
����������
�������

Citation: Richter, M.; Bertram, M.;

Seidensticker, J.; Tschache, A. A

Mathematical Perspective on

Post-Quantum Cryptography.

Mathematics 2022, 10, 2579. https://

doi.org/10.3390/math10152579

Academic Editor: Angel

Martín-del-Rey

Received: 27 June 2022

Accepted: 21 July 2022

Published: 25 July 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

mathematics

Article

A Mathematical Perspective on Post-Quantum Cryptography
Maximilian Richter 1,* , Magdalena Bertram 1 , Jasper Seidensticker 1 and Alexander Tschache 2

1 Secure Systems Engineering, Fraunhofer AISEC, 14199 Berlin, Germany;
magdalena.bertram@aisec.fraunhofer.de (M.B.); jasper.seidensticker@aisec.fraunhofer.de (J.S.)

2 Volkswagen AG, 38440 Wolfsburg, Germany; alexander.tschache@volkswagen.de
* Correspondence: maximilian.richter@aisec.fraunhofer.de

Abstract: In 2016, the National Institute of Standards and Technology (NIST) announced an open
competition with the goal of finding and standardizing suitable algorithms for quantum-resistant
cryptography. This study presents a detailed, mathematically oriented overview of the round-three
finalists of NIST’s post-quantum cryptography standardization consisting of the lattice-based key
encapsulation mechanisms (KEMs) CRYSTALS-Kyber, NTRU and SABER; the code-based KEM
Classic McEliece; the lattice-based signature schemes CRYSTALS-Dilithium and FALCON; and the
multivariate-based signature scheme Rainbow. The above-cited algorithm descriptions are precise
technical specifications intended for cryptographic experts. Nevertheless, the documents are not
well-suited for a general interested mathematical audience. Therefore, the main focus is put on the
algorithms’ corresponding algebraic foundations, in particular LWE problems, NTRU lattices, linear
codes and multivariate equation systems with the aim of fostering a broader understanding of the
mathematical concepts behind post-quantum cryptography.

Keywords: post-quantum cryptography; lattices; learning with errors; linear codes; multivariate
cryptography; Kyber; Saber; Dilithium; NTRU; Falcon; Classic McEliece; Rainbow; NIST

MSC: 11T71

1. Introduction

In recent years, significant progress in researching and building quantum computers
has been made. The existence of such computers threatens the security of many modern
cryptographic systems. This affects, in particular, asymmetric cryptography, i.e., KEMs
and digital signatures. By leveraging Shor’s quantum algorithm to find the period of a
function in a large group, a quantum computer can solve a distinct set of mathematical
problems. In particular, this includes integer factorization and the discrete logarithm, which
are the basis for a wide range of cryptographic schemes. Therefore, a fully fledged quantum
computer would be able to efficiently break the security of many modern cryptosystems.
To defend against this threat, the need for novel mathematical problems which are resistant
to Shor’s algorithm arises. Such problems are thereby promising candidates to withstand
the superior computing possibilities of quantum computers.

In 2016, NIST announced an open competition with the goal of finding and standard-
izing suitable algorithms for quantum-resistant cryptography. The standardization effort
by NIST is aimed at KEMs and digital signatures [1]. This process is currently in its third
round of candidate selection (April 2022).

At this point, the submitted algorithms are complex technical specifications without a
presentation of the underlying mathematical fundamentals and therefore do not allow an
easy access to these novel post-quantum algorithm approaches. As some of these algorithms
will probably become widely used in industrial areas very soon, it is vital to foster a broad
understanding of these mathematical concepts. In this document, we therefore address
the described lack of educational presentation. As we do not intend to give a detailed

Mathematics 2022, 10, 2579. https://doi.org/10.3390/math10152579 https://www.mdpi.com/journal/mathematics

https://doi.org/10.3390/math10152579
https://doi.org/10.3390/math10152579
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com
https://orcid.org/0000-0002-5041-8937
https://orcid.org/0000-0002-1416-4394
https://orcid.org/0000-0002-5177-2030
https://doi.org/10.3390/math10152579
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com/article/10.3390/math10152579?type=check_update&version=2

Mathematics 2022, 10, 2579 2 of 33

comparison of the presented methods and their performance in practice, we would like to
refer to the post-quantum database PQDB [2]. This website is an internal project within
Fraunhofer AISEC and aims to provide an up-to-date overview of implementation details
and performance measurements of post-quantum secure cryptographic schemes according
to available research.

In the following sections, the round-three finalists of NIST’s competition are presented,
and their mathematical details and properties are outlined. For a quick access to any of
these algorithms, we have structured the document in separate parts containing distinct
mathematical concepts, which thereby offer independent readability. These concepts
correspond to the algorithms’ respective algebraic foundations, which are LWE problems
as well as NTRU lattices in Section 2, linear codes in Section 3 and multivariate equation
systems in Section 4.

2. Lattice-Based Cryptography
2.1. Lattice Fundamentals

The cryptographic interest in lattices mainly arises from the fact that a given lattice
L can have widely different bases. While a good basis can simplify some computational
tasks significantly, a bad basis can make them almost impossible. In this section, we will
give a short introduction to the fundamental mathematics and the two most important
computational problems of lattices.

2.1.1. Lattices

Definition 1 (lattice, basis). Let B = {b1, b2, ..., bm} be a set of linearly independent vectors of
Rn. Then, the set of all integer linear combinations

L(B) =

{
∑

i
aibi | ai ∈ Z

}
⊂ Rn

is called a lattice in Rn generated by B. We furthermore refer to {b1, b2, ..., bm} as a basis of the
lattice L.

An example of a lattice with corresponding basis is shown in Figure 1. We can
equivalently generate L via a matrix B containing the basis vectors as column vectors.

Figure 1. A 2-dimensional lattice.

Definition 2 (lattice, rank, dimension, full-rank lattice). Let {b1, b2, ..., bm} be a set of linearly
independent vectors of Rn. Let B be the n×m matrix with column vectors b1, ..., bm. Then:

L(B) = {Bx | x ∈ Zm}

is called lattice in Rn generated by B. We call m the rank and n the dimension of the lattice.
For m equals n, the lattice is called the full-rank lattice.

Mathematics 2022, 10, 2579 3 of 33

Observe that the basis underlying a lattice L is not unique. Observe that the lattice
generated by the vectors (

0
1

)
,
(

1
0

)
is Z2, the set of all integer points. Z2 is also generated by the vectors(

2
1

)
,
(

1
1

)
.

Figure 2 also illustrates this fact. On the other hand, n linearly independent vectors in Zn

are not necessarily a basis of Zn. As an example, observe that the modified vectors from
the example above (

2
0

)
,
(

1
1

)
do not form a basis of Z2.

Figure 2. Two-dimensional lattice with a reduced (good) basis {b′1, b′2} and a bad basis {b1, b2}.

2.1.2. Computational Lattice Problems

The particular structure of lattices allows them to have special mathematical properties.
The following computations can be efficiently evaluated using linear algebra algorithms:

• Let g1, ..., gk ∈ Rn be a set of vectors generating the lattice L. Calculate a basis
b1, ..., bm ∈ Rn of L.

• Let L be a lattice. Evaluate whether a given vector c is an element of L.

Other computational lattice problems appear to be generally hard and are - as indicated
in the introduction - even believed to be resistant against Shor’s algorithm. Therefore, they
are interesting candidates for usage in post-quantum-cryptography. These problems are
presented in the following.

Shortest Vector Problem

Let L be a lattice with some basis B ∈ Rn×m and ‖ · ‖ some norm. Let λ(L) be the
length of the shortest nonzero vector in L. The task of finding l ∈ L such that ‖l‖ = λ(L),
i.e., finding any shortest vector of L, is called the shortest vector problem (SVP). Figure 3
illustrates such a shortest vector in a lattice.

Mathematics 2022, 10, 2579 4 of 33

Figure 3. Two-dimensional lattice with basis {b1, b2} and shortest vector `.

2.1.3. Closest Vector Problem

Let L be a lattice with some basis B ∈ Rn×m and ‖ · ‖ some norm. Given q ∈ Rn,
the task of finding l ∈ L such that ‖l − q‖ is minimal, i.e., find the lattice vector l closest to
a given arbitrary vector, is called the closest vector problem (CVP). Figure 4 illustrates a
random point with its corresponding closest lattice vector.

Figure 4. Two-dimensional lattice with ` as closest vector to point q.

2.2. Cryptography Based on Learning with Errors (LWE)
2.2.1. LWE Fundamentals
Learning with Errors

Let Zq = Z/qZ be the ring of integers modulo q. We can naturally form a linear
equation system

A · s = b ,

where A ∈ Zn×m
q , s ∈ Zm

q , b ∈ Zn
q . For example, consider the following system:

A =

10 3 5 1
4 1 1 2
...

...
...

...
3 1 1 5

, b =

10
3
...
8

Mathematics 2022, 10, 2579 5 of 33

Then, the associated equations look like:

10 · s1 + 3 · s2 + 5 · s3 + 1 · s4 = 10

4 · s1 + 1 · s2 + 1 · s3 + 2 · s4 = 3
...

3 · s1 + 1 · s2 + 1 · s3 + 5 · s4 = 8

Solving this equation system can be efficiently realized using the Gaussian algorithm.
However, adding even only small error values e ∈ Zn

q to the equation system yields:

A · s + e = b ,

which renders solving the equation system and retrieving the solution vector s surprisingly
hard. This fact is founded in the relation to the hard lattice problems described above,
which is presented in a nutshell below.

Decisional LWE

The LWE problem can also be rephrased as a decision problem, usually abbreviated
dLWE. Given an LWE sample (A, b) as defined above (s and e are kept secret), the task
is to guess whether the values of b have been calculated as A · s + e with small error
values e, or whether they have been chosen arbitrarily. Both variants are equivalently hard.
The reduction from LWE to dLWE has been proven by Regev ([3], Lemma 4.2), the inverse
reduction from dLWE to LWE is trivial.

Linking LWE to Computational Lattice Problems

Consider an LWE problem of the form:

A · s + e = b ,

where A ∈ Zn×m
q , b ∈ Zn

q and small vectors s ∈ Zm
q , e ∈ Zn

q . It is straightforward to solve
a concrete LWE instance by solving the closest vector problem. Observe that the closest
vector to b is almost always the lattice vector A · s with distance e.

To give an intuition of the relationship between learning with errors and the shortest
vector problem, consider the following lattice:

L = {x ∈ Zm+n+1 | (A || In || (−b)) · x = 0 mod q} ,

where the ’||’ operator denotes concatenation and In denotes the n× n identity matrix. It
can be observed that the column vector (s, e, 1) is an element of L by verifying that

(
A In −b

)
·

s
e
1

 = A · s + e− b = b− b = 0 mod q

holds. It can be shown that the vector (s, e, 1) is actually a shortest vector in L and therefore
is an SVP solution for L. This means retrieving the vector (s, e, 1) directly yields the secret s
as well as the error vector e and therefore solves the LWE system.

LWE-Based Encryption Schemes

This section aims to serve as a high-level introduction to LWE-based encryption
schemes, so that their basic idea can be easily understood. The following simplified
example will only be used to transmit a message consisting of a single bit, but it can be
trivially extended to transmit a bitstring of any desired length.

Consider an LWE instance A · s + e = b, where A ∈ Zn×m
q is chosen uniformly random

and s ∈ Zm
q and e ∈ Zn

q are chosen from an error distribution, i.e., their values are rather

Mathematics 2022, 10, 2579 6 of 33

small. Let us assume the values A and b are public while the corresponding values s and e
are kept secret. The LWE problem then states that it is hard to calculate s or e.

To build the actual encryption scheme, we will randomly sample the additional values
r ∈ Zn

q as well as errors e1 ∈ Zm
q and e2 ∈ Zq. With that, we construct the equation system:

u = AT · r + e1 ∈ Zm
q

v = bT · r + e2 ∈ Zq ,

which can be equivalently represented as:(
u
v

)
=

(
AT

bT

)
r +

(
e1
e2

)
in a compact form.

It is then easy to see that this is also another instance of the LWE problem. With knowl-
edge of (A, b, u, v), it is hard to calculate any of the other values. Furthermore, the decisional
LWE problem states that it is even hard to differentiate between the values u, v calculated
in the method described above and u, v′ with some arbitrary value v′. This is a core part of
our encryption system.

For now, let us assume we would just send (u, v) back to the recipient, who (knowing
s) could then calculate the value sT · u = sT · (AT · r + e1). Taking into account that
the error values are relatively small, we observe that sT · u ≈ sT · AT · r and also that
v = bT · r + e2 ≈ bT · r ≈ (A · s)T · r = sT · AT · r. Thus, neglecting the error values, we find
that sT · u ≈ v.

This means we have found a way to indirectly transmit about the same value in two
separate ways, and we have done so unnoticed by a third person: without knowledge of s,
it cannot be deduced how close exactly these values are to each other (dLWE assumption).

The trick is to hide the message in one of these values. When the message is 0, we
will just transmit v′ = v. However, in case it is 1, we will transmit v′ = v + q/2 (remember
that we are operating on Zq, so this is the value “opposite” to 0). The receiver can then
calculate µ = v′ − sT · u. If µ is close to zero (mod q), the message was 0; if it is closer to
q/2, the message was 1.

Let us summarize the process more formally. Let roundn(·) denote rounding to the
nearest multiple of n. For a one-bit message encoded as µ ∈ {0, bq/2c}, the ciphertext is
(u, v′) with

u = AT · r + e1

v′ = bT · r + e2 + µ ,

from which the receiver can calculate:

roundbq/2c(v
′ − sT · u)

= roundbq/2c(b
Tr + e2 + µ− sT(ATr + e1))

= roundbq/2c((As + e)Tr + e2 + µ− sT ATr− sTe1)

= roundbq/2c((As)Tr + eTr + e2 + µ− (As)Tr− sTe1)

= roundbq/2c(µ + eTr + e2 − sTe1)

= µ.

For the last equality to hold (and thus, the decryption to succeed), we need the overall
effect of the error term (eTr + e2 − sTe1) to stay below q/4. In practice, all candidate
schemes use an error distribution and a modulus q where this is not always the case in
order to have reasonable ciphertext sizes. The failure probability in all cases is extremely
small, so it is usually negligible in practice. However, care must be taken that attackers

Mathematics 2022, 10, 2579 7 of 33

cannot learn anything about the secret key by intentionally crafting ciphertexts that cause
decryption failures.

Flavors of LWE: Ring-LWE and Module-LWE

The sample cryptosystem described above can be trivially extended to encapsulate
bitstrings of a fixed length ` by running the same protocol ` times in parallel. In contrast to
the flavors described below, this approach is called Plain LWE (note that even though Zq
is a ring, the term Ring-LWE refers to another approach, see below). A production-ready
scheme that uses Plain LWE is Frodo [4]. Because of its simplicity it is considered to have
the least potential for attacks. However, this is paid for by communication costs about
15 times higher than with Ring-LWE or Module-LWE. The comparison of Frodo’s public
key and ciphertext size to the respective sizes of Kyber and Saber shows this fact. Because
of the relatively bad performance, it is not among the NIST standardization finalists (but
included as an alternate candidate) and is thus not included in this report. Other variants
of LWE can be created by exchanging the underlying algebraic structure. Various flavors
have been researched, and we will detail the relevant ones in the following.

Ring-LWE was first proposed by Vadim Lyubashevsky, Chris Peikert and Oded Regev
in 2010 [5]. Calculations take place in a polynomial ring Rq := Zq[x]/ f (x) for some poly-
nomial f (x). Therefore, polynomial multiplication is used instead of matrix multiplication.

Module-LWE is a variant that further improves Ring-LWE and was proposed by
Adeline Langlois and Damien Stehlé in 2012 [6]. It uses the exact same structure as the
sample system detailed above, but the scalars are replaced by ring elements of Rq, as
defined in the previous paragraph. Consequently, vectors become elements of so-called
modules, which are a generalization of vector spaces over rings, hence the name (see Table 1
for a comparison).

Most early practical implementations of LWE-based cryptography, such as the
NewHope scheme [7], use Ring-LWE. However, it was shown that Ring-LWE possibly
provides more attack surface, so that a Ring-LWE scheme is at most as secure as an equally
parameterized Module-LWE scheme [8]. For that reason, NIST has decided not to consider
Ring-LWE schemes in the third round.

Table 1. Comparison of algebraic structures used in LWE variants.

Plain LWE Ring-LWE Module-LWE

A Zn×m
q Zq[x]/ f (Zq[x]/ f)n×m

· matrix mult. polynomial mult. matrix mult.
s Zm

q Zq[x]/ f (Zq[x]/ f)m

b, e Zn
q Zq[x]/ f (Zq[x]/ f)n

Learning with Rounding

The learning with rounding (LWR) problem is a variant of the LWE problem. Consider
a single line of the LWE problem As + e = b, where A ∈ Zn×m

q is chosen uniformly and
s ∈ Zm

q and e ∈ Zn
q from a small error distribution, i.e.,

(As)k + ek = (ak1 · s1 + ... + akm · sm) + ek = bk.

Instead of sampling and adding a random small error ek, noise is added to the equation
by simple rounding. In this case, that means defining a rounding function b·cp : Zq → Zp
for some p < q dividing Zq into p roughly same-sized intervals and mapping an element in
Zq to the index of its corresponding interval. For example, when p and q are both powers
of 2, rounding simplifies to mapping an element to its log2(p) most significant bits.

This rounding function can be extended to vectors in Zn
q by component-wise rounding,

i.e., rounding each (As)k separately. Counter-intuitively, although the noise in LWR is
deterministically computed, it is computationally as difficult as solving LWE, i.e., deriving

Mathematics 2022, 10, 2579 8 of 33

s from A and bA · scp is hard [9]. Just as in the LWE case, variants of LWR can be created
by exchanging the underlying structure. For example, the scheme Saber uses Module-LWR.

2.2.2. Kyber

Kyber [10] is a CCA-secure KEM derived from a CPA-secure public-key encryp-
tion (PKE) scheme based on Module-LWE. For n, q ∈ N, the underlying ring is Rq =
Zq[X] / (Xn + 1), i.e., the ring of polynomials up to degree n− 1 with coefficients in Zq.
The corresponding module isRk

q with rank k ∈ N.
The following primitives are required: a noise space B, where sampling a value from

B yields a random small integer value in the range {−4, ..., 4}. Additionally, for the KEM
construction, secure hash functions H1, H2 and a secure key derivation function KDF
are required.

Internally, the plaintext encrypted by Kyber is a ring element r ∈ Rq. Therefore,
the input bitstring m ∈ {0, 1}256 is converted to a ring element r = toRing(m), i.e., a
polynomial, as follows:

0
0
1
...
0
1

toRing−−−→

0
0
d q

2e
...
0
d q

2e

⇐⇒ 0 + 0 · x +

q
2
· x2 + ... + 0 · xn−2 +

q
2
· xn−1

It can already be observed that even after having added a vector with small coefficients
the original polynomial can easily be reconstructed. The reverse operation f romRing
reconstructs a bitstring from a given ring element through coefficient-wise division by q

2
and subsequent rounding. The Kyber specification introduces encoding and compression
functions, which we have simplified to the toRing and f romRing functions to increase
readability and understanding.

Analogously to the general LWE-based encryption scheme described in Section 2.2,
the Kyber key generation (Algorithm 1) instantiates a particular LWE problem, As + e = b,
by generating coefficients A for the linear equation system and sampling a solution vector
s as well as an error vector e.

Algorithm 1 Kyber PKE Key Generation: keyGen.
Input: none
1. Generate A ∈ Rk×k

q

2. Sample s ∈ Rk
q with coefficients from B

3. Sample e ∈ Rk
q with coefficients from B

4. Calculate b = As + e
Output: public key pk = (A, b), secret key s

The solution vector s functions as the secret key, while A and the vector b = As + e
are used as the public key. Calculating s from the public key would be identical to solving
an instance of the LWE problem.

The Kyber PKE encryption (Algorithm 2) looks similar to the LWE-based encryption
scheme introduced in Section 2.2 expanded to a Module-LWE setting.

Mathematics 2022, 10, 2579 9 of 33

Algorithm 2 Kyber PKE Encryption: enc,

Input: public key pk = (A, b), message m ∈ {0, 1}256

1. Sample r ∈ Rk
q with coefficients from B

2. Sample e1 ∈ Rk
q with coefficients from B

3. Sample e2 ∈ Rq with coefficients from B
4. Calculate u = ATr + e1
5. Calculate v = bTr + e2 + toRing(m)

Output: ciphertext c = (u, v)

With knowledge of the secret value s, the reconstruction of the message m is possible
through the corresponding Kyber PKE decryption routine (Algorithm 3).

Algorithm 3 Kyber PKE Decryption: dec
Input: secret key s, ciphertext c = (u, v)
1. Calculate m∗ = v− sTu
Output: message m = f romRing(m∗)

Applying the operation f romRing(m∗) reconstructs the original m with very high
probability. Indeed, the Kyber encryption scheme is a probabilistic algorithm returning the
original message m with very high probability (see Table 2 for concrete failure probability
values), depending on the amount of noise within the sampled vectors.

To construct a CCA-secure KEM from the given PKE, a variant of the Fujisaki–Okamoto
transformation (FO-transformation) is used. Fujisaki and Okamoto [11] presented the first
generic transformation from asymmetric and symmetric encryption schemes to a secure
hybrid encryption scheme. Later, Hofheinz, Hövelmanns and Kiltz [12] extended the
work of Fujisaki and Okamoto and presented a generic transformation toolkit, including a
transformation of a PKE scheme into a secure KEM. Algorithm 4 shows the Kyber KEM
key generation.

Algorithm 4 Kyber KEM Key Generation.
Input: none

1. Generate σ ∈ {0, 1}256

2. Generate (pk, s) = PKE.keyGen()

Output: public key pk, secret key sk = (s, σ)

In the KEM encapsulation (Algorithm 5), observe that the value r is used in the
underlying PKE as a seed for the generation of the otherwise random values during
encryption. Although a deterministic public key encryption algorithm is usually not
desirable, for a KEM, the receiver needs to be able to repeat the encryption procedure in
the same way as the sender. We denote the deterministic version of the encryption routine
with given seed r by PKE.encr(pk, m). Furthermore, the message m is hashed before being
fed to the PKE encryption routine.

Algorithm 5 Kyber KEM Encapsulation.
Input: public key pk
1. Generate message m ∈ {0, 1}256

2. Calculate (K′, r) = H1(H2(m) || H2(pk))
3. Calculate c = PKE.encr(pk, H2(m))
4. Calculate K = KDF(K′ || H2(c))
Output: encapsulation c, shared secret K

Mathematics 2022, 10, 2579 10 of 33

The decapsulation routine (Algorithm 6) calculates the required values analogously to
the encapsulation routine.

Algorithm 6 Kyber KEM Decapsulation.
Input: public key pk, secret key sk = (s, σ), encapsulation c

1. Calculate Hm = PKE.dec(s, c)
2. Calculate (K′, r′) = H1(Hm || H2(pk))
3. Calculate c′ = PKE.encr′(pk, Hm)
4. If c = c′ set K = KDF(K′ || H2(c))
5. If c 6= c′ set K = KDF(σ || H2(c))

Output: shared secret K

To gain some intuition of how ciphertext validation in Kyber works, have a look at
the decryption process as described in detail in Section 2.2. In the Kyber PKE scheme,
the message m is embedded within the difference of the vectors v and sTu, i.e.,

v− sT · u = toRing(m) + (eTr + e2 − sTe1) ,

where e, e1, e2 are random error vectors. There are a lot of different combinations of values of
these error terms that all correspond to the same m. In the KEM, however, the randomness
becomes deterministic by deriving it from a chosen r, so there is a unique set of values
(e, e1, e2) for each m. This property establishes the required CCA-security of the KEM.
When an adversary sends a random ciphertext to the decapsulation routine, it will always
decipher to a message m, but the probability that the adversary has chosen the specific
ciphertext (generated by the correct “random” terms) corresponding to m is negligible.

The Kyber instances with their corresponding parameter choices are shown in Table 2.

Table 2. Kyber parameter sets with corresponding decryption failure probability δ.

n k q δ

Kyber512 256 2 3329 2−139

Kyber768 256 3 3329 2−164

Kyber1024 256 4 3329 2−174

2.2.3. Saber

Saber [13] is a CCA-secure KEM derived from a CPA-secure PKE based on Module-
LWR. For n, q ∈ N, the underlying ring isRq = Zq[X]/(Xn + 1), i.e., the ring of polynomials
up to degree n − 1 with coefficients in Zq. The corresponding module is Rk

q with rank
k ∈ N.

The following primitives are required: a noise space B, where sampling a value from
B yields a random small integer value in the range {−5, ..., 5}. Additionally, for the KEM
construction, secure hash functions H1, H2, H3 and a secure key derivation function KDF
are required.

Saber’s rounding function does not strictly round down, as we have seen in the general
case of LWR in Section 2.2; instead, it rounds to the median of each of the p intervals. (This
is basically just the most naive approach for rounding.) This is implemented by adding
half of the interval’s length h ≈ q

2p and subsequently rounding down, i.e.,

bxep := bx + hcp.

To implement that efficiently, Saber only uses powers of 2 for the parameters q and p. This
simplifies rounding to an addition followed by a bitwise shift.

Mathematics 2022, 10, 2579 11 of 33

Like Kyber, the Saber PKE (Algorithms 7–9) is based on the classic LWE-based encryp-
tion scheme introduced in Section 2.2. However, error addition is replaced by rounding.
This is the only difference to the Kyber PKE presented in Section 2.2.2.

Algorithm 7 Saber PKE Key Generation: keyGen.
Input: none
1. Generate A ∈ Rk×k

q

2. Sample s ∈ Rk
q with coefficients from B

3. Calculate b = bAsep

Output: public key pk = (A, b), secret key s

Algorithm 8 Saber PKE Encryption: enc

Input: public key pk = (A, b), message m ∈ {0, 1}256

1. Sample r ∈ Rk
q with coefficients from B

2. Calculate u = bATrep

3. Calculate v = bbTr + toRing(m)ep

Output: ciphertext c = (u, v)

Algorithm 9 Saber PKE Decryption: dec
Input: secret key s, ciphertext c = (u, v)
1. Calculate m∗ = v− sTu
Output: message m = f romRing(m∗)

Analogously to Kyber, to construct a CCA-secure KEM from the given PKE, a variant
of the FO-transformation is used. In fact, the key generation algorithm (Algorithm 10) is
completely identical.

Algorithm 10 Saber KEM Key Generation.
Input: none
1. Generate σ ∈ {0, 1}256

2. Generate (pk, s) = PKE.keyGen()
Output: public key pk, secret key sk = (s, σ)

Again, the KEM construction (Algorithms 11 and 12) is very similar to Kyber. The only
structural difference is the absent additional hash function used on the message m.

Algorithm 11 Saber KEM Encapsulation.
Input: public key pk
1. Generate message m ∈ {0, 1}256

2. Calculate (K′, r) = H2(H1(pk) || m)
3. Calculate c = PKE.encr(pk, m)
4. Calculate K = H3(K′ || c)
Output: encapsulation c, shared secret K

Mathematics 2022, 10, 2579 12 of 33

Algorithm 12 Saber KEM Decapsulation.
Input: public key pk, secret key sk = (s, σ), encapsulation c
1. Calculate m′ = PKE.dec(sk, c)
2. Calculate (K′, r′) = H2(H1(pk) || m′)
3. Calculate c′ = PKE.encr′(pk, m′)
4. If c = c′ set K = H3(K′ || c)
5. If c 6= c′ set K = H3(σ || c)
Output: shared secret K

The Saber instances with their corresponding parameter choices are shown in Table 3.

Table 3. Saber parameter sets with corresponding decryption failure probability δ.

n k q p δ

LightSaber 256 2 213 210 2−120

Saber 256 3 213 210 2−136

FireSaber 256 4 213 210 2−165

2.2.4. Dilithium

Dilithium [14] is a signature scheme based on Module-LWE. For n, q ∈ N, the un-
derlying ring is Rq = Zq[X] / (Xn + 1), i.e., the ring of polynomials up to degree n− 1
with coefficients in Zq. The corresponding module is Rl

q with rank l ∈ N. Additionally,
Dilithium requires a secure hash function H.

The key generation (Algorithm 13) is almost identical to Kyber’s key generation. An
LWE instance is generated, i.e., a matrix A ∈ Rk×l

q with k ∈ N, a secret vector s ∈ Rl
q and

an error term e ∈ Rk
q. As usual, A and b are public, while s is kept private.

Algorithm 13 Dilithium Key Generation: keyGen.
Input: none
1. Generate A ∈ Rk×l

q

2. Sample s ∈ Rl
q with small coefficients

3. Sample e ∈ Rk
q with small coefficients

4. Calculate b = As + e
Output: public key pk = (A, b), secret key s

Dilithium’s signing process (Algorithm 14) is probabilistic. In the first step, a random
vector y ∈ Rl

q is sampled. As we will see in the verification process, to achieve correctness,
we will use the rounded version of Ay by means of a function round(). This function takes a
given vector of polynomials and rounds each coefficient of every polynomial. The signature
is formed by calculating a pair (z, c), where c is formed by hashing the message m and the
value round(Ay). The hash function H maps an input to a polynomial with coefficients in
{−1, 0, 1}.

Due to the fact that z depending on the secret key, s potentially leads to serious
security issues, and z is not output directly. Instead, in order to remove the statistical
dependencies between z and s, Dilithium follows a so-called rejection sampling approach.
For the details of rejection sampling, we refer to [15,16]. In case z is rendered invalid
(’rejected’), the algorithm restarts from step 1.

Mathematics 2022, 10, 2579 13 of 33

Algorithm 14 Dilithium Signature generation.
Input: public key pk = (A, b), secret key s, message m ∈ {0, 1}?
Until z is valid:
1. Sample y ∈ Rl

q with small coefficients
2. Calculate w = round(Ay)
3. Calculate c = H(m || w)
4. Calculate z = y + cs
Output: signature σ = (z, c)

Given a correct signature σ, it is possible to recover w using the following calculation:

round(Az− bc) = round(A(y + cs)− (As + e)c)

= round(Ay + Acs− Acs− ce)

= round(Ay− ce)

= w

To indeed recover w, the last step requires round(Ay − ce) = round(Ay). Since c
and e both have small coefficients, their product ce does not influence the outcome of
the rounding. In order to verify the signature, we can use a recovered w′ to recalculate
c′ = H(m || w′) and compare it to the provided signature value c (Algorithm 15). Observe
that if z has not been calculated by using the secret key s, i.e., by z = y + cs, the terms Acs
would not cancel in the equation above leading to an incorrect w′ 6= w. Hence, the value c′

would be incorrect as well leading to a rejection of the provided signature.

Algorithm 15 Dilithium Verification.
Input: public key pk = (A, b), message m ∈ {0, 1}?, signature σ = (z, c)
1. Calculate w′ = round(Az− bc)
2. Calculate c′ = H(m || w′)
Output: valid if c = c′, else invalid

The Dilithium instances with their corresponding parameter choices are shown in
Table 4.

Table 4. Dilithium parameter sets for NIST security levels 2, 3 and 5 with corresponding expected
number of needed repetitions #reps of signature generation.

n (k,l) q #reps

Dilithium 2 256 (4,4) 8380417 4.25
Dilithium 3 256 (6,5) 8380417 5.1
Dilithium 5 256 (8,7) 8380417 3.85

2.3. NTRU-Based Cryptography
2.3.1. NTRU Fundamentals
The NTRU Assumption

NTRU is a lattice-based cryptosystem, which was first developed by Hoffstein, Pipher
and Silverman in 1996. It originates from the two well-known schemes NTRUEncrypt and
NTRUSign. For its abbreviation, “NTRU”, one can find multiple explanation attempts,
for example: n-th degree truncated polynomial ring or ’number theorists r us’. As the
former indicates, NTRU’s operations take place in the ring of truncated polynomials
Rq = Zq[X]/(Xn − 1), where n and q are two positive coprime integers and Zq = Z/qZ
denotes the ring of integers modulo q. Therefore,Rq is the ring of all polynomials of degree
< n with coefficients in Zq.

Mathematics 2022, 10, 2579 14 of 33

Similar to RSA, where it cannot be proven that breaking RSA is as hard as integer

factorization, the security of NTRU underlies just a hardness assumption. Let the notation
R≡

denote congruence in the ringR. The so-called NTRU assumption states that the following
task is difficult to solve:

Given h ∈ Rq, find ternary polynomials f , g ∈ Z3[X]/(Xn − 1) (a ternary polynomial
has coefficients in Z3) such that

f · h
Rq
≡ g.

Later, we will see that this can actually be solved as a shortest vector problem.

NTRU-Based Encryption Schemes

This section will provide an overview of the main theory used to build NTRU cryp-
tosystems. To build a cryptosystem around the NTRU assumption, we need two primes,
n and p, as well as an integer, q, which is coprime to both. Furthermore, p is significantly
smaller than q; in our case, we always have p = 3. These integers will define the rings

Rq = Zq[X]/(Xn − 1) Rp = Zp[X]/(Xn − 1) = R3 = Z3[X]/(Xn − 1) ,

in which the operations take place.
In the first step, we sample two ternary polynomials f , g ∈ R3, where f needs to be

invertible inR3 andRq. Then, we need to calculate said inverses:

fq := f−1 ∈ Rq f3 := f−1 ∈ R3

While fq is used to calculate the public key:

h
Rq
≡ fq · g,

f and f3 serve as the secret key. It is now easy to see that deriving the secret key from
the public key provides a solution to the NTRU assumption.

To now encrypt a message m ∈ R3, we need another random ternary polynomial
r ∈ R3 and calculate the ciphertext as:

c
Rq
≡ p · r · h + m = 3 · r · h + m

The r ensures that encryption is not deterministic, while multiplication by 3 enables
correct decryption, as we are about to see.

The decryption process then consists of two steps. First, we calculate:

a = f · c

= f · (3 · r · h + m)

= f · fq · 3 · r · g + f · m
Rq
≡ 3 · r · g + f ·m

The second step is calculated in R3, which ensures that the first term of a vanishes.
Multiplying by f3 then leads to the original message m:

f3 · a = f3 · (3 · r · g + f ·m)

R3≡ m

The attentive reader might ask why the condition p� q is obligatory, and indeed, this
is not clearly evident. The problem lies in the transition betweenRq andRp. It is vital for

Mathematics 2022, 10, 2579 15 of 33

flawless decryption that a = p · r · g + f ·m does not only hold true inRq but also in Z[X].
To be more precise, if the coefficients of p · r · g + f ·m become a reduced mod q, a reduction
mod p would not yield m.

In conclusion, the correctness is assured if this calculation yields a polynomial of
degree < n and coefficients < q. Since r, g, f , m ∈ Rp have small coefficients, it is sufficient
to require p� q.

Another observable fact is that the decryption process also establishes the possibility
to obtain the message m without the knowledge of f . Indeed (according to the NTRU
assumption), it is sufficient for an adversary to find any ternary polynomial f̂ such that
f̂ · h is again ternary modulo q, since this still ensures that f̂ · c does not become reduced
modulo q and the subsequent reduction modulo p would yield m. The authors showed
in [17] that in all likelihood the only polynomials with this property are just rotations of f
(i.e., polynomials obtained by cyclically rotating the coefficients of f).

Linking NTRU to Computational Lattice Problems

To get an idea of the connection between lattices and NTRU, consider the lattice:

L = {(u, v) ∈ Rq ×Rq | u · h
Rq
≡ v)}.

consisting of every possible solution for a fixed NTRU assumption given h ∈ Rq.
In the following, all calculations are reduced modulo (Xn − 1), and we therefore write

u · h = v mod q. To find a basis of L, observe that every (u, v) ∈ L equivalently fulfills:

u · h− k · q = v

for some k ∈ Rq. This can be rewritten as:(
u
v

)
=

(
1 0
h q

)
·
(

u
−k

)
in an equivalent form. Using the coefficients of u = ∑n−1

i=0 uixi, v = ∑n−1
i=0 vixi, h = ∑n−1

i=0 hixi

and k = ∑n−1
i=0 kixi, this can be transformed into:

u0
u1
...

un−1
v0
v1
...

vn−1

=

1 0 . . . 0 0 0 . . . 0
0 1 . . . 0 0 0 . . . 0
...

...
. . .

...
...

...
. . .

...
0 0 . . . 1 0 0 . . . 0
h0 h1 . . . hn−1 q 0 . . . 0

hn−1 h0 . . . hn−2 0 q . . . 0
...

...
. . .

...
...

...
. . .

...
h1 h2 . . . h0 0 0 . . . q

·

u0
u1
...

un−1
−k0
−k1

...
−kn−1

Defining Mh as the bottom-left quadrant, it is easy to see that the matrix(

In 0n
Mh q · In

)
defines a basis of the lattice L. It is obvious that (f , g) ∈ L, and since f , g ∈ R3, it is also
a rather short vector. Furthermore, it can be shown that with overwhelming probability
(f , g) is indeed the shortest vector of L. Therefore, being able to solve an SVP also enables
finding the secret key of any NTRU cryptosystem.

Mathematics 2022, 10, 2579 16 of 33

2.3.2. NTRU

Even though the NIST round three submission of NTRU [18] is mainly based on the
generic NTRU encryption scheme we have just seen, it contains a few major differences that
need further explanation. The most obvious change regards the underlying polynomial
rings. Before, we just considered the two truncated polynomial ringsRq = Zq[X]/(Xn − 1)
and Rp = Zp[X]/(Xn − 1) that were both generated by (Xn − 1). Instead, we consider
polynomial rings that are generated by the three polynomials

φ1 = (X− 1) φn = Xn−1
X−1 φ1φn = (Xn − 1).

To differentiate the corresponding rings, we introduce the following notation:

Rφ
k := Zk[X]/φ

For example, the formerly usedR3 is now denoted asRφ1φn
3 .

The key generation (Algorithm 16) mainly consists of the same steps as in the generic
NTRU construction. The difference is that sampling and operations take place in different
rings and spaces. Note that g is always a multiple of φ1. Other than that, the step of
calculating the inverse hq is added. All these modifications aim to add another layer of
security against forging ciphertexts, as we will see in the decryption step.

Algorithm 16 NTRU PKE Key Generation: keyGen.
Input: none

1. Sample f ∈ Rφn
3

2. Sample g ∈ {φ1 · v | v ∈ Rφn
3 }

3. Calculate fq = f−1 ∈ Rφn
q

4. Calculate h
Rφ1φn

q
≡ g · fq

5. Calculate hq = h−1 ∈ Rφn
q

6. Calculate f3 = f−1 ∈ Rφn
3

Output: public key h, secret key sk = (f , fp, hq)

The encryption process (Algorithm 17) only differs in using a lift-function on the
message m before encryption. Let (m · φ−1

1)Rφn
3

denote a calculation within the ring Rφn
3 ,

then:
Li f t(m) = φ1 · (m · φ−1

1)Rφn
3

.

It is easy to see that Li f t(m)
Rφn

3≡ m. Now, as a consequence of g and m̂ being multiples of
φ1, the same is true for c.

Algorithm 17 NTRU PKE Encryption: enc.

Input: public key h, message m ∈ Rφn
3

1. Calculate m̂ = Li f t(m)

2. Sample r ∈ Rφn
3

3. Calculate c
Rφ1φn

q
≡ 3 · r · h + m̂

Output: ciphertext c

The decryption differs the most compared to the general NTRU construction and there-
fore requires further explanation. In case of a correctly encrypted message m, deciphering

Mathematics 2022, 10, 2579 17 of 33

takes place in steps 2 and 3. It is not obvious that the calculation in step 2 still yields the
same result as in the general NTRU scheme since fq is the inverse inRφn

q and not inRφ1φn
q .

Using the fact that g is a multiple of φ1 and fq is the inverse of f in Rφn
q , we can

equivalently say

g = φ1 · v for some v ∈ Rφn
3 (1)

f · fq = 1 + k · φn for some k ∈ Z[X] (2)

Step 2 then resolves to

a = f · c

= f · fq · 3 · r · g + f · m̂ | (2)
= (1 + k · φn) · 3 · r · g + f · m̂ | (1)

= 3 · r · g + k · φn · φ1 · v · 3 · r + f · m̂ | φ1φn
Rφ1φn

q
≡ 0

Rφ1φn
q
≡ 3 · r · g + f · m̂

Finally, we can obtain m in step 3 since f3 is indeed the inverse in the considered ring
Rφn

3 by calculating

a · f3 = 3 · r · g · f3 + f · f3 · m̂
Rφn

3≡ m

The first term vanishes since it is a multiple of 3, and as seen before, m̂ = Li f t(m)
Rφn

3≡
m.

The decryption (Algorithm 18) contains a built-in validation process, which justifies
the additional steps. As shown later, this enables the construction of a KEM that avoids
re-encryption (in contrast to classic FO-transformation).

The first step validates whether or not c is a multiple of φ1, which is true for any
correctly generated ciphertext, as seen before. In order to verify that r is correctly sampled
from Rφn

3 (step 6 and 7) , step 4 and 5 retrieve r using c, Li f t(m) and hq. If any of the
validation steps fail, the procedure returns the error vector (0, 0, 1); otherwise, (r, m, 0)
is returned.

Algorithm 18 NTRU PKE Decryption: dec.
Input: secret key sk = (f , fp, hq), ciphertext c

1. if c
Rφ1

q

6≡ 0 return (0, 0, 1)

2. Calculate a
Rφ1φn

q
≡ f · c

3. Calculate m
Rφn

3≡ a · f3
4. Calculate m̂ = Li f t(m)

5. Calculate r
Rφn

q
≡ (c− m̂) · hq

3
6. if r ∈ Rφn

3 return (r, m, 0)
7. else return (0, 0, 1)
Output: Correct (r, m, 0) or error (0, 0, 1)

Mathematics 2022, 10, 2579 18 of 33

Constructing the NTRU KEM is now straightforward. The key generation (Algo-
rithm 19) simply calls PKE.keyGen() and samples a random value σ, which is later used in
the decapsulation for implicit rejection.

Algorithm 19 NTRU KEM Key Generation.
Input: none
1. Generate (h, (f , fp, hq)) = PKE.keyGen()
2. Sample σ ∈ {0, 1}256

Output: public key h, secret key sk = (f , fp, hq, σ)

Encapsulation (Algorithm 20) consists of three steps: Random sampling r, m ∈ Rφn
3 ,

generating the ciphertext using PKE.enc() and calculating the shared secret K as the hash of
r and m with some cryptographic hash function H1.

Algorithm 20 NTRU KEM Encapsulation.
Input: public key h

1. Sample r, m ∈ Rφn
3

2. Calculate c = PKE.encr(h, m)
3. K = H1(r || m)

Output: encapsulation c, shared secret K

Decapsulation (Algorithm 21) starts with the decryption of c using PKE.dec(). Next,
two hashes are calculated, the correct one as a hash of r and m and a decoy as a hash of
the sampled values s and c with some cryptographic hash function H2. In case of valid
decryption, the former is returned; otherwise, the decoy value is returned.

Algorithm 21 NTRU KEM Decapsulation.
Input: secret key sk = (f , fp, hq, σ), encapsulation c

1. (r, m, f ail) = PKE.dec((f , fp, hq), c)
2. k1 = H1(r || m)
3. k2 = H2(σ || c)
4. if (f ail = 0) set K = k1
5. else set K = k2

Output: shared secret K

The NTRU submission recommends two different families of parameter sets, which
are referred to as NTRU-HRSS and NTRU-HPS. The explanations of this section regard
NTRU-HRSS, but the details of both can be found in the algorithm specification [18].

2.3.3. Falcon

Falcon [19] is a signature scheme based on the Gentry–Peikert–Vaikuntanathan (GPV)
signature scheme using the NTRU structure [20]. On a very high level, the underlying
idea of the GPV framework is as follows. The public key is a full-rank matrix A ∈ Zn×m

q
(with m > n) generating a lattice L, while the secret key is a matrix B ∈ Zm×m

q generating a
corresponding lattice L⊥q . The lattices L and L⊥q are orthogonal modulo q, meaning that

∀x ∈ L, y ∈ L⊥q : 〈x, y〉 = 0 mod q.

Equivalently, the rows of A and B are pairwise orthogonal, i.e., B · At = 0 mod q.
Given a hash H(m) of some arbitrary message m and a hash-function H that maps

onto L, a valid signature s has to fulfill two properties:

Mathematics 2022, 10, 2579 19 of 33

1. A · s = H(m) mod q;
2. ‖s‖ < β for some boundary β, i.e., s has to be short.

A solution s satisfying the first property can be easily computed using standard linear
algebra; however, additionally considering the second property, finding a valid s is much
harder. These requirements are almost identical to the short integer solution problem (SIS),
the only difference being that an SIS solution s fulfills A · s = 0 mod q instead. The SIS
problem is average-case-hard and reducible to SVP [21].

However, with knowledge of the secret matrix B, a valid signature s can be efficiently
computed. The first step is to find any solution s′ to the first requirement A · s′ = H(m).
Afterwards, a sufficiently close vector v in the orthogonal lattice L⊥q needs to be found.
Knowing B, this can be achieved using an efficient CVP approximation algorithm such as
Babai’s Algorithm [22] satisfying ‖s′ − v‖ < β.

Finally, s = s′ − v forms a valid signature since A · s = A · s′ − A · v = H(m)− 0 due
to v being orthogonal to the rows of A.

The overall framework of Falcon is quite similar to GPV and uses the basic idea of the
NTRU scheme to generate the required lattices. Similar to NTRU, Falcon’s operations take
place in the ring of truncated polynomials Rq = Zq[X]/(Xn + 1), where n and q are two
positive coprime integers and Zq = Z/qZ denotes the ring of integers modulo q. Therefore,
Rq is the ring of all polynomials of degree < n with coefficients in Zq.

For the key generation (Algorithm 22) a set of four polynomials f , g ∈ Rq and F, G ∈
R = Z[x]/(Xn + 1) that fulfills

f G− gF = q mod (Xn + 1)

is needed. Afterwards, analogously to NTRU, we calculate h = g · f−1 ∈ Rq. From these
polynomials, we can generate the public key matrix A ∈ Zn×2n

q and the secret key matrix
B ∈ Z2n×2n

q as

A =
(
1 h

)
B =

(
g − f
G −F

)
,

where every polynomial is represented as its corresponding matrix (see Section 2.3.1 for
notation details).

It is easy to check that

B · At =

(
g− h f
G− hF

)
=

(
g− (g f−1) f
G− (g f−1)F

)
=

(
g− g

f−1 f (G− g f−1F)

)
=

(
0

f−1(f G− gF)

)
=

(
0

f−1q

)
=

(
0
0

)
mod q

indeed holds.

Algorithm 22 Falcon Key Generation.
Input: none
1. Sample f , g ∈ Rq
2. Find F, G ∈ R such that f · G− g · F = q mod (Xn + 1)
3. Calculate h = g · f−1

Output: public key h, secret key sk = (f , g, F, G)

Mathematics 2022, 10, 2579 20 of 33

To make a Falcon signature probabilistic, a random r ∈ {0, 1}320 is sampled and used
to generate the hash c = H(r || m) with some cryptographic hash function H. Due to the
construction of A =

(
1 h

)
, finding an s′ satisfying property 1 is easy. Since

(
1 h

)
·
(

c
0

)
= c

holds, we can always use s′ = (c, 0)>. As described above, we are looking for a vector
v ∈ L⊥q close to s′. Falcon does that using a variant of Babai’s algorithm [23]. Then,
the difference s′ − v satisfies properties 1 and 2 and forms a valid signature (Algorithm 23).

To increase security, only the second component of s = (s1, s2)
> = (c− v1,−v2)

> is
transmitted, which is already sufficient to verify the validity of s. Due to

A · s =
(
1 h

)
·
(

s1
s2

)
= s1 + h · s2 = c,

we can see that s1 just represents a shift by a small constant.

Algorithm 23 Falcon Signature generation.
Input: secret key sk = (f , g, F, G), message m ∈ {0, 1}?

1. Sample r ∈ {0, 1}320

2. Calculate c = H(r || m)

3. Set s′ = (c, 0)>

4. Find v ∈ L⊥q with ‖s′ − v‖ < β

5. Calculate (s1, s2)
> = s′ − v = (c− v1,−v2)

>

Output: signature σ = (r, s2)

Analogously to the signature generation, for verification (Algorithm 24), the message
m is hashed together with the provided r. Assuming s2 was correctly generated, the missing
value s1 can be calculated by

s1 = A ·
(

c
−s2

)
= c− s2 · h

and is declared valid if it is sufficiently small, i.e., ‖(s1, s2)
>‖ < β.

Algorithm 24 Falcon Verification.
Input: public key h, message m ∈ {0, 1}?, signature σ = (r, s2)

1. Calculate c = H(r || m)
2. Calculate s1 = c− s2 · h
Output: valid if ‖(s1, s2)

>‖ < β, else invalid

The Falcon instances with their corresponding parameter choices are shown in Table 5.

Table 5. Falcon parameter sets.

n q

Falcon-512 512 12,289
Falcon-1024 1024 12,289

Mathematics 2022, 10, 2579 21 of 33

3. Code-Based Cryptography
3.1. Linear Code Fundamentals

Error-correcting codes are a standard approach to detect and correct communication
errors that might happen due to noise during transmission. This technique can be applied
to the construction of cryptographic systems where errors are intentionally inserted and
can only be corrected by the intended receiver.

3.1.1. Linear Codes

Definition 3 (hamming weight, hamming distance). For a given vector x = (x1, . . . , xn) ∈ Fn
2 ,

we call

weight(x) =
n

∑
i=1

xi

the hamming weight of x. Note that this simply counts the number of entries equal to 1.
Given another vector y = (y1, . . . , yn) ∈ Fn

2 , we call

dist(x, y) =
n

∑
i=1
| xi − yi |

the hamming distance, which denotes the number of bits in which x and y differ.

Definition 4 (inear code). Let C be a linear subspace of the vector space Fn
2 with dimension k.

Furthermore, let
d = min

ci ,cj∈C
ci 6=cj

dist(ci, cj)

be the minimum distance of two distinct elements of C.
C is called linear code or, equivalently, (n, k, d)-code. The elements of C are called codewords.

Elements of an (n, k, d)-code C are binary vectors of length n. However, since C has
dimension k, only k entries can be arbitrarily chosen, and this choice already defines the
remaining n− k entries. This means we end up with vectors of length n containing only k
bits of non-redundant information. Therefore, it is possible to represent C as the span of k
linear independent codewords c1, . . . , ck ∈ C, i.e.,

C = {G · x | x ∈ Fk
2} ,

where G ∈ Fn×k
2 with codewords c1, . . . , ck as columns. G is called generator matrix of C.

We can transform G to its standard form (this definition deviates a little from standard
literature; however, it is more useful in the context of Classic McEliece). G′ = (T> || Ik)

>,
where Ik is the k× k identity matrix and T ∈ F(n−k)×k

2 .
Given a generator matrix G′ = (T> || Ik)

> in standard form, there is a neat way
to check whether a given word c ∈ Fn

2 is a valid codeword, i.e., an element of C. Let

H = (In−k || −T) ∈ F(n−k)×n
2 and c ∈ Fn

2 be a valid codeword, i.e., c = G · x for some
x ∈ Fk

2. Then,

Mathematics 2022, 10, 2579 22 of 33

H · c = H · (G′ · x)
= (H · G′) · x

=

1 0 . . . 0 −t1,1 −t1,2 . . . −t1,k

0 1 . . . 0 −t2,1 −t2,2 . . . −t2,k
...

...
. . .

...
...

...
. . .

...
0 0 . . . 1 −tn−k,1 −tn−k,2 . . . −tn−k,k

︸ ︷︷ ︸

(n−k)+k

·

t1,1 t1,2 . . . t1,k

t2,1 t2,2 . . . t2,k
...

...
. . .

...
tn−k,1 tn−k,2 . . . tn−k,k

1 0 . . . 0
0 1 . . . 0
...

...
. . .

...
0 0 . . . 1

︸ ︷︷ ︸

k

· x

=

t1,1 − t1,1 t1,2 − t1,2 . . . t1,k − t1,k

t2,1 − t2,1 t2,2 − t2,2 . . . t2,k − t2,k
...

...
...

...
tn−k,1 − tn−k,1 tn−k,2 − tn−k,2 . . . tn−k,k − tn−k,k

 · x

= 0 ∈ Fn−k
2

equals the zero-vector in Fn−k
2 for any codeword c. Because of this property, H is called the

parity check matrix. Indeed, the condition H · c = 0 holds if and only if c is a valid code-
word.

Therefore, a linear code C can equivalently be defined via its parity check matrix H
since C is exactly the kernel of the map H, so C = {x ∈ Fn

2 | H · x = 0}. This also motivates
the following definition.

Definition 5 (syndrome). Let C be a linear code with parity check matrix H and x ∈ Fn
2 be a

vector. We call
H · x ∈ Fn−k

2

the syndrome of x.

3.1.2. Binary Goppa Codes

A traditional and well-studied family of linear codes are the so-called binary Goppa
codes [24]. They were proposed for cryptography in 1978 due to their good security
properties and fast decoding capabilities [25].

Definition 6 (binary Goppa code, support, Goppa polynomial). Let F2m be a finite field
for some m ∈ N and g(x) ∈ F2m [x] be an irreducible polynomial of degree t < 2m. Let
L = (α1, α2, . . . , αn) be a sequence of n distinct elements of F2m which are not roots of g(x).
Then, we define a binary Goppa code Γ(g, L) by

Γ(g, L) = {c ∈ Fn
2 |

n

∑
i=1

1
x− αi

· ci ≡ 0 mod g(x)}.

We call L support and g(x) Goppa polynomial.

While we will not delve into the mathematical structure behind binary Goppa codes,
it is important to highlight that a given Goppa code depends on its Goppa polynomial and
its support. In order to derive the parity check matrix of a given Goppa code Γ(g, L), we
define

Îi(x, αi) :=
1

x− αi
mod g(x)

Mathematics 2022, 10, 2579 23 of 33

to be the inverse of x− αi reduced modulo g(x) for i ∈ {1, ..., n}. Note that the condition of
α1, . . . , αn not being roots of g ensures that the inverses 1

x−α1
, . . . , 1

x−αn
exist since, otherwise,

x− αi would divide g.
Since Îi(x, αi) is already reduced modulo g(x) and the addition of polynomials with

the same degree cannot increase their degree, we can rewrite the defining condition of
Γ(g, L) in the following way:

n

∑
i=1

Îi(x, αi) · ci = 0

Moreover, Îi(x, αi) is a polynomial with a maximum degree of t− 1, i.e., Îi(x, αi) =

∑t
k=1 Îi,k(αi) · xk−1. Again, we can rewrite the condition as:

n

∑
i=1

ci

t

∑
k=1

Îi,k(αi) · xk−1 = 0.

From this equation, one can easily derive the parity check matrix Ĥ for Γ(g, L):

Ĥ =

Î1,1(αi) Î2,1(αi) . . . În,1(αi)
Î1,2(αi) Î2,2(αi) . . . În,2(αi)

...
...

...
Î1,t(αi) Î2,t(αi) . . . În,t(αi)

 ∈ F t×n
2m (3)

The inverses in Ĥ can then be calculated using n executions of the extended euclidean
algorithm (EEA). Applying EEA directly to any (x− αi) and g(x) = ∑t

i=0 gi · xi would lead
to a simpler version of Ĥ:

Ĥ =

1 0 0 . . . 0

gt−1 1 0 . . . 0
gt−2 gt−1 1 . . . 0

...
...

...
. . .

...
g1 g2 g3 . . . 1

1 1 . . . 1
α1

1 α1
2 . . . α1

n
α2

1 α2
2 . . . α2

n
...

...
...

...
αt−1

1 αt−1
2 . . . αt−1

n

1

g(α1)
0 . . . 0

0 1
g(α2)

. . . 0
...

...
. . .

...
0 0 . . . 1

g(αn)

 ∈ F t×n
2m

The details of the derivation can be found in [26].
In Classic McEliece, we will always consider a binary version of the parity check

matrix Ĥ ∈ F t×n
2m . That means that all elements in F2m are converted to a column vector

representing their binary form of length m. We call the resulting matrix

H ∈ Fmt×n
2

the binary parity check matrix.

Theorem 1. Let Γ(g, L) be an (n, k, d) binary Goppa code, where g ∈ F2m [x] has degree t. Then,
we can lower-bound the dimension k by

k ≥ n−mt

and the minimum distance d by
d ≥ 2t + 1.

Since H is an mt× n matrix, the corresponding generator matrix G has dimension
n× k with k ≥ n−mt. The derivation of the lower bound for the minimum distance is not
easy to see; that is why we refer to [27] for a detailed proof.

Mathematics 2022, 10, 2579 24 of 33

3.1.3. Computational Linear Code Problems

Analogously to lattices, there exist various code-based calculation problems which are
considered to be computationally hard and are therefore suitable for cryptographic algo-
rithms.

Given a linear (n, k, d)-code C ⊂ Fn
2 with a random parity-check matrix H ∈ F(n−k)×n

2
and q ∈ Fn

2 , the task of finding the closest codeword c ∈ C to q, i.e., the codeword c which
minimizes dist(q, c), is computationally hard and is called a syndrome decoding problem.

Due to its structured parity-check matrix, the hardness of the syndrome decoding
problem cannot directly be applied to Goppa codes. However, research indicates that
distinguishing a Goppa parity-check matrix from a parity-check matrix of a random code
is difficult. The parity-check matrix Ĥ introduced in Equation (3) gives an intuition of
that fact. Observe, that each entry is a polynomial inverse depending on a random Goppa
support and a random Goppa polynomial. This Goppa code indistinguishability as-
sumption is the basis for the Classic McEliece cryptosystem, which we will discuss in the
following section.

3.2. Classic McEliece

Classic McEliece [28] is a CCA-secure key encapsulation mechanism based on a version
of the Niederreiter encryption scheme. A message is represented as an error vector e whose
syndrome, i.e., the parity check matrix (public key) applied on e, is used as encryption.
Knowing the structure (secret key) of the underlying code, the receiver is able to restore the
error vector e from the syndrome using a syndrome decoding algorithm [29].

The Classic McEliece scheme uses binary Goppa codes, which form linear (n, k, d)-
codes. During key generation (Algorithm 25), Classic McEliece generates a random binary
Goppa code Γ(g, L). As described above, the code Γ(g, L) consists of a Goppa polynomial
g(x) ∈ F2m [x] with degree t for a suitable m and a support L. Then, the corresponding
binary parity-check matrix H ∈ Fmt×n

2 is computed and transformed to standard form. H
is then published as public key while the Goppa parameters g and L are kept secret. Classic
McEliece uses the fact that it is generally infeasible to reconstruct a Goppa code from a
given parity-check matrix H.

Algorithm 25 Classic McEliece PKE Key Generation: keyGen.
Input: none
1. Generate random Goppa Code Γ(g, L) with

• Goppa polynomial g(x) ∈ F2m [x] of degree t
• Uniform random sequence L = (α1, . . . , αn) of n distinct elements of F2m

2. Compute corresponding binary parity-check matrix H ∈ Fmt×n
2

Output: public key H, private key Γ(g, L).

The idea of Classic McEliece encryption (Algorithm 26) is to send the syndrome
H(c + e) of an erroneous codeword c ∈ Γ(g, L) with error e ∈ Fn

2 . We can observe that
H(c + e) is independent of the concrete codeword c, because H(c + e) = Hc + He = He
holds for all codewords. Therefore, we drop c and just calculate He. The value e serves
as message, and we require it to have weight t, which is defined to be the largest value
possible while also guaranteeing correct decryption. Therefore, the size of the message
space is (n

t). Using the provided parity-check matrix H, the corresponding syndrome He is
calculated and sent to the receiver.

Algorithm 26 Classic McEliece PKE Encryption: enc.

Input: public key H ∈ Fmt×n
2 , message e ∈ Fn

2 with weight t

1. Compute C = He ∈ Fn−k
2

Output: ciphertext C

Mathematics 2022, 10, 2579 25 of 33

Knowing the structure of the Goppa code, i.e., the secret Goppa polynomial g and
support (α1, . . . , αn), the receiver is able to reconstruct e from the provided syndrome
C = He. In order to do that, the given syndrome C ∈ Fn−k

2 is extended to the column vector
C′ = (C, 0, . . . , 0) ∈ Fn

2 by appending k zeros. We first observe that

H(C′ + e) = H((He, 0, . . . , 0) + e)

= H(He, 0, . . . , 0) + He

= He + He

= 0

Note that H(He, 0, . . . , 0) = He holds because H is in standard form, i.e., H = (In−k ||
−T) for some matrix T. The equation above implies that c = C′ + e is a codeword in our
Goppa code Γ(g, L). Furthermore, we know there can only be one codeword in Γ(g, L) with
distance ≤ t to C′ since, due to Theorem 1, Goppa codewords have a minimum distance
of 2t + 1 (see Figure 5). Since e has weight t, the codeword C′ + e is the unique codeword
with distance ≤ t to C′.

Figure 5. Black dots represent Goppa codewords. The interior of each black circle represents the set
of words which are mapped to its central black dot during error-correction. This figure shows the
intuition behind Classic McEliece encryption: an error vector e is encrypted to a point C′ on a black
circle around some Goppa codeword. The receiver is able to obtain the corresponding central black
dot and thereby retrieve the error vector e.

Having the secret Goppa parameters, the receiver is able to use a syndrome-decoding
algorithm, e.g., Patterson’s Algorithm [30], to find the closest codeword to C′, obtaining
c = C′ + e. Then, simple addition yields e = C′ + c. These steps are summarized in
Algorithm 27.

Note that general syndrome decoding is difficult, as seen in Section 3.1. Therefore,
a third party without knowledge of the secret Goppa parameters is not able to perform this
decryption step.

Algorithm 27 Classic McEliece PKE Decryption: dec.

Input: ciphertext C ∈ Fn−k
2 , Goppa code Γ(g, L)

1. Extend C to C′ = (C, 0, . . . , 0) ∈ Fn
2 by appending k zeros

2. Find the unique codeword c ∈ Γ(g, L) that is at distance ≤ t from C′. If there is no
such codeword, return ⊥

3. Set e = C′ + c
4. If weight(e) 6= t or C 6= He, return ⊥
Output: message e

Classic McEliece KEM key generation (Algorithm 28) samples an additional value
σ ∈ Fn

2 . Despite that, the key generation is identical to the key generation of the PKE.

Mathematics 2022, 10, 2579 26 of 33

Algorithm 28 Classic McEliece KEM Key Generation.
Input: none
1. Generate random σ ∈ Fn

2
2. Generate (H, Γ(g, L)) = PKE.keyGen()
Output: public key H, secret key sk = (Γ(g, L), σ)

The family of cryptographic hash functions Hi for i ∈ {0, 1, 2} is used for both
encapsulation and decapsulation. A random vector e ∈ Fn

2 of weight t is sampled and
encrypted with a given parity-check matrix H. Additionally, e is hashed to eH. The shared
secret K is computed by K = H1(e, C, eH), i.e., a random-looking value depending on e and
C (Algorithm 29).

Algorithm 29 Classic McEliece KEM Encapsulation.
Input: public key H
1. Generate random vector e ∈ Fn

2 of weight t
2. Compute C = PKE.enc(e, H).
3. Compute eH = H2(e)
4. Compute K = H1(e, C, eH)
Output: encapsulation (C, eH), shared secret K

The decapsulation (Algorithm 30) starts with the decryption of a given C, thereby
calculating a message candidate e. Assuming a valid input, the original e is obtained. It is
clear that by K = H1(e, C, eH) the same shared secret as in the encapsulation is computed.

However, prior to that calculation, the decapsulation process has two means of verify-
ing its input: If decryption fails, the hash value e′H will be based on the random-looking σ
instead of e. This will ensure that the following comparison will not hold. The obtained
message candidate e is verified by checking whether it is indeed a weight-t vector (this
happens during PKE.dec). Then, the provided eH is compared with the computed version
e′H, thereby checking that the encapsulation was indeed performed based on e as well as
the provided public key H and according to the rules of the algorithm.

Algorithm 30 Classic McEliece KEM Decapsulation.
Input: secret key sk = (Γ(g, L), σ), encapsulation (C, eH)
1. Calculate e = PKE.dec(C, Γ(g, L))
2. If e = ⊥ calculate e′H = H2(σ)
3. If e 6= ⊥ calculate e′H = H2(e)
4. If e′H = eH set K = H1(e, C, eH)
5. If e′H 6= eH set K = H0(σ, C, eH)
Output: shared secret K

Encryption and decryption operations are competitively fast compared to lattice-based
cryptography; however, the key sizes in Classic McEliece are quite large [31]. Given, for
example, the largest parameter set (see Table 6), storing the compressed public key H
requires k · (n− k) = 6528 · (8192− 6528) = 10,862,592 bits ≈ 1.3 MB.

The Classic McEliece instances with their corresponding parameter choices are shown
in Table 6.

Mathematics 2022, 10, 2579 27 of 33

Table 6. Classic McEliece parameter sets using an (n, k, d) Goppa code with error correction capabil-
ity t.

n k d t

McEliece348864 3488 2720 129 64
McEliece460896 4608 3360 193 96
McEliece6688128 6688 5024 257 128
McEliece6960119 6960 5413 239 119
McEliece8192128 8192 6528 257 128

4. Multivariate Cryptography

Multivariate cryptography uses multivariate polynomials, i.e., polynomials in mul-
tiple variables, for the construction of key pairs. Its security is based on the assumption
that solving a set of multivariate quadratic polynomial equations over a finite field is
computationally hard.

4.1. Multivariate Polynomial Fundamentals
4.1.1. Multivariate Polynomial Functions

Definition 7 (multivariate quadratic polynomial function). Let F be a field. A function
f : Fn → F is called multivariate function. Let p be a polynomial in the variables x1, . . . , xn ∈ F. If
f can be represented as p(x1, . . . , xn), f is called multivariate polynomial function (for finite F, this
is possible for any function). If f only contains terms of degree two or less, f is called multivariate
quadratic polynomial function.

To give an example, the function f1(x1, x2, x3) = x2
1x2 + 2x1x2

2 + 3x3 + 4 is a multivari-
ate polynomial function (of degree 3), while the function f2(x1, x2, x3) = x2

1 + 2x1x2 + 3x3 +
4 is a multivariate quadratic polynomial function. Let p1, . . . , pk be multivariate quadratic
polynomial functions. The vector

P =

p1
...

pk

can be interpreted as a function P : Fn → Fk by component-wise application and is called
polynomial map.

4.1.2. MQ Problem

Let F be a finite field. Let p1, . . . , pk : Fn → F be multivariate quadratic polynomial
functions. Finding a solution s ∈ Fn to the system of equations

p1(s) = 0
...

pk(s) = 0

is called anMQ (multivariate quadratic) problem [32]. This problem has been proven to
be computationally hard.

4.1.3. Multivariate Signature Schemes

Multivariate public-key cryptosystems (MPKC) are constructions where polynomial
maps are used to represent public and private keys. However, MPKC constructions are
mainly used as digital signature schemes and are not suited for encryption purposes [33].

Mathematics 2022, 10, 2579 28 of 33

Let F be a finite field. The main idea of generating a signature s ∈ Fn to a given
message m ∈ Fk is to calculate one of possibly many pre-images of the image m under a
polynomial map P . This is equivalent to finding a solution s to the system of equations

p1(s) = m1

...

pk(s) = mk

⇐⇒

p1(s)−m1 = 0
...

pk(s)−mk = 0 ,

where P = (p1, . . . , pk) and m = (m1, . . . , mk). P is called a public map and represents the
public key. We can design an MPKC scheme in a way that allows finding pre-images under
a public map without directly solving theMQ problem. Usually, this mechanism involves
some polynomial map F : Fn → Fk, which we call the central map. We hide F by applying
the following compositions involving the two affine maps S : Fn → Fn and T : Fk → Fk.
The resulting function

P = T ◦ F ◦ S : Fn → Fk

is the public key to the corresponding secret key (T ,F ,S). In general, the central map F
requires efficient computation of pre-images. The affine maps S and T have to be invertible;
therefore, they need to be of full rank.

As mentioned above, a signature s for a given message m is a pre-image of m under P .
With knowledge of the decomposition P = T ◦ F ◦ S , s can be computed by calculating
the pre-image of T −1(m) under F and subsequent application of S−1. To verify a signature
s for a message m, we simply need to verify whether m = P(s) holds. Note that there could
exist multiple valid signatures for a given message m.

The key component of an MPKC is the design of the central map F . Without prior
knowledge of the secret key (T ,F ,S), an attacker cannot distinguish the public map from a
randomly generated polynomial map. The complexity of a direct attack is therefore reduced
to the difficulty of theMQ problem. However, observe that the security assumption of
this system is stronger than in the case of the MQ problem due to possible efficient
attacks against the central map F . There exists an alternative approach for breaking an
MPKC without trying to directly attack the public map. The idea is to find two alternative
affine maps that suffice the same criteria of transforming the central map F into P . Thus,
the cryptosystem can be broken by finding alternative private keys which correspond to the
same public map. In this context, we need to define a new problem called the IP problem
(Isomorphism of Polynomials) [32].

4.1.4. IP Problem

Let P , F be two polynomial maps from Fn to Fk with:

P = (p1, . . . , pk)

F = (f1, . . . , fk).

Assuming two invertible affine transformations S : Fn → Fn and T : Fk → Fk with

P = T ◦ F ◦ S

exist, finding S and T is called an IP problem, which is also computationally hard [34].
Solving the IP problem could possibly break an MPKC by finding alternative secret affine
functions to a given public map and an arbitrarily chosen central map.

4.2. Rainbow

The Rainbow signature scheme [35] is closely related to arguably the most common
multivariate-based signature scheme, namely, Unbalanced Oil and Vinegar (UOV). In order
to understand Rainbow, we first need to properly introduce UOV.

Mathematics 2022, 10, 2579 29 of 33

The basic idea of UOV consists of dividing the set of variables of the central map F
into two disjoint subsets, which we refer to as oil and vinegar variables. The most important
property is that the quadratic polynomials of F are not allowed to contain cross-terms
between two oil variables. UOV has the general advantage of offering fast computations of
both public and private keys, as well as a simple structure. A major disadvantage lies in
the comparably large key sizes.

The UOV scheme is an MPKC scheme, as described in Section 4.1 with the public map

P = T ◦ F ◦ S : Fn → Fk

and secret polynomial maps (T ,F ,S). It is characterized by the integer parameters o and
v, specifying the number of oil and vinegar variables, respectively. These parameters define
the structure of the central map F having k = o polynomial functions with n = o + v
variables. The central map F : Fn → Fk contains k polynomial functions f1, . . . , fk. We
restrict those to their homogeneous forms, i.e., omitting constant and linear terms. Then,
each fr has the form:

fr =
v

∑
i=1

v

∑
j=i

α
(r)
ij xixj +

v

∑
i=1

n

∑
j=v+1

β
(r)
ij xixj ,

where x1, . . . , xv and xv+1, . . . xn correspond to the vinegar variables and oil variables,
respectively. A central map F is generated by randomly assigning values to the coefficients
α
(r)
ij , β

(r)
ij from F.

The affine transformations S and T are also sampled by randomly assigning their
coefficients, which is repeated if they turn out not to be invertible. The calculation of
pre-images under F works as follows:

• We randomly assign values to the vinegar variables x1, . . . , xv (highlighted in red),
thus reducing the product between two vinegar variables to constants and the product
of an oil and a vinegar variable to a linear term:

fr =
v

∑
i=1

v

∑
j=i

α
(r)
ij xixj +

v

∑
i=1

n

∑
j=v+1

β
(r)
ij xixj

• This results in a linear system of k equations in n− v = k variables, namely, xv+1, . . . , xn.
By applying Gaussian elimination, we solve this system and thereby derive the re-
maining oil values xv+1, . . . , xn. In case the system does not have a solution, we repeat
the previous step by sampling some other random values for the vinegar variables.

As mentioned in Section 4.1, this MPKC construction is designed in a way that makes
it hard to find pre-images under a given public map P ; however, knowing the secret
decomposition P = T ◦ F ◦ S enables an efficient computation of pre-images, i.e., signa-
ture generation.

Rainbow generalizes the UOV concept. The Rainbow signature scheme consists of two
layers of Oil–Vinegar polynomials, where the second layer includes all variables from the
first layer, i.e., the set of vinegar variables from layer two contains all variables of layer one.

A concrete Rainbow instance is defined by an initializing number v1 of vinegar vari-
ables for layer one and the number of oil variables for layers one and two, i.e., o1 and o2,
respectively. The total number of variables n and the number of equations k can be derived

Mathematics 2022, 10, 2579 30 of 33

through n = v1 + o1 + o2 and k = o1 + o2. The resulting structure of Rainbow’s central map
F consists of the two layers:

Layer 1: x1, . . . , xv1︸ ︷︷ ︸
vinegar variables

, xv1+1, . . . , xv1+o1︸ ︷︷ ︸
oil variables

Layer 2: x1, · · · , xv1 , xv1+1, . . . , xv1+o1︸ ︷︷ ︸
vinegar variables

, xv1+o1+1, . . . , xv1+o1+o2︸ ︷︷ ︸
oil variables

This construction improves the ratio between the signature size and the message size
from v+o

o in the UOV case to v1+o1+o2
o1+o2

in the two-layer Rainbow case due to v1 < v, i.e., sig-
natures are relatively smaller (in practice, this amounts to an about 26% reduction [36]).
Due to the reduced number of coefficients needed in the first layer, this also results in a
smaller private key. Recent attacks have shown this construction to be vulnerable resulting
in a loss of these efficiency gains, see Section 4.2.1.

To generate a concrete key pair (Algorithm 31), the following maps are sampled:

• The secret central map F consisting of k = o1 + o2 polynomials f1, . . . , fk of the form

fr =

∑

i≤j∈V1

α
(r)
ij xixj + ∑

i∈V1,j∈O1

β
(r)
ij xixj for r ∈ {1, . . . , o1}

∑
i≤j∈V2

γ
(r)
ij xixj + ∑

i∈V2,j∈O2

δ
(r)
ij xixj for r ∈ {o1 + 1, . . . , o1 + o2}

with layer one vinegar indices V1 = {1, . . . , v1}, layer one oil indices O1 = {v1 +
1, . . . , v1 + o1}, layer two vinegar indices V2 = V1 ∪ O1 and layer two oil indices
O2 = {o1 + 1, . . . , o1 + o2}.
The coefficients α

(r)
ij , β

(r)
ij , γ

(r)
ij , δ

(r)
ij are randomly chosen from F.

• Two secret randomly chosen invertible affine maps T : Fk → Fk and S : Fn → Fn.
Their coefficients are randomly sampled from F which is repeated if the maps turn
out not to be invertible.

• The public key P = T ◦ F ◦ S : Fn → Fk.

Algorithm 31 Rainbow Key Generation.
Input: none
1. Sample S ∈ Fn → Fn

2. Sample F ∈ Fn → Fk

3. Sample T ∈ Fk → Fk

4. Calculate P = T · F · S ∈ Fn → Fk

Output: public key P , secret key sk = (T ,F ,S)

As described in Section 4.1, a valid signature s of a given message m ∈ {0, 1}? of
arbitrary length is a pre-image of H(m) under P , i.e., the equation

P(s) = H(m)

holds with a suitable cryptographic hash function H : {0, 1}? → Fk. Since S and T are
efficiently invertible, finding pre-images under those maps is trivial. Finding pre-images
under the central map F is similar to finding pre-images in a UOV scheme:

• We randomly assign values to the vinegar variables of layer one, i.e., x1, . . . , xv1 :

Layer 1: x1, . . . , xv1︸ ︷︷ ︸
vinegar variables

, xv1+1, . . . , xv1+o1︸ ︷︷ ︸
oil variables

;

Mathematics 2022, 10, 2579 31 of 33

• We solve the resulting linear system of o1 equations to obtain concrete values for the
o1 oil variables of layer one;

• The resulting assignment of values for x1, . . . , xv1+o1 is substituted into the second
layer:

Layer 2: x1, . . . , xv1 , xv1+1, . . . , xv1+o1︸ ︷︷ ︸
vinegar variables

, xv1+o1+1, . . . , xv1+o1+o2︸ ︷︷ ︸
oil variables

;

• We solve the resulting linear system of o2 equations to obtain concrete values for the
remaining oil variables of layer two;

• In case one of the linear systems has no solution, we start from the beginning by
choosing other random values for the vinegar variables of the first layer.

A valid signature of a message m under P can be computed by hashing and subse-
quently finding pre-images under the secret maps T , F and S (Algorithm 32).

Algorithm 32 Rainbow Signature generation.
Input: secret key sk = (T ,F ,S), message m ∈ {0, 1}?

1. Calculate mH = H(m)

2. Calculate u = T −1(mH)

3. Find pre-image u−1 of u under F
4. Calculate s = S−1(u−1)

Output: signature s

Let m ∈ {0, 1}? be a message and s ∈ Fn a signature. The signature s is accepted if
H(m) = P(s) holds; otherwise, it is rejected (Algorithm 33).

Algorithm 33 Rainbow Verification.
Input: public key P , message m ∈ {0, 1}?, signature s ∈ Fn

1. Calculate m′H = P(s)
2. Calculate mH = H(m)

Output: valid if m′H = mH , else invalid

The Rainbow instances with their corresponding parameter choices are shown in
Table 7.

Table 7. Rainbow round 3 parameter sets.

F v1 o1 o2

Level I GF(16) 36 32 32
Level III GF(256) 68 32 48
Level V GF(256) 96 36 64

4.2.1. Rainbow Security Considerations

A recent attack by Ward Beullens [37] in February 2022 has shown a considerable
improvement in previously known attacks against Rainbow. The main enhancement arises
from the combination of a previously developed rectangular MinRank attack [38] and
an improved guessing technique. In order to resist this attack, the Rainbow parameters
would be required to even exceed the length of the standard (and better-understood) UOV
approach. This essentially renders the preferred usage of Rainbow over UOV questionable
since the performance gain is rather small compared to the additional complexity of the
scheme.

Author Contributions: Writing—original draft, M.R., M.B. and J.S.; Writing—review & editing, A.T.
All authors have read and agreed to the published version of the manuscript.

Mathematics 2022, 10, 2579 32 of 33

Funding: This research work was funded by Volkswagen AG as part of a joint project.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Chen, L.; Jordan, S.; Liu, Y.K.; Moody, D.; Peralta, R.; Perlner, R.; Smith-Tone, D. Report on Post-Quantum Cryptography; Technical

Report NIST Internal or Interagency Report (NISTIR) 8105; National Institute of Standards and Technology: Gaithersburg, MD,
USA, 2016. [CrossRef]

2. Fraunhofer AISEC: Crypto Engineering. Post-Quantum Database (pqdb). Available online: https://cryptoeng.github.io/pqdb/
(accessed on 1 July 2022).

3. Regev, O. On lattices, learning with errors, random linear codes, and cryptography. J. ACM 2009, 56, 34:1–34:40. [CrossRef]
4. Bos, J.; Costello, C.; Ducas, L.; Mironov, I.; Naehrig, M.; Nikolaenko, V.; Raghunathan, A.; Stebila, D. Frodo: Take off the Ring!

Practical, Quantum-Secure Key Exchange from LWE. In Proceedings of the 2016 ACM SIGSAC Conference on Computer and
Communications Security, Vienna, Austria, 24–28 October 2016; pp. 1006–1018. [CrossRef]

5. Lyubashevsky, V.; Peikert, C.; Regev, O. On Ideal Lattices and Learning with Errors over Rings. In Advances in Cryptology—
EUROCRYPT 2010, Proceedings of the 29th Annual International Conference on the Theory and Applications of Cryptographic Techniques,
Riviera, French, 30 May–3 June 2010; Gilbert, H., Ed.; Springer: Berlin/Heidelberg, Germany, 2010; pp. 1–23.

6. Langlois, A.; Stehle, D. Worst-Case to Average-Case Reductions for Module Lattices. Cryptology ePrint Archive, Report 2012/090.
2012. Available online: https://ia.cr/2012/090 (accessed on 1 July 2022).

7. Alkim, E.; Ducas, L.; Pöppelmann, T.; Schwabe, P. Post-Quantum Key Exchange—A New Hope. Cryptology ePrint Archive,
Report 2015/1092. 2015. Available online: https://ia.cr/2015/1092 (accessed on 1 July 2022).

8. Peikert, C.; Pepin, Z. Algebraically Structured LWE, Revisited. Cryptology ePrint Archive, Report 2019/878. 2019. Available
online: https://ia.cr/2019/878 (accessed on 1 July 2022).

9. Banerjee, A.; Peikert, C.; Rosen, A. Pseudorandom Functions and Lattices. Cryptology ePrint Archive, Report 2011/401. 2011.
Available online: https://ia.cr/2011/401 (accessed on 1 July 2022).

10. Avanzi, R.; Bos, J.; Ducas, L.; Kiltz, E.; Lepoint, T.; Lyubashevsky, V.; Schanck, J.M.; Schwabe, P.; Seiler, G.; Stehlé, D. CRYSTALS-
KYBER: Algorithm Specifications and Supporting Documentation; Version 3.02. Available online: https://pq-crystals.org/kyber/
data/kyber-specification-round3-20210804.pdf (accessed on 1 July 2022).

11. Fujisaki, E.; Okamoto, T. Secure Integration of Asymmetric and Symmetric Encryption Schemes. J. Cryptol. 2013, 26, 80–101.
[CrossRef]

12. Hofheinz, D.; Hövelmanns, K.; Kiltz, E. A Modular Analysis of the Fujisaki-Okamoto Transformation. In Theory of Cryptography;
Kalai, Y., Reyzin, L., Eds.; Lecture Notes in Computer Science; Springer International Publishing: Cham, Switzerland, 2017;
Volume 10677, pp. 341–371. [CrossRef]

13. Basso, A.; Bermudo Mera, J.M.; D’Anvers, J.P.; Karmakar, A.; Roy, S.S.; Van Beirendonck, M.; Vercauteren, F. SABER: Mod-
LWR Based KEM (Round 3 Submission). Available online: https://www.esat.kuleuven.be/cosic/pqcrypto/saber/files/
saberspecround3.pdf (accessed on 1 July 2022).

14. Bai, S.; Ducas, L.; Kiltz, E.; Lepoint, T.; Lyubashevsky, V.; Schwabe, P.; Seiler, G.; Stehlé, D. CRYSTALS-Dilithium: Algorithm
Specifications And Supporting Documentation. Version 3.1. Available online: https://pq-crystals.org/dilithium/data/dilithium-
specification-round3-20210208.pdf (accessed on 1 July 2022).

15. Lyubashevsky, V. Lattice signatures without trapdoors. In Proceedings of the EUROCRYPT 2012—31st Annual International
Conference on the Theory and Applications of Cryptographic Techniques, Lecture Notes in Computer Science, Cambridge, UK,
15–19 April 2012; Pointcheval, D., Schaumont, P., Eds.; Springer: Cambridge, UK, 2012; Volume 7237, pp. 738–755. [CrossRef]

16. Bai, S.; Galbraith, S.D. An Improved Compression Technique for Signatures Based on Learning with Errors. In Topics in Cryptology
– CT-RSA 2014, Proceedings of the Cryptographer’s Track at the RSA Conference 2014, San Francisco, CA, USA, 25–28 February 2014;
Benaloh, J., Ed.; Springer International Publishing: Cham, Switzerland, 2014; pp. 28–47.

17. Hoffstein, J.; Pipher, J.; Silverman, J. An Introduction to Mathematical Cryptography, 1st ed.; Springer Publishing Company,
Incorporated: New York, NY, USA, 2008.

18. Chen, C.; Danba, O.; Hoffstein, J.; Hülsing, A.; Rijneveld, J.; Schanck, J.M.; Schwabe, P.; Whyte, W.; Zhang, Z. NTRU: Algorithm
Specifications and Supporting Documentation; Version September 2020. Available online: https://csrc.nist.gov/CSRC/media/
Projects/post-quantum-cryptography/documents/round-3/submissions/NTRU-Round3.zip (accessed on 1 July 2022).

19. Fouque, P.A.; Hoffstein, J.; Kirchner, P.; Lyubashevsky, V.; Pornin, T.; Prest, T.; Ricosset, T.; Seiler, G.; Whyte, W.; Zhang, Z. Falcon:
Fast-Fourier Lattice-Based Compact Signatures over NTRU. Version 1.2. Available online: https://falcon-sign.info/falcon.pdf
(accessed on 1 July 2022).

20. Gentry, C.; Peikert, C.; Vaikuntanathan, V. Trapdoors for Hard Lattices and New Cryptographic Constructions. Cryptology
ePrint Archive, Report 2007/432. 2007. Available online: https://ia.cr/2007/432 (accessed on 1 July 2022).

http://doi.org/10.6028/NIST.IR.8105
https://cryptoeng.github.io/pqdb/
http://dx.doi.org/10.1145/1568318.1568324
http://dx.doi.org/10.1145/2976749.2978425
https://ia.cr/2012/090
https://ia.cr/2015/1092
https://ia.cr/2019/878
https://ia.cr/2011/401
https://pq-crystals.org/kyber/data/kyber-specification-round3-20210804.pdf
https://pq-crystals.org/kyber/data/kyber-specification-round3-20210804.pdf
http://dx.doi.org/10.1007/s00145-011-9114-1
http://dx.doi.org/10.1007/978-3-319-70500-2_12
https://www.esat.kuleuven.be/cosic/pqcrypto/saber/files/saberspecround3.pdf
https://www.esat.kuleuven.be/cosic/pqcrypto/saber/files/saberspecround3.pdf
https://pq-crystals.org/dilithium/data/dilithium-specification-round3-20210208.pdf
https://pq-crystals.org/dilithium/data/dilithium-specification-round3-20210208.pdf
http://dx.doi.org/10.1007/978-3-642-29011-4_43
https://csrc.nist.gov/CSRC/media/Projects/post-quantum-cryptography/documents/round-3/submissions/NTRU-Round3.zip
https://csrc.nist.gov/CSRC/media/Projects/post-quantum-cryptography/documents/round-3/submissions/NTRU-Round3.zip
https://falcon-sign.info/falcon.pdf
https://ia.cr/2007/432

Mathematics 2022, 10, 2579 33 of 33

21. Ajtai, M. Generating Hard Instances of the Short Basis Problem; Springer: Berlin/Heidelberg, Germany, 1999.
22. Babai, L. On Lovász’ lattice reduction and the nearest lattice point problem. Combinatorica 1986, 6, 1–13. [CrossRef]
23. Ducas, L.; Prest, T. Fast Fourier Orthogonalization. Cryptology ePrint Archive, Report 2015/1014. 2015. Available online:

https://ia.cr/2015/1014 (accessed on 1 July 2022).
24. Lint, J.H.V. Introduction to Coding Theory, 3rd ed.; Number 86 in Graduate Texts in Mathematics; Springer: Berlin/Heidelberg,

Germany, 1999.
25. McEliece, R.J. A Public-Key Cryptosystem Based on Algebraic Coding Theory; National Aeronautics and Space Administration:

Washington, DC, USA, 1978.
26. Marcus, M. White Paper on McEliece with Binary Goppa Codes. 2019. Available online: https://www.hyperelliptic.org/tanja/

students/m_marcus/whitepaper.pdf (accessed on 1 July 2022).
27. Engelbert, D.; Overbeck, R.; Schmidt, A. A Summary of McEliece-Type Cryptosystems and their Security. 2006. Available online:

https://ia.cr/2006/162 (accessed on 1 July 2022).
28. Albrecht, M.R.; Bernstein, D.J.; Chou, T.; Cid, C.; Gilcher, J.; Lange, T.; Maram, V.; von Maurich, I.; Misoczki, R.; Niederhagen,

R.; et al. Classic McEliece: Conservative Code-Based Cryptography. Version October 2020. Available online: https://classic.
mceliece.org/nist/mceliece-20201010.pdf (accessed on 1 July 2022).

29. Niederhagen, R.; Waidner, M. Practical Post-Quantum Cryptography; Fraunhofer SIT: Darmstadt, Germany, 2017.
30. Sardinas, A.; Patterson, C. A necessary sufficient condition for the unique decomposition of coded messages. IRE Internat. Conv.

Rec. 1953, 104–108.
31. Niederreiter, H.; Xing, C. Algebraic Geometry in Coding Theory and Cryptography; Princeton University Press: Princeton, NJ, USA,

2009.
32. Ding, J.; Yang, B.Y. Multivariate Public Key Cryptography. In Post-Quantum Cryptography; Springer: Berlin/Heidelberg, Germany,

2009; pp. 193–241._6. [CrossRef]
33. Tao, C.; Diene, A.; Tang, S.; Ding, J. Simple Matrix Scheme for Encryption. In Post-Quantum Cryptography; Lecture Notes in

Computer Science; Springer: Berlin/Heidelberg, Germany, 2013; pp. 231–242. [CrossRef]
34. Patarin, J. Hidden Fields Equations (HFE) and Isomorphisms of Polynomials (IP): Two New Families of Asymmetric Algorithms.

In Advances in Cryptology—EUROCRYPT ’96, Proceedings of the International Conference on the Theory and Application of Cryptographic
Techniques, Saragossa, Spain, 12–16 May 1996; Maurer, U., Ed.; Springer: Berlin/Heidelberg, Germany, 1996; pp. 33–48.

35. Ding, J.; Chen, M.S.; Petzoldt, A.; Schmidt, D.; Yang, B.Y. Rainbow—Algorithm Specification and Documentation, The 3rd Round
Proposal. Available online: https://csrc.nist.gov/CSRC/media/Projects/post-quantum-cryptography/documents/round-3/
submissions/Rainbow-Round3.zip (accessed on 1 July 2022).

36. Thomae, E. About the Security of Multivariate Quadratic Public Key Schemes. Ph.D. Thesis, Universitätsbibliothek, Ruhr-
Universität Bochum, Bochum, Germany, 2013; pp. 84–85.

37. Beullens, W. Breaking Rainbow Takes a Weekend on a Laptop. Cryptology ePrint Archive. 2022. Available online: https:
//ia.cr/2022/214 (accessed on 1 July 2022).

38. Beullens, W. Improved Cryptanalysis of UOV and Rainbow. Cryptology ePrint Archive, Report 2020/1343. 2020. Available
online: https://ia.cr/2020/1343 (accessed on 1 July 2022).

http://dx.doi.org/10.1007/BF02579403
https://ia.cr/2015/1014
https://www.hyperelliptic.org/tanja/students/m_marcus/whitepaper.pdf
https://www.hyperelliptic.org/tanja/students/m_marcus/whitepaper.pdf
https://ia.cr/2006/162
https://classic.mceliece.org/nist/mceliece-20201010.pdf
https://classic.mceliece.org/nist/mceliece-20201010.pdf
http://dx.doi.org/10.1007/978-3-540-88702-7_6
http://dx.doi.org/10.1007/978-3-642-38616-9_16
https://csrc.nist.gov/CSRC/media/Projects/post-quantum-cryptography/documents/round-3/submissions/Rainbow-Round3.zip
https://csrc.nist.gov/CSRC/media/Projects/post-quantum-cryptography/documents/round-3/submissions/Rainbow-Round3.zip
https://ia.cr/2022/214
https://ia.cr/2022/214
https://ia.cr/2020/1343

	Introduction
	Lattice-Based Cryptography
	Lattice Fundamentals
	Lattices
	Computational Lattice Problems
	Closest Vector Problem

	Cryptography Based on Learning with Errors (LWE)
	LWE Fundamentals
	Kyber
	Saber
	Dilithium

	NTRU-Based Cryptography
	NTRU Fundamentals
	NTRU
	Falcon

	Code-Based Cryptography
	Linear Code Fundamentals
	Linear Codes
	Binary Goppa Codes
	Computational Linear Code Problems

	Classic McEliece

	Multivariate Cryptography
	Multivariate Polynomial Fundamentals
	Multivariate Polynomial Functions
	MQ Problem
	Multivariate Signature Schemes
	IP Problem

	Rainbow
	Rainbow Security Considerations

	References

