) = u1û1(γ) + u2û2(γ)

v̄(γ) = ū(γ)− q̄(γ)

In order to satisfy flat-foldability, the direction of the vector w̄ must be the same as the
direction of −c̄. Thus, for some positive constant w:

w̄(γ) = −w ˆ̄c(γ)

The primary concern in choosing the length w was to avoid intersections with the
zipper-coupled tubes during deployment. So that the smooth sheet cells S1 and S4 lined up
correctly, we defined w and h to be the lengths necessary so that in the ideal state, the tips
of the vectors w̄ (−w ˆ̄c) and hĉ meet, as shown in Figure 6c. In particular, we set

hĉ(γ0) + F3(γ0) = −w ˆ̄c(γ0) +
(
E′2(γ0) + ε̄εε(γ0)− ū(γ0)

)
Then, w (and h) can be obtained as follows:

[h, w]T = [proj(ĉ(γ0)), proj( ˆ̄c(γ0))]
−1proj

(
ā + c̄ + d̄ + s + ε̄εε− ū− c

)
(γ0) (5)
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where the function proj : R3 → R2 is defined such that

proj[x, y, z]T = [x, y]T

Remark 1. Note that the matrix that is inverted in Equation (5) will be singular only in the
symmetric case when c̄ has the same direction as −c.

We have now stipulated all three vectors—ū, v̄, and w̄—which define S1 when it is
attached to C4. What remains is to move S1 so that it attaches to C1. The desired placement
is depicted in Figure 5b, where S1 is positioned on top of C1 and bridges Z0 and Z1; note
that the zipper-coupled tubes have been rotated about the y-axis in this figure so that S1
lies parallel with the xy-plane (see [5] for further details). Let X[i] denote the point in Zi
that is a copy of X in Z0, for i ≥ 1. Then, the vertex F3

∗ in S1 attaches to F3 in Z0 and the
vertex F3

∗[1] in S1 attaches to F3[1] in Z1. More particularly, the edge P0F∗3 attaches to F0F3

and P0[1]F∗3 [1] attaches to F0[1]F3[1].
Recall that the 180◦ rotation of a vector x̄ about the y-axis is denoted x. Thus, the ver-

tices in S1 when attached to C1 as desired are:

F3(γ) = c(γ) O0(γ) = −εεε(γ) + u(γ) F3[1](γ) = c(γ)− b(γ) + d(γ)

P0(γ) = −εεε(γ) O3(γ) = −εεε(γ) + u(γ)−w(γ) P0[1](γ) = −εεε(γ)− b(γ) + d(γ)

3.2. Design of S3

The cell S3 is a rotated copy of S1 attached to C3, so the vectors that define S3 are
rotated copies of the vectors that define S1, shifted by s. Let the vertices on smooth sheet
cells attached to the rotated tube segment in Z0—i.e., the vertices in S2 and S3—be denoted
with primes. Note that the smooth sheet cell S3 bridges Z0 and Z−1, so the smooth sheet
cell contains the vertices F′3 and F′3[−1]. Thus, the vertices of S3 when attached to C3 are:

F′3(γ) = c̄(γ) + s(γ) O′0(γ) = s(γ)− ε̄εε(γ) + ū(γ) F′3[−1](γ) = c̄(γ) + s(γ)− b̄(γ) + d̄(γ)

P′0(γ) = s(γ)− ε̄εε(γ) O′3(γ) = s(γ)− ε̄εε(γ) + ū(γ)− w̄(γ) P′0[−1](γ) = s(γ)− ε̄εε(γ)− b̄(γ) + d̄(γ)

3.3. Design of S4

The smooth sheet cell S4 attaches on top of C4 and fits together with S1 in the ideal
state, as illustrated in Figure 7. We make the edge of S4 opposite of S1 straight in the ideal
state so that zipper-coupled tubes with smooth sheet attachments can be stacked laterally
without gaps. From another point of view, the edge is made straight in preparation of the
design of S2, a copy of S4 attached to the bottom of Z0—the straight edges of S2 and S3
meet in the ideal state, as illustrated in Figure 4c.

The smooth sheet cell S4 has a degree-four vertex folding pattern inspired by the
Miura-ori cell, as shown in Figure 8a. This allows the cell to close the gap on the top of
Z0 in the ideal state and fold up without intersecting the adjacent tube segment. For flat-
foldability of the cell, we require the sum of opposite angles at the interior vertex to be
180◦ (see Kawasaki-Justin theorem [11,12]). The pattern in Figure 8a is described by the
previously defined vectors ū, v̄, and w̄ and the yet-to-be-defined vectors r̄, t̄, h̄, f̄, and ḡ.

In the ideal state, r̄ and t̄ are the projections of b and d, respectively, into the xy-plane;
this is necessary to ensure flat foldability. Thus (see Figures 3 and 8a),

β2 = ∠P′1Q′1Q′2 = ∠F3G′1G′2 and β3 = ∠P′1O′1O′2 = ∠F3E′1E′2

In particular,

β2 = cos−1
(
− ˆ̄c(γ0) ·

d(γ0)− s0a(γ0)

‖d(γ0)− s0a(γ0)‖

)
β3 = cos−1

(
− ˆ̄c(γ0) ·

b(γ0)− s0a(γ0)

‖b(γ0)− s0a(γ0)‖

)
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Figure 7. (a) Placing S4 on C4. (b) Attaching S4 to asymmetric zipper-coupled tubes.

Figure 8. (a) Vectors in S4. (b) Vector components of f̄ and ḡ.

Having derived these angles, we are now ready to define r̄ and t̄ as follows (see
Equations (1)–(4)):

r̄(γ) = −
(

u1

tan β3
− u2

)
ˆ̄c(γ) + ū(γ)

t̄(γ) = −
(

v1

tan β2
+ v2

)
ˆ̄c(γ) + v̄(γ)

Observing Figure 8a, note that r and t can be expressed simply as:

r =
u1

sin β3
t =

v1

sin β2

In the ideal state, the crease defined by h̄ must have the same direction as −c to satisfy
flat-foldability. Moreover, so that there are no gaps when S1 and S4 come together in the
ideal state, the length of h̄ should be the value h given by Equation (5), according to the
premise upon which Equation (5) was derived (see also Figure 6c). Thus,

h̄(γ0) = −hĉ(γ0)

For an arbitrary parameter value γ, the unit vectors adjacent to ˆ̄h(γ) that emanate from
the degree-four vertex in the interior of S4 are ˆ̄r(γ) and ˆ̄t(γ). Because opposite angles in a
degree-four vertex sum to 180◦ [11,12] and we require a rigid folding, h̄(γ) is determined
by the following system of equations:

ˆ̄h(γ) · ˆ̄r(γ) = cos
(

π − cos−1 ( ˆ̄c(γ) · ˆ̄t(γ)
))

ˆ̄h(γ) · ˆ̄t(γ) = cos
(

π − cos−1 ( ˆ̄c(γ) · ˆ̄r(γ)
))

ˆ̄h(γ) · ˆ̄h(γ) = 1
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The first two equations are linear and the third is quadratic. Hence, there are precisely
two solutions: one corresponding to a valley fold assignment and one corresponding
to a mountain fold assignment. The solution corresponding to a mountain fold is the
correct solution.

Because ḡ corresponds to an edge of the panel defined by h̄ and t̄, we can define it in
terms of these vectors. We want the position of vertex Q′4 in S4 to equal that of O3 in S1

when in the ideal state. This is equivalent to saying that gh
ˆ̄h and −gt ˆ̄t define the same point

when the former is extended from Q′1 and the latter is extended from O3 in the ideal state,
as shown in Figure 8b. The reader will recognize that this problem is formulated similarly
to that in the end of Section 3.1, where the lengths h and w were computed using a system
of equations based on two intersecting vectors. We employ the same technique, with the
following system of equations:

gh
ˆ̄h(γ0) + Q′1(γ0) = −gt ˆ̄t(γ0) + O3(γ0)

giving us

[gh, gt]
T =

[
proj

(
ˆ̄h(γ0)

)
, proj

(
ˆ̄t(γ0)

)]−1
proj

(
−εεε + u−w− ā− c̄− d̄− s− ε̄εε + ū− w̄− t̄

)
(γ0)

We solve for gh and gt and use these components of projection to define ḡ, using ˆ̄h and
ˆ̄t as a basis:

ḡ(γ) = gh
ˆ̄h(γ) + gt ˆ̄t(γ)

We define f̄ similarly, solving for fh and fr via the same method and another system of
equations:

fh
ˆ̄h(γ0) + O′1(γ0) = − fr ˆ̄r(γ0) + O3[−1](γ0)

This gives us

[ fh, fr]
T =

[
proj

(
ˆ̄h(γ0)

)
, proj

(
ˆ̄r(γ0)

)]−1
proj

(
−εεε + u−w− ā− b̄− c̄− s− ε̄εε + ū− w̄− r̄

)
(γ0)

Thus, we have
f̄(γ) = fh

ˆ̄h(γ) + fr ˆ̄r(γ)

Now that we have defined all the essential vectors in S4, we are ready to attach the
degree-four vertex to C4 in the zipper-coupled tubes structure. In the ideal state, this
smooth sheet cell matches exactly with the edges of S1, providing a smooth surface devoid
of gaps on the top of asymmetric zipper-coupled tubes (Figure 4a). In particular, the edge
O′1O′2 attaches to E′1E′2 and Q′1Q′2 attaches to G′1G′2. Likewise, the edges O′1O′4 and Q′1Q′4
align perfectly with adjacent cells in the ideal state and fold up at different rates to avoid
intersections. The vertices in S4 identified with their corresponding position vectors are:

O′1(γ) = ā(γ) + c̄(γ) + d̄(γ) + s(γ) + ε̄εε(γ)− ū(γ) + w̄(γ) + r̄(γ)

O′2(γ) = ā(γ) + c̄(γ) + d̄(γ) + s(γ) + ε̄εε(γ)

O′4(γ) = ā(γ) + c̄(γ) + d̄(γ) + s(γ) + ε̄εε(γ)− ū(γ) + w̄(γ) + r̄(γ) + f̄(γ)

P′1(γ) = ā(γ) + c̄(γ) + d̄(γ) + s(γ) + ε̄εε(γ)− ū(γ) + w̄(γ)

P′2(γ) = ā(γ) + c̄(γ) + d̄(γ) + s(γ) + ε̄εε(γ)− ū(γ)

P′4(γ) = ā(γ) + c̄(γ) + d̄(γ) + s(γ) + ε̄εε(γ)− ū(γ) + w̄(γ) + h̄(γ)

Q′1(γ) = ā(γ) + c̄(γ) + d̄(γ) + s(γ) + ε̄εε(γ)− ū(γ) + w̄(γ) + t̄(γ)

Q′2(γ) = ā(γ) + b̄(γ) + c̄(γ) + s(γ) + ε̄εε(γ)

Q′4(γ) = ā(γ) + c̄(γ) + d̄(γ) + s(γ) + ε̄εε(γ)− ū(γ) + w̄(γ) + t̄(γ) + ḡ(γ)
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3.4. Design of S2

The smooth sheet cell S2 is a rotated copy of S4 that attaches to C2. The vertices in this
smooth sheet cell are

O1(γ) = a(γ) + c(γ) + d(γ) + εεε(γ)− u(γ) + w(γ) + r(γ)

O2(γ) = a(γ) + c(γ) + d(γ) + εεε(γ)

O4(γ) = a(γ) + c(γ) + d(γ) + εεε(γ)− u(γ) + w(γ) + r(γ) + f(γ)

P1(γ) = a(γ) + c(γ) + d(γ) + εεε(γ)− u(γ) + w(γ)

P2(γ) = a(γ) + c(γ) + d(γ) + εεε(γ)− u(γ)

P4(γ) = a(γ) + c(γ) + d(γ) + εεε(γ)− u(γ) + w(γ) + h(γ)

Q1(γ) = a(γ) + c(γ) + d(γ) + εεε(γ)− u(γ) + w(γ) + t(γ)

Q2(γ) = a(γ) + b(γ) + c(γ) + εεε(γ)

Q4(γ) = a(γ) + c(γ) + d(γ) + εεε(γ)− u(γ) + w(γ) + t(γ) + g(γ)

We have now completed the details for the smooth sheet attachment in the asymmetric
case; a summary of the edges and vertices in the attachment is given in Tables A1 and A2,
suppressing γ for concision. This attachment folds up flat and actuates with the zipper-
coupled tubes structure to form a smooth surface, leaving no gaps between the various
asymmetric cells we have described. The symmetric case merits more discussion, however,
because there are fewer constraints on the vectors in the Si, allowing for multiple rigidly
foldable patterns given specific design parameters.

4. Symmetric Smooth Sheet Attachment

Unlike their asymmetric counterparts, symmetric zipper-coupled tubes have no tilt
and fold parallel with the x-axis [5]. Furthermore, the center creases in S1 and S4 lie
parallel with the y-axis in the ideal state, as illustrated in Figure 9. There are multiple
valid lengths for these creases, therefore, in a design that covers all the gaps in the surface
while maintaining rigid foldability without prohibitive intersections. In this section we
comment on the diversity in symmetric, Miura-ori inspired smooth sheet cell construction
and recommend values for certain lengths.

Figure 9. S1 and S4 in a symmetric smooth sheet attachment.

The design parameters for the smooth sheet cells Si are uniquely determined for all
cases where α1 + α2 < π. When α1 + α2 = π, however, there is no longer a unique solution
to Equation (5). In particular, c̄(γ0) has the same direction as −c(γ0) in the symmetric case,
so the matrix inverted in Equation (5) is singular and the values h and w are not uniquely
defined. Similarly, β2 and β3 are no longer constrained, and we may define these features
of the design problem advantageously by choosing a solution that minimizes the amount
by which the smooth sheet attachment protrudes from the structure when folded.
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In the design of S1 and S3, let w∗ replace the value of w. Likewise, in the design of
S4 and S2, let w∗∗ replace the value of w. As highlighted in Figure 9, for the symmetric
case we no longer require that w∗ = w∗∗. In selecting a value for w∗, we set it as large as
possible to maximize the surface area of S1, thus minimizing the amount by which the
edges of S4 can protrude from the zipper-coupled tubes structure. Applying the analysis
given in [5] (see Section 7.1.3), the largest value for w∗ can be shown to be

w∗ = c− d sin α1 + b sin α4 − ∆
2 tan (α2 − α1)

− ε

The only requirements for h, w∗∗, β2, and β3 in the symmetric case are

h + w∗∗ = c− ε and β2 = β3

Adjustments to the values h, w∗∗, β2, and β3 can also assist in minimizing the protru-
sion of S4 from the zipper-coupled tubes. Optimal values can be determined by numerical
methods according to the specific design application. However, care should be taken in
making these adjustments to avoid intersections with the structure underneath.

On a final note, although f̄ and ḡ are determined after defining the previous quantities,
a convenient simplification in their definition: because S4 is symmetric, the vectors f̄ and ḡ
are parallel to h̄ and have equal lengths. Moreover, in the ideal state,

O′1O′4 = O′2O′4 −O′1O′2

Therefore,

gt = fr = 0 and gh = fh = (2c− w∗)−
(

w∗∗ +
u1

tan β3

)
5. Conclusions

We have successfully defined a smooth sheet attachment that folds up with the zipper-
coupled tubes and unfolds to the ideal state without inhibiting their motion to form a flat
surface without any gaps (Figure 10). This pattern is defined for both the asymmetric and
symmetric cases, and we provide access to code which the reader may use to visualize
the origami structures described and print out the corresponding fold patterns: https:
//github.com/dylanwebbc/azct (accessed on 23 July 2022).

Figure 10. Model of asymmetric zipper-coupled tubes with a Miura-ori inspired smooth sheet
attachment at different stages of unfolding; the nature of the deployment of the degree-four vertex
cells is clearly observable on the bottom of the device. Parameters: α1 = 1

3 π, α2 = 5
9 π, a = b = c.

Dimensions (inches): 4.9 by 3.3 when folded, 7.4 by 3.5 by 1.5 when unfolded.

https://github.com/dylanwebbc/azct
https://github.com/dylanwebbc/azct
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Note that the smooth sheet cells protrude from the zipper-coupled tubes structure
when folded. When gaps are tolerable and the folded state must be minimized for trans-
portation, constraining the cells to fold up within the zipper-coupled tubes while max-
imizing surface area in the ideal state results in the smooth sheet attachment described
previously [5]. Thus, the smooth sheet design can be tailored to the situation, much like
zipper-coupled tubes themselves. To inform future applications of these structures, we sug-
gest dynamic and quasi-static analyses. Constructing a device for architectural applications
will likely require the use of thick origami and compliant hinges, and remote self-actuation
via magnetism or heat could be useful in space or medical applications [13–15].

Miura-ori-inspired smooth sheet attachments enhance the utility of zipper-coupled
tubes in various situations. The tubes are useful in architecture because they pack tight
and deploy to a rigid state [4]; our gapless smooth sheet attachments improve existing
designs by increasing drivability and walkability. If a local bridge collapses, for example,
a prefabricated bridge based on zipper-coupled tubes with smooth sheet attachments
can easily be transported on a single vehicle and swiftly deployed on-site to provide
smooth, emergency transit. Space structures are another popular application of origami-
inspired mechanisms—the Miura-ori pattern that the smooth sheet is based on is common
in deployable space array design. Accommodating for material thickness, however, makes
Miura-ori sheets challenging to deploy [16]. In contrast, a thin solar array constructed
from Miura-ori inspired smooth sheet cells can deploy rigidly because it is supported by
zipper-coupled tubes.

The design of smooth sheet attachments without gaps is key to the development of
more versatile zipper-coupled tubes. We have communicated a clear design method for the
origami-based structure, examining the mathematics of its motion in detail. By elucidating
the possibility for further enhancements on the zipper-coupled tubes structure, we hope to
spur many novel and exciting applications beyond those mentioned.
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Appendix A

Table A1. Defining the edges in Miura-ori based, smooth sheet attachments for a pair of asymmetric
zipper-coupled tubes.

S1 S2

O0P0 O0P0[1] O1P1 O2P2 O4P4

O3F3 O3F3[1] P1Q1 P2Q2 P4Q4

O0O3 P0F3 O1O2 O1O4 P1P2

P0[1]F3[1] P1P4 Q1Q2 Q1Q4

S3 S4

O′0P′0 O′0P′0[−1] O′1P′1 O′2P′2 O′4P′4

O′3F′3 O′3F′3[−1] P′1Q′1 P′2Q′2 P′4Q′4

O′0O′3 P′0F′3 O′1O′2 O′1O′4 P′1P′2

P′0[−1]F′3[−1] P′1P′4 Q′1Q′2 Q′1Q′4
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Table A2. Defining the vertices in Miura-ori inspired smooth sheet attachments for a pair of asym-
metric zipper-coupled tubes.

Vertex Position

O0 −εεε + u

O1 a + c + d + εεε− u + w + r

O2 a + c + d + εεε

O3 −εεε + u−w

O4 a + c + d + εεε− u + w + r + f

P0 −εεε

P1 a + c + d + εεε− u + w

P2 a + c + d + εεε− u

P4 a + c + d + εεε− u + w + h

Q1 a + c + d + εεε− u + w + t

Q2 a + b + c + εεε

Q4 a + c + d + εεε− u + w + t + g

F3 c

F3[1] c− b + d

P0[1] −εεε− b + d

Vertex Position

O′0 s− ε̄εε + ū

O′1 ā + c̄ + d̄ + s + ε̄εε− ū + w̄ + r̄

O′2 ā + c̄ + d̄ + s + ε̄εε

O′3 s− ε̄εε + ū− w̄

O′4 ā + c̄ + d̄ + s + ε̄εε− ū + w̄ + r̄ + f̄

P′0 s− ε̄εε

P′1 ā + c̄ + d̄ + s + ε̄εε− ū + w̄

P′2 ā + c̄ + d̄ + s + ε̄εε− ū

P′4 ā + c̄ + d̄ + s + ε̄εε− ū + w̄ + h̄

Q′1 ā + c̄ + d̄ + s + ε̄εε− ū + w̄ + t̄

Q′2 ā + b̄ + c̄ + s + ε̄εε

Q′4 ā + c̄ + d̄ + s + ε̄εε− ū + w̄ + t̄ + ḡ

F′3 c̄ + s

F′3[−1] c̄ + s− b̄ + d̄

P′0[−1] s− ε̄εε− b̄ + d̄
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