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Abstract: The nurse scheduling problem (NSP) is an NP-Hard combinatorial optimization scheduling
problem that allocates a set of shifts to the group of nurses concerning the schedule period subject
to the constraints. The objective of the NSP is to create a schedule that satisfies both hard and soft
constraints suggested by the healthcare management. This work explores the meta-heuristic approach
to an artificial bee colony algorithm with the Nelder–Mead method (NM-ABC) to perform efficient
nurse scheduling. Nelder–Mead (NM) method is used as a local search in the onlooker bee phase of
ABC to enhance the intensification process of ABC. Thus, the author proposed an improvised solution
strategy at the onlooker bee phase with the benefits of the NM method. The proposed algorithm
NM-ABC is evaluated using the standard dataset NSPLib, and the experiments are performed on
various-sized NSP instances. The performance of the NM-ABC is measured using eight performance
metrics: best time, standard deviation, least error rate, success percentage, cost reduction, gap, and
feasibility analysis. The results of our experiment reveal that the proposed NM-ABC algorithm attains
highly significant achievements compared to other existing algorithms. The cost of our algorithm is
reduced by 0.66%, and the gap percentage to move towards the optimum value is 94.30%. Instances
have been successfully solved to obtain the best deal with the known optimal value recorded in NSPLib.

Keywords: meta-heuristic approach; evolutionary algorithm; nurse scheduling problem; artificial
bee colony algorithm; Nelder–Mead method

MSC: 68Q17; 68Q30; 68Q87

1. Introduction

In a hospital, various operations are performed; nurse rostering is a resource allocation
problem. Every day, work is divided into three periods: day shift, noon shift, and night
shift. The process consists of allocating workload to the nurses periodically by considering
hospital terms, namely constraints and requirements, for a scheduling period of one month.
Constraints are classified as hard and soft constraints; hard constraints are needed to
be satisfied when allocating the roster. The soft constraints are considered when the
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prerequisite is desirable but not obligatory. The soft constraint will estimate the quality
of the roster; these constraints are considered as much as possible, but violating soft
constraints leads to a penalty, while the roster is still considered feasible. Each nurse is
allocated to a specific number of shifts with various constraints. Each shift is accomplished
by the group of nurses based on their preferences and skills required for the particular
operation. The NSP is a multi-objective NP-hard combinatorial problem [1–4].

Nurse scheduling is allocating nurses with different services and bonds in a subject
satisfying the constraints to reduce the overall cost of the scheduling problem. The NSP is
the placement of nurses with different skill patterns into shifts pattern in a subject satisfying
the constraints. This problem focuses on generating a roster and representing slot allotment
for the nurses to shift. The obtained roster solution should persuade hospital regulations,
nurse preferences, and requests listed in terms of soft constraints. Two methods can enable
the scheduling of nurses: cyclic rostering and non-cyclic rostering. In cyclic rostering, each
nurse is assigned to a shift for the planning epoch. The same cyclic method is repeated
without modifications in the shift pattern for consecutive days. In this approach, the
workload among the nurses can easily be distributed among them within a stipulated
time [5,6]. In non-cyclic rostering, the shift pattern allotted to the nurse keeps changing
for various periods. The new shift pattern is scheduled based on the nurse’s preferences,
requests, and constraints. The non-cyclic approach is more advantageous than cyclic
rostering because updating the roster will cause the entire schedule to modify. In contrast,
in the non-cyclic process, only the pattern part needs to be changed. The non-cyclic
approach of rostering will effectively inscribe all constraints, preferences, and requirements
required [7].

The objective is to increase the nurses’ priority and diminish the total penalty cost from
desecrations of the soft constraints. Most researchers have considered only a single goal,
and only a few seek multi-objectives to solve NSP [8–10]. NSP is the assignment of nurses to
the shifts, and the main objective is to assign nurses by satisfying the hospital regulations. The
NSP is solved using heuristic, meta-heuristic, and mathematical programming models [11–13].

The automatic planning of NSP [14] is to generate a roster for working nurses and
rest days for a particular period concerning a set of constraints. The head nurse manually
commences this roster; scheduling nurses for three shifts for one month hardly takes
six to eight hours. This roster may be preliminary since the changes occur based on the
nurse’s opinion. Some researchers developed approaches to solving NSP. Aickelin and
Dowsland [15] used a genetic algorithm framework with Tabu search as a local search to
exploit the solution. Burke et al. used simulated annealing multi-objective approach to
solve NSP and generate a key in the Pareto front [16].

The mathematical programming model is the first approach for solving the NSP;
although mathematical programming methods ensure that they will provide the optimum
solution, they fail to do so within a rational amount of time when the solution search space
is vast. This requires a constraint-based programming method to solve complicated and
soft constraints [17]. A heuristic approach is ideal for solving the problem with benign
conditions and functionality. The heuristic-based approaches, such as the local search
approaches of simulated annealing [18], iterated local search [19], and Tabu search [8], are
combined with other methods to solve the NSP effectively. The meta-heuristic approach is
implemented over low-level heuristics to improve their performance. The hybrid system
combines the heuristic method with any deterministic process, such as a mathematical
programming model [20]. The population-based way is a type of heuristic such as a genetic
algorithm [21], scatter search [22], particle search [23], and ant colony optimization [24]. These
approaches generate a population of solutions from which a better solution can be achieved.

Berrada et al. proposed a lexico-dominance technique to solve NSP with several soft
constraints. The soft constraints are prefixed with priority values and ordered to obtain
the best solution [25]. Burke et al. applied weight values to the soft constraints, which
are determined by the hospital regulations [26]. The conditions are in order based on
the weight values, and the best solution is chosen. Nikola and Petrovic introduced a bee
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colony optimization algorithm to solve NSP, and unscheduled shifts are assigned to the
nurse constructively, leading to higher penalties [27,28]. Meng Yang et al. introduced a
multi-objective artificial bee colony algorithm to solve the multi-objective home healthcare
routing and scheduling problem. Based on the enormous neighborhood search, a heuristic
solution update strategy has been proposed to trade off the search balance and achieve the
workload balance in the scheduling [29].

In this research work, the authors introduced the artificial bee colony algorithm
with the Nelder–Mead method (NM-ABC) to solve nurse scheduling problems. The
local search mechanism is incorporated in the onlooker bee phase of ABC to obtain an
optimal solution for NSP. ABC algorithm produced good results in solving optimization
problems and improved the efficiency of the global search, memory management, and
search improvement process [30–37]. However, ABC follows the same neighborhood
search strategy in the onlooker and employee bee phase. Improving neighborhood search
on quality individuals enhances the probability of convergence towards global optimum
compared to a random process. Thus, this paper introduces the Nelder–Mead Local search
in the onlooker bee phase to improve the neighborhood search.

The main contributions of this work are illustrated as follows:

1. A hybrid meta-heuristic algorithm, namely artificial bee colony optimization with
Nelder–Mead Method, is proposed.

2. The search capability of ABC is enriched with the aid of the Nelder–Mead method,
which consists of search strategies such as midpoint, reflection, expansion, contrac-
tion, and shrinkage processes. These search strategies enhance the balance between
exploration and exploitation.

3. NM-ABC is implemented and tested on the nurse scheduling problem (NSPLib).
4. The performance of NM-ABC is compared with that of some classical

optimization algorithms.

The rest of the paper is structured as follows: Section 2 illustrates the scientific for-
mulation of NSP. In Section 3, the proposed artificial bee colony algorithm with NM is
discussed. Section 4 shows the applicability of NM-ABC to solve NSP with experimental
analysis. Section 5 deliberates a detailed analysis of the performance outcome of NM-ABC
to solve NSP. Finally, Section 6 concludes the research work.

2. Nurse Scheduling Problem

The NSP can be described as allocating a set of nurses to a group of shifts for a given
time. The constraints are organized by hospital regulations, nurse preferences, nurse
requests, and working practices. Generally, NSP is divided into two different types of
constraints: they are hard and soft constraints. Hard constraints are the regulations that
must be gratified to achieve a feasible solution. The roster pattern generated should satisfy
all hard constraints; generally, the general hard constraint is allocating shifts to the restricted
number of nurses. Soft constraints are desirable and not obligatory but must be satisfied
as much as possible. The soft constraints will determine the quality of the roster formed.
The violation of any soft constraints leads to the penalty of the solution. The general soft
constraint in NSP is to balance the workload among all nurses and usage of nurse resources
efficiently [38,39]. The visual representation of NSP is illustrated in Figure 1.

The problem of NSP consists of a set of nurses N = {1, 2, . . . , i} that is allocated a
set of shifts S = {1, 2, . . . , j} for the scheduled period D = {1, 2, . . . , k} in days. The shift
pattern r consists of the allocation of shifts for the particular nurse over the expected period
for the 0/1 matrix. The main objective of the NSP is to identify a possible solution such
that the total cost is minimized. The solution representation of the NSP is given as

Xj,d,r =

{
1, pattern covers shi f t j on day d
0, otherwise

(1)
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The nurse preference is the wish expressed by a particular nurse to work on a distinct
shift for a specific day. The penalty cost is added to the solution if the nurse’s preference is
not achieved. The preference cost Ci,j,d is the wish of the particular nurse i to work on shift
j on a particular day d. The total preference cost of the shift pattern r for the scheduled
period can be calculated as

Pi,r = ∑S
j=1 ∑D

d=1 Xj,d,r ∗ Ci,j,d (2)

The objective function of the NSP can be formulated as

Minimize ∑N
i=1 ∑δi

r=1 Xj,r ∗ Pi,r (3)

where δi is the set of a possible shift pattern for the nurse i to work on the scheduled period.
Subject to

∑δi
r=1 Xj,r = 1 (4)

The feasible solution is for all nurses available in the schedule, and this constraint
specifies that precisely one shift pattern is allocated to every nurse in the hospital. The
smallest number Mj,d of nurses essential for the shift j on the scheduled day d can be
restricted by using Equation (5).

∑N
i=1 ∑δi

r=1 Xj,d,r ≥ Mj,d (5)

Xi,r ∈ {0, 1} (6)

The Equations (4)–(6) are the coverage constraints considered in solving the NSP.
All the hard constraints in the NSP are mandatory and should be considered when

designing the schedule pattern. The soft constraints are included in the objective function
of increasing the quality of the solution. Soft restrictions are not mandatory and enhance
the quality of the schedule. Violation of soft constraints leads to penalty cost, and the
hospital management suggests the penalty cost. Some of the soft constraints are listed in
this work, and the soft constraints (SC) are as follows

SC1:
In this constraint, the nurse has restricted work on a specific day. The constraint can

be evaluated as
∑N

i=1 Xi,d ≤ 0 (7)
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SC2:
The nurse can request to work on a specific day. The constraint can be calculated as

∑N
i=1 Xi,d ≥ 1 (8)

SC3:
The nurse can request not to work on a specific shift. The constraint can be

∑N
i=1 Xi,j ≤ 0 (9)

SC4:
The nurse can request to work on a specific shift. The constraint can be determined as

∑N
i=1 Xi,j ≥ 1 (10)

SC5:
No single work shift between two days off. The constraint can be calculated as

Xi,(j−1) − Xi,j + Xi,(j+1) ≥ 0 (11)

SC6:
The nurses are not allowed to work more than three consecutive days. The constraint

can be
Xi,2j − 3 ≥ 0 (12)

3. Proposed Algorithm
3.1. Artificial Bee Colony Algorithm

Karaboga and Bahriye developed an artificial bee colony algorithm (ABC), inspired
by honey bees’ natural behavior. The intelligent behavior of honey bees helps to find the
near-optimal solution for the optimization problem [32]. ABC is the population-based
algorithm and consists of three groups of honey bees: employed bee, onlooker bee, and
scout bee. The colony consists of an equal number of employed bees and onlooker bees.
Each solution in the population is held by one employed bee. The employed search for the
food source and share the direction of the food source with onlooker bees through waggle
dance. Based on the probability calculation, the higher-quality food sources are selected
by the onlooker bee phase, and the bees continue further searches. The low-quality food
sources are rejected, and employed bees are converted to scout bees. The scout bee will
search for a new food source or food position.

3.1.1. Initialization

The initialization of the population is created with food source FS for n-dimensional
vectors. The population of the solution is represented as Xi = {xi,1, xi,2, . . . , xi,n}. The food
source in the population is generated using Equation (13).

xi,j = xmin,j + rand (0, 1) ∗
(

xmax,j − xmin,j
)

(13)

The food sources are randomly distributed to employed bees. The objective calculation
for the solution is evaluated accordingly.

3.1.2. Employed Bee Phase

In the employed bee phase, the candidate solution is generated, and the position of
the food sources is monitored. The candidate solution can be developed using

vi,j = xi,j + Øi,j(xi,j − xk,j) (14)
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where j = 1, 2, . . . , S, and we choose the value of k as different from I, k = 1, 2, . . . , FS, and
the value of Ø ranges (−1, 1). The greedy selection is made between vi and xi based on the
fitness calculation. If the fitness value of vi is greater than xi, the solution xi is replaced by vi.

3.1.3. Probability Calculation

After fitness calculation, the employed bees share the direction of the food source with
onlooker bees. The onlooker bees evaluate the fitness of the employed bee’s solution using
the probability value pi. The solution’s probability and fitness calculation are shown in
detail in Algorithm 1.

Algorithm 1: Probability calculation

1: For i = 1, 2, . . . , FS, do

2: Calculate probability values Pij for the solution vi,j

3:
Pi =

f iti

∑FP
j=1 f itj

4:
f iti =


1

1+ fi
, fi ≥ 0

1 + abs( fi), fi < 0

5: End For

3.1.4. Onlooker Bee Phase

Based on the probability value pi, Each onlooker bee randomly chooses the food source
xi with probability pi. Onlooker bee performs modification on xi using Equation (14). To
select the best solution among xi and vi, the greedy method is used, which is similar to the
employed bee phase.

3.1.5. Scout Bee Phase

After employed and onlooker bees search, the food source is abandoned if the so-
lution cannot be improved and exhausted for the predefined number of iterations. The
corresponding employed bee develops a scout bee and explores new food sources using
Equation (13).

3.2. Nelder–Mead Method

The NM method is used to find the local minimum for the given function and is
represented as a simple triangle with three vertices. The worst vertex is found among
the triangle, rejected for the next iteration, and replaced with a new vertex. The search
continues toward the best solution in the triangle sequence, reducing the triangle size. At
last, the vertex with a minimum point is chosen as the best solution.

Let f (x, y) be the function to be minimized; start with three vertices of a triangle. The
fitness function is evaluated for all three points of the triangle. The vertices are ordered
based on the fitness value: best (I), good (J), and worst (K) vertices are ordered. NM method
works on four operations: reflection, expansion, contraction, and shrinkage.

3.2.1. Midpoint (M)

The midpoint between the line joining vertices is calculated for the first two best and
good vertices using

M =
I + J

2
(15)

3.2.2. Reflection (R)

The function increases towards the side of the triangle when we move from the worst
vertex to the best vertex and decreases when moving from the worst to the excellent vertex.
The test point reflection point R is chosen along the side of I J. To find R, calculate the
midpoint of the best and good vertex because the best solution is away from the worst
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vertex. Draw a line joining K and M of length d. Place R extending at a distance d. The
formula to calculate R is

R = 2M− K (16)

3.2.3. Expansion (E)

The fitness calculation at vertex R is calculated, and if it is less than K, then the search
is moved towards a minimum value. Now, extend the line segment through the vertex R to
E by the distance d. If the fitness value at vertex E is better than R, then it is towards the
minimum value. The formula to calculate E is given by

E = 2R−M (17)

3.2.4. Contraction (C)

When the fitness value of R and K are small, another vertex in the triangle is needed
to continue the process. Then, contraction towards midpoint without replacement is
performed. The contraction points C1 and C2 are drawn along the line joining KM and MR
for the length of d

2 . The formula to calculate C is

C = R + M (18)

3.2.5. Shrinkage (S)

The fitness value at C is calculated, and if it is not less than K, then the vertices J and
K should be shrunk towards the best vertex I. The vertex J is replaced with M, and K is
replaced with S. The point S is the midpoint of I and K. The process is continued until the
minimum value is found. The detailed description of the flow of the NM method is shown
in Algorithm 2.

Algorithm 2: Nelder–Mead Method

1: Produce new food source vi using modified Nelder–Mead Method
2: Let vi denote list of vertices
3:

Mathematics 2022, 10, x FOR PEER REVIEW 7 of 23 
 

 

𝑀 = 𝐼 + 𝐽2  (15)

3.2.2. Reflection (R) 
The function increases towards the side of the triangle when we move from the worst 

vertex to the best vertex and decreases when moving from the worst to the excellent ver-
tex. The test point reflection point 𝑅 is chosen along the side of 𝐼𝐽. To find R, calculate 
the midpoint of the best and good vertex because the best solution is away from the worst 
vertex. Draw a line joining 𝐾 and 𝑀 of length 𝑑. Place 𝑅 extending at a distance 𝑑. The 
formula to calculate 𝑅 is 𝑅 = 2𝑀 − 𝐾 (16)

3.2.3. Expansion (E) 
The fitness calculation at vertex 𝑅 is calculated, and if it is less than 𝐾, then the 

search is moved towards a minimum value. Now, extend the line segment through the 
vertex 𝑅 to 𝐸 by the distance 𝑑. If the fitness value at vertex 𝐸 is better than 𝑅, then it 
is towards the minimum value. The formula to calculate 𝐸 is given by 𝐸 = 2𝑅 − 𝑀 (17)

3.2.4. Contraction (C) 
When the fitness value of 𝑅 and 𝐾 are small, another vertex in the triangle is needed 

to continue the process. Then, contraction towards midpoint without replacement is per-
formed. The contraction points 𝐶  and 𝐶  are drawn along the line joining 𝐾𝑀 and 𝑀𝑅 
for the length of 𝑑 2. The formula to calculate 𝐶 is 𝐶 = 𝑅 + 𝑀 (18)

3.2.5. Shrinkage (S) 
The fitness value at 𝐶 is calculated, and if it is not less than 𝐾, then the vertices 𝐽 

and 𝐾 should be shrunk towards the best vertex 𝐼. The vertex 𝐽 is replaced with 𝑀, and 𝐾 is replaced with 𝑆. The point 𝑆 is the midpoint of 𝐼  and 𝐾. The process is continued 
until the minimum value is found. The detailed description of the flow of the NM method 
is shown in Algorithm 2. 

Algorithm 2: Nelder–Mead Method 
1: Produce new food source 𝑣  using modified Nelder–Mead Method 
2: Let 𝑣  denote list of vertices 
3: ɽ, μ, λ, and ζ are the constants of likeness, extension, shrinkage, and contraction 
4: ƒ is the fitness method to be reduced 
5: For i = 1, 2, …, n + 1 vertices, do 

6:  
Order the vertices from deepest fitness function ƒ(v_1) to maximum fitness 
function ƒ(〖v〗_(n + 1)) 

7:  ƒ(𝑣 ) ≤ ƒ(𝑣 ) ≤ ⋯ ≤ƒ(𝑣 ) 
8:  Calculate midpoint for best two vertices 
9:  𝑣 = ∑ , where i = 1, 2, …, n 
10:  Calculate reflection point v_r 
11:  𝑣 =  𝑣 +  ɽ(𝑣 − 𝑣 )  
12:  if ƒ(𝑣 ) ≤ ƒ(𝑣 ) ≤ƒ(𝑣 ) then 
13:   𝑣 ←𝑣  and go to stopping criteria  

, µ, λ, and ζ are the constants of likeness, extension, shrinkage, and contraction
4: f is the fitness method to be reduced
5: For i = 1, 2, . . . , n + 1 vertices, do
6: Order the vertices from deepest fitness function f (v_1) to maximum fitness function

f (

Mathematics 2022, 10, x FOR PEER REVIEW 7 of 23 
 

 

𝑀 = 𝐼 + 𝐽2  (15)

3.2.2. Reflection (R) 
The function increases towards the side of the triangle when we move from the worst 

vertex to the best vertex and decreases when moving from the worst to the excellent ver-
tex. The test point reflection point 𝑅 is chosen along the side of 𝐼𝐽. To find R, calculate 
the midpoint of the best and good vertex because the best solution is away from the worst 
vertex. Draw a line joining 𝐾 and 𝑀 of length 𝑑. Place 𝑅 extending at a distance 𝑑. The 
formula to calculate 𝑅 is 𝑅 = 2𝑀 − 𝐾 (16)

3.2.3. Expansion (E) 
The fitness calculation at vertex 𝑅 is calculated, and if it is less than 𝐾, then the 

search is moved towards a minimum value. Now, extend the line segment through the 
vertex 𝑅 to 𝐸 by the distance 𝑑. If the fitness value at vertex 𝐸 is better than 𝑅, then it 
is towards the minimum value. The formula to calculate 𝐸 is given by 𝐸 = 2𝑅 − 𝑀 (17)

3.2.4. Contraction (C) 
When the fitness value of 𝑅 and 𝐾 are small, another vertex in the triangle is needed 

to continue the process. Then, contraction towards midpoint without replacement is per-
formed. The contraction points 𝐶  and 𝐶  are drawn along the line joining 𝐾𝑀 and 𝑀𝑅 
for the length of 𝑑 2. The formula to calculate 𝐶 is 𝐶 = 𝑅 + 𝑀 (18)

3.2.5. Shrinkage (S) 
The fitness value at 𝐶 is calculated, and if it is not less than 𝐾, then the vertices 𝐽 

and 𝐾 should be shrunk towards the best vertex 𝐼. The vertex 𝐽 is replaced with 𝑀, and 𝐾 is replaced with 𝑆. The point 𝑆 is the midpoint of 𝐼  and 𝐾. The process is continued 
until the minimum value is found. The detailed description of the flow of the NM method 
is shown in Algorithm 2. 

Algorithm 2: Nelder–Mead Method 
1: Produce new food source 𝑣  using modified Nelder–Mead Method 
2: Let 𝑣  denote list of vertices 
3: ɽ, μ, λ, and ζ are the constants of likeness, extension, shrinkage, and contraction 
4: ƒ is the fitness method to be reduced 
5: For i = 1, 2, …, n + 1 vertices, do 

6:  
Order the vertices from deepest fitness function ƒ(v_1) to maximum fitness 
function ƒ(〖v〗_(n + 1)) 

7:  ƒ(𝑣 ) ≤ ƒ(𝑣 ) ≤ ⋯ ≤ƒ(𝑣 ) 
8:  Calculate midpoint for best two vertices 
9:  𝑣 = ∑ , where i = 1, 2, …, n 
10:  Calculate reflection point v_r 
11:  𝑣 =  𝑣 +  ɽ(𝑣 − 𝑣 )  
12:  if ƒ(𝑣 ) ≤ ƒ(𝑣 ) ≤ƒ(𝑣 ) then 
13:   𝑣 ←𝑣  and go to stopping criteria  

v

Mathematics 2022, 10, x FOR PEER REVIEW 7 of 23 
 

 

𝑀 = 𝐼 + 𝐽2  (15)

3.2.2. Reflection (R) 
The function increases towards the side of the triangle when we move from the worst 

vertex to the best vertex and decreases when moving from the worst to the excellent ver-
tex. The test point reflection point 𝑅 is chosen along the side of 𝐼𝐽. To find R, calculate 
the midpoint of the best and good vertex because the best solution is away from the worst 
vertex. Draw a line joining 𝐾 and 𝑀 of length 𝑑. Place 𝑅 extending at a distance 𝑑. The 
formula to calculate 𝑅 is 𝑅 = 2𝑀 − 𝐾 (16)

3.2.3. Expansion (E) 
The fitness calculation at vertex 𝑅 is calculated, and if it is less than 𝐾, then the 

search is moved towards a minimum value. Now, extend the line segment through the 
vertex 𝑅 to 𝐸 by the distance 𝑑. If the fitness value at vertex 𝐸 is better than 𝑅, then it 
is towards the minimum value. The formula to calculate 𝐸 is given by 𝐸 = 2𝑅 − 𝑀 (17)

3.2.4. Contraction (C) 
When the fitness value of 𝑅 and 𝐾 are small, another vertex in the triangle is needed 

to continue the process. Then, contraction towards midpoint without replacement is per-
formed. The contraction points 𝐶  and 𝐶  are drawn along the line joining 𝐾𝑀 and 𝑀𝑅 
for the length of 𝑑 2. The formula to calculate 𝐶 is 𝐶 = 𝑅 + 𝑀 (18)

3.2.5. Shrinkage (S) 
The fitness value at 𝐶 is calculated, and if it is not less than 𝐾, then the vertices 𝐽 

and 𝐾 should be shrunk towards the best vertex 𝐼. The vertex 𝐽 is replaced with 𝑀, and 𝐾 is replaced with 𝑆. The point 𝑆 is the midpoint of 𝐼  and 𝐾. The process is continued 
until the minimum value is found. The detailed description of the flow of the NM method 
is shown in Algorithm 2. 

Algorithm 2: Nelder–Mead Method 
1: Produce new food source 𝑣  using modified Nelder–Mead Method 
2: Let 𝑣  denote list of vertices 
3: ɽ, μ, λ, and ζ are the constants of likeness, extension, shrinkage, and contraction 
4: ƒ is the fitness method to be reduced 
5: For i = 1, 2, …, n + 1 vertices, do 

6:  
Order the vertices from deepest fitness function ƒ(v_1) to maximum fitness 
function ƒ(〖v〗_(n + 1)) 

7:  ƒ(𝑣 ) ≤ ƒ(𝑣 ) ≤ ⋯ ≤ƒ(𝑣 ) 
8:  Calculate midpoint for best two vertices 
9:  𝑣 = ∑ , where i = 1, 2, …, n 
10:  Calculate reflection point v_r 
11:  𝑣 =  𝑣 +  ɽ(𝑣 − 𝑣 )  
12:  if ƒ(𝑣 ) ≤ ƒ(𝑣 ) ≤ƒ(𝑣 ) then 
13:   𝑣 ←𝑣  and go to stopping criteria  

_(n + 1))
7: f (v1) ≤ f (v2) ≤ · · · ≤ f (vn+1)
8: Calculate midpoint for best two vertices
9: vm = ∑ vi

n , where i = 1, 2, . . . , n
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20: vn ← ve and go to stopping criteria
21: else
22: vn ← vr and go to stopping criteria
23: End if
24: Calculate contraction point vc
25: if f (vn) ≤ f (vr) ≤ f (vn+1) then
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27: vc = λ vn+1 + (1− λ) vm.
28: End if
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29: if f (vr) ≥ f (vn+1) then
30: Compute inside contraction
31: vc = λ vn+1 + (1− λ) vm.
32: End if
33: if f (vr) ≥ f (vn) then
34: Shrinkage is done between vm and the best vertex among vr and vn+1.
35: End if
36: if f (vc) < f (vr) then
37: vn ← vc and go to Stopping criteria
38: else go to Shrinkage phase
39: End if
40: if f (vc) ≥ f (vn+1) then
41: vn+1 ← vc and go to Stopping criteria
42: else go to the Shrinkage phase
43: End if
44: Calculate Shrinkage
45: Shrink close the best individual with new apices
46: vi = ζvi + v1(1− ζ), where i = 2, . . . , n + 1
47: End for

48:
Determine the new vertices of the simplex thus formed based on their fitness and continue
with the process of the reflection phase

3.3. Nelder–Mead Method-Based ABC (NM-ABC)

ABC algorithm is lithe to improve and progress; the intricacy of the algorithm is
reduced since it uses fewer parameters. The improved search ability aids in attaining
optimal solutions with less computational time and increased convergence speed. ABC is
good at examination but fails in exploitation [40]. An improved local search algorithm is
incorporated in ABC to tradeoff the search [41].

The Nelder–Mead method is the famous local search algorithm, and it is simple and
efficient. It is also proficient at embedding in other global search algorithms. However,
it is entrapped in a local optimum solution. Thus, it is poor at exploration and has low
convergence towards the initial position. Nelder–Mead (NM) method is good at the
exploitation process but poor in the exploration process. This paper uses the NM method
in ABC to improve the exploitation. The detailed description of the proposed algorithm’s
pseudo code is shown in Tables 1–3. The workflow of the proposed NM-ABC is shown in
Figure 2. The proposed NM-AMC algorithm is presented in Algorithm 3.

Table 1. Instances Taken from dataset with the values of Nurse, Day, and Shift.

Case Type Instances Nurse Day Shift

1 N25 1, 7, 12, 19, 25 25 7 4
2 N25 2, 5, 9, 15, 27 25 7 4
3 N25 1, 3, 16, 27, 35 25 7 4
4 N25 5, 10, 25, 38, 41 25 7 4
5 N25 7, 11, 30, 42, 47 25 7 4
6 N50 1, 4, 12, 26, 29 50 7 4
7 N50 3, 6,12, 26, 36 50 7 4
8 N50 4, 9, 15, 40, 47 50 7 4
9 N50 5, 10, 23, 29, 40 50 7 4
10 N50 6,14, 20, 32, 41 50 7 4
11 N60 2, 8, 14, 20, 32 60 28 4
12 N60 3, 12, 19, 23, 34 60 28 4
13 N60 1, 4, 19, 29, 40 60 28 4
14 N60 5, 9, 15, 30, 43 60 28 4
15 N60 6, 15, 26, 35, 44 60 28 4



Mathematics 2022, 10, 2576 9 of 24

Table 2. Parameters setting of compared methods.

Type Method Parameters and Values

M1
Multi-Assignment Problem-based

Algorithm (MAPA) [3]
Number of Iterations—1000,
Penalty Violation Value—100

M2
Hybrid Artificial Bee Colony Algorithm

(HABC) [2]

Limit—100, Spin Track—10,
Number of Population—100,
Number of Iterations—100

M3
Bee Colony Optimization Algorithm

(BCO) [27]

Knowledge Base (b)—2
Number of Population—100,
Number of Iterations—100

M4 Hybrid Elitist–Ant System (HEAS) [12]

Population Size—100,
Number of Iterations—1000,

Pheromone Initial Values—0.01
Evaporation Rate—0.25

M5
Harmony Search-Based Hyper-Heuristic

Algorithm (HSHH) [1]
Number of Population—100,
Number of Iterations—100

Proposed Artificial Bee Colony with Nelder–Mead
(NM-ABC)

Number of Bees—100,
Number of Iterations—1000,

Maximum Runs—20,
Reflection Coefficient—α > 0
Expansion Coefficient—γ > 1

Contraction Coefficient—0 > β > 1
Shrinkage Coefficient—0 < δ < 1

Table 3. Summary of the Best result obtained by proposed Artificial bee colony with Nelder Mead
method (NM-ABC) and competitor methods.

Case Type Instance Optimal Value NM-ABC M1 M2 M3 M4 M5

C-1 N25

1 307 307 307 307 307 306 307
7 291 287 290 292 290 292 292
12 296 296 297 296 296 296 296
19 302 302 302 302 303 302 302
25 308 307 307 306 307 308 308

C-2 N25

2 274 269 277 279 276 273 273
5 303 303 303 302 302 302 301
9 276 276 276 276 276 276 275
15 296 289 299 300 299 296 300
27 293 293 293 293 293 293 293

C-3 N25

1 333 331 333 339 337 332 332
3 315 315 315 315 315 317 315
16 323 325 322 323 326 326 323
27 318 316 318 318 319 318 317
35 333 327 330 330 331 333 333

C-4 N25

5 313 285 301 319 310 312 316
10 284 273 275 288 277 281 279
25 308 294 303 300 305 306 312
38 294 294 294 294 294 293 299
41 296 296 296 296 296 299 296

C-5 N25

7 293 289 299 299 293 293 296
11 299 299 299 299 299 298 299
30 311 309 310 319 315 311 310
42 283 283 287 283 283 283 283
47 310 309 309 315 309 309 309
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Table 3. Cont.

Case Type Instance Optimal Value NM-ABC M1 M2 M3 M4 M5

C-6 N50

1 575 569 579 577 573 575 577
4 641 640 641 640 641 640 649
12 575 571 578 580 575 575 575
26 566 566 569 566 566 566 565
29 575 575 572 575 575 573 577

C-7 N50

3 590 512 590 597 595 601 599
6 571 571 571 571 571 571 571
12 606 600 609 603 608 606 612
26 579 574 578 578 579 580 581
36 630 630 630 630 630 630 630

C-8 N50

4 644 640 642 645 642 648 645
9 571 571 571 571 571 571 571
15 580 573 577 589 580 583 585
40 562 562 565 562 562 562 561
47 562 562 572 562 561 565 562

C-9 N60

5 3362 3299 3370 3362 3362 3368 3372
10 3114 3107 3112 3119 3117 3114 3123
23 3476 3450 3479 3480 3475 3475 3477
29 3061 3025 3069 3061 3069 3061 3060
40 2786 2786 2786 2786 2786 2785 2786

C-10 N60

6 2756 2756 2756 2756 2756 2756 2756
14 3394 3390 3393 3399 3399 3394 3400
20 3441 3441 3441 3441 3441 3440 3441
32 3398 3398 3397 3400 3398 3398 3401
41 3514 3504 3510 3520 3513 3514 3520

C-11 N60

2 3870 3870 3870 3870 3870 3870 3870
8 3598 3598 3598 3598 3598 3598 3598
14 3703 3700 3705 3706 3708 3711 3705
20 3646 3646 3646 3646 3649 3646 3646
32 3642 3639 3639 3641 3645 3652 3641

C-12 N60

3 2721 2720 2730 2721 2725 2729 2725
12 2988 2976 2988 2988 2990 2998 2992
19 2988 2988 2988 2987 2988 2998 2988
23 3432 3427 3431 3432 3432 3432 3431
34 3197 3197 3196 3197 3197 3197 3197

C-13 N60

1 3244 3243 3244 3244 3244 3249 3249
4 2988 2969 2989 2985 2996 2987 3001
19 3136 3125 3141 3135 3139 3136 3139
29 3103 3100 3105 3103 3107 3102 3103
40 2834 2834 2834 2834 2834 2834 2834

C-14 N60

5 3293 3275 3291 3299 3299 3300 3299
9 2959 2945 2959 2959 2969 2969 2959
15 3063 2972 3063 3056 3058 3069 3060
30 2935 2873 2928 2934 2934 2934 2934
43 2963 2965 2962 2963 2963 2963 2963

C-15 N60

6 3031 2997 3031 3040 3030 3035 3035
15 3383 3383 3383 3383 3383 3383 3383
26 3969 3875 3978 3979 3969 3969 3979
35 3496 3492 3499 3496 3496 3500 3500
44 3475 3328 3481 3479 3472 3475 3473
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Figure 2. The workflow of NM-ABC. Figure 2. The workflow of NM-ABC.

NM method is used in the onlooker bee phase of the ABC algorithm. The intention is
to use the NM method in the onlooker bee phase instead of the employee bee phase since
the individuals participating in the onlooker bee phase are selected based on probability.
When the individual is chosen with probability, it is considered a quality individual in
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terms of fitness. Intensive search on quality individuals results in global optimum rather
than searching on random individuals.

Algorithm 3: NM-ABC

1: Initialize the population
2: For i = 1, 2, . . . , FS, do
3: For j = 1, 2, . . . , S, do
4: Generate xi,j solution
5: xi,j = xmin,j ± rand (0, 1) ∗ (xmax,j − xmin,j)

6: Where xmin,j and xmax,j are the min and max limit of the dimension j
7: End for
8: Compute the objective of the population
9: iter = 1

10: Repeat
11: {
12: Employed Bee Phase
13: For each food source i do
14: Generate candidate solution vi using Equation (14)
15: Select between vi and xi
16: End For
17: Onlooker Bee Phase
18: Set r = 0
19: While (r <= FS)
20: If rand(0,1) < Pi using Algorithm 3
21: Generate candidate solution vi by Algorithm 2
22: Select between vi and xi
23: r = r + 1
24: End if
25: End while
26: Scout Bee Phase
27: Abandon the food source xi, which cannot improve further using Equation (13)
28: Remember the best individual obtained so far
29: iter = iter + 1
30: }
31: End for
32: Until iter = max FEs

4. Experimental Results
4.1. Experimental Setup

The NSP datasets are taken from the library NSP lib and consist of 25 to 100 instances; each
contains “N” nurses, “D” days, and “S” shift patterns. The nurses’ N varies from 25 to 100 nurses,
and the schedule is to be made for given D days with S shift patterns. NSP lib contains cases
to describe the maximum and minimum utilization of resources for the health care unit. It
consists of “N” nurses, “D” days, and “S” shift patterns and provides the coverage matrix
for days with shift patterns. The nurses’ workload for the shift concerning a particular day
relates to N and D for handling 25 to 100 instances.

The performance of NM-ABC for NSP is evaluated using the NSPLib dataset [42]. The
dataset is accessed on 10 October 2021 from the specified link (https://www.projectmanagement.
ugent.be/research/personnel_scheduling/nsp). The author summarizes the characteristic of
the dataset in Table 1. The proposed technique to solve NSP is implemented with the help
of MATLAB 2016a under Windows on an Intel i5 processor with 8 GB of RAM and 1 TB
storage. Table 1 designates the cases utilized by NM-ABC to solve NSP.

The parameter settings of NM-ABC and compared algorithms are presented in Table 2.
In this experimentation, algorithms M1 to M5 and NM-ABC consist of a population size
of 100, and the maximum number of iterations is 1000. These algorithms will stop its
execution when the maximum iterations or optimal solution are reached. The association of

https://www.projectmanagement.ugent.be/research/personnel_scheduling/nsp
https://www.projectmanagement.ugent.be/research/personnel_scheduling/nsp
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the results obtained by NM-ABC clearly specifies that the proposed technique is relatively
better than the existing methods.

4.2. Performance Metrics

The performance of the proposed technique is evaluated by relating it to five dif-
ferent opponent methods. Here, eight performance metrics are utilized to evaluate the
experimental results listed in this section.

4.2.1. Average Best Time (ABT)

The best time is to achieve the best value for a particular instance. The average best
time is the type of the best times of all test cases taken from the dataset. In experimental
analysis, the average best time (ABT) is computed using

ABT = ∑n
i=1

Time is taken to achieve the best value
Total number of instances

(19)

where n is the number of test cases in the given data set.

4.2.2. Standard Deviation

Standard deviation (SD) is the portion of distribution among set values from its mean
value. Average standard deviation determines the type of the standard deviation of all test
cases taken from the dataset. The average standard deviation (ASD) can be measured using

ASD =
√

∑n
i=1 (value obtained in each instancei −Mean value of the instance)2 (20)

where n is the number of instances in the given data set.

4.2.3. Least Error Rate

The least error rate (LER) is the variance between the actual optimal value and the
obtained best value. The LER can be calculated using

LER = ValueNSPLib − Best Valuei (21)

4.2.4. Success Percentage

Success percentage is the number of instances that attain optimal value for the given
instance. Average success percentage (ASP) is the average number of models that achieve
optimal value to the total number of test cases taken from the dataset. The value of ASP
can be computed using

ASP = ∑n
i=1

Number of instances succeed to attain optimal value
Total number of instances

∗ 100 (22)

where n is the number of instances in the given data set.

4.2.5. Cost Reduction

Cost reduction is the variation between actual cost in NSPLib and the cost obtained
from our approach. Average cost reduction (ACR) is the average cost reduction to the total
number of test cases taken from the dataset. The value of ACR can be computed from

ACR = ∑n
i=1

Costi − CostNSPLib
Total number of instances

(23)

where n is the number of test cases in the given data set.
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4.2.6. Gap

The value of gap is the distance to attain the best deal. The average gap (AGap) is the
average distance to achieve the best value from all instances of the total number of cases
taken from the dataset. The value of AGap is calculated using

ACR = ∑n
i=1

(Costi − CostNSPLib) / CostNSPLib
Total number of instances

∗ 100 (24)

where n is the number of instances in the given data set.

4.2.7. #Both Feasible Solution

#Both feasible solution (#BFS) is the number of feasible solutions found to obtain
optimal value concerning both NSPLib and our approach’s best value.

4.2.8. #Feasible Solution

#Feasible solution (#FS) is the number of feasible solutions found to obtain optimal
value concerning known optimal values of NSPLib.

4.3. Experimental Result Analysis

The results obtained by NM-ABC with competitive methods are shown in Table 3.
The performance is associated with exiting techniques; the value in the table defines the
attained best value by proposed and other competitor’s algorithms. The objective of NSP is
to reduce cost; the lowermost principles are the best solution obtained. In the evaluation of
the performance of the algorithm, the authors have considered 15 different cases of diverse
sizes with five other instances. It is proven proposed NM-ABC accomplished 44 best results
out of 75 instances.

The experimental results of 15 cases are summarized, and the best results are achieved
within the time. The best solutions for each case in all methods are highlighted in bold
font. The best values are obtained by using our proposed Algorithm 1. It is noted from
Table 4 that, experimentally, NM-ABC obtained 12 best results out of 25 instances in smaller-
sized datasets from case1 to case5, 14 best results in medium-sized datasets from case6 to
case10, and 17 best results out of 25 instances in larger-sized datasets case12 to case15. The
experimental results of the proposed algorithm have a high potential in exploiting search
space solutions towards better results in various ways.

Table 4 shows the best time, standard deviation, and the least error rate for each
case recorded for ten runs. The mean value of the proposed algorithm is 1.75% reduced
compared to that of other competitive methods, showing that our proposed algorithm
attained a lesser worst value in addition to the best solution. The least error rate for
the proposed algorithm can be calculated using Equation (21) with the known optimal
value recorded in NSPLib. The standard deviation is increased by 10% compared to other
competitive methods. The computational time to attain each best value is shown, and the
time taken to reach the best solution for each case is tabulated under the best time in a table.
Our proposed method yields 39.32% less computational time to attain the best results than
other competitor methods.

Table 5 describes the number of feasible solutions obtained by NM-ABC and other
methods, and the table shows our proposed algorithm produced a more feasible solution
than the solutions recorded in NSPLib. The solution is viable if the hard and soft constraints
listed in Tables 4 and 5 are satisfied. NM-ABC satisfied several feasible solutions. #Both
feasible is the number of possible solutions recorded in NSPLib or NM-ABC algorithm, and
#feasible is the number of viable solutions obtained in NSPLib. Table 5 shows NM-ABC
has attained 90% of a better value than known values reported in NSPLib. Compared with
other methods, our algorithm outperforms with 87% of the best value, which is higher than
other methods listed in Table 5. Thus, our algorithm contributes a new deterministic search
and practical heuristic approach to solve NSP using NSPLib dataset.
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Table 4. Summary of standard deviation, least error, and best time obtained by proposed Artificial bee colony with Nelder Mead method (NM-ABC) and competitor
methods.

Case Type Instance
NM-ABC M1 M2 M3 M4 M5

SD LER Best
Time SD LER Best

Time SD LER Best
Time SD LER Best

Time SD LER Best
Time SD LER Best

Time

C-1 N25 1 1.36 0 13.14 1.28 0 17.71 1.17 0 23.14 1.17 0 20.64 1.25 1 32 1.18 0 24.87
C-1 N25 7 2.40 4 11.09 1.27 1 13.82 1.45 1 21.09 1.45 1 26.09 1.85 1 19.14 1.37 1 19.91
C-1 N25 12 1.9 0 0.01 0.00 1 10.05 0.00 0 10.01 0.00 0 20.51 0.00 0 0.27 0.00 0 2.11
C-1 N25 19 1.80 0 0.5 1.47 0 10.71 1.96 0 0.5 1.96 1 12 1.79 0 1.5 1.85 0 3.70
C-1 N25 25 1.90 1 0.9 1.96 1 11.01 2.44 2 30.9 2.44 1 11.05 1.47 0 0.76 1.73 0 2.83
C-2 N25 2 3.70 5 19.36 2.36 3 21.94 2.32 5 22.5 2.32 2 23.18 2.04 1 24.09 1.91 1 5.28
C-2 N25 5 1.76 0 1.54 1.96 0 12.33 2.15 1 23.44 2.24 1 34.21 2.16 1 35.55 2.86 2 6.50
C-2 N25 9 1.85 0 0.05 1.99 0 12.19 1.87 0 30 1.87 0 20.03 1.95 0 15.01 1.81 1 13.63
C-2 N25 15 4.43 7 21.2 2.71 3 21.71 2.49 4 29.2 2.34 3 12.8 2.10 0 23.6 2.14 4 4.84
C-2 N25 27 1.55 0 0.04 1.92 0 0.36 1.57 0 25 1.57 0 31.52 1.96 0 32.26 2.12 0 3.42
C-3 N25 1 2.52 2 1.2 1.70 0 1.67 1.91 6 12 2.14 4 22.6 2.14 1 23.3 1.89 1 4.60
C-3 N25 3 1.60 0 0.34 1.62 0 0.43 1.87 0 10.34 1.87 0 10.51 1.45 2 10.6 2.10 0 2.18
C-3 N25 16 1.79 2 23.07 1.91 1 30.32 2.06 0 28 1.91 3 21.54 1.62 3 50.77 1.92 0 49.14
C-3 N25 27 2.84 2 15.73 1.64 0 20.58 1.99 0 20 2.10 1 27.87 1.89 0 33.93 2.50 1 33.47
C-3 N25 35 4.35 6 3.28 2.69 3 4.32 2.95 3 34.3 2.79 2 25.94 1.73 0 7.27 1.56 0 8.40
C-4 N25 5 9.48 28 32.13 4.86 12 40.56 5.42 6 34 4.32 3 50.07 2.33 1 59.03 2.94 3 58.47
C-4 N25 10 5.61 11 12.67 4.57 9 19.34 4.27 4 29 3.82 7 35.34 2.24 3 46.67 3.53 5 42.74
C-4 N25 25 5.82 14 22.5 3.01 5 30.5 3.52 8 33.6 3.35 3 44.85 1.96 2 56.03 2.69 4 53.17
C-4 N25 38 1.74 0 17.29 1.95 0 22.05 1.95 0 19.34 1.95 0 27.99 2.07 1 33.33 2.44 5 33.45
C-4 N25 41 1.89 0 1.54 1.67 0 2.38 1.66 0 3.67 1.66 0 4.44 1.66 3 5.89 1.79 0 6.77
C-5 N25 7 3.12 4 17.32 2.45 6 10.64 2.50 6 14.26 2.27 0 17.92 1.83 0 23.22 1.85 3 22.37
C-5 N25 11 1.64 0 0.07 2.11 0 9.69 1.90 0 2.89 1.90 0 2.93 2.19 1 4.35 2.15 0 5.10
C-5 N25 30 2.30 2 15.3 2.24 1 23.64 2.24 8 4.3 2.24 4 6.95 1.72 0 2.36 1.83 1 9.41
C-5 N25 42 1.97 0 3.29 1.95 4 8.32 2.18 0 4.26 2.18 0 5.91 2.24 0 7.21 1.85 0 8.36
C-5 N25 47 2.34 1 14.2 2.20 1 18.28 2.62 5 65 2.62 1 67.1 2.33 1 98.55 2.02 1 81.70
C-6 N50 1 6.14 6 29.4 6.46 4 15.95 4.82 2 29 4.65 2 33.7 4.58 0 45.85 5.23 2 41.10
C-6 N50 4 4.49 1 16.1 4.68 0 9.31 3.88 1 33.97 3.88 0 27.02 5.17 1 22.48 3.69 8 21.41
C-6 N50 12 5.06 4 18.45 4.85 3 10.92 3.99 5 25.3 3.56 0 29.53 4.24 0 17.29 5.29 0 24.19
C-6 N50 26 5.06 0 1.56 4.08 3 85.62 4.26 0 23.92 4.26 0 32.78 3.72 0 18.39 3.83 1 17.78
C-6 N50 29 3.77 0 1.43 4.76 3 9.01 3.31 0 31.78 3.31 0 22.5 5.06 2 53.03 4.21 2 4.45
C-7 N50 3 30.48 78 34.67 4.35 0 44.55 3.10 7 40.32 3.10 5 57.66 3.74 11 69.15 4.74 9 67.32
C-7 N50 6 4.10 0 3.33 4.07 0 9.35 3.26 0 34.2 3.26 0 35.87 3.87 0 37.13 3.52 0 8.31
C-7 N50 12 5.76 6 59.02 5.15 3 72.39 4.58 3 24.2 4.45 2 18.71 3.52 0 23.56 5.82 6 23.15
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Table 4. Cont.

Case Type Instance
NM-ABC M1 M2 M3 M4 M5

SD LER Best
Time SD LER Best

Time SD LER Best
Time SD LER Best

Time SD LER Best
Time SD LER Best

Time

C-7 N50 26 5.44 5 18.45 4.47 1 30.48 4.84 1 38.05 4.84 0 12.28 4.27 1 14.19 4.38 2 15.49
C-7 N50 36 4.88 0 1.36 4.37 0 11.84 4.45 0 22 4.45 0 42.68 4.15 0 33.34 4.73 0 4.68
C-8 N50 4 5.16 4 33.9 4.75 2 44.66 5.28 1 12.9 5.28 2 14.85 5.36 4 45.33 4.96 1 7.03
C-8 N50 9 3.96 0 21.28 4.67 0 32.31 3.88 0 34.6 3.88 0 15.24 4.22 0 37.22 4.58 0 7.76
C-8 N50 15 7.28 7 32.4 4.87 3 35.82 4.56 9 23.9 4.04 0 20.1 4.36 3 23.95 3.71 5 24.48
C-8 N50 40 5.07 0 12.25 4.87 3 23.92 4.47 0 27.4 4.47 0 28.53 4.47 0 61.66 5.06 1 11.61
C-8 N50 47 4.27 0 20.65 4.05 10 25.33 4.96 0 37.23 5.08 1 89.06 4.04 3 41.76 4.64 0 12.10
C-9 N60 5 28.31 63 32.43 8.94 8 43.29 7.79 0 45.29 7.01 0 61.51 5.75 6 76.04 5.76 10 72.16
C-9 N60 10 9.70 7 12.34 6.14 2 16.29 8.53 5 26.36 8.63 3 22.53 6.12 0 27.63 7.25 9 27.40
C-9 N60 23 16.40 26 23.54 7.26 3 31.13 5.80 4 31.5 5.69 1 43.27 7.34 1 53.14 5.54 1 51.17
C-9 N60 29 22.01 36 43.67 8.98 8 53.8 7.19 0 39.98 6.04 8 61.82 6.44 0 70.89 6.53 1 71.41
C-9 N60 40 5.47 0 0.37 5.57 0 10.68 5.15 0 21.4 5.15 0 11.59 6.15 1 12.19 6.41 0 3.47

C-10 N60 6 6.09 0 20.11 5.75 0 23.49 5.51 0 32.4 5.51 0 42.46 5.73 0 23.63 6.33 0 4.54
C-10 N60 14 7.71 4 42.03 5.08 1 43.13 6.50 5 24.78 6.50 5 35.8 6.46 0 47.68 7.28 6 8.35
C-10 N60 20 6.40 0 24.65 6.62 0 30.24 5.64 0 42 5.64 0 54.33 6.05 1 39.16 6.89 0 18.33
C-10 N60 32 7.49 0 20.04 6.89 1 31.31 6.96 2 65.9 6.83 0 25.92 6.33 0 48.86 6.87 3 8.70
C-10 N60 41 9.67 10 55.09 8.22 4 79.36 7.54 6 37.43 7.17 1 44.98 5.77 0 59.92 5.55 6 30.06
C-11 N60 2 6.96 0 35.07 6.24 0 46.6 6.85 0 56.3 6.85 0 58.84 7.07 0 30.72 6.08 0 11.70
C-11 N60 8 5.34 0 27.3 6.10 0 39.55 6.28 0 69.26 6.28 0 52.91 6.17 0 55.72 6.60 0 16.36
C-11 N60 14 8.05 3 49.76 6.29 2 51.94 5.70 3 48.53 6.18 5 53.41 7.17 8 75.24 6.95 2 16.72
C-11 N60 20 6.17 0 26.2 6.56 0 39.19 6.98 0 32.94 6.98 3 46.04 5.99 0 90.96 7.15 0 20.23
C-11 N60 32 7.03 3 51.87 8.60 3 65.44 7.83 1 70.43 7.69 3 76.37 6.00 10 74.99 7.79 1 32.05
C-12 N60 3 5.66 1 20.23 6.26 9 32.29 6.28 0 32.9 6.28 4 63.02 7.16 8 44.41 6.91 4 5.20
C-12 N60 12 12.67 12 49.22 5.88 0 52.38 6.20 0 43.2 6.20 2 37.81 6.55 10 52.11 6.93 4 22.05
C-12 N60 19 8.26 0 21.28 6.87 0 42.37 8.26 1 54.89 8.26 0 35.53 6.90 10 57.66 5.59 0 8.11
C-12 N60 23 8.72 5 19.9 7.42 1 34.68 6.53 0 25.82 6.37 0 51.27 7.02 0 56.46 7.16 1 26.03
C-12 N60 34 6.58 0 39 7.54 1 49.39 5.68 0 72 5.50 0 61.5 7.19 0 72.75 7.34 0 71.50
C-13 N60 1 7.73 1 33.11 6.36 0 44.33 6.13 0 45.19 6.13 0 56.75 6.08 5 58.56 6.96 5 9.38
C-13 N60 4 12.77 19 47.93 9.10 1 52.95 7.89 3 50.45 7.61 8 49.42 7.12 1 35.16 7.11 13 35.11
C-13 N60 19 9.93 11 44.43 9.06 5 49.08 7.30 1 39.29 6.00 3 56.51 6.00 0 62.54 8.27 3 31.96
C-13 N60 29 8.06 3 35.9 7.35 2 38.85 7.09 0 61.45 6.78 4 64.4 7.44 1 40.65 6.58 0 18.29
C-13 N60 40 6.54 0 32.71 7.26 0 44.96 5.95 0 65.23 5.95 0 57.09 7.49 0 78.77 5.73 0 9.73
C-14 N60 5 13.00 18 18.43 7.87 2 23.5 6.45 6 43.9 6.80 6 53.12 8.35 7 35.46 7.08 6 39.50
C-14 N60 9 11.52 14 10.05 7.49 0 20.6 7.43 0 52.56 7.43 10 42.59 7.15 10 23.85 6.85 0 4.70
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Table 4. Cont.

Case Type Instance
NM-ABC M1 M2 M3 M4 M5

SD LER Best
Time SD LER Best

Time SD LER Best
Time SD LER Best

Time SD LER Best
Time SD LER Best

Time

C-14 N60 15 28.15 91 49.02 7.63 0 60.4 6.61 7 53 7.44 5 77.51 7.57 6 79.63 7.21 3 89.71
C-14 N60 30 22.13 62 47.34 10.30 7 60.3 6.05 1 52.6 5.08 1 76.27 6.05 1 90.74 6.38 1 88.39
C-14 N60 43 6.02 2 37.1 6.56 1 34 6.90 0 49 6.73 0 28.55 5.76 0 34.28 5.22 0 34.15
C-15 N60 6 17.40 34 20.47 13.08 0 25.47 10.86 9 59.9 7.59 1 30.14 5.71 4 34.97 7.24 4 35.72
C-15 N60 15 5.85 0 24.23 6.17 0 35.86 5.09 0 36.9 5.09 0 39.02 5.81 0 51.41 6.51 0 12.00
C-15 N60 26 43.30 94 79.38 12.15 9 100.5 9.61 10 85.34 6.57 0 125.03 5.18 0 147.86 6.73 10 143.70
C-15 N60 35 7.13 4 51.28 7.05 3 64.02 6.14 0 59.25 6.14 0 79.89 4.77 4 89.2 6.18 4 13.34
C-15 N60 44 57.34 147 84.3 6.45 6 96.95 7.47 4 87 7.89 3 87.15 6.81 0 88.58 6.16 2 97.75
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Table 5. Comparison of the number of #both feasible and #feasible solutions obtained by the proposed
Artificial bee colony with Nelder Mead method (NM-ABC) and competitor’s methods.

Case Type Instances
NM-ABC M1 M2 M3 M4 M5

#BFS #FS #BFS #FS #BFS #FS #BFS #FS #BFS #FS #BFS #FS

1 N25 1, 7, 12, 19, 25 3 5 2 4 3 4 2 4 2 4 4 4
2 N25 2, 5, 9, 15, 27 3 5 3 3 2 3 2 3 3 5 1 4
3 N25 1, 3, 16, 27, 35 1 4 3 5 3 4 1 2 1 3 3 5
4 N25 5, 10, 25, 38, 41 2 5 2 5 2 3 2 5 0 4 1 3
5 N25 7, 11, 30, 42, 47 2 5 1 3 2 2 3 4 3 5 2 4
6 N50 1, 4, 12, 26, 29 2 5 0 2 2 3 4 5 3 5 1 2
7 N50 3, 6,12, 26, 36 2 5 3 4 2 4 2 2 3 3 2 2
8 N50 4, 9, 15, 40, 47 3 5 1 3 3 3 3 5 2 2 2 3
9 N50 5, 10, 23, 29, 40 1 5 1 2 3 3 2 3 2 4 1 2
10 N50 6,14, 20, 32, 41 3 5 3 5 2 2 3 4 4 5 2 2
11 N60 2, 8, 14, 20, 32 3 5 3 4 3 4 2 2 3 3 3 4
12 N60 3, 12, 19, 23, 34 2 5 2 4 4 5 3 3 2 2 2 3
13 N60 1, 4, 19, 29, 40 1 5 2 2 3 5 2 2 2 4 2 2
14 N60 5, 9, 15, 30, 43 0 4 2 5 2 4 1 3 1 2 2 4
15 N60 6, 15, 26, 35, 44 1 5 2 2 4 3 2 4 2 3 2 2

Table 6 summarizes the comparison and assessment of average best time, average
standard deviation, and average success percentage obtained by our proposed algorithm
NM-ABC with another competitor method. In Table 4, the columns 5 and 6 describe
the average best time, average standard deviation, and average success percentage of
the proposed algorithm. Columns 7 to 21 describe the performance metrics of another
competitor’s method.

Table 6. Comparison and assessment of ABT, ASD, and ASP obtained by proposed algorithm
NM-ABC and competitor methods.

Case Type Instances
NM-ABC M1 M2 M3 M4 M5

ABT ASD ASP ABT ASD ASP ABT ASD ASP ABT ASD ASP ABT ASD ASP ABT ASD ASP

1 N25 1, 7, 12, 19, 25 5.13 1.87 100 12.66 1.2 80 17.13 1.4 80 18.06 1.4 80 10.73 1.27 80 18.68 1.23 80
2 N25 2, 5, 9, 15, 27 8.44 2.66 100 13.71 2.19 60 26.03 2.08 60 24.35 2.07 60 26.1 2.04 100 24.73 2.17 80
3 N25 1, 3, 16, 27, 35 8.72 2.62 80 11.46 1.91 100 20.93 2.16 80 21.69 2.16 40 25.17 1.77 60 31.56 1.99 100
4 N25 5, 10, 25, 38, 41 17.23 4.91 100 22.97 3.21 100 23.92 3.36 60 32.54 3.02 100 40.19 2.05 80 38.92 2.68 60
5 N25 7, 11, 30, 42, 47 10.04 2.27 100 14.11 2.19 60 18.14 2.29 40 20.16 2.24 80 27.14 2.06 100 31.39 1.94 80
6 N50 1, 4, 12, 26, 29 13.39 4.9 100 26.16 4.97 40 28.79 4.05 60 29.11 3.93 100 31.41 4.55 100 33.19 4.45 40
7 N50 3, 6,12, 26, 36 23.37 10.13 100 33.72 4.48 80 31.75 4.05 80 33.44 4.02 40 35.47 3.91 60 37.79 4.64 40
8 N50 4, 9, 15, 40, 47 24.1 5.15 100 32.41 4.64 60 27.21 4.63 60 33.56 4.55 100 41.98 4.49 40 44.6 4.59 60
9 N50 5, 10, 23, 29, 40 22.47 16.38 100 31.04 7.38 40 32.91 6.89 60 40.14 6.5 60 47.98 6.36 80 45.12 6.3 40

10 N50 6,14, 20, 32, 41 32.38 7.47 100 41.51 6.51 100 40.5 6.43 40 40.7 6.33 80 43.85 6.07 100 45.2 6.58 40
11 N60 2, 8, 14, 20, 32 38.04 6.71 100 48.54 6.76 80 55.49 6.73 80 57.51 6.8 40 65.53 6.48 60 59.41 6.91 80
12 N60 3, 12, 19, 23, 34 29.93 8.38 100 42.22 6.79 80 45.76 6.59 100 49.83 6.52 60 56.68 6.96 40 60.58 6.79 60
13 N60 1, 4, 19, 29, 40 38.82 9.01 100 46.03 7.83 40 52.32 6.87 100 56.83 6.49 40 55.14 6.83 80 58.89 6.93 40
14 N60 5, 9, 15, 30, 43 32.39 16.16 80 39.76 7.97 100 50.21 6.69 80 55.61 6.7 60 52.79 6.98 40 61.29 6.55 80
15 N60 6, 15, 26, 35, 44 51.93 26.2 100 64.56 8.98 40 65.68 7.83 60 72.25 6.66 80 82.4 5.66 60 99.3 6.56 40

Figure 3 compares the average best time of NM-ABC with other methods. The best time
is the time taken to attain the best value, for instance, using Algorithm 2. The time is taken
to allocate and schedule nurses for a particular time without overruling hard constraints
and reducing violations of soft constraints. For smaller datasets, the computational time
taken by NM-ABC is reduced to 56.72%. For medium datasets, the time taken is reduced
by 36.40%. For larger datasets, the time taken is reduced by 34.31% compared to other
competitor methods. The ABT is calculated using Equation (19) and shows the reduced
computational time to schedule nurses for a particular shift on days for the scheduled
period. The HSHH algorithm consumes more computational time to solve NSP, while
MAPA and BCO achieve 50% of our proposed approach.
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Figure 3. Analysis and Comparison of Average Best time.

Figure 4 portrays the comparison of the average standard deviation of NM-ABC with
another competitor method. Figure 4 shows that an increase in the standard deviation will
increase the search space to obtain the best value.
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Figure 4. Analysis and Comparison of Average Standard Deviation.

Figure 5 compares our proposed algorithm NM-ABC algorithm’s average success
percentage with other methods. Success percentage is the number of instances in attaining
optimal value for the given instance. Average success percentage (ASP) is the average
number of instances that obtains optimal value for the total number of cases taken from
the dataset. ASP is calculated using Equation (22) and proves NM-ABC has increased the
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success percentage over other competing methods. In Table 7, it is observed that NM-ABC
achieved a 100% success percentage except for case 3 and case 14. Our algorithm NM-ABC
shows an overall 97.33% of success percentage. For smaller datasets, it is shown that the
success percentage is 96% and 26% more than that of all other competitor methods. For the
medium dataset, our algorithm achieved a 100% success percentage of 56.25% more than
other competing methods. The larger dataset NM-ABC attained a 96% success percentage,
which is 48.18% more than other methods. In the competitor method, the multi-objective
ant colony optimization algorithm (M4) achieved the second-best success percentage with
an overall 72%.

Mathematics 2022, 10, x FOR PEER REVIEW 19 of 23 
 

 

multi-objective ant colony optimization algorithm (M4) achieved the second-best success 
percentage with an overall 72%. 

 
Figure 5. Analysis and Comparison of Average Success Percentage. 

Table 7. Comparison and assessment of ACR and AGap obtained by proposed algorithm NM-ABC 
and competitor methods. 

Case Type Instances 
NM-ABC M1 M2 M3 M4 M5 

ACR AGap ACR AGap ACR AGap ACR AGap ACR AGap ACR AGap 
1 N25 1, 7, 12, 19, 25 1.00 0.33 0.20 0.07 0.20 0.07 0.20 0.07 0.00 0.00 −0.20 −0.07 
2 N25 2, 5, 9, 15, 27 2.40 0.83 −1.20 −0.42 −1.60 −0.55 −0.80 −0.28 0.40 0.14 0.00 0.00 
3 N25 1, 3, 16, 27, 35 1.60 0.49 0.80 0.25 −0.60 −0.18 −1.20 −0.37 −0.80 −0.25 0.40 0.12 
4 N25 5, 10, 25, 38, 41 10.60 3.55 5.20 1.74 −0.40 −0.13 2.60 0.87 0.80 0.27 −1.40 −0.47 
5 N25 7, 11, 30, 42, 47 1.40 0.47 −1.60 −0.53 −3.80 −1.27 −0.60 −0.20 0.40 0.13 −0.20 −0.07 
6 N50 1, 4, 12, 26, 29 2.20 0.38 −1.40 −0.24 −1.20 −0.20 0.40 0.07 0.60 0.10 −2.20 −0.38 
7 N50 3, 6,12, 26, 36 17.80 2.99 −0.40 −0.07 −0.60 −0.10 −1.40 −0.24 −2.40 −0.40 −3.40 −0.57 
8 N50 4, 9, 15, 40, 47 2.20 0.38 −1.60 −0.27 −2.00 −0.34 0.60 0.10 −2.00 −0.34 −1.00 −0.17 
9 N50 5, 10, 23, 29, 40 26.40 0.84 −3.40 −0.11 −1.80 −0.06 −2.00 −0.06 −0.80 −0.03 −3.80 −0.12 

10 N50 6,14, 20, 32, 41 2.80 0.08 1.20 0.04 −2.60 −0.08 −0.80 −0.02 0.20 0.01 −3.00 −0.09 
11 N60 2, 8, 14, 20, 32 1.20 0.03 0.20 0.01 −0.40 −0.01 −2.20 −0.06 −3.60 −0.10 −0.20 −0.01 
12 N60 3, 12, 19, 23, 34 3.60 0.12 −1.40 −0.05 0.20 0.01 −1.20 −0.04 −5.60 −0.18 −1.40 −0.05 
13 N60 1, 4, 19, 29, 40 6.80 0.22 −1.60 −0.05 0.80 0.03 −3.00 −0.10 −0.60 −0.02 −4.20 −0.14 
14 N60 5, 9, 15, 30, 43 36.60 1.20 2.00 0.07 0.40 0.01 −2.00 −0.07 −4.40 −0.14 −0.40 −0.01 
15 N60 6, 15, 26, 35, 44 55.80 1.61 −3.60 −0.10 −4.60 −0.13 0.80 0.02 −1.60 −0.05 −3.20 −0.09 

Table 7 summarizes the comparison and assessment of average cost reduction and 
average gap percentage obtained by NM-ABC with another competitor method. Table 7, 
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competitor’s method. 

Figure 6 portrays the analysis and comparison of the average cost reduction of our 
proposed NM-ABC with another competitor method. ACR is the difference between the 
best-known value observed in NSPLib and the cost obtained from our algorithm. Average 
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Figure 5. Analysis and Comparison of Average Success Percentage.

Table 7. Comparison and assessment of ACR and AGap obtained by proposed algorithm NM-ABC
and competitor methods.

Case Type Instances
NM-ABC M1 M2 M3 M4 M5

ACR AGap ACR AGap ACR AGap ACR AGap ACR AGap ACR AGap

1 N25 1, 7, 12, 19, 25 1.00 0.33 0.20 0.07 0.20 0.07 0.20 0.07 0.00 0.00 −0.20 −0.07
2 N25 2, 5, 9, 15, 27 2.40 0.83 −1.20 −0.42 −1.60 −0.55 −0.80 −0.28 0.40 0.14 0.00 0.00
3 N25 1, 3, 16, 27, 35 1.60 0.49 0.80 0.25 −0.60 −0.18 −1.20 −0.37 −0.80 −0.25 0.40 0.12
4 N25 5, 10, 25, 38, 41 10.60 3.55 5.20 1.74 −0.40 −0.13 2.60 0.87 0.80 0.27 −1.40 −0.47
5 N25 7, 11, 30, 42, 47 1.40 0.47 −1.60 −0.53 −3.80 −1.27 −0.60 −0.20 0.40 0.13 −0.20 −0.07
6 N50 1, 4, 12, 26, 29 2.20 0.38 −1.40 −0.24 −1.20 −0.20 0.40 0.07 0.60 0.10 −2.20 −0.38
7 N50 3, 6,12, 26, 36 17.80 2.99 −0.40 −0.07 −0.60 −0.10 −1.40 −0.24 −2.40 −0.40 −3.40 −0.57
8 N50 4, 9, 15, 40, 47 2.20 0.38 −1.60 −0.27 −2.00 −0.34 0.60 0.10 −2.00 −0.34 −1.00 −0.17
9 N50 5, 10, 23, 29, 40 26.40 0.84 −3.40 −0.11 −1.80 −0.06 −2.00 −0.06 −0.80 −0.03 −3.80 −0.12
10 N50 6,14, 20, 32, 41 2.80 0.08 1.20 0.04 −2.60 −0.08 −0.80 −0.02 0.20 0.01 −3.00 −0.09
11 N60 2, 8, 14, 20, 32 1.20 0.03 0.20 0.01 −0.40 −0.01 −2.20 −0.06 −3.60 −0.10 −0.20 −0.01
12 N60 3, 12, 19, 23, 34 3.60 0.12 −1.40 −0.05 0.20 0.01 −1.20 −0.04 −5.60 −0.18 −1.40 −0.05
13 N60 1, 4, 19, 29, 40 6.80 0.22 −1.60 −0.05 0.80 0.03 −3.00 −0.10 −0.60 −0.02 −4.20 −0.14
14 N60 5, 9, 15, 30, 43 36.60 1.20 2.00 0.07 0.40 0.01 −2.00 −0.07 −4.40 −0.14 −0.40 −0.01
15 N60 6, 15, 26, 35, 44 55.80 1.61 −3.60 −0.10 −4.60 −0.13 0.80 0.02 −1.60 −0.05 −3.20 −0.09

Table 7 summarizes the comparison and assessment of average cost reduction and
average gap percentage obtained by NM-ABC with another competitor method. Table 7,
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the 4th and 5th columns describe the average cost reduction and average gap percentage
of the proposed algorithm. Columns 6 to 15 illustrate the performance metrics of another
competitor’s method.

Figure 6 portrays the analysis and comparison of the average cost reduction of our
proposed NM-ABC with another competitor method. ACR is the difference between the
best-known value observed in NSPLib and the cost obtained from our algorithm. Average
cost reduction (ACR) is the average cost reduction from the dataset to the total number
of instances and calculated using Equation (23). In Table 7, it is shown that NM-ABC
minimized the cost of the NSP. The main objective of NSP is to reduce resource utilization,
which is reflected by the cost reduction, as shown in Figure 6. Using our proposed algorithm,
NM-ABC, the cost of NSP is reduced by 0.66%. For more minor instances, NM-ABC is
reduced to 1.12% compared to other competing methods and is reduced to 0.11%. For
medium instances, our proposed algorithm is reduced to 0.62% more than the original
cost value recorded in NSPLib, and other methods reduced it to 0.70%. Compared to more
significant instances, the proposed algorithm is reduced to 0.63%; compared with other
competitor methods, it is reduced to 0.68%. In the proposed NM-ABC algorithm, the cost
of resource utilization decreases with an increase in the dataset size.
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Figure 7 compares the average gap percentage of NM-ABC with another competitor
method. The gap percentage is the distance between the attained best value and the known
optimal value recorded in NSPLib. The average gap (AGap) is the average distance to
obtain the best and known value from all instances to the total number of instances. The
value of AGap is calculated using Equation (23), and from Table 7, it is proven that NM-ABC
attained a positive value, which shows the algorithm moved towards the best optimum
value. Our algorithm achieved 94.30% of successfully solved instances to reach the best
value concerning the known value recorded in NSPLib.
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5. Discussions

The experiments to solve NP-hard combinatorial NSP are conducted by our proposed
algorithm NM-ABC. Problem-based existing algorithms are chosen and compared with the
proposed NM-ABC algorithm. The result of our proposed algorithm is compared with other
competitor methods, and the best values are compared in Table 7. Various performance
metrics are considered to evaluate the proposed algorithm’s performance. Tables 3–7 show
the outcome of our proposed algorithm and other existing method’s performance. From
the table and figure, it is evident that NM-ABC has more ability to attain the best value with
less computation time compared to the known optimal value listed in NSPLib. The average
number of function evaluations (NFEs) for proposed NM-ABC is observed concerning to
number solutions updated using reflection, contraction, expansion, and shrinkage phase.
We noticed that NFEs of proposed algorithm is 106 for all the test cases.

Compared with other existing methods, the mean value of NM-ABC is reduced by 1.75%
compared to that of other competitive methods and attained a lesser worst value in addition
to the best solution. The proposed method yields 39.32% less computational time to obtain
best results compared to other competitor methods. The datasets are divided based on their
size as smaller, medium, and large datasets; the computational time taken by NM-ABC is
reduced to 56.72%, 36.40%, and 34.31%, respectively. The success percentage to attain the best
value of our proposed approach is 97.33%. Compared with other methods with various-sized
datasets, our algorithm achieves 26% for the smaller dataset, 56.25% for medium datasets,
and 48.18% for larger datasets. The cost of our algorithm is reduced by 0.66%, and the gap
percentage to move towards the optimum value is that 94.30% instances were successfully
solved to obtain the best deal with the known optimal value recorded in NSPLib.

Our algorithm has proven significant performance in attaining the best solution with
optimized resource utilization and nurse preferences by satisfying both hard and soft
constraints. It is also shown that the existing approach solves NSP with higher utilization
of resources and violation of soft constraints that lead to increased cost. The ability to
distribute the workload among nurses with nurse performance and satisfaction are achieved
in our algorithm. The proposed system is tested on larger datasets and works astoundingly
well than the other techniques.
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6. Conclusions

This paper solves NSP using a hybrid artificial bee colony algorithm with Nelder–
Mead (NM-ABC) method. The proposed algorithm is evaluated using the NSPLib dataset,
and the performance of the proposed algorithm is compared with the other five existing
methods and evaluated in the NSPLib dataset. To assess the implementation of our pro-
posed algorithm, 75 different cases of various-sized datasets were chosen for evaluation,
and in that, 44 out of 75 instances achieved the best result. The evaluation of the proposed
algorithm is compared with other existing techniques in terms of the best time, standard
deviation, least error rate, success percentage, cost reduction, average gap, #both feasible
solutions, and the number of #feasible solutions. When comparing the results of existing
algorithms in metrics listed, the proposed NM-ABC outperforms in most instances of NSP.
Future work of this research can be extended with more objectives in NSP for optimization.
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