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Abstract: In this paper, we study the extraction of some analytical solutions to the nonlinear perturbed
sine-Gordon equation with the long Josephson junction properties. The model studied was formed
to observe the long Josephson junction properties separated by two superconductors. Moreover, it
is also used to explain the Josephson effect arising in the highly nonlinear nature of the Josephson
junctions. This provides the shunt inductances to realize a Josephson left-handed transmission line.
A powerful scheme is used to extract the complex function solutions. These complex results are used
to explain deeper properties of Josephson effects in the frame of impedance. Various simulations of
solutions obtained in this paper are also reported.
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1. Introduction

In 1962, the British physicist Brian David Josephson discovered a mathematical relation
between current and voltage [1,2]. Via this relation, he explored an effect which produces a
current, known as a supercurrent. This is called the Josephson effect (JE). Basically, this effect
flows continuously without any voltage applied, across a device known as a Josephson
junction (JJ) [3]. Moreover, this effect is also found through a tunnel based on the behavior
of electrons. Then, the important properties of electrons between two superconductors
were discovered. Later, Anderson and Rowell studied the Josephson tunnel’s effect on the
electrons [4]. They remarked that the effect should be quite sensitive to magnetic fields,
and also that the effect can only occur if both metals are superconducting and should be
proportional to a special point. In 1966, Zharkov investigated the Josephson tunnel effect
by using a wave function arising in the Ginzburg–Landau phenomenological theory of
superconductivity, which also follows from a microscopic treatment of the problem [5].
The dynamics of a long linear Josephson tunnel junction with overlap geometry was
numerically investigated in [6]. The current–voltage characteristics were observed in [7].
They studied the surface losses term and the external load matching [8]. In 2006, Ha and
Nakagiri proposed a damped sine-Gordon equation given as [9]:

utt + αuxx − β4u + γ = δ f .
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Another type of this equation is given as [10–12]:

utt − uxx + sin(u) = ε(γ− αut + βuxxt), (1)

where u = u(x, t), ε ≥ 0. In Equation (1), u(x, t) is used to define the phase difference
of the electrons between the top and the bottom superconductor [13]. αut (ohmic losses)
and βuxxt terms (surface losses) are used to symbolize the energy losses. The meaning of
parameters is shown in Table 1.

Table 1. Meanings of parameters.

Parameters Meanings

γ The applied bias current
αut The ohmic losses term

βuxxt The surface losses term
ε The term for definiteness

In Equation (1), if ε = 0, it is completely converted an integrable model, and it also
has a Hamiltonian structure. If γ = 0 and α = 0,

utt − uxx + sin(u) = εuxxt,

which is named the perturbed differential equation, and it is used to explain the current
along a dielective barrier of the Josephson effect [9]. In 1987, Kivshar and Malomed investi-
gated the inelastic interactions of kink properties [14,15]. They predicted the momentum
and energy between the fast soliton and slow soliton. With the help of the fundamental
optimal control theory, the existence of and necessary conditions for the optimal con-
stant parameters were presented in [16]. The transposition method was used with the
help of Hilbert theory and Interpolation and Variational theory [17]. Via tunnel Hamil-
tonian description, the Josephson current was theoretically studied in the properties of
Green’s function [18]. Pagano presented the fabrication technology productions of the
Josephson effect in terms of weak superconductivity used to explain the properties of two
superconductors [19]. Seidel introduced various types of thin film Josephson in [20]. The
current–voltage characteristics are given by the standard Resistively-Shunted-Junction
circuit model in [21], and produced a high-Tc superconductor Josephson junction by way
of the Helium Ion Beam technique, and studied their various properties in the 10 to 40 GHz
range. In this paper, our aim is to extract more complex roots of Equation (1) in a complex
basis under the rules of a powerful scheme. We will determine the strain conditions from
these solutions and explain a Josephson effect in impedance between two superconductors.
Moreover, we try to observe how the Josephson effect may be seen via simulations.

The rest of this paper is organized as follows: the mathematical analysis of the per-
turbed sine-Gordon Equation (PSGE) is given in Section 1. The theoretical analysis of the
scheme proposed and applied is presented in Section 2. The method is implemented to
find analytical solutions of the model in Section 3. The physical properties of the solutions
obtained are reported in Section 4. Some important remarks and discussions are given in
Section 5. In the last section of the paper, the conclusion is presented.

2. Theoretical Analysis of Scheme

In this section, a powerful scheme, namely, the Bernoulli sub-equation function method
(BSEFM) is presented to find some results. It is summarized as follows [22–24].

Step 1. We consider the following nonlinear partial differential equation (NLPDE):

P(ux, ut, uxt, uxx, · · · ) = 0, (2)
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where u = u(x, t). If we consider the transformation formula

u(x, t) = U(η), η = kx− ct, k 6= 0, c 6= 0, (3)

into Equation (2), we obtain the following nonlinear ordinary differential Equation (NODE),

N(U, U′, U′′, · · · ) = 0, (4)

in which U = U(η), U′ = dU
dη , U′′ = d2U

dη2 , · · · .
Step 2. According to general properties of BSEFM, the test function of solution of

Equation (4) is considered as:

U(η) =
n

∑
i=0

aiFi = a0 + a1F + a2F2 + · · ·+ anFn, (5)

where F is defined as Bernoulli differential equation given by:

F′ = bF + dFM, b 6= 0, d 6= 0, M 6= 0, M 6= 1, (6)

where F = F(η) has the following two important solutions:

F(η) =
[
−d
b

+
E

eb(M−1)η

] 1
1−M

, b 6= d

F(η) =

 (E− 1) + (E + 1) tanh
(

b(1−M)η
2

)
1− tanh

(
b(1−M)η

2

)


1
1−M

, b = d.

(7)

b, d and ai will be determined later. Putting Equation (5) into Equation (4), we obtain
an algebraic equation of F given as:

Ω(F) = ρsFs + · · ·+ ρ1F + ρ0 = 0. (8)

Step 3. When we consider that the coefficients of Ω(F) equal zero, we find a system of
algebraic equations of F given as:

ρi = 0, i = 0, · · · , s. (9)

Solving this system, we find the values of a0, · · · , an which produce some analytical
solutions to Equation (2).

3. Applications

In this part, we investigate the complex solutions of Equation (1) by using BSEFM.
Considering the wave transformation defined by:

u(x, t) = U(ξ), ξ = kx− ct, (10)

where k 6= 0, c 6= 0 for Equation (1), we convert it to the following NODE:

εβck2U′′′ + (c2 − k2)U′′ − αεcU′ + U − 1
6

U3 − εγ = 0. (11)

According to the Balance principle, a relation between M and n is obtained as
3M = 2n + 3. The following cases are derived from 3M = 2n + 3.

Case-1 When M = 3, n = 3, it produces the first test function of solution formula as:

U(ξ) = a0 + a1F + a2F2 + a3F3, (12)
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in which F′ = bF + dF3 and also b 6= 0, d 6= 0. Putting Equation (12) into Equation (11), we
extract the following cases:

Case-1.1a Under the term of b 6= d, we obtain the following parameters values:

γ = 0, c = −
i
√

3
7 − 4b2k2

2b
, a3 = −

i
√

3
2 d

3
2

b
3
2

, α =
187i

15
√

7ε
√

3− 28b2k2
,

a0 = 0, a1 = −
3i
√

3
2

√
d

√
b

, a2 = 0, β = − i
30
√

7b2k2ε
√

3− 28b2k2
· .

These parameters produce the following complex function solution to the Equation (1):

u1(x, t) = −

i
√

3
2

√
d

3b + d

− d
b +EE exp

(
−2b

(
kx+

it
√

3
7−4b2k2

2b

))


b3/2

√√√√− d
b + E exp

(
−2b

(
kx +

it
√

3
7−4b2k2

2b

)) · . (13)

Strain conditions of Equation (13) are b > 0 and d > 0 for a valid solution. Various
simulations of Equation (13) may be observed in Figures 1–3.

Figure 1. The 3D figures of Equation (13).

Case-1.1b Taking b = d and γ = 0, a0 = 0, a1 = −
3i
√

3
2

√
d

√
b

, a2 = 0, α = 187i
15
√

7ε
√

3−28b2k2 ,

c = −
i
√

3
7−4b2k2

2b , a3 = −
i
√

3
2 d

3
2

b
3
2

, β = − i
30
√

7b2k2ε
√

3−28b2k2 , these parameters produce the

hyperbolic function solution to Equation (1):

u2(x, t) = −

i
√

3
2

3d +
d

(
1+tanh

(
d

(
kx+

it
√

3
7−4d2k2

2d

)))

E−1−(E+1) tanh

(
d

(
kx+

it
√

3
7−4d2k2

2d

))


d

√√√√√√ E−1−(E+1) tanh

(
d

(
kx+

it
√

3
7−4d2k2

2d

))

1+tanh

(
d

(
kx+

it
√

3
7−4d2k2

2d

))
· . (14)

In Equation (14), E is a nonzero real constant. For Equation (14), several simulations
may be seen in Figures 4–6.
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Figure 2. The contour figures of Equation (13).
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Figure 3. The 2D figures of Equation (13).

Figure 4. The 3D figures of Equation (14).
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Figure 5. The contour figures of Equation (14).
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Figure 6. The 2D figures of Equation (14).

Case-1.1c If we consider other coefficients such as a2 = 0, γ = 0, a3 = − i
√

6d
3
2

b
3
2

, β =

− i
15
√

7b2k2ε
√
−7b2k2−1

, a0 = 0, a1 = 0, c = −
i
√
−b2k2− 1

7
b , α = 71i

15
√

7ε
√
−7b2k2−1

, we obtain the
exponential function solution to Equation (1):

u3(x, t) = − i
√

6d3/2

b3/2

−d
b
+ Ee

−2b

(
kx+

it
√
−b2k2− 1

7
b

)
− 3

2

, (15)

in which E is a non zero reel constant and b 6= d. From solution (15), several simulations
may be plotted by Figures 7 and 8.

Case-1.1d For b = d, considering a3 = − i
√

6d
3
2

b
3
2

, c = −
i
√
−b2k2− 1

7
b , α = 71i

15
√

7ε
√
−7b2k2−1

,

γ = 0, a0 = 0, a1 = 0, a2 = 0, β = − i
15
√

7b2k2ε
√
−7b2k2−1

results in the following com-
plex root:

u4(x, t) = −i
√

6
(
−(E + 1) tanh(dA) + E− 1

1 + tanh(dA)

)− 3
2
, (16)

where A = kx +
it
√
−d2k2− 1

7
d and also E is a real nonzero constant.
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Figure 7. The 3D figures of Equation (15).
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Figure 8. The contour figures of Equation (15).

Case-2 If we consider bigger values of M and n as M = 5, n = 6 in Equation (5), we
write the second test function of the solution formula to Equation (1) as follows:

U(ξ) = a0 + a1F + a2F2 + a3F3 + a4F4 + a5F5 + a6F6, (17)

in which F′ = bF + dF5 and also b 6= 0, d 6= 0. Taking Equation (17) into Equation (11), we
extract the following cases of solutions:

Case-2.1a When β = 5i
4
√

21b2k2ε
√

5−84b2k2 , c =
i
√

5
21−4b2k2

2b , a0 = 0, a1 = 0, a2 = − 4i
√

6
√

d√
b

,

a3 = 0, γ = 0, a4 = 0, a5 = 0, α = − 11i√
21ε
√

5−84b2k2 , a6 = − 5i
√

6d
3
2

b
3
2

, we extract the following

solution:

u5(x, t) = −
i
√

6
√

d

(
4b + 5d

− d
b +Ee−4bkx+2it

√
5

21−4b2k2

)

b3/2

√
− d

b + Ee−4bkx+2it
√

5
21−4b2k2

, (18)

where E is a nonzero real constant. Several figures of Equation (18) may be seen in
Figures 9–11 under suitable values of parameters.
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Figure 9. The 3D figures of Equation (18).
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Figure 10. The contour figures of Equation (18).
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Figure 11. The 2D figures of Equation (18).

Case-2.1b When b = d and β = 5i
4
√

21b2k2ε
√

5−84b2k2 , c =
i
√

5
21−4b2k2

2b , b = d, a0 = 0, a1 =

0, a2 = − 4i
√

6
√

d√
b

, a3 = 0, a4 = 0, γ = 0, α = − 11i√
21ε
√

5−84b2k2 , a6 = − 5i
√

6d
3
2

b
3
2

, a5 = 0, gives

the following exponential complex function solution:

u6(x, t) = −
i
√

6e−4dkx
(

e4dkx + 4Ee2it
√

5
21−4d2k2

)
(
−1 + Ee−4dkx+2it

√
5
21−4d2k2

)3/2 , (19)

in which E is a nonzero real constant.
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Case-2.1c If we consider these coefficients a0 = 0, a1 = 0, a2 =
3i
√

3
2

√
d

√
b

, a3 = 0, γ =

0, a4 = 0, β = i
120b2k2ε

√
21−784b2k2 , c =

i
√

3
7−16b2k2

4b , a6 =
i
√

3
2 d

3
2

b
3
2

, α = − 187i
15ε
√

21−784b2k2 , a5 = 0,

we find another version of the complex function solution:

u7(x, t) =

i
√

3
2

√
d

(
3b + d

− d
b +Ee−4bkx+it

√
3
7−16b2k2

)

b3/2

√
− d

b + Ee−4bkx+it
√

3
7−16b2k2

·, (20)

where E is a nonzero real constant. Various simulations of Equation (20) may be seen in
Figures 12–14.

Figure 12. The 3D figures of Equation (20).
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Figure 13. The contour figures of Equation (20).

Case-2.1d For b = d, if a0 = 0, a1 = 0, a2 =
3i
√

3
2

√
d

√
b

, a3 = 0, γ = 0, a4 = 0, β =

i
120b2k2ε

√
21−784b2k2 , c =

i
√

3
7−16b2k2

4b , a5 = 0, a6 =
i
√

3
2 d

3
2

b
3
2

, α = − 187i
15ε
√

21−784b2k2 gives the

following complex solution:

u8(x, t) =
i
√

3
2

(
3 + 1

−1+Ee−4dkx+it
√

3
7−16d2k2

)
√
−1 + Ee−4dkx+it

√
3
7−16d2k2

.· (21)

Via Figures 15 and 16, various simulations of Equation (21) may be seen.
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Figure 14. The 2D figures of Equation (20).

Figure 15. The 3D figures of Equation (21).
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Figure 16. The contour figures of Equation (21).

Case-2.1e For these coefficients, a0 = 0, a1 = 0, a2 = 0, c =
i
√
−4b2k2− 1

7
2b , γ = 0, β =

i
60
√

7b2k2ε
√
−28b2k2−1

, a3 = 0, a4 = 0, α = − 71i
15
√

7ε
√
−28b2k2−1

, a6 = i
√

6d
3
2

b
3
2

, a5 = 0, we extract

the following result to the governing model:

u9(x, t) =
i
√

6d
3
2

b
3
2

(
− d

b + Ee−4bkx+2it
√
−4b2k2− 1

7

) 3
2
· .

(22)

It is observed that all these solutions verify the governing model given by Equation (1).
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4. The Physical Properties

Recently, with the developing technological improvements in applied sciences, many
real world problems are symbolized by using mathematical models. Traditional methods
may not be given the necessary solutions of these newly presented models. In such a
circumstance, these methods need to be developed or modified. In this work, we tried
to find more complex solutions of the nonlinear perturbed sine-Gordon equation. This
model is used to explain some important properties of the Josephson effect. Therefore,
results may be used to explain some deep properties of the Josephson effect in a complex
domain. From the physical point of view, while some solutions of Equations (13), (14)
and (18)–(21) are complex and periodic, solution (15) is singular and (16) is a hyperbolic
function and finally solution (22) is an exponential function. From Figures 1–15, it is
observed that these new complex solutions are used to symbolize currents in the frame of
the Josephson effect. Comparing the existing papers in the literature [10], it may be seen
that these are new analytical solutions. Therefore, it is estimated that these results may be
used to explain more information about the Josephson effect, which produces a current
known as a supercurrent. Thus, these complex solutions are used to investigate another
kind of property of the Josephson effect.

5. Some Remarks and Discussion

The main advantage of the method applied in this paper is to construct many param-
eters which produce new types of solutions to the governing model. It also has various
strain conditions, such as parameter values, balance and satisfying the model. Moreover,
this method is based on the Bernoulli differential equation. Therefore, the scheme needs to
satisfy the necessary conditions of the Bernoulli model. From a theoretical point of view,
in this paper, if we take the higher values of M and n which are in relationship of M and
n coming from balance, such as M = 7 and n = 9, the test function solution formula for
Equation (5) may be obtained as:

U(ξ) = a0 + a1F + a2F2 + a3F3 + a4F4 + a5F5 + a6F6 + a7F7 + a8F8 + a9F9. (23)

In this equation, F has the analytical solutions of the Bernoulli differential equation given
by F′ = bF + dF7, where F is F(ξ). Comparing previous cases in this paper, we have more
parameters such as a7, a8, a9. These parameters may be used to produce many new types
of solutions such as trigonometric, periodic, travelling, dark, bright, mixed dark–bright
and complex soliton solutions to the nonlinear mathematical models. These parameters
extract deeper properties of the model considered.

6. Conclusions

In this study, the nonlinear perturbed sine-Gordon equation was studied under the
norms method applied. We found many different types of solution to the governing model
containing the Josephson effect. The main criterion used to measure accuracy is to satisfy
the model and simulate the wave behavior of the dependant variable. In this frame, it is
seen that all solutions satisfied the model. The strain conditions for valid solutions are
also reported. The obtained solutions are illustrated by using figures under the suitably
chosen parameters. The algorithm of scheme and figures are produced via a computational
package program, namely, Mathematica. When these results obtained in this paper are
compared with existing solutions in the literature, it is estimated that these are used to
explain the different properties of the phase difference of the electrons. These results may
be used to explain the special properties of the Josephson effect in the frame of impedance
between two superconductors [25]. Especially, from Figures 1, 4 and 14, the Josephson
effect may be clearly observed from the left side of x. Such simulations are based on the
theoretical aspect of the method. The limitation of the proposed method is based on the
calculation of parameters. If we obtain more values of M and n, we find more equations
for the system of equations. This is the main advantage of the method used in this paper.
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From the solutions and figures, it may be estimated that such results may help to explain
the Josephson effect by using complex norms. Moreover, this scheme may also be applied
to other models in [26–32] as a future direction of the study. It can be inferred from the
results that the method may be highly efficient for solving real world problems arising in
the fields of engineering and applied science [26–49].
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