
Citation: Jin, J.; Wang, L.; You, Q.;

Sun, J. Multi-Object Tracking

Algorithm of Fusing Trajectory

Compensation. Mathematics 2022, 10,

2606. https://doi.org/10.3390/

math10152606

Academic Editor: Giampaolo Liuzzi

Received: 28 June 2022

Accepted: 22 July 2022

Published: 26 July 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

mathematics

Article

Multi-Object Tracking Algorithm of Fusing
Trajectory Compensation
Jianhai Jin 1,2, Liming Wang 3, Qi You 3 and Jun Sun 3,*

1 China Ship Scientific Research Center, No. 265 Shanshui East Road, Wuxi 214082, China; jjh@cssrc.com.cn
2 Taihu Laboratory of Deepsea Technology Science, Shanshui East Road, Wuxi 214082, China
3 School of Artificial Intelligence and Computer Science, Jiangnan University, Lihu Avenue,

Wuxi 214122, China; 6191910033@stu.jiangnan.edu.cn (L.W.); 7171905005@stu.jiangnan.edu.cn (Q.Y.)
* Correspondence: junsun@jiangnan.edu.cn

Abstract: Multi-object tracking (MOT) is an important research topic in the field of computer vision,
including object detection and data association. However, problems such as missed detection and
trajectory mismatch often lead to missing target information, thus resulting in missed target tracking
and trajectory fragmentation. Uniform tracking confidence is also not conducive to the full utilization
of detection results. Considering these problems, we first propose a threshold separation strategy,
which sets different tracking thresholds for similarity matching and intersection over union (IoU)
matching during association to make the distribution of detection information more reasonable. Then,
the missing trajectories are screened and compensated with the predicted trajectories to improve
the long-term tracking ability of the algorithm. When applied to different association algorithms or
tracking algorithms, a better improvement effect can be obtained. It can achieve high tracking speed
while achieving high tracking accuracy on the MOT Challenge dataset.

Keywords: multi-object tracking; data association; trajectory compensation

MSC: 68T45

1. Introduction

The multi-object tracking algorithm is inseparable from the accurate positioning
information of the target, so that accurate detection results can bring better tracking results.
At present, the target detection algorithm shows great progress [1–5], but the detection
effect is not always ideal due to the complex tracking environment. Therefore, the rational
use of detection information is also the focus of this task [6]. Although current association
algorithms can combine different types of information and use multiple methods for
tracking [7], it is still difficult to make full use of detection information. These algorithms
can only track the detected targets and cannot supplement the undetected targets. Moreover,
offline tracking can supplement the missing information in the current trajectory based on
subsequent trajectory information or overall trajectory information, but online tracking
cannot predict the image content of the next frame. In order to enhance the robustness
of tracking and prevent the detection performance from determining the upper limit of
the tracking performance, some researchers have begun to study how to use the existing
trajectory to compensate for the lack of detection.

One approach is to model historical trajectories to directly predict the trajectory of
the current image in an end-to-end fashion [8,9]. Another approach is to use historical
trajectory information to aid detection. For example, MOTDT [10] supplements the detec-
tion candidate box by predicting the position of the trajectory in the current image as a
generation candidate box, and then completes the supplementation of detection informa-
tion through a series of screening steps. TraDes [11] fuses the tracked information into the
current frame to address detection occlusion issues. However, the end-to-end trajectory
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modeling method lacks scalability, and supplementing the detection information alone
cannot solve the information loss caused by trajectory mismatch.

In this paper, we analyze the reasons for the abnormal termination of the trajectory
from the perspective of the trajectory itself. Since the movement of the target is an existing
process, the normal trajectory termination occurs mainly because the target gradually
disappears from the field of view, such as being obscured or moving out of the field of
view until it disappears completely. In this process, the detection confidence should have a
gradually decaying trend. When the trajectory with high confidence of the target matched
last time is suddenly lost, it is most likely due to missing target information. Therefore, we
propose a multi-object tracking algorithm of fusing trajectory compensation, named FTC.

FTC uses different thresholds to filter candidate targets for two matches during data
association. Using different confidence thresholds in different matching processes can
not only provide high-quality appearance features for similarity matching, but also can
provide more candidate bounding boxes for IoU matching, making detection information
allocation more reasonable. After completing two matches, FTC starts from the trajectory of
the missing target, analyzes the trajectory of the unmatched target, and selects the missing
trajectory from the active trajectory. Then, the missing trajectory is extended for several
frames according to the predefined extension threshold and confidence decay coefficient to
realize the compensation for the missing information.

Furthermore, we use YOLOX-s [5] to build a one-shot tracking model for experimental
validation. The experimental results show that our method can effectively solve the
problem of missing information and bring about a significant improvement in tracking
performance. The effect of applying FTC on different association and tracking algorithms
also demonstrates the scalability of our method.

The article proceeds as follows. Section 2 introduces the FTC algorithm. Section 3
describes the process of building an efficient one-shot multi-object tracking model for
experimental validation. The experimental results and analysis are given in Section 4,
including ablation experiments and comparisons with other algorithms. Section 5 concludes
this paper.

2. FTC

As shown in Figure 1, FTC contains two improvements (marked by dotted lines). First,
FTC sets different thresholds to filter the targets to be matched so as to fully exploit the
detection information. Then, FTC uses the predicted trajectory position to expand the
trajectory that is judged to be missing, so as to compensate for the missing information.

Considering the excellent prediction effect and wide application of the Kalman filter
(KF) algorithm [12], we employ a Kalman filter to predict trajectory positions, and assume
that the target is in gentle motion (i.e., no sudden movements and stops). The pseudocode
of FTC is shown in Algorithm 1.

We take a video sequence V as input, along with a detector with embeddings Det and
KF. There are five thresholds, including Temb, Tiou, Tinit, Textd and α. Temb, Tiou and Tinit
are tracking thresholds. Textd is a trajectory expansion threshold and α is a confidence decay
factor. The output of FTC is the track T of the video. Each track contains the bounding box
and the identity. The confidence of the latest matching target is recorded as the current
score of the trajectory, and the trajectory that does not lose the target in the last match is
recorded as the active state.

For each frame of the input video, the predicted detection boxes, detection confidence
and corresponding embedding features are simultaneously obtained through Det. Then,
the target is divided into Demb and Diou according to different thresholds, and the trajectory
state is predicted by using the Kalman filter, as shown in lines 4 to 8 of Algorithm 1. When
associating, we first perform feature similarity matching based on the embeddings of
Demb and the current trajectory T. Then, we update the matched target to T, and record
the unmatched target to Dremain and trajectory to Tremain, as shown in lines 9 to 11 of
Algorithm 1. Unmatched targets Dremain need to be merged into Diou before the second
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match. The second match uses the IoU distance to match the unmatched trajectory Tremain
with the target Diou, and updates the matched target to T. The unmatched target records
to Dunuse and the unmatched trajectory records to Tlost. Diou contains targets with low
confidence. In order to prevent low-quality embeddings affecting subsequent trajectory
matching, for matches with confidence less than Temb, their embedding features are not
updated to the trajectory. Considering the length of the algorithm, we do not describe it in
detail in Algorithm 1.
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Figure 1. FTC.

Afterwards, the unmatched trajectories and targets are processed separately. First,
we determine whether each unmatched trajectory is a missing trajectory. The judgment
condition is in the 17th line of Algorithm 1. Three conditions must be satisfied at the same
time—that is, the trajectory score is greater than the trajectory expansion threshold, the
trajectory length is greater than 2, and the trajectory is active.

These three conditions are described in detail as follows. (1) Only if the trajectory score,
i.e., the confidence of the latest matching target, is greater than a certain threshold will the
possibility that the trajectory belongs to a sudden interruption be higher. (2) The trajectory
with a length equal to 1 is the initial trajectory, and many initial trajectories are initialized
from single-frame high-confidence targets generated by detection or association problems,
and usually will not match new targets to become long trajectories. At this time, it is
impossible to determine whether the trajectory is a real trajectory, so the initial trajectory
is also called an undetermined trajectory. To prevent the expansion of undetermined
trajectories, trajectories with a trajectory length less than 2 are excluded. (3) The activation
state of the trajectory means that the trajectory has recently completed the matching of the
new target in the previous frame. Trajectory expansion is not performed on trajectories that
have not been updated twice or more.

When the track is judged to be a missing track, we update the predicted position of
the track to the current track. Note that the update here is different from the previous two
matching process updates. In the first two matches, the trajectory position predicted by the
KF is the predicted value, and the matched target position is the detection result. When the
trajectory is updated, the Kalman filter will use the detection result to update, and calculate
the target position estimate with the minimum mean square error as the final position to
update the trajectory. This not only completes the update of the trajectory state, but also
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corrects the target position. However, there are no detections when the trajectory extension
is updated, so only the predicted position is updated to the trajectory.

Algorithm 1: Pseudo-code of FCT.

Input: A video sequence V; object detector with embeddings Det; Kalman Filter KF; tracking
thresholds Temb, Tiou and Tinit; trajectory expansion threshold Textd; confidence decay factor α

Output: Tracks T of the video

1. T← ∅ (Initialization)
2. for f in V do
3. D← Det( f ) / * predict detection boxes, confidences and embeddings * /
4. Demb ←Targets in D with greater confidence than Temb
5. Diou ←Targets in D with confidence between Tiou and Temb
6. for t in T do / * predict new locations of tracks * /
7. t← KF(t)
8. end

/ * embedding matching * /

9 Associate T and Demb using embedding feature similarity
10 Dremain ← remaining object boxes from Demb
11 Tremain ← remaining tracks from T

/ * IoU matching * /

12 Diou ← Diou ∪Dremain
13 Associate Tremain and Diou using IoU distance and update T
14 Dunuse ← remaining object boxes from Diou
15 Tlost ← remaining tracks from Tremain
16 for t in Tlost do
17 if t.score > Textd&t.len > 2&t.activated then / * trajectory expansion * /
18 t.score = t.score× α

19 update T with t
20 else
21 T← T\{t} / * delete unmatched tracks * /
22 end
23 end
24 for d in Dunuse do
25 if d.score > Tinit then
26 T← T∪ {d} / * initialize new tracks * /
27 end
28 end
29 end
30 return T

If the track is not judged to be a missing track, we will mark it as a lost track. Tracks
marked as lost are still retained in T and participate in subsequent matching (but not output
as tracks in the current frame), and they will not be deleted until the loss time reaches
a certain range. For the unmatched target Dunuse, if the target confidence is greater than
the trajectory initialization threshold Tinit, the target will be initialized as a new trajectory;
otherwise, it will be discarded. Finally, the tracking trajectory of the video is returned.

3. FTC Tracker

We use YOLOX-s to build a one-shot multi-target tracker for various experiments. The
model structure of YOLOX-s is shown in Figure 2.
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The input part uses Mosaic [4] and Mixup [13] for data enhancement. The Mosaic
method randomly stitches four images in random scaling, random cropping and random
arrangement, which not only enriches the data but also adds many small objects to the
dataset, improving the robustness of the model to small objects. Mixup was originally
derived from the image classification task. It realizes data expansion by filling and scaling
different images to the same size and then performing weighted fusion. This can steadily
improve the classification accuracy with almost no computational overhead. The back-
bone network uses a cross-stage partial network, and the neck part uses feature pyramid
networks and path aggregation networks for feature fusion to enhance the detection ability.

YOLOX improves the prediction module of YOLO into an anchor-free-based decou-
pling head and uses effective label assignment strategy SimOTA [14]. One of the embedded
decoupled heads is shown in Figure 3. We embed the appearance model (Emb) into the
classification decoupling head with minimal computational cost.
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Figure 3. Embedded structure.

The Emb branch needs to output a D-dimensional vector for each prediction target.
Therefore, the output feature map size is H ×W × D. The choice of D value is very impor-
tant. If the dimension is too low, the target features cannot be accurately expressed, and if
the dimension is too high, it will not only affect the training and tracking speed, but also
will bring about an imbalance between the dimensions of detection and re-identification
(Re-ID) features. Therefore, we compared different dimension values, such as 64, 128, 256
and 512, and finally selected the feature dimension as 128.

For the selection of positive samples of the prediction frame, YOLOX adopts prelimi-
nary screening and the SimOTA algorithm. There are two types of preliminary screening:
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one is to judge according to the range of the label box and the other is to judge according to
the center point of the label box. However, the positive samples are not completely suitable
for Re-ID training, because, although some sample prediction boxes are within the range
of the screening conditions, their center points are far away from the ground truth (GT)
center. This makes the background part in the prediction frame excessive, exceeding the
foreground part, which easily leads to blurred Re-ID features. This is not conducive to the
re-identification task. In Figure 4, the dotted boxes represent squares of different scales, the
black box is the target GT position, and the yellow box is the predicted position. Points of
different colors are the center points of the corresponding target. The background part in
the yellow prediction box is redundant with the foreground part.
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To reduce the feature blur problem, we propose a secondary screening strategy for
embedding positive samples. By comparing the distance between the center of the predicted
positive sample and the center of the GT, the predicted positive samples are screened for
a second time. More specifically, first, the offset range is calculated according to the GT
detection frame. A rectangle with a long side of 5 is set on the three feature maps according
to the height–width ratio of the labeling frame, and multiplied by the corresponding
downsampling multiple to obtain its rectangular range on the input image. In order to
ensure that the center point of the predicted positive sample is within the range of the
label, the minimum edge length of the above rectangle and the label box is taken as the
final offset range. Then, the offset of the current predicted location in the x-axis and y-axis
directions for screening is obtained, and the embedding positive sample is achieved after
secondary screening.

Figure 5 shows the process of the secondary screening, where the dotted box is the
offset range, the black box is the target position, the green box is the predicted position
beyond the range, and the yellow box is the predicted position within the range. Points of
different colors are the center points of the corresponding target. It can be seen from the
rightmost group that when the offset range exceeds the callout frame, the callout frame
range shall prevail.
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We treat embedding appearance re-identification training as a classification task [15].
Objects with the same ID in the dataset are regarded as the same category. During the
training process, the embedding feature vector of the target is sent to a linear classification
layer to obtain the probability value of each category. We use cross-entropy loss for ID
classification training. The classifier does not need to be used during testing; only the
embedding features are subjected to the association process to calculate the similarity. When
testing, the classifier does not need to be used; we only need to submit the embedding
features to the association process to calculate the similarity. The category loss (Cls branch)
and object confidence loss (Obj branch) use binary cross-entropy to calculate the loss. Box
loss uses IoU loss calculation only when Mosaic enhancement is used, and it increases L1
loss when Mosaic and Mixup enhancement is turned off.

4. Experiments
4.1. Experimental Settings

In this section, we use the MOT17 [16] and MOT20 [17] datasets for experimental
validation. Specifically, for the ablation experiments, we split the MOT17 training set into
train_half and val_half for training and validation, respectively. When comparing with
different algorithms, we employed the complete training dataset, and submitted the test
data to the MOT Challenge official website to obtain the evaluation results. When using the
MOT17 dataset, we set the input image size to be 608× 1088. Since the MOT20 dataset is
denser, for the purpose of obtaining a better tracking effect, the input image was increased
to 896× 1600.

As for the evaluation metrics, we adopted the MOT Challenge Benchmark, including
Multiple Object Tracking Accuracy (MOTA), Identification F1-Score (IDF1), False Positive
(FP), False Negative (FN), ID switch (IDs), Mostly Tracked trajectories (MT) and Mostly
Lost trajectories (ML). MOTA is the tracking accuracy rate, which is calculated based on FPs,
FNs, and IDs. IDF1 is the ratio of correctly identified detections over the average number
of ground-truth and computed detections. MT is the ratio of ground-truth trajectories that
are covered by a track hypothesis for at least 80% of their respective life span. ML is the
ratio of ground-truth trajectories that are covered by a track hypothesis for at most 20% of
their respective life span. Meanwhile, we also used Frames Per Second (FPS) to evaluate
the running speed. In all experimental results, ↑ means that the larger the better, and ↓
means that the lower the better.

The experimental hardware environment was a deep learning server with an Intel Xeon
CPU E5-2650 v4, 2.2 GHz processor and Tesla K80 graphics card (4 photos). The algorithm
model was initialized by using the model parameters of YOLOX-s during training. The
initial learning rate was set to 10−3, and we used 1 epoch warm-up and cosine annealing
schedule [18] for training. The optimizer was stochastic gradient descent (SGD) with
weight decay of 5× 10−4 and momentum of 0.9. We trained the model for 50 epochs with
batch size 12, and turned off Mixup and Mosaic at the 40th epoch. The threshold settings
involved in Algorithm 1 are shown in Table 1.

Table 1. Threshold settings.

Thresholds MOT17 MOT20

Temb 0.60 0.60
Tiou 0.30 0.30
Tinit 0.70 0.70
Textd 0.75 0.35

α 0.85 0.75

4.2. Ablation Studies

First, the selection of the embedding feature dimension was experimentally analyzed.
In order to choose the appropriate dimension, we chose the dimension values of 64, 128, 256
and 512 for comparison, as shown in Table 2. Although increasing the feature dimension
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can reduce FN, it can also increase FP, and the tracking effect does not improve with the
increase in the feature dimension. On the contrary, according to the results in Table 2, when
the lowest dimension is 64, there is a higher IDF1, which shows that the lower feature
dimension is more suitable for the model in this work. When the dimension value is 128,
it has the highest MOTA and the highest IDF1 value, and the overall tracking effect is
more balanced.

Table 2. Tracking effect of different feature dimensions.

Dim MOTA↑ IDF1↑ FP↓ FN↓ IDs↓ FPS↑
64 68.4 69.6 1308 15,324 374 25.1
128 68.8 69.9 1413 15,050 348 24.7
256 68.8 66.9 1553 14,790 491 24.4
512 68.5 64.9 1710 14,703 543 23.5

Table 3 shows the comparison of model parameters and calculations in different
dimensions. We can see that the embedding of the appearance model only increases the
parameters and calculations by a very small amount. Therefore, in order to achieve a
better tracking effect, we set the Re-ID embedding features in these experiments to be all
128-dimensional.

Table 3. Parameters and calculations in different dimensions.

Dim. Params (M)↓ Gflops↓
base 8.94 43.02
64 8.96 43.24

128 8.99 43.46
256 9.04 43.91
512 9.14 44.81

Next, ablation experiments were performed on the different improved strategies, as
shown in Table 4. It was predicted that the secondary screening of positive samples could
significantly reduce the number of missed follow-ups. The MOTA was increased by 1.1%,
but the false follow-up and ID switching of the target were increased, and the IDF1 was
decreased by 0.6%. On this basis, adding the tracking threshold separation strategy can
effectively improve the model tracking effect. Although adding low-confidence targets in
the secondary matching produces more misjudgments and leads to an increase in FP, it can
reduce the loss of targets, the FN value is greatly reduced, and the MOTA is increased by
0.8%. IDF1 was improved by 0.3%. After restricting the update of low-confidence target
embedding features (H-conf), IDF1 increased by 0.3%, and IDs also decreased, indicating
that reducing low-quality features in the trajectory is indeed conducive to strengthening the
feature matching effect of the algorithm, and the target trajectory is more stable. However,
the lack of the latest features of the target can also bring certain tracking of errors and
tracking of omissions, which have a certain impact on the tracking accuracy, and the MOTA
is reduced by 0.1%.

Table 4. Ablation experiments with different improvements.

Methods MOTA↑ IDF1↑ FP↓ FN↓ IDs↓
Baseline 68.8 69.9 1413 15,050 348

S-screening 69.9 69.3 1812 14,019 366
T-separation 70.7 69.6 2503 12,913 376

H-conf 70.6 69.9 2537 12,927 365
FTC 70.9 70.8 2568 12,790 348

Track compensation uses the predicted track position to expand the missing track,
which can reduce the information loss and fragmentation of trajectories. It can be seen
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from Table 4 that the experimental results are consistent with the analysis. Due to the
supplementation of the track compensation to the missing track, the FN decreases by 137,
and the reduction in the track fragmentation increases the IDF1 by 0.9%. This increases the
number of traces that can hold the target ID for a long time and reduces the IDs by 26. At the
same time, due to the misjudgment of the normal termination trajectory and the inaccuracy
of the predicted position, the number of false calls increased, and the FP increased by 31,
but the number of missed calls that were successfully supplemented was greater than the
number of false calls added, so the tracking accuracy was also improved to a certain extent.
MOTA increased by 0.3%. These improvements only add some judgment and processing
procedures in the association stage, and the increase in the amount of calculation is very
small, so it will not affect the real-time tracking.

4.3. Robustness Experiment

In the tracking threshold separation strategy, the selection of the tracking threshold for
secondary matching is also very important. To explore the impact of different thresholds
on tracking performance, we took the IoU tracking threshold at intervals of 0.1 between 0.1
and 0.6, and checked the tracking effect of different thresholds, as shown in Figure 6. The
threshold value of 0.6 is the baseline effect of the strategy.
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Figure 6 shows that as the IoU tracking threshold decreases, the tracking accuracy
gradually increases, but when the threshold is reduced to 0.4 and 0.3, IDF1 and MOTA
no longer change. This is because, when performing IoU matching, the calculation of the
matching cost needs to be combined with the target confidence. The lower the confidence,
the higher the matching cost. Therefore, when the target confidence is lower than a certain
range, it no longer affects the tracking effect. Although setting the IoU tracking threshold to
a minimum value of 0.1 can ensure that the model has better tracking performance, targets
with a confidence level between 0.1 and 0.3 still participate in the association process,
resulting in unnecessary calculations. Therefore, the IoU tracking threshold can be taken as
the maximum value of 0.3 to stabilize the model tracking performance.

In order to fully demonstrate the improvement of the tracking effect by the tracking
threshold separation strategy, a visual analysis was performed on different video sequences
of the MOT17 val_half data, and the same adjacent frames before and after the improvement
were compared. To ensure the comparison effect, we only printed the information of
the comparison target, as shown in Figure 7. ID is the target ID number, and S is the
detection confidence.
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Figure 7. Tracking effect of tracking threshold separation strategy. (a) MOT17-02 frame 16 and 26.
(b) MOT17-05 frame 57 and 58. (c) MOT17-09 frame 36 and 37. (d) MOT17-10 frame 201 and 202.
(e) MOT17-11 frame 17 and 18. (f) MOT17-13 frame 295 and 296.

Figure 7a shows two sets of comparison targets. The two images on the left are the
comparison effects of the 16th frame before and after the improvement. The target with ID
number 19 is severely occluded by the target in front of it. Before the improvement, the
target was missed. After the improvement, the predicted box with a confidence value of
0.56 was associated to the trajectory. The two images on the right show the comparison
effect of the 26th frame. Although the target with ID number 5 is not missed, the detection
frame with a confidence level of 0.71 on the left is obviously not as close to the target as the
detection frame with a confidence level of 0.51 on the right. In Figure 7b, the two images on
the left are the 57th and 58th frame tracking images before the improvement, and the two
groups on the right are the tracking effect images of the two frames after the improvement.
After the improvement, The low-confidence detection is successful linked to trajectory. The
remaining images from Figure 7c–f are the same as in Figure 7b, showing the comparison
of the tracking effects of two adjacent frames. Due to the different tracking results before
and after the improvement, some targets have different IDs in different results, as shown in
Figure 7c, but they all refer to the same target in the same frame.

From the results of the ablation experiments, we can see that trajectory compensation
is a judgment and supplementation to the tracking of the trajectory. Although reducing
the leakage of tracking can improve the stability of the trajectory, misjudgment can also
increase the false tracking of the trajectory and reduce the tracking accuracy. To verify
the effectiveness of the missing trajectory compensation in the trajectory compensation
algorithm and explore its advantages and disadvantages under different video conditions,
the changes in FP and TP in different video sequences of the dataset were analyzed, and
the results are shown in Figure 8. The abscissa represents different video sequences, and
the ordinate represents the numerical variation. For fairness, uniform thresholds were
employed for different video sequences.
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Figure 8. FP and TP changes.

Figure 8 shows that the number of newly added TPs in 02, 04, 09 and 10 is higher than
the number of newly added FPs. Among them, the 02 and 04 sequences have the best effect,
and the FP in the 02 sequence greatly decreases. From the overall data, the newly added
TP is much higher than the newly added FP, but the effect of the 05, 11 and 13 sequences
is poor. Although it can be improved by adjusting the parameters individually, uniform
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parameters are used considering the overall nature of the dataset. In order to investigate
the reasons for the difference in the effects of different video sequences, we analyzed the
video data and found that there was camera motion in the video sequences 05, 10, 11 and
13, while the rest were captured by fixed cameras. At the same time, the range of the 05
and 11 sequences of the video crowd is small, and there are many large-scale occlusions.
The camera motion and occlusion can affect the prediction effect of the trajectory, so the 05
and 11 sequences are less effective. The 13 sequences were taken by in-vehicle equipment.
Although the field of view is very wide, the target scale is small and there is a wide range of
camera motion due to vehicle driving and steering. This renders the Kalman filter unable
to accurately estimate the trajectory position. Therefore, trajectory compensation is more
suitable for trajectories with more accurate motion information estimation.

When setting the judgment conditions for missing trajectories, the selection of the
trajectory expansion threshold Textd and the confidence attenuation coefficient α is also
very important, where Textd uses the last matching target confidence of the trajectory to
filter the missing trajectories, and controls the expansion times of the missing trajectories.
According to experimental experience, Textd should be greater than or equal to the tracking
threshold, and it should be selected between the tracking threshold and 1. α should be
selected between Textd and 1.

In order to explore the change in tracking effect when different parameter values are
set, the tracking effect with different Textd and α was experimentally analyzed. The tracking
threshold Temb is 0.6, so the value range of Textd and α is 0.6 to 1, and the interval is set to
0.05, as shown in Figure 9.

Since it is meaningless when Textd and α are set to 1, and the result changes significantly
when α is set to 0.9, only six ranges of experimental results are presented. The two dotted
lines represent their baselines, respectively. We can see that when different parameters are
taken, the two indicators of MOTA and IDF1 are basically higher than the baseline, and the
tracking effect tends to improve gradually as the two parameters decrease, indicating that
the reduction relaxes the judgment conditions for missing tracks, and the supplementation
for missing tracks increases.

However, it is not true that the more the trajectory is expanded, the better the tracking
effect will be. As shown in Figure 9e,f, after Textd drops to a certain extent, the two indicators
both decrease, and as α decreases, the two indicators gradually increase. This means that
the expansion times of some low-scoring trajectories are too high, which can cause many
false follow-ups and affect the tracking effect. It can be improved by appropriately reducing
the number of expansions through α. Therefore, the selection of the two parameters should
be moderate, and it is not easy to take too large or too small values.

4.4. Applications on Other Algorithms

Although the threshold separation strategy has certain limitations, the FTC algorithm
has good scalability. In order to fully verify the scalability of FTC, we applied FTC to
several different correlation algorithms under the same detection model and different
correlation algorithms. The FTC was also extended to several mainstream multi-target
tracking algorithms to verify its scalability under different types of algorithms.

Firstly, the expansion experiments of different correlation algorithms were carried out.
With YOLOX-s as the detector, four different correlation algorithms, Sort [19], DeepSort [20],
MOTDT [10] and JDE [21], were selected. The detector was trained on MOT17 train_half,
and the tracking effect was tested on val_half. The results are shown in Table 5. After
using FTC for trajectory compensation, both MOTA and IDF1 have a certain improvement,
and the amount of ID switching is also reduced. This shows that the problem of missing
information is common in different association algorithms.
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Table 5. Extended experiments on different association algorithms.

Algorithm FTC MOTA↑ IDF1↑ FP↓ FN↓ IDs↓

Sort [19]
67.6 69.2 3309 13,590 566√

68.1(+0.5) 69.3(+0.1) 3576 13,043 551

DeepSort [20] 69.4 71.5 2486 13,765 250√
69.6(+0.2) 72.7(+1.2) 3262 12,889 241

MOTDT [10]
69.2 71.2 2765 13,426 412√

69.6(+0.4) 72(+0.8) 3199 12,841 364

JDE [21]
69.9 69.3 1812 14,019 366√

70.4(+0.5) 70.3(+1.0) 2558 13,061 319

It shows that FTC can judge and compensate for the missing trajectories in different
tracking paradigms. Meanwhile, the increase in FP and decrease in FN in the experimen-
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tal results of the different correlation algorithms are consistent with the analysis of the
compensation principle of FTC in this paper, and its accuracy is verified again. Observing
the changes in MOTA and IDF1 for different algorithms, we found that the improvement
in IDF1 of the other algorithms except Sort is higher than that of MOTA. This is because
the addition of missing heels can reduce the problem of trajectory fragmentation. There-
fore, although FTC supplements fewer leaks, it can better solve the problem of trajectory
fragmentation. However, the Sort algorithm does not use feature similarity matching,
and the lost track retrieval ability is poor, so the improvement in IDF1 is lower compared
to other algorithms. MOTDT uses the trajectory prediction position to supplement the
detection candidate frame before performing matching and association, but after applying
FTC, MOTA increases by 0.4%, and IDF1 increases by 0.8%, indicating that supplementing
detection information cannot fully solve the problem of missing trajectories.

In addition, extended experiments were also carried out on different mainstream
multi-target tracking algorithms, and four different algorithms, JDE [21], FairMOT [15],
CenterTrack [22] and CTracker [23], were selected. In Table 6, the letter K indicates that the
algorithm uses the Kalman filter to predict the trajectory. Among them, JDE and FairMOT
are both one-shot algorithms based on the JDE correlation algorithm. The difference
is that JDE uses YOLOv3 [3] as the detector and FairMOT uses CenterNet [1] as the
detector. Table 6 shows that FTC still achieves a good improvement effect under different
detection models.

Table 6. Extended experiments on different tracking algorithms.(
√

indicates that the method here
is used).

Algorithm FTC MOTA↑ IDF1↑ FP↓ FN↓ IDs↓

JDE(K) [21]
74.3 69.1 5236 22,319 1343√

74.5(+0.2) 70.9(+1.8) 6448 21,000 1169

FairMOT(K) [15]
83.8 81.9 2712 14,877 553√

84.6(+0.8) 82.8(+0.9) 4349 12,429 461

CenterTrack [22]
70.9 65 2602 28,853 1246√

70.6(−0.3) 65.8(+0.8) 3590 28,358 1111

CTracker [23]
76.4 67.8 1783 23,791 976√

76.4(+0.0) 69.3(+1.5) 1786 23,794 941

Since the algorithms in the current experiments all used the Kalman filter to predict the
trajectory position, CenterTrack and CTracker were chosen to verify the scalability of FTC
without the Kalman filter. Both algorithms use adjacent image pairs as input. The difference
is that CenterTrack estimates the target position by outputting the center point offset of
the previous frame of the target in the current frame through the deep network, while
CTracker calculates the target offset distance through a simple velocity model. However,
the center point offset output by CenterTrack is bound to the predicted candidate frame,
and CTracker outputs the predicted candidate frame in the form of detection pairs, so it
can only predict the trajectory position of adjacent frames, and cannot perform long-term
expansion of missing trajectories. Therefore, only the trajectory expansion threshold is set
when applying FTC to CenterTrack and CTracker, and only one trajectory expansion is
performed for missing trajectories.

The experimental results show that although there is no Kalman filter for the long-term
prediction of missing trajectories, it still achieves a good improvement effect. The IDF1 of
CenterTrack has an improvement of 0.8%, and the IDF1 of CTracker has an improvement
of 1.5%, once again verifying the FTC scalability advantage. However, MOTA has not
been improved, indicating that the trajectory position prediction is not as accurate as the
Kalman filter.

4.5. MOT Challenge Result

In this section, the MOT Challenge test set is compared with different algorithms, and
all the test results were obtained from the MOT Challenge official website. Since the test
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set annotation is not public, and the datasets used for each algorithm test are different, we
used the MOT17 and MOT20 test sets to compare different algorithms.

Table 7 shows the results on the MOT17 test set. Our algorithm achieves higher
tracking accuracy and has a much faster online tracking speed than other algorithms.
Table 8 shows the comparison results of different algorithms on the MOT20 test set. Due
to the denser pedestrians, there are more crowded scenes and occlusions in the MOT20
dataset. Therefore, we set the input image size to 896× 1600 to achieve a better tracking
effect. However, the FPS drops by approximately 2.5 at the expense of some tracking speed.
The increase in the number of targets in the data also increases the amount of tracking
computation, so the tracking speed in the MOT20 dataset decreases.

Table 7. Comparison of different tracking algorithms on MOT17.

Algorithm MOTA↑ IDF1↑ MT↑ ML↓ IDs↓ FPS↑
SST [24] 52.4 49.5 21.4 30.7 8431 <1.0

TubeTK [25] 63.0 58.6 31.2 19.9 4137 <1.0
CTracker [23] 66.6 57.4 32.2 24.2 5529 1.7

CenterTrack [22] 67.3 59.9 34.9 24.8 2898 6.0
FairMOT [15] 69.8 69.9 38.2 21.0 3996 7.0

TransCenter [26] 70.0 62.1 38.9 20.4 4647 <1.0
FTC (Ours) 70.8 69.2 41.4 22.9 2526 24.4

Table 8. Comparison of different tracking algorithms on MOT20.

Algorithm MOTA↑ IDF1↑ MT↑ ML↓ IDs↓ FPS↑
MLT [27] 48.9 54.6 30.9 22.1 2187 1.0

FairMOT [15] 61.8 67.3 68.8 7.6 5243 5.0
TransCenter [26] 61.9 50.4 49.4 15.5 4653 <1.0

FTC (Ours) 65.0 65.3 61.4 10.4 5312 8.5

Through the sufficient training of a large amount of MOT20 data and large-scale image
input, our algorithm has 65.0% MOTA and 65.3% IDF1, while still maintaining the fastest
tracking speed of 8.5 FPS. Compared with the test results of MOT17, although the number
of targets in the MOT20 dataset is larger, each algorithm can obtain a higher trajectory
hit rate ML and a lower trajectory loss rate ML. This should be related to the fact that the
MOT20 data are captured at high places. This means that the occlusion range between
targets is small and there is no large-scale crowd occlusion. Thus, our algorithm also has
higher MT and lower ML, but there is more ID switching.

5. Conclusions

We proposed a simple and effective data association algorithm. The algorithm realized
the reasonable distribution of detection results through the tracking threshold separation
strategy, and then used the trajectory prediction information to compensate for the missing
target information, so as to fully utilize the detection and tracking information. After
comparing it with mainstream correlation algorithms such as Sort, DeepSort and JDE,
as well as MOTDT supplementing detection, the effectiveness of our method is verified.
Furthermore, the process adds only a small amount of computation to data association and
has little impact on real-time performance. We also proposed an efficient one-shot tracker,
namely FTC Tracker, which achieved high tracking accuracy and high online tracking speed.
Compared with mainstream algorithms such as FairMOT and TransCenter, FTC Tracker
has great advantages in tracking accuracy and speed. In addition, FTC not only has a stable
improvement effect, but also has strong scalability, and can be widely used in various
association algorithms or multi-target tracking algorithms. FTC is simple and easy to use,
but, due to the dependence on parameter settings, the improvement effect on different
methods is not stable enough. In the future, we will consider how to implement FTC in
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an adaptive way, eliminating the need for parameter adjustment work and improving
its stability.
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