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Abstract: The Riemann extension, introduced by E. K. Patterson and A. G. Walker, is a semi-
Riemannian metric with a neutral signature on the cotangent bundle T∗M of a smooth manifold
M, induced by a symmetric linear connection ∇ on M. In this paper we deal with a natural Rie-
mann extension g, which is a generalization (due to M. Sekizawa and O. Kowalski) of the Riemann
extension. We construct an almost complex structure J on the cotangent bundle T∗M of an almost
complex manifold (M, J,∇) with a symmetric linear connection ∇ such that (T∗M, J, g) is an almost
complex manifold, where the natural Riemann extension g is a Norden metric. We obtain necessary
and sufficient conditions for (T∗M, J, g) to belong to the main classes of the Ganchev–Borisov clas-
sification of the almost complex manifolds with Norden metric. We also examine the cases when
the base manifold is an almost complex manifold with Norden metric or it is a complex manifold
(M, J,∇′) endowed with an almost complex connection∇′ (∇′ J = 0). We investigate the harmonicity
with respect to g of the almost complex structure J, according to the type of the base manifold.
Moreover, we define an almost hypercomplex structure (J1, J2, J3) on the cotangent bundle T∗M4n

of an almost hypercomplex manifold (M4n, J1, J2, J3,∇) with a symmetric linear connection ∇. The
natural Riemann extension g is a Hermitian metric with respect to J1 and a Norden metric with
respect to J2 and J3.

Keywords: natural Riemann extension; almost complex manifolds with Norden metric; almost
hypercomplex manifolds with Hermitian and Norden metrics; harmonicity

MSC: 53C15

1. Introduction

Almost complex Norden structures were introduced in the literature by A. P. Nor-
den [1]. On an almost complex manifold with Norden metric (N, J, g), the almost complex
structure J acts as an anti-isometry with respect to the semi-Riemannian metric g, called
Norden metric, in each tangent fibre. The metric g is necessarily of neutral signature.
Almost complex manifolds with Norden metric were studied in Ref. [2], where they were
called generalized B-manifolds. A classification of the considered manifolds with respect
to the covariant derivative of the almost complex structure was given by G. Ganchev and
A. Borisov in [3]. Beside Riemannian and Lorentzian geometry, a special role is played by
manifolds with a metric of neutral signature, among which almost complex manifolds with
Norden metric constitute a particular class. These manifolds are investigated by many au-
thors and several examples are given in the literature (e.g., [4–9] and the references therein).
Several papers constructed almost complex Norden structures on the total space of the
tangent bundle (see [4]); however, such structures on the total space of the cotangent bundle
are not so rich. We mention here Ref. [10] as a paper concerning almost complex Norden
structures on the cotangent bundle, but we note that the metric of our paper is different, as
we work with natural Riemann extensions (which generalize the Riemann extension).
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Let (M,∇) be an n-dimensional manifold endowed with a symmetric linear con-
nection ∇. Patterson and Walker defined in Ref.[11] a semi-Riemannian metric on the
cotangent bundle T∗M of (M,∇), called Riemann extension. This metric is of neutral
signature (n, n) and it was generalized by M. Sekizawa and O. Kowalski in Ref. [12,13] to
a natural Riemann extension g, which has the same signature. Recently, the metric g has
been studied by many authors. For instance, the first author and Kowalski characterized
in Ref. [14] some harmonic functions on (T∗M, g). In Ref. [15], the first author and Eken
defined a canonical almost para-complex structure on (T∗M, g) and investigated its har-
monicity with respect to g. In Ref. [16], the authors constructed a family of hypersurfaces
of (T∗M, g), which are Einstein manifolds with positive scalar curvature.

Our goal in the present work is to construct and study almost complex and hypercom-
plex Norden structures on the total space of the cotangent bundle, endowed with a natural
Riemann extension.

The paper consists of five sections. In Section 2 we recall some notions and results
about the cotangent bundle of a manifold and the lifting of objects from the base manifold
to its cotangent bundle. In Section 3 we provide some basic information about almost
complex manifolds with Norden metric and we obtain some auxiliary results for later
use. In Section 4 we consider the cotangent bundle of a 2n-dimensional almost complex
manifold (M, J,∇) with an almost complex structure J and a symmetric linear connection
∇. Motivated by the fact that the natural Riemann extension g on T∗M is of a neutral
signature, we define an almost complex structure J on T∗M, which is an anti-isometry with
respect to g. Thus, the natural Riemann extension g is a Norden metric and (T∗M, J, g) is an
almost complex manifold with a Norden metric. We give necessary and sufficient conditions
for (T∗M, J, g) to belong to the following classes of the Ganchev–Borisov classification
in Ref. [3]: W0 (Kähler–Norden manifolds),W2 (special complex manifolds with Norden
metric), W3 (quasi-Kähler manifolds with Norden metric). We prove that (T∗M, J, g) is
never contained in class W1. In the case when the base manifold is an almost complex
manifold with Norden metric (N, J, g) we also find necessary and sufficient conditions
for (T∗N, J, g) to be a manifold from the classesW0,W2 and we show that (T∗N, J, g) is
never contained in classesW1 andW3. At the end of this section, we consider the special
case when the base manifold (M, J,∇′) is a complex manifold, endowed with an almost
complex connection ∇′, i.e., ∇′ J = 0. Moreover, we investigate the harmonicity of the
almost complex structure J with respect to g in the three cases above for the base manifold.
In the last Section 5 we define an almost hypercomplex structure H = (J1, J2, J3) on the
cotangent bundle T∗M4n of an almost hypercomplex manifold (M4n, J1, J2, J3,∇) with a
symmetric linear connection ∇. The hypercomplex manifold (T∗M4n, H) endowed with
the natural Riemann extension g turns out to be an almost hypercomplex manifold with
Hermitian–Norden metrics.

2. Preliminaries

To fix notations, the cotangent bundle T∗M of a connected smooth n-dimensional
manifold M (n ≥ 2) consists of all pairs (x, ω), where x ∈ M and ω ∈ T∗x M. Any local
chart (U; x1, . . . , xn) on M induces a local chart (p−1(U); x1, . . . , xn, x1∗, . . . , xn∗) on T∗M,
where p : T∗M −→ M, p(x, ω) = x, is the natural projection of T∗M to M. For any
i = 1, . . . , n the function xi ◦ p on p−1(U) is identified with the function xi on U and
xi∗ = ωi = ω

((
∂

∂xi

)
x

)
at any point (x, ω) ∈ p−1(U). We put ∂i =

∂
∂xi and ∂i∗ = ∂

∂ωi

(i = 1, . . . , n).
The vectors {(∂1)(x,ω), . . . , (∂n)(x,ω), (∂1∗)(x,ω), . . . , (∂n∗)(x,ω)} form a basis of the tan-

gent space (T∗M)(x,ω) at each point (x, ω)of any local chart in T∗M. The Liouville type vec-
tor field W is a globally defined vector field on T∗M that is expressed in local coordinates by

W =
n

∑
i=1

ωi∂i∗.
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Everywhere here we will denote by F (M), χ(M) and Ω1(M) the set of all smooth real
functions, vector fields, and differential 1-forms on M, respectively.

Now, we recall the constructions of the vertical and complete lifts for which we refer
to [17,18].

The vertical lift f V on T∗M of a function f ∈ F (M) is a function on T∗M defined by
f V = f ◦ p. The vertical lift XV on T∗M of a vector field X ∈ χ(M) is a function on T∗M
(called evaluation function) defined by

XV(x, ω) = ω(Xx) or equivalently XV(x, ω) = ωiXi(x), where X = Xi∂i.

In the following proposition it is shown that a vector field U ∈ χ(T∗M) is determined
by its action on all evaluation functions.

Proposition 1 ([18]). Let U1 and U2 be vector fields on T∗M. If U1(ZV) = U2(ZV) holds for all
Z ∈ χ(M), then U1 = U2.

The vertical lift αV on T∗M of a differential 1-form α ∈ Ω1(M) is a tangent vector field
to T∗M, which is defined by

αV(ZV) = (α(Z))V , Z ∈ χ(M).

In local coordinates we have

αV =
n

∑
i=1

αi∂i∗,

where α = ∑n
i=1 αidxi. Hence we obtain αV( f V) = 0 for all f ∈ F (M).

The complete lift XC on T∗M of a vector field X ∈ χ(M) is a tangent vector field to
T∗M, which is defined by

XC(ZV) = [X, Z]V , Z ∈ χ(M).

In local coordinates XC is written as

XC
(x,ω) =

n

∑
i=1

Xi(x)(∂i)(x,ω) −
n

∑
h,i=1

ωh(∂iXh)(x)(∂i∗)(x,ω),

where X = Xi∂i. Thus we have XC( f V) = (X f )V for all f ∈ F (M).
We note that the vector fields of the form αV + XC generate the tangent space

T(x,ω)T∗M at any point (x, ω) ∈ T∗M.
Let (M,∇) be an n-dimensional manifold endowed with a symmetric linear connection

∇ (i.e., ∇ is torsion-free). In Ref. [13] Sekizawa constructed a semi-Riemannian metric g at
each point (x, ω) of the cotangent bundle T∗M of M by:

g(x,ω)(XC, YC) = −aω(∇Xx Y +∇Yx X) + bω(Xx)ω(Yx),
g(x,ω)(XC, αV) = aαx(Xx),
g(x,ω)(α

V , βV) = 0
(1)

for all vector fields X, Y and all differential 1-forms α, β on M, where a, b are arbitrary
constants. We may assume a > 0 without loss of generality. The metric g defined by (1) and
named in Refs. [12,13] as a natural Riemann extension, is a semi-Riemannian metric of neutral
signature (n, n). When b 6= 0, g is called a proper natural Riemann extension. In the case
when b = 0 and a = 1, we obtain the notion of the (classical) Riemann extension defined by
Patterson and Walker (see Ref.[11,19]). Hence, the natural Riemann extension generalizes
the (classical) Riemann extension. If b = 0 and a 6= 1, then g is the (classical) Riemann
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extension, up to a homothety. From now on, if g is the (classical) Riemann extension or the
(classical) Riemann extension up to a homothety, we will call g briefly a Riemann extension.

The following conventions and formulas will be used later on.
The contracted vector field C(T) ∈ χ(T∗M) of a (1, 1)-tensor field T on a manifold M

is defined at any point (x, ω) ∈ T∗M by its value on any evaluation function as follows:

C(T)(ZV)(x,ω) = (TZ)V
(x,ω) = ω((TZ)x), Z ∈ χ(M). (2)

For a 1-form α on M we denote by iα(T) the 1-form on M, defined by

(iα(T))(Z) = α(TZ), Z ∈ χ(M). (3)

By using (3) we obtain

(iα(T))V(Z)V
(x,ω) = (α(T))V(Z)V

(x,ω) = α((TZ)x), Z ∈ χ(M). (4)

Now, the equalities (2), (4), and Proposition 1 imply that at each point (x, ω) ∈ T∗M,
the following equality holds

C(T)(x,ω) = (ωx(T))V . (5)

Also, at each point (x, ω) ∈ T∗M, we have

W(x,ω) = (ωx)
V . (6)

From (1), (5) and (6) we get

g(x,ω)(XC, C(T)) = aωx((TX)x), g(x,ω)(W, αV) = 0,

g(x,ω)(W, W) = g(x,ω)(W, C(T)) = g(x,ω)(C(T1), C(T2)) = 0,
(7)

where T1 and T2 are arbitrary (1, 1)-tensor fields on M.
In Ref. [12], the following formulas for the Levi–Civita connection ∇ of the natural

Riemann extension g are given:

(∇XC YC)(x,ω) = (∇XY)C
(x,ω)

+ C((∇X)(∇Y) + (∇Y)(∇X))(x,ω)

+C(R(., X)Y + R(., Y)X)(x,ω)

− b
2a

{
ω(Y)XC + ω(X)YC + 2ω(Y)C(∇X) + 2ω(X)C(∇Y)

+ω(∇XY +∇YX)W}(x,ω) +
b2

a2 ω(X)ω(Y)W(x,ω),

(∇XC βV)(x,ω) = (∇X β)V
(x,ω)

+
b

2a

{
ω(X)βV + β(X)W

}
(x,ω)

,

(∇αV YC)(x,ω) = −(iα(∇Y))V
(x,ω)

+
b

2a

{
ω(Y)αV + α(Y)W

}
(x,ω)

,

(∇αV βV)(x,ω) = 0, (∇XC W)(x,ω) = −C(∇X)(x,ω) +
b
a

ω(X)W(x,ω),

(∇αV W)(x,ω) = αV
(x,ω)

, (∇WW)(x,ω) = W(x,ω),

(8)

where XC, YC, and αV , βV are the complete lifts of the vector fields X, Y ∈ χ(M) and
the vertical lifts of the differential 1-forms α, β on M, respectively. Here C(∇X) is the
contracted (1, 1)-tensor field ∇X on M, defined by (∇X)(Z) = ∇ZX, Z ∈ χ(M) and R
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is the curvature tensor of ∇. By C(R(., X)Y) is denoted the contracted (1, 2)-tensor field
R(., X)Y on M given by (R(., X)Y)(Z) = R(Z, X)Y), X, Y, Z ∈ χ(M).

3. Almost Complex Manifolds with Norden Metric

Definition 1. Let (N, J) be an almost complex 2n-dimensional manifold (whose almost complex
structure J is a (1,1)-tensor field satisfying J2 = −Id). If, moreover, the almost complex manifold
(N, J) carries a semi-Riemannian metric g with respect to which J is an anti-isometry, i.e.,

g(JX, JY) = −g(X, Y), X, Y ∈ χ(N),

then (J, g) is called an almost complex Norden structure and (N, J, g) is an almost complex manifold
with Norden metric.

The tensor g̃ given by

g̃(X, Y) = g(X, JY), X, Y ∈ χ(N)

is a Norden metric, which is called an associated metric of g. Both metrics g and g̃ are
necessarily of neutral signature, which means (n, n). Let F be a tensor field of type (0, 3) on
an almost complex manifold with Norden metric, defined by

F(X, Y, Z) = g((∇X J)Y, Z), (9)

where ∇ is the Levi–Civita connection of g. The tensor field F has the following properties:

F(X, Y, Z) = F(X, Z, Y), F(X, JY, JZ) = F(X, Y, Z), X, Y, Z ∈ χ(N). (10)

The Lee form θ associated with F is defined by

θ(Z) = gijF( fi, f j, Z), (11)

where { f1, . . . , f2n} is a local basis on N and gij are the components of the inverse matrix of
the matrix (gij).

From (10) and (11), by direct computation, we obtain

Proposition 2. Let (N, J, g) be an almost complex manifold with Norden metric. Then θ(Z) =
trace(∇J)Z, where (∇J)Z is the linear map (∇J)Z : X −→ (∇X J)Z and ∇ is the Levi–Civita
connection of g.

The Nijenhuis tensor N of an almost complex manifold with Norden metric (N, J, g)
is expressed in terms of the Levi–Civita connection∇ of g and the almost complex structure
J as follows:

N (X, Y) = (∇X J)JY− (∇Y J)JX + (∇JX J)Y− (∇JY J)X.

Ref. [3] introduced an associated with N tensor Ñ given by

Ñ (X, Y) = (∇X J)JY + (∇Y J)JX + (∇JX J)Y + (∇JY J)X.

A classification of the almost complex manifolds with Norden metric was given in
Ref. [3]. Here we recall the characteristic conditions of the eight classes of this classification:

• Kähler manifolds with Norden metric (also called Kähler–Norden manifolds)

W0 : F(X, Y, Z) = 0 or equivalently (∇X J)Y = 0.
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• Conformally Kähler manifolds with Norden metric

W1 : F(X, Y, Z) =
1

2n
{g(X, Y)θ(Z) + g(X, Z)θ(Y)

+g(X, JY)θ(JZ) + g(X, JZ)θ(JY)}.

• Special complex manifolds with Norden metric

W2 : F(X, Y, JZ) + F(Y, Z, JX) + F(Z, X, JY) = 0, θ = 0
or equivalently N = 0, θ = 0.

• Quasi-Kähler manifolds with Norden metric

W3 : F(X, Y, Z) + F(Y, Z, X) + F(Z, X, Y) = 0,
or equivalently Ñ = 0.

• Complex manifolds with Norden metric

W1 ⊕W2 : F(X, Y, JZ) + F(Y, Z, JX) + F(Z, X, JY) = 0,
or equivalently N = 0.

• Semi-Kähler manifolds with Norden metric

W2 ⊕W3 : θ = 0.

• W1 ⊕W3 : S
(X,Y,Z)

F(X, Y, Z) =
1
n
{g(X, Y)θ(Z) + g(Z, X)θ(Y) + g(Y, Z)θ(X)

+g(X, JY)θ(JZ) + g(Z, JX)θ(JY) + g(Y, JZ)θ(JX)},

where S
(X,Y,Z)

denotes the cyclic sum over X, Y, Z.

• W1 ⊕W2 ⊕W3: The whole class of almost complex manifolds with Norden metric.

An almost complex manifold with Norden metric (N, J, g) belonging to the classWi
will be briefly called aWi-manifold, i ∈ {0, 1, 2, 3}.

The special class W0 of the Kähler–Norden manifolds belongs to any other class.
On a Kähler–Norden manifold the curvature tensor field R of ∇ defined by R(X, Y)Z
= ∇X∇YZ−∇Y∇XZ−∇[X,Y]Z, has the so called Kähler property

R(X, Y, JZ, JU) = −R(X, Y, Z, U), X, Y, Z, U ∈ χ(N).

Lemma 1. If (N, J, g) is an almost complex manifold with Norden metric such that either F(X, Y, Z) =
F(Y, X, Z) or F(X, Y, Z) = −F(Y, X, Z), then F vanishes identically.

Proof. Let F(X, Y, Z) = F(Y, X, Z). By using the properties (10) of F we obtain

F(JX, JY, Z) = F(JY, JX, Z) = −F(JY, X, JZ) = −F(X, JY, JZ) = −F(X, Y, Z)

and
F(JX, JY, Z) = F(JX, Z, JY) = F(Z, JX, JY) = F(Z, X, Y) = F(X, Y, Z).

Hence, F ≡ 0. Analogously, one can prove that F(X, Y, Z) = −F(Y, X, Z) implies
F ≡ 0.

For later use, we recall the following.
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Definition 2 ([20]). On a (semi-) Riemannian manifold (N, h), a (1,1)-tensor field T is called
harmonic if T viewed as an endomorphism field T : (TN, hC) −→ (TN, hC) is a harmonic map,
where hC denotes the complete lift (see [17]) of the (semi-) Riemannian metric h.

We recall the following characterization result:

Proposition 3 ([20]). Let (N, h) be a (semi-) Riemannian manifold and let ∇ be the Levi–Civita
connection of h. Then, any (1,1)-tensor field T on (N, h) is harmonic if and only if δT = 0, where

δT = traceh(∇T) = traceh{(X, Y) −→ (∇XT)Y}.

By using (11) and Proposition 3 we obtain the following equivalence:

Lemma 2. Let (N, J, g) be an almost complex manifold with Norden metric. Then the following
assertions are equivalent:

(i) J is harmonic;
(ii) θ = 0;
(iii) M belongs to the one of the classesW0,W2,W3,W2 ⊕W3.

Proof. (i) ⇐⇒ (ii) Let {e1, . . . , en, Je1, . . . , Jen} be a local orthonormal basis on N, such
that g(ei, ei) = −g(Jei, Jei) = 1 (i = 1, . . . , n). J is harmonic if and only if

δJ = traceg∇J =
n

∑
i=1

{
(∇ei J)ei − (∇Jei J)Jei

}
= 0.

Since g is non-degenerate, we have for any Z ∈ χ(N)

δJ = 0⇐⇒ g

(
n

∑
i=1

{
(∇ei J)ei − (∇Jei J)Jei

}
, Z

)
= 0

⇐⇒
n

∑
i=1
{F(ei, ei, Z)− F(Jei, Jei, Z)} = 0⇐⇒ θ = 0.

(ii)⇐⇒ (iii) We establish the equivalence of (ii) and (iii) by using the classification
of the almost complex manifolds with Norden metric given above. Let us remark that the
defining condition of the classW3 implies the vanishing of the Lee form θ for this class.

Remark 1. Further, we assume that (M, J,∇) is a 2n-dimensional almost complex manifold with
an almost complex structure J and a symmetric linear connection ∇. If (N, J, g) is an almost
complex manifold with a Norden metric we denote the Levi–Civita connection of g also by ∇. It is
clear that all the formulas and statements given when∇ is an arbitrary symmetric linear connection
are also valid when ∇ is the Levi–Civita connection, but the converse is not true.

4. Cotangent Bundles with Natural Riemann Extensions as Almost Complex
Manifolds with Norden Metric

On the cotangent bundle T∗M of an almost complex manifold (M, J,∇) endowed
with a natural Riemann extension g, we define the endomorphism

J : T(T∗M) −→ T(T∗M) by

JXC = (JX)C − ((∇X) ◦ J)V + (∇JX)V +
b

2a
XV JV − b

2a
(JX)VW,

JαV = (α(J))V ,
(12)

where X, Y ∈ χ(M) and α ∈ Ω1(M). One can check by a straightforward computation that
J is an almost complex structure on T∗M. Moreover, taking into account (1) and (12), we
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establish that the natural Riemann extension g is a Norden metric with respect to J. Thus,
we state the following:

Theorem 1. Let the total space of the cotangent bundle T∗M of a 2n-dimensional almost complex
manifold (M, J,∇) be endowed with the natural Riemann extension g, defined by (1), and the endo-
morphism J, defined by (12). Then (T∗M, J, g) is an almost complex manifold with Norden metric.

Further, we define the tensor field F on (T∗M, J, g) given by

F(X, Y, Z) = g((∇X J)Y, Z), (13)

where X, Y, Z ∈ χ(T∗M). By using (1), (7), (8) and (12) we obtain

F(x,ω)(XC, YC, ZC) = − b2

4a
{ω(X)ω(Y)ω(JZ)− 2ω(JX)ω(Y)ω(Z)

+ω(X)ω(JY)ω(Z)}+ b
2
{ω(JY)ω(∇XZ) + ω(JZ)ω(∇XY)

−ω(Z)ω(∇JXY)−ω(Y)ω(∇JXZ) + ω(Y)ω((∇X J)Z)

+ω(Z)ω((∇X J)Y)} − a
{

ω(∇(∇X J)ZY) + ω(∇(∇X J)YZ)
}

+a{ω(Rx(Z, JY)X)−ω(Rx(JZ, Y)X)},

(14)

F(x,ω)(XC, αV , ZC) = F(x,ω)(XC, ZC, αV)

= aα((∇X J)Z) +
b
2
{ω(Z)α(JX)−ω(JZ)α(X)},

(15)

F(x,ω)(α
V , βV , ZC) = F(x,ω)(α

V , ZC, βV) = 0,
F(x,ω)(α

V , YC, ZC) = F(x,ω)(XC, βV , γV) = F(x,ω)(α
V , βV , γV) = 0.

(16)

Let (x, ω), ω 6= 0, be an arbitrary fixed point of T∗M and let { f1, . . . , f2n} be a lo-
cal frame around x in M such that (∇ fi

f j)x = 0, i, j = 1, . . . 2n. We denote by {α1 =
ω, α2, . . . , α2n} the local coframe around x in M, which is dual to { f1, . . . , f2n}, i.e., αi( f j) =
δij, i, j = 1, . . . 2n. We consider the following orthonormal basis {Ei, Ei∗} (i = 1, . . . 2n) with
respect to g in T(x,ω)(T∗M), constructed in [14]:

E1 = f C
1 +

1− b
2a

αV
1 ; E1∗ = f C

1 −
1 + b

2a
αV

1 ;

Ek =
1√
2a

( f C
k + αV

k ); Ek∗ =
1√
2a

( f C
k − αV

k ), k = 2, . . . , 2n;

g(Ei, Ei) = −g(Ei∗, Ei∗) = 1, i = 1, . . . , 2n.

(17)

Proposition 4. Let (M, J,∇) and (T∗M, J, g) be as in Theorem 1. Let F be defined by (13) and θ
be its associated Lee form. Then we have

θ(x,ω)(α
V) = 0, θ(x,ω)(ZC) = trace(∇J)Z− bn

a
ω(JZ). (18)

Moreover, if (N, J, g) is an almost complex manifold with Norden metric, then

θ(x,ω)(α
V) = 0, θ(x,ω)(ZC) = θ(Z)− bn

a
ω(JZ), (19)

where θ(Z) is the Lee form associated with the tensor field F on (N, J, g), given by (9).
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Proof. By using (11), (13), and the orthonormal basis (17) in T(x,ω)(T∗M), we obtain

θ(x,ω)(Z) = F(x,ω)(E1, E1, Z) +
2n

∑
k=2

F(x,ω)(Ek, Ek, Z)

−F(x,ω)(E1∗, E1∗, Z)−
2n

∑
k=2

F(x,ω)(Ek∗, Ek∗, Z)

=
1
a

{
F(x,ω)( f C

1 , αV
1 , Z) + F(x,ω)(α

V
1 , f C

1 , Z)

+
2n

∑
k=2

F(x,ω)( f C
k , αV

k , Z) +
2n

∑
k=2

F(x,ω)(α
V
k , f C

k , Z)

}
, Z ∈ χ(T∗M).

In the latter equality we substitute Z with αV and ZC. Taking into account (16) we

get θ(x,ω)(α
V) = 0 and θ(x,ω)(ZC) =

1
a

2n

∑
k=1

F(x,ω)( f C
k , αV

k , ZC), respectively. Now, using (15)

and α1 = ω, for θ(x,ω)(ZC) we have

θ(x,ω)(ZC) =
1
a

2n

∑
k=1

{
aαk((∇ fk

J)Z) +
b
2
[α1(Z)αk(J fk)− α1(JZ)]

}

=
2n

∑
k=1

αk((∇ fk
J)Z) +

b
2a

α1(Z)
2n

∑
k=1

αk(J fk)−
b

2a

2n

∑
k=1

α1(JZ)

= trace(∇J)Z +
b

2a
α1(Z)trace(J)− bn

a
α1(JZ).

Since trace(J) = 0, the equality (18) holds.
By using Proposition 2 and (18), we obtain (19).

One can easily prove the following:

Lemma 3. Let (M, J,∇) be an almost complex manifold.

(i) The following conditions are equivalent:

R(JX, Y)Z = R(X, JY)Z, X, Y, Z ∈ χ(M), (20)

R(JX, X)Z = 0. (21)

(ii) If (N, J, g) is a Kähler–Norden manifold, then (20) and (21) are both equivalent to the Kähler
property of R.

Theorem 2. Let (M, J,∇) be an almost complex manifold. Then (T∗M, J, g) is a Kähler–Norden
manifold if and only if at each point (x, ω) ∈ T∗M the conditions

(∇X J)Z = − b
2a
{ω(Z)JX−ω(JZ)X} (22)

and (20) are fulfilled.

Proof. The manifold (T∗M, J, g) is Kähler–Norden if and only if F(x,ω)(X, Y, Z) = 0 at
each point (x, ω) ∈ T∗M and for all X, Y, Z ∈ χ(T∗M). By using (14)–(16) we conclude
that F(x,ω)(X, Y, Z) = 0 is equivalent to F(x,ω)(XC, YC, ZC) = 0 and F(x,ω)(XC, αV , ZC) =

F(x,ω)(XC, ZC, αV) = 0. The latter equality is equivalent to the condition (22). Substituting
(22) in (14) we obtain that F(x,ω)(XC, YC, ZC) = 0 if and only if (20) holds.
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Corollary 1. Let (M, J,∇) be an almost complex manifold, and let g be a Riemann extension on
T∗M. Then (T∗M, J, g) is a Kähler–Norden manifold if and only if J is parallel with respect to ∇
and (20) is satisfied.

Corollary 2. Let (M, J,∇) be an almost complex manifold, such that J is parallel with respect
to ∇. Then (T∗M, J, g) is a Kähler–Norden manifold if and only if (20) is satisfied and g is a
Riemann extension.

Theorem 3. Let (N, J, g) be an almost complex manifold with Norden metric. Then (T∗N, J, g) is a
Kähler–Norden manifold if and only if g is a Riemann extension and (N, J, g) is a Kähler–Norden manifold.

Proof. ”=⇒” Let (T∗N, J, g) be a Kähler–Norden manifold. From the condition F(x,ω)(XC,
αV , ZC) = 0 and (15) it follows that (22) is fulfilled. By using (22), we have

F(X, Y, Z) = − b
2a
{ω(Y)g(JX, Z)−ω(JY)g(X, Z)}.

Now, we find θ(Z) = 0. Substituting θ = θ = 0 in (19) we obtain b = 0, which implies
F(X, Y, Z) = 0, i.e., (N, J, g) is a Kähler–Norden manifold.

”⇐=” Conversely, if (N, J, g) is a Kähler–Norden manifold and b = 0, then (15) and
(14) become F(x,ω)(XC, αV , ZC) = 0 and

F(x,ω)(XC, YC, ZC) = a{ω(Rx(Z, JY)X)−ω(Rx(JZ, Y)X)},

respectively. Since R has the Kähler property, we get F(x,ω)(XC, YC, ZC) = 0, which
completes the proof.

Several examples of Kähler–Norden manifolds are given in Ref. [4–6,8] and other
papers. Theorem 3 allows us to construct many new examples of Kähler–Norden manifolds
as the total spaces of the cotangent bundles of some Kähler–Norden manifolds. Here we
give another example of a Kähler–Norden manifold, whose cotangent bundle is also a
Kähler–Norden manifold.

Example 1. Let N = S1× . . .× S1 be the 2n-dimensional torus and let {X1, . . . , X2n} be a global
frame of vector fields, each of them tangent respectively to each cycle. With respect to this frame, let
J be the almost complex structure and let g be the Norden metric given respectively by

J =
(

0 In
−In 0

)
and g =

(
A B
B −A

)
,

where In denotes the identity matrix of order n, A, B are symmetric real matrices of order n, with

A non-singular. In particular, g can be taken as g =

(
In 0
0 −In

)
. In this case, (N, J, g) is a

Kähler–Norden manifold. From Theorem 3 it follows that (T∗N, J, g) is a Kähler–Norden manifold,
provided b = 0.

Theorem 4. Let (M, J,∇) and (T∗M, J, g) be as in Theorem 1. Then the manifold (T∗M, J, g) is
never contained in classW1.
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Proof. Let us assume that (M, J,∇) is an almost complex manifold and (T∗M, J, g) is a
W1-manifold. Then for the non-zero components of F we have

F(x,ω)(XC, αV , ZC) =
1

4n

{
g(x,ω)(XC, αV)θ(x,ω)(ZC)

+g(x,ω)(XC, ZC)θ(x,ω)(α
V) + g(x,ω)(XC, JαV)θ(x,ω)(JZC)

+g(x,ω)(XC, JZC)θ(x,ω)(JαV)
}

,

(23)

F(x,ω)(XC, YC, ZC) =
1

4n

{
g(x,ω)(XC, YC)θ(x,ω)(ZC)

+g(x,ω)(XC, ZC)θ(x,ω)(YC) + g(x,ω)(XC, JYC)θ(x,ω)(JZC)

+g(x,ω)(XC, JZC)θ(x,ω)(JYC)
}

.

(24)

Taking into account that θ(x,ω)(α
V) = 0 and (15), the equality (23) becomes

aα((∇X J)Z) +
b
2
{ω(Z)α(JX)−ω(JZ)α(X)}

=
a

4n

{
θ(x,ω)(JZC)α(JX) + θ(x,ω)(ZC)α(X)

}
.

From the latter it follows

(∇X J)Z =

[
bω(JZ)

2a
+

θ(x,ω)(ZC)

4n

]
X +

[
− bω(Z)

2a
+

θ(x,ω)(JZC)

4n

]
JX.

Now, we find

trace(∇J)Z = 2n

[
bω(JZ)

2a
+

θ(x,ω)(ZC)

4n

]
=

bn
a

ω(JZ) +
θ(x,ω)(ZC)

2
.

Substituting trace(∇J)Z in (18) we obtain θ(x,ω)(ZC) = 0. Then from (23) and (24) we
get F(x,ω)(XC, αV , ZC) = F(x,ω)(XC, YC, ZC) = 0 at each point (x, ω) ∈ T∗M, which means
that (T∗M, J, g) is a Kähler–Norden manifold.

Having in mind Proposition 2 and (19), the conclusion of the theorem is valid also
when (N, J, g) is an almost complex manifold with Norden metric.

Theorem 5. Let (M, J,∇) be an almost complex manifold. Then (T∗M, J, g) belongs to the class
W3 if and only if at each point (x, ω) ∈ T∗M the following conditions are fulfilled:

(∇X J)Z + (∇Z J)X =
b

2a
{ω(JZ)X−ω(Z)JX + ω(JX)Z−ω(X)JZ}, (25)

R(JX, Z)Y + R(JY, X)Z + R(JZ, Y)X
= R(X, JZ)Y + R(Y, JX)Z + R(Z, JY)X,

(26)

where X, Y, Z ∈ χ(M) and R is the curvature tensor of M.
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Proof. ”=⇒” Let (T∗M, J, g) ∈ W3. Then S
(X,Y,Z)

F(x,ω)(X, Y, Z) = 0 at each point (x, ω) in

T∗M and for arbitrary vector fields X = XC + αV , Y = YC + βV , Z = ZC + γV on T∗M.
Taking into account (16) we find

S
(XC+αV ,YC+βV ,ZC+γV)

F(x,ω)(XC + αV , YC + βV , ZC + γV) = 0

⇐⇒ S
(XC ,YC ,ZC)

F(x,ω)(XC, YC, ZC) + F(x,ω)(XC, ZC, βV)

+F(x,ω)(ZC, XC, βV) + F(x,ω)(XC, YC, γV)

+F(x,ω)(YC, XC, γV) + F(x,ω)(YC, ZC, αV) + F(x,ω)(ZC, YC, αV) = 0.

(27)

Replacing YC, αV and γV with 0 in (27) we get

F(x,ω)(XC, ZC, βV) + F(x,ω)(ZC, XC, βV) = 0. (28)

By using (15) and (28) we obtain (25). If we take αV = βV = γV = 0 in (27) we have

S
(XC ,YC ,ZC)

F(x,ω)(XC, YC, ZC) = 0. (29)

By direct calculations, from (14) and (25), we obtain that (26) is a consequence from (29).
”⇐=” Conversely, let the conditions (25) and (26) be valid. Then (25) and (15) imply

(28). With the help of (14), (25) and (26) we obtain (29). Now, having in mind (27)–(29), we
complete the proof.

Theorem 6. Let (N, J, g) be an almost complex manifold with Norden metric. Then the manifold
(T∗N, J, g) is never contained in classW3.

Proof. Let us assume that there exists a W3-manifold (T∗N, J, g) whose base manifold
(N, J, g) is an almost complex manifold with a Norden metric. Then, according to Theorem 5,
the condition (25) holds. Hence, for arbitrary X, Y, Z ∈ χ(N), we have

F(X, Z, Y) + F(Z, X, Y) =
b

2a
{ω(JZ)g(X, Y)

−ω(Z)g(X, JY) + ω(JX)g(Y, Z)−ω(X)g(Y, JZ)},

from where we find θ(Y) =
bn
2a

ω(JY). Now, since θ = 0 for the classW3, by using (19) we

obtain b = 0. Thus F(X, Z, Y) = −F(Z, X, Y). Applying Lemma 1 we get F ≡ 0. Because
(N, J, g) is a Kähler–Norden manifold and b = 0, from Theorem 3, it follows that (T∗N, J, g)
is also Kähler–Norden, which is a contradiction.

We will omit the proofs of the following two theorems because one can prove them in
a similar manner as Theorems 5 and 6.

Theorem 7. Let (M, J,∇) be an almost complex manifold. Then (T∗M, J, g) belongs to the class
W2 if and only if at each point (x, ω) ∈ T∗M the following conditions are fulfilled:

(∇X J)Y− (∇Y J)X =
b

2a
{ω(JY)X−ω(Y)JX + ω(X)JY−ω(JX)Y}, (30)

ω(R(JX, JZ)Y + R(JY, JX)Z + R(JZ, JY)X)

=
b2

4a2 {ω(JX)ω(JY)ω(Z) + ω(JY)ω(JZ)ω(X) + ω(JZ)ω(JX)ω(Y)},
(31)
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trace(∇J)Z =
bn
a

ω(JZ), (32)

where X, Y, Z ∈ χ(M) and R is the curvature tensor of M.

Theorem 8. Let (N, J, g) be an almost complex manifold with Norden metric with a Lee form θ.

(i) If θ = 0, then the manifold (T∗N, J, g) is never contained in classW2.
(ii) If θ 6= 0, then (T∗N, J, g) belongs to the class W2 if and only if the following conditions

are fulfilled:

F(X, Y, Z)− F(Y, X, Z) =
b

2a
{ω(JY)g(X, Z)−ω(Y)g(X, JZ) + ω(X)g(Y, JZ)−ω(JX)g(Y, Z)},

(33)

ω(R(JX, JZ)Y + R(JY, JX)Z + R(JZ, JY)X)

=
b2

4a2 {ω(JX)ω(JY)ω(Z) + ω(JY)ω(JZ)ω(X) + ω(JZ)ω(JX)ω(Y)},
(34)

θ(Z) =
bn
a

ω(JZ), (35)

where X, Y, Z ∈ χ(N) and R is the curvature tensor of N.

By using Lemma 2, Theorems 2, 5, and 7 and the defining condition of the class
W2 ⊕W3 we obtain

Theorem 9. Let (M, J,∇) and (T∗M, J, g) be as in Theorem 1. Then J is harmonic if and only if
one of the following groups of conditions are fulfilled: (22) and (20); (25) and (26); (30)–(32).

Now, taking into account Lemma 2, Theorems 3 and 8, we state

Theorem 10. Let (N, J, g) be an almost complex manifold with Norden metric. Then J is harmonic
if and only if either g is a Riemann extension and (N, J, g) is a Kähler–Norden manifold or the
conditions (33)–(35) are fulfilled and g is a proper natural Riemann extension.

In the rest of this section we will consider the case when the base manifold (M, J,∇′)
is complex and ∇′ is an almost complex connection on M.

We recall that the linear connection ∇′ on an almost complex manifold (M, J) is said
to be almost complex (see [21]) if the almost complex structure J is parallel with respect to
∇′, i.e.,

∇′ J = 0. (36)

In Ref. [21] it is also proved that any almost complex manifold M admits an almost
complex connection ∇′ defined by

∇′XY = ∇XY− 1
4
{
(∇JY J)X + J((∇Y J)X) + 2J((∇X J)Y)

}
, X, Y ∈ χ(M),

where ∇ is an arbitrary symmetric linear connection on M. The curvature tensor R′ of an
almost complex connection ∇′ satisfies the equality

R′(X, Y)JZ = JR′(X, Y)Z, X, Y, Z ∈ χ(M). (37)

From [21], it is known that ∇′ is symmetric if and only if the Nijenhuis tensor N of
J vanishes.
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Lemma 4. Let (M, J,∇′) be a complex manifold and ∇′ be an almost complex connection on M.
For the curvature tensor R′ of ∇′, the following equalities are valid:

S
(X,Y,Z)

R′(X, Y)JZ = 0, (38)

S
(X,Y,Z)

R′(JX, JY)Z = 0, (39)

S
(X,Y,Z)

(R′(JX, Z)Y + R′(X, JZ)Y) = 0. (40)

Proof. Since M is a complex manifold, the almost complex connection ∇′ is symmetric.
Then (38) is an immediate consequence from the first identity of Bianchi and (37). Replacing
X, Y and Z in (38) with JX, JY and JZ, respectively, we obtain (39). Finally, from the first
identity of Bianchi, we have

R′(Y, X)JZ = −R′(X, JZ)Y− R′(JZ, Y)X

and two more relations are obtained as a cyclic permutation of X, Y, Z. By adding together
the above three equalities and using (38), we get (40).

With the help of (36), Theorems 5 and 7, (39), and (40), we prove the following

Theorem 11. Let (M, J,∇′) be a complex manifold and ∇′ be an almost complex connection on
M. Then we have

(i) (T∗M, J, g) is a Kähler–Norden manifold if and only if g is a Riemann extension and R′

satisfies (20).
(ii) (T∗M, J, g) belongs to the classW2 if and only if g is a Riemann extension and R′ does not

satisfy (20).
(iii) (T∗M, J, g) belongs to the classW3 if and only if g is a Riemann extension and R′ satisfies

the following equality:

R′(JX, Z)Y + R′(JY, X)Z + R′(JZ, Y)X = 0,

where R′ is the curvature tensor of ∇′.

Theorem 12. Let (M, J,∇′) be a complex manifold and let∇′ be an almost complex connection on
M. Then for the almost complex manifold with Norden metric (T∗M, J, g) the following assertions
are equivalent:

(i) J is integrable;
(ii) g is a Riemann extension;
(iii) J is harmonic.

Proof. (i)⇐⇒ (ii) In Ref. [3] it is shown that the Nijenhuis tensorN of an almost complex
manifold with Norden metric (N, J, g) vanishes identically on N if and only if the condition
F(X, Y, JZ) + F(Y, Z, JX) + F(Z, X, JY) = 0 holds for any X, Y, Z ∈ χ(N).
Let us assume that the almost complex structure J is integrable. Then we have

F(x,ω)(X, Y, JZ) + F(x,ω)(Y, Z, JX) + F(x,ω)(Z, X, JY) = 0, (41)

where X, Y, Z ∈ χ(T∗M). Replacing in (41) X, Y, and Z with XC, YC, and αV , respectively,
we obtain

F(x,ω)(XC, YC, JαV) + F(x,ω)(Y
C, αV , JXC) + F(x,ω)(α

V , XC, JYC) = 0. (42)
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Taking into account (12), (15), (16), and (36), the equality (42) becomes

b
2
{ω(X)α(Y) + ω(JX)α(JY)−ω(Y)α(X)−ω(JY)α(JX)} = 0.

The latter equality implies b = 0, which means that g is a Riemann extension.
Conversely, let b = 0. Substituting b = 0 and (36) in both relations (14) and (15), we
get respectively

F(x,ω)(XC, YC, ZC) = a
{

ω(R′x(Z, JY)X)−ω(R′x(JZ, Y)X)
}

, (43)

F(x,ω)(XC, αV , YC) = F(x,ω)(XC, YC, αV) = 0, (44)

where R′ is the curvature tensor of ∇′. With the help of (12), (16), (43) and (44), for any
X, Y, Z ∈ χ(T∗M), we obtain

F(x,ω)(X, Y, JZ) = F(x,ω)(XC, YC, (JZ)C)

= a{ω(R′x(JZ, JY)X) + ω(R′x(Z, Y)X)}.

Then by using the first identity of Bianchi and (39) one can check that (41) holds.
Hence, the Nijenhuis tensor N of (T∗M, J, g) vanishes identically, i.e., J is integrable.

(ii) ⇐⇒ (iii) According to Lemma 2, J is harmonic if and only if θ = 0. Since
trace(∇J′) = 0, from (18) it follows that θ(Z) = 0 if and only if b = 0, which completes
the proof.

5. Cotangent Bundles with Natural Riemann Extensions as Almost Hypercomplex
Manifolds with Hermitian-Norden Metrics

An almost hypercomplex structure on a 4n-dimensional smooth manifold M4n is a triple
H = (J1, J2, J3) of almost complex structures having the properties:

J2
i = −Id (i = 1, 2, 3), J1 = J2 ◦ J3 = −J3 ◦ J2.

A manifold (M4n, H), equipped with an almost hypercomplex structure H, is called an
almost hypercomplex manifold [22]. If Ji (i = 1, 2, 3) are integrable almost complex structures,
then (M4n, H) is called a hypercomplex manifold.

Let g be a pseudo-Riemannian metric on (M4n, H), which is Hermitian with respect to
J1 and g is a Norden metric with respect to J2 and J3, i.e.,

g(J1X, J1Y) = −g(J2X, J2Y) = −g(J3X, J3Y) = g(X, Y), X, Y ∈ χ(M4n). (45)

The associated bilinear forms Φ, g2 and g3 are determined by

Φ(X, Y) = g(J1X, Y), g2(X, Y) = g(J2X, Y), g3(X, Y) = g(J3X, Y). (46)

According to (45) and (46), the metric g and the associated bilinear forms g2 and g3 are
necessarily pseudo-Riemannian metrics of neutral signature (2n, 2n) and Φ is the known
Kähler 2-form with respect to J1.

Differentiable manifolds M4n equipped with structures (H, G) = (J1, J2, J3, g, Φ, g2, g3)
are studied in Refs. [23–28] under the name almost hypercomplex pseudo-Hermitian manifolds,
almost hypercomplex manifolds with Hermitian and anti-Hermitian metrics, and almost hyper-
complex manifolds with Hermitian–Norden metrics, respectively. In this paper we refer to
(M4n, H, G) as an almost hypercomplex manifold with Hermitian–Norden metrics.

Let (M4n, H) be an almost hypercomplex manifold with an almost hypercomplex
structure H = (J1, J2, J3) and a symmetric linear connection ∇. By using (12), we define on
the cotangent bundle T∗M4n of (M4n, H) the almost complex structures

Ji : T(T∗M4n) −→ T(T∗M4n) (i = 2, 3)
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JiX
C = (JiX)C − ((∇X) ◦ Ji)

V + (∇JiX)V +
b

2a
XV JV

i −
b

2a
(JiX)VW,

Jiα
V = (α(Ji))

V ,
(47)

where X, Y ∈ χ(M4n) and α ∈ Ω1(M4n). By standard calculations, taking into account that
J2 ◦ J3 = −J3 ◦ J2, we check that J2 ◦ J3 = −J3 ◦ J2. The latter implies that J1 = J2 ◦ J3 is an
almost complex structure on T∗M4n, given by

J1XC = (J1X)C + ((∇X) ◦ J1)
V + (∇J1X)V − b

2a
XV JV

1 −
b

2a
(J1X)VW,

J1αV = (α(J1))
V .

(48)

Hence, H = (J1, J2, J3) is an almost hypercomplex structure on T∗M4n and (T∗M4n, H)
is an almost hypercomplex manifold. According to Theorem 1, the natural Riemann
extension g on T∗M4n is a Norden metric with respect to J2 and J3. Then g(J1X, J1Y) =
g(J2(J3X), J2(J3Y)) = g(X, Y), X, Y, Z ∈ χ(T∗M4n), which means that g is a Hermitian
metric with respect to J1. Let us denote the Kähler 2-form with respect to J1 and the Norden
metrics with respect to Ji with Φ and gi (i = 2, 3), respectively. Then we obtain:

Theorem 13. Let the total space of the cotangent bundle (T∗M4n) of an almost hypercomplex
manifold (M4n, H,∇) (∇ is a symmetric linear connection) be endowed with the natural Riemann
extension g, defined by (1) and the endomorphisms Ji (i = 1, 2, 3), defined by (47), (48). Then
(T∗M4n, H, g, Φ, g2, g3) is an almost hypercomplex manifold with Hermitian–Norden metrics.

An almost hypercomplex manifold with Hermitian-Norden metrics (M4n, H, G) is
called in Ref. [23] a pseudo-hyper-Kähler manifold if ∇Ji = 0 (i = 1, 2, 3) with respect
to the Levi–Civita connection of g. It is clear that (M4n, H, G) is pseudo-hyper-Kähler if
Fi(X, Y, Z) = g((∇X Ji)Y, Z) = 0 (i = 1, 2, 3), i.e., (M4n, H, G) is a Kähler manifold with
respect to Ji (i = 1, 2, 3). The relation

F1(X, Y, Z) = F2(X, J3Y, Z) + F3(X, Y, J2Z),

obtained in Ref. [23], implies that (M4n, H, G) is pseudo-hyper-Kähler if two of the ten-
sors Fi (i = 1, 2, 3) vanish. Taking into account the latter and Theorem 3, we establish
the following:

Theorem 14. Let (M4n, H, G) be an almost hypercomplex manifold with Hermitian–Norden
metrics. Then (T∗M4n, H, g, Φ, g2, g3) is a pseudo-hyper-Kähler manifold if and only if g is a
Riemann extension and (M4n, H, G) is a pseudo-hyper-Kähler manifold.

6. Conclusions

Our framework is the total space of the cotangent bundle, of any manifold endowed
with a symmetric linear connection. On this space, Sekizawa-Kowalski constructed a metric of
neutral signature, called natural Riemann extension, which generalizes the (classical) Riemann
extension, defined by Patterson-Walker. In our paper we construct an almost complex structure
which together with the natural Riemann extension becomes an almost complex structure with
Norden metric and we classify it according to the classification of almost complex structures
with Norden metric obtained by Ganchev-Borisov. Several results provide necessary and
sufficient conditions and we also obtain a non-existence result. Then we study the behaviour
of such structure for some particular cases of the base manifold, we construct an example
and for these particular cases, some harmonic properties are also investigated. At the end
we construct an almost hypercomplex structure with a Hermitian-Norden metric on the
total space of an almost hypercomplex manifold with a symmetric linear connection. The
contribution of our paper is not only to relate some classical structures, but also to create new
geometrical structures with interesting properties.
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