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Abstract: In this work, we use a variable separation approach to construct some novel exact solu-
tions of a (2+1)-dimensional Boussinesq-Kadomtsev-Petviashvili equation. Thanks to two variable-
separated arbitrary functions, some new soliton excitations and localized structures are obtained. It is
observed that large amplitude waves are generated in the process of interaction between two solitons.
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1. Introduction

The soliton concept has appeared in various nonlinear partial differential equations
(PDEs). It results from interplay between the nonlinear and linear dispersive effects and
propagates stably without distortion of shape with particle-like properties [1]. In an
integrable system, solitary waves collide elastically and retain their identity after colli-
sions [2–6]. However, the collision may be highly complex in non-integrable system [7]. Its
application can be found in many areas of physics, including nonlinear optics and plasma
physics [8–10]. There are many powerful methods to construct exact solutions of nonlinear
evolution equations, for example, the inverse scattering transform [10], Hirota’s bilinear
operators [11], the Jacobi elliptic function expansion [12], variable separation approach [13],
etc. Exact solutions of nonlinear evolution equations have been used to study various
collision scenarios in a large array of physical systems, such as transmission, reflection,
annihilation, trapping, and creation of solitary waves. In particular, thanks to the arbitrary
functions in the solutions, a variable separation approach initiated by Professor Lou [13] has
been used to develop various kinds of interesting local structures, including multi-dromion
solutions driven by multiple straight line ghost solitons, dromion solutions with oscillated
tails, ring soliton solutions, standing and moving breather-like structures, chaotic dromions,
resonant dromion and solitoff solutions, and foldon interactions [13–17].

In this work, we will study the (2+1)-dimensional Boussinesq-Kadomtsev-Petviashvili
(B-KP) hierarchy (KP hierarchy of B-type) [18].

wt + wxxx + wyyy + 6(uw)x + 6(vw)y = 0, (1)

uy = wx, vx = wy. (2)

This equation is integrable and is related to a Clifford algebra generated by two neutral
fermion fields. Many researchers has used different methods to search for explicit solutions
of Boussinesq-Kadomtsev-Petviashvili equation. By using some exact solutions of the
auxiliary ordinary differential equation, Ma et al. have constructed its exact complex [19].
The authors in [20] have studied its various exact solutions by using the bifurcation theory
of dynamical systems. Zhang and Cheng’s groups have also constructed its exact solutions
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by the G
′

G -expansion method and the first integral method [21,22]. Recently, Akinyemi et al.
have obtained numerous exact solutions of generalized (B-KP)-like equations with four
different forms by using sub-equation method [23]. We also notice that some exact solutions
of Kadomtsev–Petviashvili equation of B-type with the other version were also studied
extensively in [24–26]. The aim of this paper is to study Boussinesq-Kadomtsev-Petviashvili
equation by variable separation approach to obtain new soliton excitations.

This paper is organized as follows: In Section 2, we obtain a variable separation
solution of the Boussinesq-Kadomtsev-Petviashvili equation with the aid of a variable
separation approach. In Section 3, various soliton excitations are constructed using the
arbitrariness of the functions of p and q in a variable separation solution. In Section 4, a
simple conclusion is presented.

2. Variable Separation Approach for Boussinesq-Kadomtsev-Petviashvili Equation

For details of the variable separation approach, the readers are directed to refer-
ence [13]. In this section, we will use the variable separation approach to construct solu-
tions of the Boussinesq-Kadomtsev-Petviashvili equation. To this aim, we need to take the
following transformation:

w = (ln f )xy,
u = (ln f )xx + u0(x, t),
v = (ln f )yy + v0(y, t),

(3)

where u0(x, t) and v0(y, t) are two arbitrary functions. In fact, {w = 0, u0(x, t), v = v0(y, t)}
is a solution of the Boussinesq-Kadomtsev-Petviashvili equation. Substituting (3) into (1)
leads to a trilinear form

fxyt f 2 − fx4y f 2 − fy4x f 2 + fx4 fy f + fx fy4 f − 6 fxxy f 2
x − 6 fxyy f 2

y
+4 fx3y fx f − fxy ft f − fxt fy f − fx fyt f − 2 fxy fxxx f + 4 fxy3 fy f
−2 fxy fy3 f + 2 fx fy ft + 6 fxy fx fxx − 2 fx3 fy fx + 6 fxy fy fyy − 2 fx fy fy3

+6 f ( fx fy − fxy f )(u0x + v0y) + v0(6 fx fyy f + 12 fxy fy f − 12 fx f 2
y − 6 fxyy f 2)

+u0(6 fy fxx f + 12 fxy fx f − 12 fy f 2
x − 6 fxxy f 2) = 0.

(4)

According to variable separation approach, we utilize the assumption in [13]

f (x, y, t) = a0 + a1 p(x, t) + a2q(y, t) + a3 p(x, t)q(y, t). (5)

Substituting ansatz (5) into (4), we have

f [pxtqy − 6u0qy pxx − qy pxxxx − 6px(v0yqy + qyu0x) + px(qyt − 6v0qyy − qyyyy)]
+2qy px[(a2 + a3 p)(6qyv0 + qyyy − qt) + (a1 + a3q)(6u0 px + pxxx − pt)] = 0.

(6)

With the arbitrariness of the functions v0 and w0, we directly obtain

u0(x, t) =
6 c1(t)(a2 + a3 p) + pt − pxxx

6px
, (7)

v0(y, t) =
−6 c1(t)(a1 + a3q) + qt − qyyy

6qy
, (8)

then p(x, t), q(y, t) and c1(t) become two arbitrary functions. Finally, the variable separation
solution of (2+1)-D B-KP equation is derived as

w =
pxqy(a3a0 − a1a2)

(a0 + a1 p + a2q + a3 pq)2 , (9)

u =
−(qa3 + a1)

2 p2
x + (a1 + a3q) f pxx

(a0 + a1 p + a2q + a3 pq)2 +
6 c1(t)(a2 + a3 p) + pt − pxxx

6px
, (10)
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v =
−(pa3 + a2)

2q2
y + (a2 + a3 p) f qyy

(a0 + a1 p + a2q + a3 pq)2 +
−6 c1(t)(a1 + a3q) + qt − qyyy

6qy
. (11)

Now, one could use Equation (9), called a “universal” formula in [27], to construct
a coherent structure of a (2+1) dimensional B-KP equation. Due to the arbitrariness of
the functions of p, q and c(t), we will construct some novel localized structures of (2+1)
dimensional B-KP equation in the next section.

3. Soliton Excitations

(i) Two soliton interactions affected by a periodic perturbation. If the arbitrary functions
p(x, t) and q(y, t) are simply selected as cosh function together with periodic cosine function
with the following form

p = 2 cosh
(

kx + k3t
)

, q = 16 cosh
(

l1y + l13t
)
+ cos(l2y + l3

2t), (12)

where k, l1 and l2 are some arbitrary real numbers. Figure 1a shows the two solitons
produces breathing effect at the position of the two soliton collision resulting from periodic
cosine function; however, the two solitons preserve the initial shape after the collision due
to soliton stability.

(ii) Two soliton interplay with complex dynamic structure. If the arbitrary functions p(x, t)
and q(y, t) are simply selected as a cosh function in the following form

p = cosh
(

kx + k3t + ξ0

)
, q = cosh

(
l1y + l13t + ξ1

)
+ cosh

(
l2y + l22t + ξ2

)
, (13)

where k, l1, l2, ξ0, ξ1 and ξ2 are some arbitrary real numbers. It is remarked that ξ0, ξ1 and ξ2
are shifting parameters and they have no influence for the dynamics of soliton excitations.
In this case, from Figure 1b, after the two soliton head-on collision, they pass though a
comparable complex process.

Figure 1. Cont.
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Figure 1. The snapshot of two soliton interaction at the time t = 6. (a). The arbitrary function in
Equation (3) for v is taken as Equation (12) for l1 = 1, l2 = 4, k = 1, at t = 6. (b). Under the condition
Equation (13) for l1 = 1, l2 = −2, k = 1.4, ξ0 = 1, ξ1 = 2, ξ2 = 3, respectively.

4. Conclusions

In this work, we have obtained two kinds of variable separation solutions of (2+1)-
dimensional Boussinesq-Kadomtsev-Petviashvili equation by a variable separation ap-
proach. By choosing combination of cosh function and periodic cosine function, two
different soliton excitation scenes are observed graphically. In case (i), at the moment of
collision, we found that breathing behavior is generated and the collision process is more
long than the ordinary iteration between two solitons. In case (ii), two solitons interact
in the long range and resonant. In both cases, we see that large amplitude waves are
generated. Recently, the large amplitude wave phenomenon is a hot topic in the field
of the rogue wave community [28]. We will study this topic in the future by a variable
separation approach.
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