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Abstract: The quantum approximate optimisation algorithm is a p layer, time variable split oper-
ator method executed on a quantum processor and driven to convergence by classical outer-loop
optimisation. The classical co-processor varies individual application times of a problem/driver
propagator sequence to prepare a state which approximately minimises the problem’s generator.
Analytical solutions to choose optimal application times (called parameters or angles) have proven
difficult to find, whereas outer-loop optimisation is resource intensive. Here we prove that the
optimal quantum approximate optimisation algorithm parameters for p = 1 layer reduce to one free
variable and in the thermodynamic limit, we recover optimal angles. We moreover demonstrate that
conditions for vanishing gradients of the overlap function share a similar form which leads to a linear
relation between circuit parameters, independent of the number of qubits. Finally, we present a list of
numerical effects, observed for particular system size and circuit depth, which are yet to be explained
analytically.
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1. Introduction

The field of quantum algorithms has dramatically transformed in the last few years
due to the advent of a quantum to classical feedback loop: a fixed depth quantum cir-
cuit is adjusted to minimise a cost function. This approach partially circumvents certain
limitations such as variability in pulse timing and requires shorter depth circuits at the
cost of outer-loop training [1–6]. The most studied algorithm in this setting is the quan-
tum approximate optimisation algorithm (QAOA) [7] which was developed to approxi-
mate solutions to combinatorial optimisation problem instances [8] i.e., MAX-k-SAT [9,10],
MAX-Cut [7,11–16], and MAX-k-Colorable-Subgraph [17] instances. The algorithm has
certain real-world applications, including finances [18] and might prove useful for general
constraint optimisation [19].

The setting of QAOA is that of n qubits: states are represented as vectors in Vn =
[C2]⊗n. We are given a non-negative Hamiltonian P ∈ hermC(Vn) and we seek the nor-
malised ground vector |t〉 ∈ arg min

φ∈{0,1}n
〈φ|P|φ〉.

QAOA might be viewed as a (time-variable fixed-depth) quantum split operator
method. We let V(γ) be the propagator of P applied for time γ. We consider a second
propagator U (β) generated by applying a yet-to-be-defined Hamiltonian Hx for time β. We
start off in the equal superposition state |+〉⊗n = 2−n/2(|0〉+ |1〉)⊗n and form a p-depth
U , V sequence:

|gp(γ, β)|2 = |〈t|Πp
k=1[U (βk)V(γk)]|+〉⊗n|2. (1)
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The time of application of each propagator is varied to maximise preparation of the state
|t〉. Finding γ, β to maximise |gp(γ, β)| has shown to be cumbersome. Even lacking such
solutions, much progress has been made.

Recent milestones include experimental demonstration of p = 3 depth QAOA (cor-
responding to six tunable parameters) using a twenty three qubits [1] superconducting
processor, universality results [20,21], as well as several results that aid and improve on
the original implementation of the algorithm [11,12,17]. Towards practical realisation
of the QAOA, trapped ion-based quantum computers have recently shown promising
results, including demonstrations on up to forty qubits [2] and the potential to realise arbi-
trary combinatorial optimisation problems with all to all connectivity based on hardware-
inspired modifications [22]. Although QAOA exhibits provable advantages such as re-
covering a near-optimal query complexity in Grover’s search [23] and offers a pathway
towards quantum advantage [13], several limitations have been discovered for low depth
QAOA [9,24,25].

In the setting of maximum-constraint satisfiability (e.g., minimizing a Hamiltonian
representing a function of type f : {0, 1}n → R+), it has been shown that underparameteri-
sation of QAOA sequences can be induced by increasing a problem instances constraint to
variable ratio [9]. This effect persists in graph minimisation problems [26]. While this effect
is perhaps an expected limitation of the quantum algorithm, parameter concentrations and
noise-assisted training add a degree of optimism. QAOA exhibits parameter concentra-
tions, in which training for some fraction of ω < n qubits provides a training sequence
for n qubits [27]. Moreover, whereas layerwise training saturates for QAOA in which the
algorithm plateaus and fails to reach the target, local coherent noise recovers layerwise
training robustness [28]. Both concentrations and noise-assisted training imply a reduction
in computational resources required in outer-loop optimisation.

Exact solutions to find the optimal parameters for QAOA have only been possible
in special cases including, e.g., fully connected graphs [14–16] and projectors [27]. A
general analytical approach which would allow for (i) calculation of optimal parameters,
(ii) estimation of the critical circuit depth and (iii) performance guarantees for fixed depth
remains open.

Here we prove that optimal QAOA parameters for p = 1 are related as γ1 = π − 2β1
and in the thermodynamic limit, we recover optimality as β1n → π and γ1 → π. We
moreover demonstrate that conditions for vanishing gradients of the overlap function share
a similar form which leads to a linear relation between circuit parameters, independent
of the number of qubits. We hence devise an additional means to recover parameter
concentrations [27] analytically. Finally, we present a list of numerical effects, observed for
particular system size and circuit depth, which are yet to be explained analytically.

2. State Preparation with QAOA

We consider an n-qubit complex vector space Vn = [C2]⊗n ∼= C2n
with fixed standard

computational basis Bn = {|0〉, |1〉}⊗n. For an arbitrary target state |t〉 ∈ Bn (equivalently
|t〉, t ∈ {0, 1}×n) we define propagators

U (β) ≡ e−iβHx , V(γ) ≡ e−iγP, (2)

where P = |t〉〈t| and Hx = ∑n
j=1 Xj is the one-body mixer Hamiltonian with Xj the Pauli

matrix acting non-trivially on the j-th qubit. Here we focus on the state preparation, thus
choosing the problem Hamiltonian to be a projector (P2 = P) on an arbitrary bit string
|t〉. We note that while the projector has only two energy levels, the effective Hamiltonian
of the whole QAOA sequence has up to n + 1 distinct energy levels. In such settings, the
propagator V(γ) acting on a superposition adds a phase −γ to the component |t〉, while
the propagator U (β) mixes the components’ amplitudes.

A p-depth (p layer) QAOA circuit prepares a quantum state |ψ〉 as:
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∣∣ψp(γ, β)
〉
=

p

∏
k=1

[U (βk)V(γk)]|+〉⊗n, (3)

where γk ∈ [0, 2π), βk ∈ [0, π). The optimisation task is to determine QAOA optimal
parameters for which the state prepared in (3) achieves maximum absolute value of the
overlap gp(γ, β) =

〈
t
∣∣ψp(γ, β)

〉
with the target |t〉. In other words, we search for

(γopt, βopt) ∈ arg max
γ,β

∣∣gp(γ, β)
∣∣. (4)

Note that the problem is equivalent to the minimisation of the ground state energy of
Hamiltonian P⊥ = 1− |t〉〈t|,

min
γ,β

〈
ψp(γ, β)

∣∣P⊥∣∣ψp(γ, β)
〉
= 1−max

γ,β

∣∣gp(γ, β)
∣∣2. (5)

Remark 1 (Inversion symmetry). Under the affine transformation

(γ, β)→ (2π − γ, π − β) (6)

the absolute value of the overlap remains invariant as gp → (−1)ng∗p. Therefore, this narrows the
search space to γk ∈ [0, π), βk ∈ [0, π), whereas maximums inside the restricted region determine
maximums in the composite space using Equation (6).

Proposition 1 (Overlap invariance). The overlap function gp(γ, β) is invariant with respect to
|t〉 ∈ Bn.

Proof. Each |t〉 = |t1t2 . . . tn〉 ∈ Bn determines a unitary operator U = U† =
⊗n

j=1 X
tj
j .

Hence, we have

gp(γ, β) =〈0|U†
p

∏
k=1

e−iβk Hx e−iγkU(|0〉〈0|)U† |+〉⊗n

=〈0|U†
p

∏
k=1

e−iβk Hx [Ue−iγk(|0〉〈0|)U†]|+〉⊗n (7)

=〈0|
p

∏
k=1

e−iβk Hx e−iγk |0〉〈0||+〉⊗n.

The first equality follows from U|0〉 = |t〉 where |0〉 = |0〉⊗n. The second equality follows
from the definition of the matrix exponential. The third equality follows as U commutes
with Hx as does any analytic function of Hx, and U|+〉⊗n = |+〉⊗n. Thus, the overlap is
seen to be independent of the target bit string |t〉.

Remark 2. Overlap invariance introduced in Proposition 1 shows that optimisation problems in
Equations (4) and (5) do not depend on the target. Therefore, optimal parameters are the same for
any target state. Thus, with no loss of generality we limit our consideration to the target |t〉 = |0〉.

Preparation of state (3) requires a strategy to assign 2p variational parameters by
outer-loop optimisation.

Remark 3 (Global optimisation). A strategy when all 2p parameters are optimised simultane-
ously which might provide the best approximation to prepare |t〉.
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Remark 4 (Layerwise training). Optimisation of parameters layer by layer. At each step of
the algorithm, only one layer is optimised. After a layer is trained, a new layer is added and its
parameters are optimised while keeping the parameters of the previous layers fixed.

Global optimisation is evidently challenging for high-depth circuits. The optimisation
can, in principle, be simplified by exploiting problem symmetries [29] and leveraging
parameter concentrations [27,30]. Layerwise training might avoid barren plateaus [31]
yet is known [28] to stagnate at some critical depth, past which additional layers (trained
one at a time) do not improve overlap. Local coherent noise was found to re-establish the
robustness of layerwise training [28].

3. p = 1 QAOA

For a single layer, the global and layerwise strategies are equivalent. Such a circuit
was considered to establish parameter concentrations [27] analytically. The overlap was
shown to be:

|g1(γ, β)|2 =
1
2n

[
1 + 2 cosn β(cos (γ− nβ)− cos nβ) + 2 cos2n β(1− cos γ)

]
. (8)

To find extreme points of (8) the authors in [27] set the derivatives with respect to γ and β
to zero. This approach leads to solutions which contain maxima but also the minimum of
the overlap (8). These must be carefully separated. Moreover, this approach ignores the
operator structure of the overlap as presented here. For aesthetics, subscript opt in γopt and
βopt is further omitted.

Theorem 1. Optimal p = 1 QAOA parameters relate as γ = π − 2β.

Proof. To maximise the absolute value of the overlap

g ≡ g1(γ, β) = 〈0|e−iβHx e−iγP|+〉⊗n, (9)

with P = |0〉〈0| we use the standard conditions
∂(gg∗)

∂γ
=

∂(gg∗)
∂β

= 0. Setting the first

derivative to zero we arrive at

〈0|e−iβHx e−iγPP|+〉⊗ng∗ = 〈+|⊗nPeiγPeiβHx |0〉g. (10)

Using the explicit form of the projector and the fact that 〈0|e−iβHx |0〉 = cosn β, equation (10)
simplifies into

g = g∗e−2iγ ⇔ geiγ = g∗e−iγ, (11)

which is equivalent to

arg g = −γ. (12)

Then the derivative of expression (9) with respect to β is set to zero and we arrive at

〈0|e−iβHx Hxe−iγP|+〉⊗ng∗ = 〈+|⊗neiγPHxeiβHx |0〉g. (13)

Moving Hx next to its eigenstate |+〉⊗n is compensated as follows:

〈0|e−iβHx{e−iγPHx + (e−iγ − 1)[Hx, P]}|+〉⊗ng∗

= 〈+|⊗n{HxeiγP + [P, Hx](eiγ − 1)}eiβHx |0〉g. (14)
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After simplification (see Remark 5) we arrive at

−gA = g∗A∗e−iγ, (15)

where A = 〈+|⊗n[P, Hx]eiβHx |0〉. Now g∗ is substituted from Equation (11) to establish

−e−iγ A = A∗. (16)

Thus, similar to Equation (12) we arrive at

arg A =
γ + π

2
. (17)

A is calculated as

A
√

2n = 〈0|(Hx − n)eiβHx |0〉 = −n cosn−1 βe−iβ, (18)

which shows that arg A = π − β. Thus, from Equation (17) we arrive at

π − β =
γ + π

2
, (19)

which finally establishes γ = π − 2β.

Remark 5 (Trivial solutions). Equation (14) has three pathological solutions which must be ruled
out: (i) sin

γ

2
= 0 (which sets eiγ − 1 = 0), (ii) cos β = 0 (which sets A = 0), (iii) g(γ, β) = 0.

All three cases imply |g(γ, β)| ≤ g(0, 0).

Remark 6. The zero derivative conditions result in (11) and (15) which have a similar form,
viz. x = x∗eiϕ. The first condition (11) can be obtained without differentiation [28] using the
explicit form of the overlap Equation (9)

g
√

2n = e−iγ cosn β + (e−iβn − cosn β), (20)

and the fact that maxγ

∣∣Ae−iγ + B
∣∣ = |A| + |B| for any A, B ∈ C. Although the derivative

with respect to β leads to the condition (15), we find no way to recover this using elementary
alignment arguments.

Remark 7. While optimal angle relation γ = π − 2β has also been established in [27], here we
demonstrate that it can result from certain ansatz symmetry, manifested in similar form of zero
derivatives conditions (11) and (15). This can provide useful insights to understand similar optimal
angle dependency for deeper circuits (Section 4.2).

To find optimal parameters one needs to solve the zero derivative conditions and then
take solutions that deliver a global maximum to the overlap. For convenience, we substitute
γ = π − 2β to the overlap function (20), square it and after simplification arrive at

|g|22n = 1 + 4 cosn+1 β(cosn+1 β− cos(n + 1)β), (21)

which is used to prove the next theorem.

Theorem 2. The optimal p = 1 QAOA parameters converge as βn → π and γ → π when
n→ ∞.

Proof. Using the explicit form of the overlap (20), from Equation (11) one can establish

Im[eiγ(e−iβn − cosn β)] = 0. (22)
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Substituting γ = π − 2β one arrives at

Im[e−i(n+2)β − e−2iβ cosn β)] = 0, (23)

which is equivalent to

sin(n + 2)β = sin 2β cosn β. (24)

We solve this equation in the limit n→ ∞. In this limit sin 2β cosn β→ 0 independent
of the value of β. Thus, the left-hand side of Equation (24) tends to zero. This implies that
the leading order solution scales as

β =
kπ

n + 2
+ o(n−1) (25)

where k < n is a positive integer (in principle, n-dependent). To recover the optimal
constant k we substitute Equation (25) to Equation (21) to obtain

|g|22n = 1 + 4 cosn+2 kπ

n + 2

(
cosn kπ

n + 2
− (−1)k

)
(26)

up to o(1) terms. Finally, as cosine is monotonously decreasing in the interval [0, π) it is
evident that the overlap maximises for the smallest odd constant k = 1. Therefore, the
optimal parameter β is given by

β =
π

n + 2
+ o(n−1) =

π

n
+ o(n−1), (27)

which implies nβ→ π and thus γ = π − 2β→ π when n→ ∞.

Remark 8. In Theorem 2 the leading order solutions were found for optimal parameters. Higher
order corrections in n are found from Equation (24). For example, it is straightforward to show that

β =
π

n
− 4π

n2 + O(n−3), (28)

γ = π − 2π

n
+

8π

n2 + O(n−3). (29)

Remark 9. Expressions (28) and (29) are used to demonstrate parameter concentrations [27], i.e.,
the effect when optimal parameters for n and n + 1 qubits are polynomially close.

Theorems 1 and 2 provide state of the art analytical results for state preparation with
p = 1 depth QAOA circuit. For deeper circuits and more general settings, analysis becomes
complicated and known results are mostly numerical. Therefore, below we provide a list of
numerical effects for deeper circuits which lack analytical explanations.

4. Empirical Findings Missing Analytical Theory
4.1. Parameter Concentration in p ≥ 2 QAOA

From expression (3), overlaps for circuits of different depths are related recursively as

gp+1(γ, β, γp+1, βp+1) = gp(γ, β̃) + gp(γ, β) cosn βp+1(e−iγp+1 − 1), (30)

where β̃ = (β1 + βp+1, . . . , βp + βp+1). This recursion was used in [27] for p = 2 where it
was shown that in the thermodynamic limit n→ ∞ the zero derivative conditions let one
obtain solutions for which nβ→ π and γ→ π. This establishes parameter concentrations.
The effect was further confirmed numerically on up to n = 17 qubits and p = 5 layers.
For arbitrary depth, parameter concentrations are conjectured, yet analytical confirmation
remains open. The recursion (30) can be used in the suggested operator formalism to
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derive a system of equations to calculate optimal parameters for circuits of arbitrary depth.
In the suggested formalism the zero derivative conditions will contain expectations of
propagators used in the circuit, and the system can be solved in the thermodynamic limit,
albeit with a growing number of equations to satisfy.

4.2. Last Layer Behaviour

Theorem 1 establishes the linear relation between optimal parameters independent of
the number of qubits n. Using a global training strategy for the same problem with p ≥ 2
depth circuits, it was numerically observed [27] that optimal parameters depend on the
depth, yet usually can be approximately described by some linear relation. In the present
work, we have observed that the last layer is distinctively characterised by the very same
linear relation γp + 2βp = π stated in Theorem 1. We numerically confirmed this up to
p = 5 layers and n = 17 qubits, as shown in Figure 1. The effect remains unexplained
analytically and could be the manifestation of some hidden ansatz symmetry.

2.4 2.5 2.6 2.7 2.8 2.9
k

0.15

0.20

0.25

0.30

0.35

0.40

0.45

k

k = 1
k = 2
k = 3
k = 4
k = 5

Figure 1. Optimal angles of p = 5 depth circuit for n ∈ [6; 17]. While the first layers can be
approximately described by a linear relation, the last layer fits γp + 2βp = π. Moreover, the values of
the last layer’s parameters are evidently distinct from the previous layers.

4.3. Saturation in Layerwise Training at p = n

It was demonstrated [28] that layerwise training saturates, meaning that past a critical
depth p∗, overlap cannot be improved with further layer additions. Due to this effect, naive
layerwise training performance falls below global training. Training saturation in layerwise
optimisation was reported in [28] and confirmed up to n = 10 qubits. Most surprisingly,
the saturation depth p∗ was observed to be equal to the number of qubits n. Two effects
remain unexplained analytically. Firstly does p∗ = n. Secondly, could one go beyond the
necessary conditions in [28] to explain saturations?

4.4. Removing Saturation in Layerwise Training

Any modification in the layerwise training process that violates the necessary sat-
uration conditions can remove the system from its original saturation points. This idea
was exploited in [28], where two types of variations were introduced for system sizes
up to n = 7: (i) undertraining the QAOA circuit at each iteration and (ii) training in the
presence of random coherent phase noise. Whereas both modifications (i) and (ii) removed
saturations at p = n yet the reason remains unexplained.

5. Conclusions

We have proven a relationship between optimal QAOA parameters for p = 1, and
we recover optimal angles in the thermodynamic limit. We demonstrated the effect of
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parameter concentrations for p = 1 QAOA circuits using an operator formalism. Compared
to the explicit calculation where objective function gradients are set to zero, the operator
approach exploits the ansatz symmetry in finding optimal parameters. The suggested
approach can directly be adopted to find optimal parameters for the p ≥ 2 QAOA circuit,
with increasing complexity due to the larger number of parameters. Finally, we present a
list of numerical effects, observed for particular system size and circuit depth, which are
yet to be explained analytically. These unexplained effects include both limitations and
advantages to QAOA. While difficult, adding missing theory to these subtle effects would
improve our understanding of variational algorithms.
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