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Abstract

:

We give a family of counterexamples of a theorem on a new upper bound for the α-indices of graphs in the paper that is mentioned in the title. We also provide a new upper bound for corrigendum.
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The Statement, Counterexamples, and Corrigendum


Let C be an   n × n   real symmetric matrix. The index of C, denoted by   ρ ( C )  , is the largest eigenvalue of C. Let   G = ( V , E )   be a connected graph of order   n = | V |   and size   m = | E |   with adjacency matrix   A ( G )   and diagonal matrix   D ( G )   of degree sequence. Nikiforov [1] proposed the following matrix:


   A α   ( G )  = α D  ( G )  +  ( 1 − α )  A  ( G )  ,  








where   0 ≤ α ≤ 1  . The α-index of G, denoted by    ρ α   ( G )   , is the index of    A α   ( G )   . E. Lenes, E. Mallea-Zepeda, and J. Rodríguez [2] (Theorem 4) gave the following upper bound for    ρ α   ( G )   .


   ρ α   ( G )  ≤   δ − 1 + α +     ( δ + 1 − α )  2  + 4  ( 2 m − n δ )   ( 1 − α )     2  ,  



(1)




where  δ  is the minimum degree of G.



The upper bound of    ρ α   ( G )    in (1) is not true by the following family of counterexamples.



 Example 1.

It was shown in [1] that the α-index of the star graph   K  1 , n − 1    is


    ρ α   (  K  1 , n − 1   )  =  1 2   α n +    α 2   n 2  + 4  ( n − 1 )   ( 1 − 2 α )     .   











Suppose   α ≠ 0  . Then


    lim  n → ∞      ρ α   (  K  1 , n − 1   )    α n   = 1 .   



(2)







Applying   δ = 1   for   K  1 , n − 1    with   n ≥ 2   in (1), we find


    ρ α   (  K  1 , n − 1   )  ≤  1 2   α +     ( 2 − α )  2  + 4  ( n − 2 )   ( 1 − α )     ∼  n  1 2   .   











Hence


    lim  n → ∞      ρ α   (  K  1 , n − 1   )    α n   = 0 ,   








a contradiction to (2).





We follow the idea of the proof of the inequality (1) in [2] and give the following corrected version.



 Theorem 1.

Let G be a connected graph of order n and size m with maximum degree Δ and minimum degree δ. Then


    ρ α   ( G )  ≤   α Δ +  ( 1 − α )   ( δ − 1 )  +     ( α Δ +  ( 1 − α )   ( δ − 1 )  )  2  + 4  ( 1 − α )   ( 2 m −  ( n − 1 )  δ )     2    








for   0 ≤ α < 1  . Equality holds if and only if G is regular, or   α = 0   and every vertex in G has degree   n − 1   or δ.





Proof. 

Let G have the degree sequence   Δ =  d 1  ≥  d 2  ≥ ⋯ ≥  d n  = δ  , and    r i   ( C )    denote the i-th row sum of an   n × n   matrix C. Note that    r i   (  A α   ( G )  )  = α  d i  +  ( 1 − α )   d i  =  d i  ,   and


      r i   (  A α    ( G )  2  )  =   α  d i 2  +  ( 1 − α )   ∑  i j ∈ E    d j  = α  d i 2  +  ( 1 − α )   ( 2 m −  d i  −  ∑  j ≠ i , i j ∉ E    d j  )                ≤ α Δ  d i  +  ( 1 − α )   ( 2 m −  d i  −  ( n −  d i  − 1 )  δ )                =  ( α Δ +  ( 1 − α )   ( δ − 1 )  )   d i  +  ( 1 − α )   ( 2 m −  ( n − 1 )  δ )  .     



(3)







Therefore, for   1 ≤ i ≤ n  ,


   r i   (  A α    ( G )  2  −  ( α Δ +  ( 1 − α )   ( δ − 1 )  )   A α   ( G )  )  ≤  ( 1 − α )   ( 2 m −  ( n − 1 )  δ )  .  



(4)







Note that    A α 2   ( G )  −  ( α Δ +  ( 1 − α )   ( δ − 1 )  )   A α   ( G )    has eigenvalue    ρ α 2   ( G )  −  ( α Δ +  ( 1 − α )   ( δ − 1 )  )   ρ α   ( G )    associated with a nonnegative eigenvector which is also a    ρ α   ( G )    eigenvector of    A α   ( G )   . By [3],


   ρ α 2   ( G )  −  ( α Δ +  ( 1 − α )   ( δ − 1 )  )   ρ α   ( G )  ≤  ( 1 − α )   ( 2 m −  ( n − 1 )  δ )  ,  








with equality if, and only if, the equality in (4) (or equivalently in (3)) holds for every   1 ≤ i ≤ n .   Solving the above quadratic inequality of    ρ α   ( G )    and studying the equality, the theorem follows. □





Theorem 1 is a generalization of a result of Hong, Shu, and Fang [4]. It is worth mentioning that many different upper bounds of    ρ α   ( G )    are already given in [5,6,7].



 Remark 1.

If we give an additional assumption in Theorem 1


   t : =  min  i ∈ V    ∑  j ≠ i , i j ∉ E    (  d j  − δ )  ,   








then with little modification of the proof in line (3), we have


    ρ α   ( G )  ≤   α Δ +  ( 1 − α )   ( δ − 1 )  +     ( α Δ +  ( 1 − α )   ( δ − 1 )  )  2  + 4  ( 1 − α )   ( 2 m −  ( n − 1 )  δ − t )     2  .   











The above equality holds if, and only if, (i) G is regular, or (ii)   α = 0   and


   t =  ∑  j ≠ i , i j ∉ E    (  d j  − δ )   f o r   i ∈ V .   



(5)









Theorem 1 is a special case of Remark 1 with   t = 0  . The following is a graph that satifies (5) with   δ = 2   and   t = 1  . It is of independent interest to find all graphs that satisfy (5).
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