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Abstract: Traffic signal control is one effective way to alleviate traffic congestion. Anticipatory
traffic signal control determines signal settings from a network planning perspective, which takes
into account the influence of travelers’ route choice response and triggers better equilibrium flow
patterns for better network performance. For the route choice response, it is usually predicted by a
response function known as traffic assignment model. However, the response behavior can never be
precisely modeled, leading to a mismatch between the modeled and real traffic flow patterns. This
model-reality mismatch generally contributes to suboptimal control performance and hence brings
unexpected congestion in real-life traffic operations. This study aims to address the model-reality
mismatch and proposes an effective anticipatory traffic control for real operations. A metamodel
is introduced that serves as a surrogate of the unknown structural model bias. Then an iterative
optimizing control scheme is applied to correct the model bias by learning from observations. By
integrating the model-based control design with data-driven learning techniques, the metamodeling
framework is able to enhance the control performance. Moreover, the analytical model bias formula-
tion allows theoretical investigation of the model approximation error. To further improve the control
performance, a joint traffic model parameter estimation is developed, hence achieving a better model
calibration jointly with the model bias correction. The proposed control method is examined on a
test network. Numerical examples confirm the effectiveness of the proposed method in improving
control performance despite the model-reality mismatch. Comparison results show that the proposed
method outperforms the traditional model-based control method and an improvement of 14.8% in
total travel time is achieved in the example network.

Keywords: traffic signal control; network design; equilibrium flow; model bias; metamodeling;
iterative learning

MSC: 49Q22

1. Introduction

Traffic signal control is one important means of traffic management in urban road
networks. Optimizing signal timings is considered a cost-effective way to reduce conges-
tion and improve urban mobility. Local control strategies usually assume given traffic
arrivals, and they are not efficient regarding network performance which relies on the
flow patterns. Although many control measures and strategies have been developed over
the past decades [1], the effective design of network-wide signal control that incorporates
travelers’ route choice response remains a challenge.

It has long been recognized that route choice and signal control are closely connected.
Traffic control can be used to affect the route choice behavior and hence the resulting flow
pattern so as to achieve better network-wide performance. An anticipatory traffic control
(ATC) was proposed for the combined traffic assignment (route choice) and signal control
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problem [2–4]. In general, ATC is a specific instance of the more general network design
problem (NDP), in terms of signal setting design.

A comprehensive design of ATC is typically based on the availability of an accurate
flow response function (i.e., traffic assignment model) and uses a model-based optimization
for setting signal plans [3]. This signal plan is kept fixed when implemented on a real-life
network. However, traffic managers often face model uncertainty about the real response
of road users. In general, the actual route choice behavior is usually approximated by
traffic assignment models, which can never be precisely modeled, leading to a mismatch
between the modeled and real traffic flow patterns. The presence of model-reality mismatch,
due to structural model bias or inaccurate model parameters, could result in suboptimal
control performance, for instance, unexpected delay and congestion in real-life traffic
operations. How to address this model-reality mismatch becomes a key question for
practical applications of ATC.

This paper focuses on designing an effective anticipatory traffic control that can
perform well for real operations. In order to achieve optimal control associated with real-
life network performance, a data-driven iterative learning technique is integrated with the
model-based design. The objective is to iteratively amend model bias and enhance ATC by
learning from observing the real system response. We consider the fact that routine traffic
operation is repetitive and we can observe traffic flows during one time period, defined
as an epoch. Then we can learn from the observations how to implement better control
in the next epoch. We assume that traffic flow stabilizes in an epoch and we can obtain
the equilibrium flow measurements from observations. Therefore, the epoch refers to a
period that is long enough, e.g., the epoch of days or weeks of traffic operations [5], in
order to allow the system to settle in equilibrium every epoch. For instance, an empirical
study has found that after the occurrence of a bridge collapse, individual route choice
behavior changed and the aggregate traffic stabilized in about six weeks [5]. An adaptive
fine-tuning activity is therefore straightforward, which is likely to be done in practice by
traffic engineers: they implement the optimal control and observe the users’ response; then
they may learn from the data, e.g., the aggregate traffic flows, obtained on the previous
epoch, and calculate optimal control for the current epoch.

Whereas heuristic approaches, such as the trial-and-error procedure, have been in-
vestigated in the literature, this paper adopts a more systematic approach based on the
metamodeling technique. The approximation or metamodeling technique has been devel-
oped for simulation-based optimization or large-scale problems. The main motivations
of metamodeling include: for large-scale problems, it is computationally expensive to
evaluate the performance function, hence a metamodel is usually used as a surrogate of the
expensive simulation process; moreover, the metamodel can be also used as a surrogate of
performance functions without closed-formed formulation, or unknown model.

In this regard, this study introduces a metamodel as a surrogate of the unknown
process model through the analysis of the structural model bias. The metamodel-based
optimization is then performed, which incorporates the effect of the model bias. To improve
the metamodel performance, one can learn from the actual observations of the real system.
An iterative improvement scheme is straightforward, which has been applied in traffic
perimeter control [6] and traffic signal control [7]. Therefore, this study further introduces
an iterative learning scheme and the iterative learning is performed on the metamodel to
elevate the control algorithm to its best achievable performance. By integrating the model-
based control design with data-driven learning techniques, the metamodeling framework is
able to enhance the model-based control performance. Moreover, the analytical formulation
allows theoretical investigation of the model approximation error.

In addition to the structural model bias that cannot be captured by model parameters,
this paper also addresses model inaccuracy due to parametric errors. It is known that
traffic model parameters can be quite sensitive to the topology and characteristics of a
specific network, for instance, the free-flow speed and the jam density of the network,
which need to be calibrated before their applications for the specific system. This study



Mathematics 2022, 10, 2640 3 of 18

further performs model parameter estimation jointly with model bias correction. Hence, a
better model calibration is also achieved, which may be applied to other traffic management
measures than signal control design, for instance, travel information or route guidance.

The main contributions of this study are summarized as follows:

• This paper develops an effective anticipatory traffic signal control that tackles the
model-reality mismatch in the equilibrium flow response function.

• This paper introduces a metamodeling framework that integrates the model-based
control design with data-driven iterative learning optimization.

• This paper performs traffic parameter estimation jointly with model bias correction to
achieve a better model description.

The rest of the paper is organized as follows. Section 2 provides an overview on the
anticipatory traffic control as well as the problem of enhancing the model-based control. In
Section 3, the mathematical formulation is elaborated. The model-based anticipatory control
optimization problem is first formulated. An iterative learning scheme is then proposed
to enhance the model-based design. Furthermore, the iterative model bias correction is
jointly performed with a choice behavioral parameter estimation as shown in Section 3.
The proposed control method is tested in an example traffic network in Section 4. Section 5
presents conclusions and discussions on the future study.

2. Literature Review
2.1. The Anticipatory Traffic Control Problem

In anticipatory traffic control (ATC), the controller anticipates the travelers’ route
choice response to the implemented signal settings, aiming for the resulting flows to
achieve the network-wide objective, e.g., total network travel time. It is important to model
the interaction between traffic assignment and signal control as depicted in Figure 1. A
mutual decision-making procedure is presented, which assumes the controller to respond
to the travelers’ route choice; in turn, travelers make a route choice based on the travel
cost which accounts for the signalized delay. The controller may play a leader’s role and
anticipate the route choice response, while the travelers act as followers, who follow the
signal timing and make route choices according to the corresponding travel cost. As such,
ATC is characterized by this leader-follower structure. In general, ATC is a specific instance
of the more general network design problem (NDP), in terms of signal setting design.
In literature, the NDP is typically formulated as a bi-level optimization problem, or a
mathematical program with equilibrium constraints [8–12]. Comprehensive overviews
have also been conducted. For instance, reference [13] was among the first to provide an
extensive introduction to the interaction between traffic assignment and signal control.
Reference [14] presented a review on the simulation-based dynamic traffic assignment
models with urban traffic control systems.
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However, it is impossible to precisely model the complex traffic system. There are exit
errors in the underlying models. Reference [15] has pointed out that there exist errors in
the traffic assignment models; these errors influence the network design decisions and they
should be addressed in the network planning procedures. Reference [16] takes into account
the actual stochastic demand in designing an optimal signal setting. To achieve an effective
ATC that can perform well for real traffic operations, it is necessary to tackle the mismatch
between the prediction model and the process model.

2.2. The Problem of Enhancing Model-Based Control

To enhance the model-based ATC control, adaptive fine-tuning is incorporated. A
trial-and-error approach has been investigated for other control measures, e.g., tolling. For
example, a trial-and-error iterative tolling scheme was proposed in the absence of an exact
demand function [17–19]. After imposing the toll, link flows are observed. Based on the
observations, traffic managers can apply the trial-and-error scheme to determine optimal
road pricing, taking account of travelers’ response to the toll. Furthermore, this fine-tuning
scheme was extended to the application of dynamic congestion pricing taking into account
different vehicle types [18], as well as the application of a tradable credit scheme [20].
Reference [19] combined link capacity constraints with the trial-and-error approach for
congestion pricing under elastic demand. Whereas the trial-and-error tolling procedure
follows a heuristic approach, a more systematic approach based on the metamodeling
technique is proposed. Reference [21] provided a review of the state-of-the-art metamodel-
based techniques according to their role in supporting engineering design optimization. For
traffic applications, reference [22] developed a metamodel method that integrates a physical
model component and a general-purpose component to optimize urban transportation
problems. In literature, the metamodeling approach has been widely adopted to address
large-scale traffic simulation calibration [22–24].

For further improvement of the model-based control performance, a joint model
parameter estimation is applied, to achieve a better model calibration jointly with the
model bias correction. Based on the available measurement data, a model calibration
procedure is usually conducted offline, and the model parameter values are identified
properly via the offline calibration [25–27]. In general, a least square error problem is
usually utilized to formulate the model calibration problem, whereby the discrepancy
between the real process and the model is minimized, using a certain quadratic error
function. Other approaches that extract information from data have also been extensively
investigated, for instance, the statistical methods. Reference [28] provides a thorough
overview of the system identification methods considering the characteristics of the models
to be estimated. For joint estimation, reference [29] proposed a joint estimation of traffic
flow variables and important traffic model parameters, so as to achieve better adaptive
capability for the traffic state estimator.

3. Mathematical Formulation
3.1. Model-Based Anticipatory Traffic Control Optimization

Anticipatory traffic signal control optimizes signal settings taking into account trav-
elers’ route choice behavior in response to signal changes. The route choice response, as
well as propagations of flows over the network, can be captured by a traffic assignment
model. This study focuses on the static traffic assignment. It is described as a mutually
consistent system formulated by a fixed-point model, which usually combines the link cost
function and the flow function [30,31]. Let c denote the link cost, which is a function of
link flows f and signal settings g through the function form C(., .), for instance the Bureau
of Public Roads (BPR) function. In general, different signal control parameters can be
incorporated, e.g., cycle length, signal green split, offset, depending on the specific function
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considered. Let denote the link flow operator F(.). The link cost function (i.e., traffic supply
function) and the flow function (i.e., traffic demand function) are formulated as follows.

c = C(f, g)
f = F(c) = Bh(c)

(1)

Solving the solution of the system (1) represents a classic fixed-point problem. As-
suming that the link cost function is continuous and strictly increasing, and the link
flow function is continuous and monotonically decreasing, the fixed-point solution is
unique [3,31]. This solution is used to describe the equilibrium flow response which is then
written as follows.

f = F(C(f, g))

In this study, we assume that the traffic system stabilizes on the study horizon and
we can obtain the equilibrium flow measurements. The equilibrium flows f is repre-
sented as a function of signal settings g. Now reformulate the fixed-point solution in the
following Equation (2).

freal = fr(g) (2)

The superscript real means equilibrium flows in the real-life network. fr(.) refers to the
real flow response function. Equation (2) indicates that the real equilibrium flow depends
on signal control decisions.

In general, it is impossible to accurately describe the reality system in mathematics,
especially regarding the complexity of modeling human response behavior. It is usually
approximated by an equilibrium traffic assignment model.

freal ≈ fEq(g,µ) (3)

in which, fEq(.) is the equilibrium flow model, and µ represents a set of model parameters,
which is adjustable to increase modeling accuracy. Two types of model inaccuracy are
addressed in this paper: one is the imperfect calibration of µ and the other is the structural
model bias fEq(., .) 6= fr(.).

By such a model approximation, one can formulate a model-based anticipatory traffic
control optimization problem as follows.

min
g

z(g, f) (4)

s.t. f = fEq(g,µ) (5)

f ≥ 0 (6)

χ(g) = 0 (7)

gL ≤ g ≤ gU (8)

here, z(., .) is the objective function of the optimization problem, for example, network total
travel time. Equation (5) is the equilibrium flow model and (6) is a non-negativity constraint
on the link flows. Equation (7) represents constraints on dependent signal timings. (8)
represents the boundary of the signal control variables.

By solving the model-based optimization problem (4)–(8), an optimal signal control
setting g∗ is derived. Due to the mismatch between model and reality, g∗ can differ signifi-
cantly from the real optimum denoted as greal∗, leading to suboptimal control performance,
and even worse, resulting in unexpected congestion and spillback.

3.2. Model Bias Correction Using Iterative Learning
3.2.1. Model Formulation

Motivated by an iterative learning control (ILC) technique, which was originally pre-
sented for robotic control by [32], this paper applies an iterative learning scheme to compen-



Mathematics 2022, 10, 2640 6 of 18

sate for the unknown structural model error. An iterative improvement on control settings
is performed, by using the link flow measurements fmea. In this study, we assume that we
can observe the link flows and that the flow measurements are noise-free, thus freal = fmea.
The basic idea behind ILC is the iterative improvement by learning from observed errors.
Whereas the conventional ILC usually follows pure data-driven approaches [33–35], this
paper integrates iterative learning to enhance a model-based design.

A model bias term b is first introduced as in Equation (9), which describes the error
between real measurements and model prediction.

b = fmea − fEq(g,µ) (9)

It is important to correct the model bias for the model-based anticipatory control
optimization. It is known that in the bi-level optimization problem, the derivative of
equilibrium flows to design variables, in our case the signal settings, is a crucial element in
recognizing the leader-follower structure of the bi-level problem, hence using this derivative
information to develop solution methods could provide sufficient solution optimality [8].
In this study, a simple polynomial function based on a first-order approximation is applied
for the model bias correction, which updates both the value and the sensitivity around the
current operating point gk.

b = bk + δk(gk+1 − gk)

δk =
∂fr

∂g

∣∣gk
− ∂fEq

∂g

∣∣gk

(10)

in which, bk is the model bias observing at the current operating point, δk denotes the
Jacobian error between reality and model. A one-step prediction in model bias correction is
captured by Equation (10). It means that during the calculation of the new signal settings,
traffic managers take into account the impact of a new signal setting on correcting the
model bias. Whereas a finite different method can be applied to calculate the derivative
of modeled equilibrium flows with respect to signal settings, calculating the derivative of
the real equilibrium flows is not trivial. Following Brdyś’s method [36], a different way of
implementing the finite different approximation has been adopted to determine the real
flow derivative, which uses measurements observed in the previous iterations instead of
additional perturbations.

∂fr

∂g
∣∣gk

= F(gk)G
−1(gk) (11)

G(gk) = [gk − gk−1 . . . gk − gk−ng ] is a matrix of signal changes and

F(gk) = [fmea
k − fmea

k−1 . . . fmea
k − fmea

k−ng ] is the corresponding matrix of measured flow
changes, in which ng is the number of signal control variables. Thus the real flow derivative is
calculated based on a flow set containing (ng + 1) flow measurements {fmea

k , fmea
k−1, . . . , fmea

k−ng
},

as well as the past (ng + 1) signal settings. Equation (11) can estimate the real flow derivative
at a sufficient level of accuracy in the case of few variables and measurement noise-free.
In the presence of measurement noise, and considering multiple decision variables for a
large-scale problem, inverting the matrix in Equation (11) is not trivial, which is left for our
future study. Methods of inverting the matrix in the presence of measurement noise have
been discussed in [37].

Based on the model bias correction, a metamodel of the real system, denoted as
fmeta(g,µ), more specifically the real equilibrium flows, is derived.

fmeta(g,µ) = fEq(g,µ) + bk + δk(g− gk) (12)

The model-based anticipatory control optimization problem (4)–(8) is then integrated
with iterative learning on model bias correction. After the completion of the kth iteration,
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the enhanced control calculates, an optimal signal setting gk+1∗ for the next iterative k + 1.
This is derived by solving the following optimization problem.

gk+1∗ = argmin
g

z(g, fmeta
k+1 (g,µ)) (13)

s.t. fmeta
k+1 (g,µ) = fEq(g,µ) + (fmea

k − fEq(gk,µ)) + δk(g− gk) (14)

fmeta
k+1 (g,µ) ≥ 0 (15)

χ(g) = 0 (16)

gL ≤ g ≤ gU (17)

Equation (14) represents that the metamodel modifies the model prediction at each
iteration.

Using the newly obtained gk+1∗ as the optimization direction for the next iterate, we
then choose a step size K along the optimization direction. Then we can derive the new
control setting:

gk+1 = (I−K)gk + Kgk+1∗ (18)

here K is a gain matrix representing a suitable step from gk to gk+1∗ and usually takes a
value of K = diag(λ1, . . . , λng), in which λ1, . . . , λng ∈ [0, 1], hence allowing in principle
different step sizes for the different dimensions of g. In many cases, K is regarded as a
design parameter and serves as a practical setting for regulating convergence.

Algorithm 1 presents the procedure to calculate the optimal control solution.

Algorithm 1 Enhanced anticipatory traffic signal control algorithm

Step 1: Initialization.
Set initial value for signal setting g0, traffic model parameter µ, and design parameter K.
Step 2: Solve the model-based control optimization.
Calculate the initial fEq(g0,µ) and measure fmea

0 based on g0. Then solve g1∗ from the control
optimization problem (13)–(17), derive g1 and set k = 1; implement gk, calculate the equilibrium
flow by model prediction fEq(gk,µ) and obtain the flow measurements fmea

k .
Step 3: Perform the model bias correction.
Calculate the model bias bk, at the current operating point, calculate both the model Jacobian for
and the reality Jacobian, then derive the Jacobian error δk.
Step 4: Update the metamodel.
Update the metamodel (12) with the model bias correction, derive a prediction flow for designing
the next optimal signal control;
Step 5: Solve the enhanced control optimization.
Calculate the optimal signal setting based on the updated metamodel, derive an optimization
direction; design appropriate step size and update signal control with Equation (18).
Step 6: Convergence check.
If the predefined termination condition is satisfied, then stop; otherwise go to step 2, set k = k + 1.

3.2.2. Solution Property

As discussed, this study develops an enhanced anticipatory traffic control with it-
erative learning. The ultimate goal is to elevate the model-based solution to the real
optimal point by learning from observations. It indicates that the optimal solution de-
rived from the enhanced control method should be consistent with the solution to the real
optimization problem.

The model bias formulation allows explicit analysis of the solution property (solution
optimality). This can be addressed via a general analysis of the necessary optimality
conditions (NOC) of the optimization problem. It needs to prove that the NOC of the
enhanced control method matches with the NOC of the real optimization problem. The
first-order NOC is usually known as the Karush–Kuhn–Tucker (KKT) conditions [38].
The NOC point is defined as when the KKT conditions of the optimization problems



Mathematics 2022, 10, 2640 8 of 18

are satisfied. By applying iterative learning to the model bias correction, i.e., iteratively
correcting the model error, it ensures that the necessary optimality conditions of the model-
based optimization match with the necessary optimality conditions associated with the
real-life traffic system. Upon convergence, the optimal solution by solving the model-based
design is consistent with the real optimal point (the proof follows a general analysis of
KKT conditions and is not elaborated in this paper). This is guaranteed by the following
condition: at the final converged point, the metamodel derivative exactly matches the
real derivative.

∂fmeta
∞
∂g

∣∣g∞
=

∂fr

∂g
∣∣g∞

(19)

Therefore, a data-driven iterative model bias correction improves the solution optimal-
ity of the model-based design. By implementing the proposed enhanced control method,
the real optimal solution can be achieved.

3.3. Jointly Model Parameter Estimation

A joint model parameter estimation is further proposed in addition to iterative model
bias correction. The added value is that, upon convergence, the discrepancy between
modeled and measured output is also reduced.

Since model parameters are also adjusted now, for the kth iteration, the model bias is
formulated with the parameter µk at the current iteration:

bk = fmea
k − fEq(gk,µk) (20)

The model bias update should simultaneously consider the impact of the parameter modification.

fmeta(gk+1,µk+1) = fEq(gk+1,µk+1) + bk + (
∂b
∂g

)
∣∣∣(gk ,µk)

∆g + (
∂b
∂µ

)
∣∣∣(gk ,µk)

∆µ (21)

This study focuses on invariant parameters, which means that in reality, the parameters
are not varying; hence they are not affected by the signal control. In this regard, the signal
control update will not affect the parameter update, hence the adjustment of µ does not
respond to signal changes. Substituting ∆µ = µk+1 − µk and ∂fr/∂µ = 0 in Equation (21),
it can be viewed as using a better model calibration with a modified parameter value to
predict the model bias.

bk+1 = bmod
k + (

∂b
∂g

)
∣∣∣(gk ,µk+1)

(gk+1 − gk) (22)

in which bmod
k = fmea

k − f(gk,µk+1).

Remark 1. The value of the model parameter does not affect the solution optimality of the iter-
ative learning optimization problem. However, it affects the model bias. More accurate model
parameters can reduce the discrepancy between model and real system. Hence, a better model
parameter estimation is also achieved by jointly adjusting the parameter value during the iterative
learning process.

Remark 2. The jointly control scheme can be extended to include estimation of varying parameters.
For instance, the parameters to be identified may change due to environmental conditions in reality
and are sensitive to signal setting changes. In this circumstance, estimation is correlated with control
optimization, and hence response of parameter estimation to control changes should be considered in
control optimization as well.



Mathematics 2022, 10, 2640 9 of 18

We adopt a common approach for parameter estimation which follows a method of
least squares error. By minimizing the discrepancy between the model output and the
measurement with respect to the 2-norm, we can obtain an optimal parameter value µk+1∗:

µk+1∗ = argmin
µ
‖fmea

k − fEq(gk,µ)‖2
2 (23)

s.t.fEq(gk,µ) ≥ 0 (24)

µL ≤ µ ≤ µU (25)

Equation (23) represents a minimization criterion of vector 2-norm:

‖fmea
k − f(gk,µ)‖2

2 = ∑ ( f mea
k − f (gk,µ))2

Non-negativity and boundary constraints are included in (24) and (25) respectively.
The model bias is then calculated using the updated parameters. Based on the modified

model bias correction, the control optimization problem (13)–(17) is solved. The control
optimization can be reformulated as:

gk+1∗ = argmin
g

z(g, fmeta
k+1 (g,µk+1)) (26)

s.t. fmeta
k+1 (g,µk+1) = fEq(g,µk+1) + bmod

k + δk(g− gk) (27)

fmeta
k+1 (g,µk+1) ≥ 0 (28)

χ(g) = 0 (29)

gL ≤ g ≤ gU (30)

4. Numerical Examples
4.1. Simulation Setting

In this section, we conduct a case study to validate the effectiveness of our proposed
control method. In the numerical example, the ‘virtually’ real measurements are assumed
to be obtained from the computer simulations. By the numerical tests, the purpose is to
provide a conceptual proof of the proposed control method before its deployment using
field data.

The enhanced anticipatory control scheme is tested on the network shown in Figure 2
as illustrated in [39]. There is one OD pair, i.e., node 1 to node 6 in Figure 2, nine links
and five routes. The Bureau of Public Roads (BPR) function is used to calculate the link
travel time [40]. For the demand side, the route choice is formulated by the Logit route
choice model with the dispersion parameter. For the purpose of illustration and without
loss of generality, we consider two control variables in this case study, i.e., two signalized
intersections, which locate at node 4 and node 5. We further assume that the traffic signal
timings operate in a two-phase signal plan. The signal green split is taken as the decision
variable and the signal loss time is not considered in this case. Since green splits of the
two phases (assumed as g(1) and g(2)) are dependent variables, i.e., g(1) + g(2) = 1, therefore,
one independent decision variable of signal setting is defined for one signalized node. To
this end, signal settings at nodes 4 and 5 are denoted as g1 and g2, respectively. A control
optimization problem with two decision variables (g1, g2) is studied in this numerical case.
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Figure 2. The example network.

This case study simulates the model-reality mismatch by applying different route
choice models. In reality, it is assumed that travelers make route choice decisions following
a Nested Logit (NL) structure [31]. The implication is that travelers have a different amount
of information at different levels, i.e., the upper choice level located at node 1 and the lower
choice level located at nodes 2 and 3. The probability of choosing route j can be written as:

ρreal [j] =
exp(−cjθ)

∑i∈Ik
exp(−ciθ)

× exp(ζYk)

∑h exp(ζYh)

in which c is the Link travel time. Route choice set can be divided into subsets I1, . . . , Ik, . . . ,
known as nests. The ratio of dispersion parameters θ0 and θ is denoted by ζ = θ0

θ , which
reflect the features of the first and second choice level, respectively. Yk = ln ∑j∈Ik

exp(−cjθ)
is the logsum variable.

In general, it is impossible to precisely model the real route choice response. It is
assumed that we consider only one choice level for modeling the choice behavior. Hence,
we adopt the multinomial logit (MNL) model with the dispersion parameter θ. The
calculation of the model predicted probability, i.e., by the MNL model, is written as:

ρ[j] =
1

1 + ∑i 6=j exp[θ(cj − ci)]

This case mainly focuses on demand side uncertainty, assuming the link travel cost is
accurately modeled by the BPR function just as ‘reality’. The link cost is a function of link
flow and signal setting.

c = C( f , g) = c0(1 + α(
f

gs
)

β

)

in which c0 is the free-flow travel time, s is the saturation flow, g is the signal green split, α
and β are coefficients of the BPR function. For the non-signalized links, signal spits equal
1. For the test network, the total travel time z can be also precisely formulated, which is
derived as a function of equilibrium flows and signal settings.

z = z(g, f mea) = ∑
l

C( f mea, g). f mea

An equilibrium flow model is calculated by the MNL structure. As such, the dispersion
parameter θ, which is an important choice behavioral parameter capturing the route choice
response, is taken as the model parameter to be estimated.

f Eq = f (g, θ)

Based on the equilibrium flow model, signal control decisions are to be optimized,
and the objective is the minimization of the network’s total travel time. In this numerical



Mathematics 2022, 10, 2640 11 of 18

example, all optimization problems are solved using the MATLAB optimization toolbox©.
Table 1 lists the characteristics of the test network.

Table 1. Characteristics of the example network.

OD Demand (veh/h) 3000

BPR Function Parameters α=0.15, β=4

Saturation Flow
(veh/h)

Free-Flow Travel Time
(h)

Link 1 1000 0.3
Link 2 1000 0.1
Link 3 1000 0.2
Link 4 1200 0.3
Link 5 1800 0.3
Link 6 1800 0.2
Link 7 1800 0.3
Link 8 1800 0.3
Link 9 2500 1.2

Dispersion parameters in reality θ0 0.8
θ 1.2

Regarding the equilibrium flow model, a nominal value of θ = 10 is taken for the
dispersion parameter.

4.2. Simulation Results Analysis

We first compute the real optimal solution. The real optimal results are derived by
solving the model-based anticipatory control optimization (4)–(8) using the exact NL model
(i.e., the real route choice model). The results are listed in Table 2. Note that the real
optimum is used for the purpose of illustration, as well as for validating our proposed
control method and solution algorithm. In actual applications, we cannot obtain the exact
formula of the real system model, and hence we cannot derive the real optimum either.
In view of the model inaccuracy, our proposed control method aims to drive the system
towards the real optimal performance despite the model bias. This may be achieved by
iteratively learning from the real system responses (through flow measurements). This
small test network allows us to derive the real optimum and use it as benchmarking for
validating our proposed solution method.

Table 2. Real optimal solution, optimal solution obtained from the model prediction, and implement
the model-based optimal solution in reality.

Real Optimal Solution Modeled Optimal Solution Implement the Model
Predicted Optimal Solution in Reality

Traffic signal green split (g1, g2) = (0.44, 0.53) (g1, g2) = (0.10, 0.90)
Link 1 511 131 218
Link 2 677 1394 929
Link 3 654 1264 909
Link 4 584 175 259
Link 5 1188 1525 1147
Link 6 1238 1439 1168
Link 7 1165 1395 1128
Link 8 1261 1569 1188
Link 9 574 36 685

Total travel time (veh/h) 2724.1 2599.2 3066.0

Then a traditional model-based traffic control without learning is applied. The MNL
structure is used to model the route choice and the approximated equilibrium flow model is
obtained. By solving the optimization problem (4)–(8) with the approximated equilibrium
model, we derive the optimal signal splits (g1, g2) = (0.10, 0.90). Table 2 also lists the
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results of the modeled flows and the total travel time. Due to the inaccurate equilibrium
flow model, when implementing the optimal signal splits in the real-life traffic system, it
obviously cannot achieve the real optimal performance, as indicated by the resulting link
flows and total travel time in Table 2. The real control performance is significantly different
from the model calculation. It is observed that there is an increase of 17.9% in total travel
time in reality compared with what the controller calculates based on the inaccurate model.
Moreover, compared with the real optimum, the traditional control method leads to an
increase of 12.6% in total travel time.

Starting from the nominal optimal point of (g1, g2) = (0.10, 0.90), the enhanced model-
based control method generates convergent control to the real optimal point. Figure 3
illustrates the trajectory of the proposed control method over iterations. To validate the
control performance, we depict the trajectory within the total travel time contours of the
real control optimization problem, which indicates that the proposed control method is able
to improve the control performance towards the real optimum. In addition to the optimal
control trajectory, we also illustrate the convergence of the proposed method in terms
of total travel time, as shown in Figure 4. The control method converges to the optimal
solution in 16 iterations, i.e., after 16 epochs of traffic operations. Upon convergence, the
optimal signal setting (g1*, g2*) = (0.45, 0.53) is obtained, with the corresponding total travel
time of 2724.3 veh/h, which is quite closed to the real optimum.
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(b) The optimal control trajectory.
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Figure 5 compares the performance of two control methods, i.e., our proposed en-
hanced ATC with iterative learning and the traditional model-based control method. Gen-
erally, the structural modeling error is not addressed in the traditional control method.
Moreover, to test the control performance under different traffic conditions (different con-
gestion levels), we analyze the performance comparison under five demand levels, from
2000 veh/h to 4000 veh/h with an increase of 500 veh/h. Compared with the traditional
model-based control method, the enhanced method is superior in improving the total travel
time. As indicated by the comparison results, the enhanced ATC can improve the total time
at least by 6.1% in this example. An improvement of 14.8% in total travel time is achieved
for the case of demand = 2000 veh/h.

Mathematics 2022, 10, x FOR PEER REVIEW 14 of 19 
 

 

Figure 3. The optimal control trajectory in total travel time contours. (a) The total travel time sur-
face. (b) The optimal control trajectory. 

 
Figure 4. The convergence of the enhanced anticipatory traffic control algorithm. 

Figure 5 compares the performance of two control methods, i.e., our proposed en-
hanced ATC with iterative learning and the traditional model-based control method. Gen-
erally, the structural modeling error is not addressed in the traditional control method. 
Moreover, to test the control performance under different traffic conditions (different con-
gestion levels), we analyze the performance comparison under five demand levels, from 
2000 veh/h to 4000 veh/h with an increase of 500 veh/h. Compared with the traditional 
model-based control method, the enhanced method is superior in improving the total 
travel time. As indicated by the comparison results, the enhanced ATC can improve the 
total time at least by 6.1% in this example. An improvement of 14.8% in total travel time 
is achieved for the case of demand = 2000 veh/h. 

 
Figure 5. Comparison of the control methods under different demand levels. 

Regarding the traffic model parameter estimation, by solving the joint optimization 
problem, the optimal parameter value is obtained as * 0.388θ = . Figure 6 illustrates the 
convergence procedure of the model parameter estimation. Since the parameter estima-
tion is performed locally at each signal control point, it determines a local optimal param-
eter at the optimal control point. Again, this example network allows us to enumerate the 
relation between the model parameter and the objective of the estimation problem. This 
helps to determine the global solution which can be used to validate the performance of 
the local solution. To validate the optimal model parameter, we calculate the objective 
function of the parameter estimation problem, i.e., the root squared error between meas-
ured and modeled flow, by enumerating the parameter values. Figure 7 demonstrates the 

Figure 5. Comparison of the control methods under different demand levels.

Regarding the traffic model parameter estimation, by solving the joint optimization
problem, the optimal parameter value is obtained as θ

∗
= 0.388. Figure 6 illustrates the

convergence procedure of the model parameter estimation. Since the parameter estimation
is performed locally at each signal control point, it determines a local optimal parameter at
the optimal control point. Again, this example network allows us to enumerate the relation
between the model parameter and the objective of the estimation problem. This helps to
determine the global solution which can be used to validate the performance of the local
solution. To validate the optimal model parameter, we calculate the objective function of the
parameter estimation problem, i.e., the root squared error between measured and modeled
flow, by enumerating the parameter values. Figure 7 demonstrates the summation of root
squared errors under all feasible signal settings. The optimal parameter value is derived at
θ
∗
= 0.44. In this test example, the local optimal parameter estimation differs slightly from
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the global optimum. Intuitively, the optimality of the estimation solution can be improved
by incorporating more measurement information under different signal settings.

Mathematics 2022, 10, x FOR PEER REVIEW 15 of 19 
 

 

summation of root squared errors under all feasible signal settings. The optimal parameter 
value is derived at * 0.44θ = . In this test example, the local optimal parameter estima-
tion differs slightly from the global optimum. Intuitively, the optimality of the estimation 
solution can be improved by incorporating more measurement information under differ-
ent signal settings. 

 
Figure 6. The convergence of the model parameter estimation. 

 
Figure 7. Summation of root squared error of flow under all feasible control settings. 

Furthermore, we examine the impact of the initial conditions and step sizes K on the 
control trajectories. Sensitivity analysis is conducted with respect to initial points and step 
sizes. We compare three initial points: (g1, g2) = (0.50, 0.50), (g1, g2) = (0.20, 0.80) and (g1, g2) 
= (0.70, 0.30). Figure 8 shows the evolution of total travel time. As indicated, the transient 
behavior of the convergence is affected by the initial settings, while in this test network, 
they both converge to the real optimum. For general applications, however, it is well rec-
ognized that because of the non-convexity due to the complexity involved in the equilib-
rium problem, local optimal solutions are generally obtained. We should take into account 
the role of initial settings in designing a successfully operating control scheme. 

Figure 6. The convergence of the model parameter estimation.

Mathematics 2022, 10, x FOR PEER REVIEW 15 of 19 
 

 

summation of root squared errors under all feasible signal settings. The optimal parameter 
value is derived at * 0.44θ = . In this test example, the local optimal parameter estima-
tion differs slightly from the global optimum. Intuitively, the optimality of the estimation 
solution can be improved by incorporating more measurement information under differ-
ent signal settings. 

 
Figure 6. The convergence of the model parameter estimation. 

 
Figure 7. Summation of root squared error of flow under all feasible control settings. 

Furthermore, we examine the impact of the initial conditions and step sizes K on the 
control trajectories. Sensitivity analysis is conducted with respect to initial points and step 
sizes. We compare three initial points: (g1, g2) = (0.50, 0.50), (g1, g2) = (0.20, 0.80) and (g1, g2) 
= (0.70, 0.30). Figure 8 shows the evolution of total travel time. As indicated, the transient 
behavior of the convergence is affected by the initial settings, while in this test network, 
they both converge to the real optimum. For general applications, however, it is well rec-
ognized that because of the non-convexity due to the complexity involved in the equilib-
rium problem, local optimal solutions are generally obtained. We should take into account 
the role of initial settings in designing a successfully operating control scheme. 

Figure 7. Summation of root squared error of flow under all feasible control settings.

Furthermore, we examine the impact of the initial conditions and step sizes K on the
control trajectories. Sensitivity analysis is conducted with respect to initial points and step
sizes. We compare three initial points: (g1, g2) = (0.50, 0.50), (g1, g2) = (0.20, 0.80) and
(g1, g2) = (0.70, 0.30). Figure 8 shows the evolution of total travel time. As indicated, the
transient behavior of the convergence is affected by the initial settings, while in this test
network, they both converge to the real optimum. For general applications, however, it is
well recognized that because of the non-convexity due to the complexity involved in the
equilibrium problem, local optimal solutions are generally obtained. We should take into
account the role of initial settings in designing a successfully operating control scheme.

We further analyze the impact of the step size K. As mentioned in Section 3.2, the step
size is a design parameter that affects the convergence and optimal performance of the
control algorithm. We compare five step sizes, including four fixed values and a step size
of K = 1/k, in which k is the number of iterations. As shown in Figure 9, the step size highly
affects the control performance; different values result in different control trajectories and a
larger step could lead to fluctuated procedures and hence non-convergent solutions. The
method of successive averages with K = 1/k generally provides a stable control scheme,
which prevents excessive changes to traffic signal settings especially when we obtain more
information with the increase of iteration. Therefore, it is obvious that the step size is crucial
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in smoothing the control trajectory. Similarly, for the application of the control method, it is
important to select a proper step size for designing a better operating control scheme.
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5. Conclusions

Traffic signal control strategies have been developed over the past decades, with recent
efforts using emerging techniques such as reinforcement learning [41] and metaheuris-
tics [42]. However, the effective design of network signal control that takes account of
travelers’ route choice response remains a challenge. This study proposes a metamodeling
approach for an effective design of anticipatory traffic signal control, which is typically
based on an equilibrium flow response function. It is known that inaccurate modeling
usually contributes to sub-optimal performance when the model-based control system is
implemented in reality. This paper addresses two sources of model inaccuracy: structural
model bias and imperfect model parameter calibration.

First, a model-based anticipatory traffic control optimization problem is formulated. To
address the inherent model-reality mismatch, a metamodel is then introduced as a surrogate
of the unknown process model (the real system) through the analysis of model bias. The
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metamodeling framework integrates the model-based design with a data-driven iterative
learning technique, and provides a closed-form formulation for theoretical analysis of
solution optimality. A simple first-order approximation is adopted for iterative learning on
the model bias correction. To further improve the control performance, a model parameter
estimation is proposed jointly with the iterative model bias correction. In this study, a
choice behavioral parameter estimation is performed. Hence, a better model calibration
is achieved, which could be applied to other traffic management measures than signal
control design, for instance, travel information or route guidance. Numerical examples
confirm that enhancing the model-based anticipatory traffic control with iterative learning
is able to elevate the control algorithm to the optimal solution that is associated with the
real-life system. Compared with the traditional no-learning model-based control method,
an improvement of 14.8% in total travel time is achieved. Furthermore, sensitivity analysis
is performed to test the impact of initial points and step sizes on the control performance.
For general applications, we should take into account the role of initial settings and step
sizes in order to design a successfully operating control scheme.

This study focuses on deterministic model approximation errors and applies a linear
function for model bias correction. Incorporating other random disturbances and inves-
tigating other metamodeling structures are worthy of further exploration. Moreover, we
have focused on numerical experiments and the measurements are obtained from simu-
lations. This is an important intermediary step of methodology development before its
actual deployment. The practical implementation issues, for instance, processing of field
data, and model validation, need further research efforts before linking to the eventual
field deployment.
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