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Abstract: Embedded controllers for multivariable processes have become a powerful tool in industrial
implementations. Here, the Model Predictive Control offers higher performances than standard
control methods. However, they face low computational resources, which reduces their processing
capabilities. Based on pipelining concept, this paper presents a new embedded software-based
implementation for a constrained Multi-Input-Multi-Output predictive control algorithm. The main
goal of this work focuses on improving the timing performance and the resource usage of the control
algorithm. Therefore, a profiling study of the baseline algorithm is developed, and the performance
bottlenecks are identified. The functionality and effectiveness of the proposed implementation are
validated in the NI myRIO 1900 platform using the simulation of a jet transport aircraft during cruise
flight and a tape transport system. Numerical results for the study cases show that the latency and
the processor usage are substantially reduced compared with the baseline algorithm, 4.6× and 3.17×
respectively. Thus, efficient program execution is obtained which makes the proposed software-based
implementation mainly suitable for embedded control systems.

Keywords: model predictive control; embedded systems; MIMO systems; system-on-chip; NI myRIO

MSC: 9304

1. Introduction

Most industrial processes are multivariable systems which often present strong in-
teractions between the manipulated and the controlled variables. Here, the definition of
a suitable control structure to regulate the system is not often trivial [1], especially when
dealing with multiple-objective problems and dynamics complexity. In this scenario, even
though diverse strategies are possible [2], Model Predictive Control (MPC) turned out to be
among the most effective ones in fulfilling the aforementioned tasks [3–5]. Studies found in
the recent literature exploit algorithms based on MPC methods applied to several process,
in which online optimization problems are involved [6–10]. However, it is well known
that MPC is more challenging than other control strategies [11,12]. The challenges and
differences arise from the following main aspects:

1. The control action must be calculated in a receding horizon manner. MPC solves an
optimal control problem at each sampling instant, where a sequence of control moves
are optimized and only the first control move is injected into the system [13]. This
process is repeated, which translate into a greater computational demand on control
platforms [14].

2. MPC has been known as powerful tool to deal with system constraints [15].This
control strategy addresses the state constraints and input saturations to obtain the
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manipulation that minimizes the proposed cost funcion [16]. Here, heavy execution
load and communication resources are needed [17].

3. Use of weighting matrices in the cost function. In MPC approaches the value of the
pondering matrices are set a priori, to penalize the large excursion of the tracking error
and the deviation of the manipulation. This, to obtain the control action; thus, the
optimization process that derives the best results can not usually sustain a low stable
computation time [18].

Henceforth, these aspects limits the algorithms that can be used to solve the MPC
strategy and has motivated the search for computationally efficient optimization algorithms
for practical applications where the sampling period tends to be short [12]. In addition, em-
bedded systems are a powerful tool in industrial implementations. In contrast to personal
computer applications, they address low computational resources, but provides portability,
low cost and low jitter because of the reduction of software interruptions from the operative
systems. Thus; MPC is desirable for embedded applications with fast control cycles, such
as bioengineering, aerospace, automotive, etc. These embedded applications require small
and power-efficient controllers, capable to solve optimization problems at high sampling
rates [19]. The first embedded implementation of an MPC algorithm is reported in [20],
which consists of a constrained control strategy for a single-input single-output (SISO) sys-
tem on a Field-Programmable Gate Array (FPGA). Nowadays, research efforts are focused
on the development of embedded MPC implementations with low latency. Nevertheless,
the computation complexity makes the multivariable MPC poorly efficient for high speed
applications where the controller iteration must be executed in a few milliseconds or even
in microseconds.

For this reason, recent research works address the computational load by software
or hardware improvement. In [21], for multivariable processes, a relaxed performance
index with the constraints implicitly defined in the weighting matrices is developed, which
contributes to reduce the execution time. Moreover, in [22], the online latency is reduced,
by converting the quadratic programming problem into an equivalent nonnegative lest-
squares problem. On the other hand, in [23–25], the authors implement a constrained
MIMO MPC on high resources processors of 1.6 GHz, 2.2 GHz and 1.25 GHz respectively.
These implementations reach low latency due to the amount of resources on their embedded
devices. However, the processors are not affordable. Furthermore, in [9], a constrained
MIMO MPC is well implemented on a NI myRIO 677 MHz processor. Nevertheless, as it
is mentioned, it is not recommended for fast applications. In [26], an MPC algorithm is
implemented on a microprocessor of 216 MHz reaching low latency, but constraints are not
considered. Additionally, a constrained MIMO MPC is implemented on a microprocessor of
96 MHz in [27], nevertheless, high latency is reported. In contrast to research efforts found
in the literature, this work presents an embedded implementation of a constrained MIMO
MPC algorithm (“Baseline”) and a new software-based optimization for the embedded
control strategy (“Propose”). Thus, without affecting the tracking performance of the
Baseline, the execution time and the processor usage are substantially reduced in the
Propose. This makes the proposed software-based implementation mainly suitable for
embedded control systems.

The paper is organized as follows. Section 2 presents the constrained MIMO predictive
control algorithm. Section 3 describes the foundations of computational architecture used
in this work. Section 5 presents a computational analysis of the MIMO predictive control
algorithm and the proposed software-based implementation. Additionally, a jet transport
aircraft as study case and the selected embedded platform are presented. Section 6 shows
the performance, the execution time and the processor usage, of both implementations: the
Baseline and the Propose. Finally, Section 7 discusses the conclusions.

2. Model Predictive Control Algorithm

This section presents a brief review of the MIMO predictive control algorithm. This
MPC is based on discrete-time state space model, and it is proposed by Wang in [10]. In
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this previous work, considering the predictions of the states, the control action is obtained
through the solution of a constrained optimization problem by using a cost function with
a weighting matrix. At each sampling time, an optimal control problem is solved which
demands high computational resource usage. The system dynamics is denoted by the
discrete time Linear Time Invariant (LTI) State-Space Model taking the following structure:

xm(k + 1) = Amxm(k) + Bmu(k),
y(k) = Cmxm(k)

(1)

where xm(k) ∈ Rnx is the state vector, u(k) ∈ Rnu is the controlled input vector, y(k) ∈ Rny

is the output vector, Am ∈ Rnx×nx is the state matrix, Bm ∈ Rnx×nu is called the input matrix,
Cm ∈ Rny×nx is called the output matrix and k ∈ N denotes the sampling instant number.

The MPC strategy uses the Velocity Form Model (VFM) as offset-free method [10,28–30].
The VFM method is based on an augmented State-Space Model. Hence, from (1),

∆xm(k + 1) = Am∆xm(k) + Bm∆u(k)
∆y(k + 1) = Cm Am∆xm(k) + CmBm∆u(k)

(2)

where ∆xm(k + 1) = [xm(k + 1)− xm(k)], ∆xm(k) = [xm(k)− xm(k− 1)], ∆u(k) =
[u(k)− u(k− 1)] and ∆y(k + 1) = y(k + 1)− y(k), the VFM takes the following structure:

x(k + 1) = Ax(k) + B∆u(k)
y(k) = Cx(k)

(3)

where

A =

[
Am 0nx×ny

Cm Am Iny×ny

]
B =

[
Bm

CmBm

]
C =

[
0ny×nx Iny×ny

] (4)

and x(k) ∈ Rnx+ny is the new state vector:

x(k) =
[

∆xm(k)
y(k)

]
(5)

As in [10], the state predictions for the consecutive sampling instants are:

x(k + 1) = Ax(k) + B∆u(k)
x(k + 2) = Ax(k + 1) + B∆u(k + 1)

= A2x(k) + AB∆u(k) + B∆u(k + 1)
...

x(k + Np) = ANp x(k) + ANp−1B∆u(k) + . . .
+ANp−Nc B∆u(k + Np − 1)

(6)

where Np stands for prediction horizon and Nc corresponds to control horizon. Then,
from (3) and (6), the predicted outputs can be formulated using the following vector-
matrix notation:

Y = Ψx(k) + Φ∆U (7)

where
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Ψ =
[
(CA)T (CA2)T . . . (CANp)T ]T

Φ =


CB 0ny×nu . . . 0ny×nu

CAB CB . . . 0ny×nu
...

...
. . .

...
CANp−1B CANp−2B . . . CANp−Nc B

 (8)

and Y ∈ RNp ·ny is the whole predicted outputs of y =
[

y1 y2 . . . yny

]T , and

∆U ∈ RNc ·nu concatenates the future control trajectory of ∆u =
[

∆u1 ∆u2 . . . ∆unu

]T :

Y =
[

y(k + 1)T y(k + 2)T . . . y(k + Np)T ]T

∆U =
[

∆u(k)T ∆u(k + 1)T . . . ∆u(k + Nc − 1)T ]T (9)

The definition of the cost function is one of the key elements in MPC strategy to define
the desired system behavior [11,12]. The cost function J(∆U|Y, Rs) used to find the best
sequence of control action over the prediction horizon

[
k, k + Np

]
is defined as follows:

J = (Rs −Y)T(Rs −Y) + ∆UT Ru∆U (10)

where, the first element considers the error e ∈ RNp ·ny between the whole predicted outputs de-
noted by Y ∈ RNp ·ny and the reference Rs ∈ RNp ·ny of the vector rs =

[
r1 r2 . . . rny

]T .
Furthermore, as in [31], the second term stands to penalize the rate excursion of the control
vector; here, the weighting matrix Ru represents a direct influence on the performance of
the system [11]. Hence, when a low pondering matrix Ru ∈ RNc ·nu×Nc ·nu value is used, the
first element of the cost function is interpreted as the primary situation to be minimized.
The reference Rs vector is expressed as follows:

Rs =
[

rs(k + 1)T rs(k + 2)T . . . rs(k + Np)T ]T (11)

Substituting (7) in the first element of (10), the cost function is expressed in state-
space representation:

J = (Rs −Ψx(k)−Φ∆U)T(Rs −Ψx(k)−Φ∆U)
+∆UT Ru∆U

(12)

Thus, to obtain the control law, the performance index (12) is rewritten in the following
compact form:

J =
1
2

∆UTE∆U + [F1x(k) + F2Rs]
T∆U + Cst (13)

where

E = 2
[
ΦTΦ + Ru

]
F1 = 2ΦTΨ
F2 = −2ΦT

Cst = (Rs −Ψx(k))T(Rs −Ψx(k))

(14)

subject to the following inequality constraints:

M∆U ≤ γ(k) (15)

where
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M =
[

LT
u −LT

u Iu −Iu ΦT −ΦT ]T

γ(k) =



Umax − I1u(k− 1)
−Umin + I1u(k− 1)

∆Umax

−∆Umin

Ymax −Ψx(k)
−Ymin + Ψx(k)


(16)

then, M ∈ R(4·Nc ·nu+2·Np ·ny)×Nc ·nu is a matrix reflecting the constraints, and
γ(k) ∈ R4·Nc ·nu+2·Np ·ny contains the maximum and minimum values allowed in u, ∆u,
and y. Moreover, Iu ∈ RNc ·nu×Nc ·nu is a identity matrix, additionally Lu ∈ RNc ·nu×Nc ·nu is a
lower triangular matrix and I1 ∈ RNc ·nu is a vector-matrix whose elements are I ∈ Rnu×nu .

As in [32], the sequence of the future actions ∆U cannot be freely chosen in
RNc ·nu . The constraints have to be taken into account giving the following optimization
problem P(x(k)):

P(x(k)) : min
∆U∈RNcnu

J(∆U|x(k)) s.t. g(∆U|x(k)) ≤ 0 (17)

The cost function J(∆U|x(k)) is minimized considering the constraints arranged in
g(∆U|x(k)), and the first action of the best sequence control action ∆U is used. Nev-
ertheless, solving the optimization problem of the baseline algorithm involves a high
number of decision variables and high number of constraints which demands high compu-
tational resources.

3. Computer Optimization

An algorithm is a set of sequential calculations where tasks execution may depend
on a different task product. Due to these dependencies, bottlenecks are carried out. This
section introduces two concepts to break down the bottlenecks: software pipelining and
one-step ahead prediction.

3.1. Software Pipelining Technique

The set of tasks executed in one iteration is called Single-Cycle Iteration (SCI). Figure 1a
shows the SCIs carried out in sequence, according to N instructions. The instructions are
labeled as In

i , where n ∈ {1, 2, . . . , N} is the instruction number and i ∈ {0, 1, . . . , ∞} is the
SCI number. Each instruction has its own latency, and the sum of the N latencies ∑N

n=1 `n
from the same SCI corresponds to the SCI latency `SCI.

The pipelining technique is used to divide the instructions of an SCI in multiple steps.
Thus, some dependencies are broken and instructions from different SCIs are overlapped
during runtime. Figure 1b shows the pipeline technique. The instructions from a SCI are
divided, hence, there are not dependencies inside the new-bundled iteration. This new
iteration is called Pipelined Iteration (PI) with a new latency equal to max{`1, `2, . . . , `N}.

The implementation of the pipelining technique provides two main advantages: Par-
allelization and delivery time. The parallelization can be reached due to the broken
dependencies that allows the execution of more than one instruction at the same time. As
it is shown in Figure 1b, the instructions of the same column can be executed in parallel
as long as hardware capability. The delivery time with nonpipeling technique of a SCI is
∑N

n=1 `n while the execution time with pipelining implementation is `PI, here, only the first
SCI execution time takes N · `PI to be delivered.
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(a)

(b)

Figure 1. Execution techniques: (a) Nonpipeling. (b) Pipelining.

3.2. One-Step Ahead Prediction

The MPC approach assumes that with the system information been collected at each
sampling instant y(k), γ(k), x(k), u(k− 1), the control action u(k) can be calculated instan-
taneously. However, the real-time implementation of this approach is mainly limited due
to the optimization problem to be solved.

In the proposed algorithm, the controller parameters optimized from the previous
sampling interval is used to calculate the current control action u(k− 1). By minimizing (10),
∆U(k), (9), is obtained subject to the constraints. Hence, the first vector corresponds to
∆u(k); thus, the current manipulation u(k) can be computed as follows: u(k) = ∆u(k) +
u(k− 1). This breaks the bottleneck due to the dependencies carried out by the variables
computed at the same iteration.

4. Study Cases

The present work and the MPC strategy in [10] are developed using the same compu-
tational platform. The study cases consider the following state-space models in continuous
time, where Ac ∈ Rnx×nx is the state matrix, Bc ∈ Rnx×nu stands for the input matrix and
Cc ∈ Rnx×ny corresponds to the output matrix. Hence, the systems are discretized to be
represented according to (1).

4.1. Study Case 1— Jet Transport Aircraft

From [21,33,34], a Jet Transport Aircraft Boeing 747 is obtained. In high-lift configura-
tion, it addresses complex geometries and physical phenomena that make the controller
design a difficult process. Figure 2 illustrates the Jet Transport Aircraft with its components
and variables involved such as the angles β and φ and the angular velocities ψ and θ.
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Figure 2. Jet transport aircraft.

Although the physical model of the Boeing 747 is lengthy, in (18), the simplified
state-space model during cruise flight at MATCH = 0.8 and H = 40,000 ft is presented in
continuous time:

ẋ(t) = Acx(t) + Bcu(t),
y(t) = Ccx(t),

(18)

where

Ac =


−0.0558 −0.9968 0.0802 0.0415

0.598 −0.115 −0.0318 0
−3.05 0.388 −0.465 0

0 0.0805 1 0


Bc =


0.0729 0
−4.75 0.775
0.153 14.3

0 0


Cc =

[
0 1 0 0
0 0 0 1

]
The model has four states, x =

[
β ψ θ φ

]T , where β is the sideslip angle,
φ stands for the bank angle, and meanwhile ψ and θ represent the yaw and roll rate,
respectively. Herein, all the angles are in rad and the angular velocities in rad/s. The
system has two inputs u =

[
u1 u2

]T : the rudder and the aileron deflections, and two

outputs y =
[

y1 y2
]T the yaw rate ψ and the bank angle φ. Then, using a sampling time

τ = 0.2 s, the system is discretized and executed under the constraints described in Table 1.

Table 1. Jet transport aircraft constraints.

Output Input Input Increment

Yaw Bank Rudder Aileron Incremental Rudder Incremental Aileron
Rate Angle Deflection Deflection Deflection Deflection

Maximum 1 1 4 4 1 1
Minimum −1 −1 −4 −4 −1 −1

4.2. Study Case 2—Tape Transport System

The tape drive system consists of two reels to supply and file data. Here, the data trans-
fer rate is proportional to the tape transport speed.Thus, the tape drive mechanism must be
able to rapidly transport a fragile tape with an accurate tension regulation. Figure 3 shows
the schematic of a tape transport system where its components and variables involved
are the tape stiffness and the damping denoted by K and D, the reel radii and the inertia
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represented as r and J, the motor torque constant Kt, and the viscous friction coefficient
denoted by β.

Figure 3. Tape transport system.

Assuming there is no force loss across the head, the tape tension T = T1 = T2 [35].
Although the physical model of the process contains nonlinearities, in (19), a simplified
state-space model is presented in continuous time [21,35–37]:

ẋ(t) = Acx(t) + Bcu(t),
y(t) = Ccx(t),

(19)

where

Ac =


−D

(
r2

1
J1
+

r2
2

J2

)
D βr1

J1
− K

r1
K
r2
− D βr2

J2

r1
J1

− β
J1

0

− r2
J2

0 − β
J2


Bc =

 −DKt
r1
J1

DKt
r2
J2

Kt
J1

0
0 Kt

J2


Cc =

[
0 r1

2
r2
2

1 0 0

]
The model has three states, x =

[
T ω1 ω2

]T , where T is the tension tape in
N; meanwhile, ω1 and ω2 represent the supply and take-up reel in rad/s, respectively.
Moreover, the system has two inputs u =

[
u1 u2

]T that represent the voltages applied

to the reel motors in volts, and two outputs y =
[

y1 y2
]T which stand for the tape

speed vrw at the read-write head in m/s and the tape tension T, respectively. The control
strategy described in the present work is simulated using parameters from the tested tape
system described in [35,38,39], whose parameters are summarized in Table 2.

Table 2. Tape transport system parameters.

Symbol Parameter Value

K Tape stiffness 2× 103 N/m
D Damping 2 N s/m2

r1 Radius of supply reel 21.2× 10−3 m
r2 Radius of take-up reel 9.75× 10−3 m
J1 Moment of inertia of the supply reel 14.2× 10−6 kg m2

J2 Moment of inertia of take-up reel 10.35× 10−6 kg m2

Kt Motor torque constant 24.8× 10−3 N m/V
β Viscous friction coefficient 1.03× 10−4 N m s/rad
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Considering that the motors are nominally identical, for both motors, it is used as
the same motor torque constant Kt and viscous friction coefficient β [38,39]. Thus, using a
sampling time τ = 0.1 s, the system (19) is discretized and executed under the constraints
expressed in Table 3.

Table 3. Tape transport system constraints.

Output Input Input Increment

Tape Tape Motor Motor Incremental
Motor

Incremental
Motor

Speed Tension Voltage Voltage Voltage Voltage

Maximum 3 0.8 2 0.4 1 1
Minimum 0 0 −1 −0.1 −1 −1

5. Proposed Software-Based Implementation
5.1. Profile Analysis

The profiling analysis is performed on a NI myRIO 1900, illustrated in Figure 4, from
National Instruments [40]. The NI myRIO is a portable reconfigurable I/O (RIO) device
that can be used to design control, robotics, and mechatronics systems. The NI myRIO
contains a Xilinx Z-7010 System-on-Chip (SoC), working at a frequency of 650 MHz.

Figure 4. NI myRIO 1900.

The Xilinx Z-7010 SoC has an architecture divided in two parts: a processing system
(PS) and a programmable logic. The PS includes 256 KB on-chip memory, 8 Direct Mem-
ory Access (DMA) channels, external memory interfaces, and multiple I/O peripherals.
The main component of the PS is the application processor unit (APU) which contains a
dual-core ARM Cortex-A9 for running the application software. The ARM cores use the
ARMv7 architecture.

Although the NI myRIO can be considered a high-speed processing device compared
to the microprocessor in [22,26,27]. In contrast with those with acceptable implementation
for high speed applications [23–25], it can still be considered as a low resources processor.

The process flow diagram of the baseline MPC algorithm is shown in Figure 5. As
it can be seen, it is composed of two types of functions: offline and online. The offline
functions are one-time executed, while the online functions are executed each sampling
time. Tables 4 and 5 shows the description of each function and the latency according to
the study case 1.
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Figure 5. Process flow diagram of the MPC algorithm.

Table 4. Offline functions.

Function Description Latency

MPC Offline
It contains the matrices of the State-Space Model and the VFM,

the sampling time, the prediction and control horizon, the
constraints and the matrices E, F1, F2, M, I1, Ψ and Φ.

4183.580 µs

Init It initializes the control vector uk 86, 718.800 µs

Table 5. Online functions.

Function Description Latency

RDSen It reads the controlled variable y(k). 22.532 µs
SPGen It generates the setpoint rs(k). 14.509 µs

Obs It measures the current x(k) vector. 52.378 µs
FCalc It computes the vector F(k) = F1x(k) + F2Rs. 80.698 µs
γCalc It computes the vector γ(k). 63.821 µs
Optim It computes the optimal manipulated variable u(k). 1290.780 µs
WRAct It applies the manipulated variable u(k). 39.202 µs
Graph It plots the variables y(k), u(k), ∆u and the constraints. 37.468 µs

5.2. Software-Based Implementation Development

To improve the computing performance, a proposed software-based implementation
is developed based on the profiling analysis of the online functions (Table 5) and the com-
puter architecture concepts described in Section 3. Thus, the following improvements are
implemented: efficient calculation of the optimization algorithm, implementing pipelining.
This work apply three different methods to achieve a better performance. In Table 5, it can
be seen that the Optim function has the highest latency. Thus, the present research work
first proposes to speed it up by modifying the Hildreth’s algorithm. Then, the concept of
pipelining is applied, and the optim function is parallelized with the rest of the functions.
However, a problem shows up through the implementation. Therefore, the prediction idea
is carried out to solve this problem.

5.2.1. Optimization Algorithm

The baseline algorithm uses the Hildreth’s Quadratic Programming Solver (qpSolver),
shown in Algorithm 1, to minimized the objective function. Nevertheless, there are two
weaknesses that increase the execution time of the Optim function: the operations recur-
rence and the operation of array elements. The operational recurrence was solved by
reusing the previously calculated data. The calculation of the inverse of the E matrix should
be highlighted, as it is mentioned in [41]. The E matrix is not modified during the execution,
following this, the inverse operation can be calculated once. For this reason, the new algo-
rithm requires the E−1 as an input, and the inversion operation is calculated in the MPC
Offline function. The operation of arrays elements was boosted using optimized functions
that works directly with arrays instead of the elements. The modified algorithm can be
seen in Algorithm 2. A new profile analysis was performed, with these modifications, thus,
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the latency of the Optim function is reduced from 1290.78 µs to 226.75 µs for the study case
1 and from 3491 µs to 394 µs for the study case 2.

Algorithm 1: Hildreth’s QP Solver (Original)

Input : E, F, M, g /* Current data information E, F, M, γ */
Output : DU /* Optimal trajectory ∆U(k) */
begin

1 n← rows of M
2 DU ← −inverse(E) · F
3 e← 0
4 for i from 0 to n− 1 do
5 if M(i, all) · DU > g(i) then
6 e← e + 1
7 else
8 e← e + 0

9 if e = 0 then
10 Return DU

11 P← M · inverse(E) · transpose(M)
12 d← M · inverse(E) · F + g
13 n← size of d
14 l ← vector of zeros of dimention n /* l = λ */
15 for a from 0 to 37 do
16 lp← l
17 for i from 0 to n− 1 do
18 w← P(i, all) · l − P(i, i) · l(i)
19 w← w + d(i)
20 la← −w/P(i, i)
21 l(i)← max(0, la)

22 e← transpose(l − lp) · (l − lp)
23 if e < 100× 10−9 then
24 BREAK

25 DU ← −inverse(E)× F− inverse(E) · transpose(M) · l
26 Return DU
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Algorithm 2: Hildreth’s QP Solver (Improved)

Input : Ei, F, M, g /* Current data information E−1, F, M, γ */
Output : DU /* Optimal trajectory ∆U */
begin

1 n← rows of M
2 DU ← −Ei · F
3 e← OR(M · DU > g)
4 if e = 1 then
5 P← M · Ei · transpose(M)
6 d← M · Ei · F + g
7 l ← vector of zeros of dimention n
8 for a from 0 to 37 do
9 lp← l

10 for i from 0 to n− 1 do
11 w← P(i, all) · l − P(i, i) · l(i) + d(i)
12 la← −w/P(i, i)
13 l(i)← max(0, la)

14 e← transpose(l − lp) · (l − lp)
15 if e < 100× 10−9 then
16 BREAK

17 DU ← DU − Ei · transpose(M) · l
18 Return DU

5.2.2. Pipelining

The Online functions from every SCI, shown in Table 5, can be arranged in 3 bundles.
Bundle 1 (Latency: 233.938 µs) packs functions RDSen, SPGen, Obs, Fcalc, and γCalc.
Bundle 2 (Latency: 226.75 µs) include the modified Optim function. Bundle 3 (Latency:
76.670 µs) packs functions WRAct and Graph. The concept of pipelining, Section 3.1 can be
extrapolated to work with bundles instead of instructions for both study cases. Figure 6 uses
the notation Bn

k to indicate the bundle n of the SCI k. As show in Figure 6a, the execution is
performed running a bundle per step. In Figure 6b, Bundle 1 and 3 are executed in the same
step, in order to balance the time execution between step 1 (310.608 µs) and 2 (226.750 µs).
Currently, the bundles B1

k , B2
k−1, B3

k−1 are run within the same PI.

5.2.3. Synchronization Error Troubleshooting

Using the Figure 5 as reference, a synchronization error can be noticed in node A of
the Figure 6a,b. In Figure 6b, B1

k (Function Obs and γCalc) and B3
k−1 (Function WRAct and

Graph) needs u(k− 1) as input, but they are receiving u(k− 2). The bundle B2
k represent

the Optim function that can be seen in Algorithm 3. The Optim function calculates u(k)
based on the iteration data F(k), γ(k). A modification of the algorithm Optim can take
place. The Algorithm 4, shows a new Optim function called Optim+. The Optim+ function
takes advantage of the QP Solver definition to compute the optimal u(k) based on the
previous iteration data F(k− 1) and γ(k− 1). In Figure 6c, the B2+

k (Optim+ function) is
implemented to solve the synchronization error.
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(a)

(b)

(c)

Figure 6. Optimization methodology: (a) Executing a bundle per step. (b) Executing Bundle 1 and
Bundle 3 in the same step. (c) Executing Bundle 1 and Bundle 3 in the same step, and implementing
Optim+Function.

Algorithm 3: Optim function

Input : Fk,gk /* Iteration data Fk, γk */
Output : u /* Manipulation variable uk */
begin

1 DUk← Hild(Ei, Fk1, M, gk1)
2 u← u + DUk(0 : nu− 1)
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Algorithm 4: Optim+ function

Input : Fk1,gk1 /* Previous iteration data Fk−1, γk−1 */
Output : u /* Manipulation variable uk */
begin

1 DUk1← Hild(Ei, Fk1, M, gk1)
2 t← u
3 u← uk2 + DUk1(0 : nu− 1) + DUk1(nu : 2 · nu)
4 uk2← t

Finally, the implementation proposed to the MPC algorithm (Figure 5) can be observed
in Figure 7.

Figure 7. Proposed process flow diagram of the MPC algorithm.

6. Results

The present work and the baseline algorithm VFM in [10] are developed using the same
computational platform for the study cases described in Section 4. These implementations
are analyzed considering: the speedup and the processor performance.

The speedup factor is described using (20).

Speedup =
`Old
`New

(20)

where `Old is the latency of the reference algorithm, and `New is the latency of the proposed
algorithm. On the other hand, the processor performance is evaluated considering the
processor usage.

6.1. Study Case 1—Results

Considering a prediction horizon Np = 20, Nc = 15 and a Ru = I30×30, the simulation
results are shown in Figure 8, the controlled variable, the manipulated variables, and the
incremental variable are plotted for both: the present work and the baseline algorithm.

Both implementations execute 1000 iterations, and a profile analysis is executed. The
results from the profile analysis is shown in Table 6.

Table 6. Execution time comparison.

VFM Approach

Performance 372.603 Hz 1713.920 Hz
Average 2684 µs 583 µs

Variance (s2) 802.83× 10−9 8.19× 10−9

Maximum 7634 µs 1517 µs
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(a) (b)

(c) (d)

(e) (f)

Figure 8. Results for the jet transport aircraft under VFM and Approach: (a) Yaw rate. (b) Bank
angle. (c) Rudder deflection. (d) Aileron deflection. (e) Incremental rudder deflection. (f) Incremental
aileron deflection.

First, an enhancement is obtained by the implementation of the improvements to the
Hildreth’s Algorithm. This reduces its latency from 1290.78 µs to 226.75 µs. Reducing the
execution time by 1064 µs. Then, the strategy of pipelining is implemented making an
additional reduction of 1037 µs. Thus, the total execution time is reduced 2101 µs. Addition-
ally, the speedup factor is calculated according to the execution times average presented
in Table 6. Here, the speedup factor is 4.6×, (50.64% by the Hildreth’s modification and
49.35% by the pipeline implementation).

Furthermore, considering that both implementations are run in multicore execution,
the processor utilization is evaluated, Table 7.

Table 7. Processor usage comparison.

VFM Approach

CPU 0 79.22% 43.29%
CPU 1 56.07% 40.48%

As it can be seen, with the present research work, the processor usage was released
35.93% for CPU 0 (from 79.22% to 43.29%) and 15.59% for CPU 1 (from 56.07% to 40.48%).

6.2. Study Case 2—Results

Considering a prediction horizon Np = 20, Nc = 15 and a Ru = I30×30, the simulation
results are shown in Figure 9, the controlled variable, the manipulated variables, and the
incremental variable are plotted for both: the present work and the baseline algorithm.

Both implementations execute 1000 iterations, and a profile analysis is executed. The
results from the profile analysis is shown in Table 8.
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Table 8. Execution time comparison.

VFM Approach

Performance 170.736 Hz 541.7118 Hz
Average 5857 µs 1846 µs

Variance (s2) 5.46× 10−20 2.08× 10−19

Maximum 39, 660 µs 27, 093 µs

According to the implementation of the modified Hildreth’s Algorithm, latency is
considerably reduced from 3491 µs to 394 µs. Thus, the execution time is reduced 3097 µs.
Additionally, when the strategy of pipelining is implemented making an additional re-
duction of 914.1 µs. Thus, the total execution time is reduced 4011µs. Additionally, the
speedup factor is calculated according to the execution times average presented in Table 8.
Here, the speedup factor is 3.17×, (72.21% by the Hildreth’s modification and 22.79% by
the pipeline implementation).

(a) (b)

(c) (d)

(e) (f)

Figure 9. Results for the tape transport system under VFM and Approach: (a) Tape speed. (b) Tape
tension. (c) Motor voltage supply reel. (d) Motor voltage take-up reel. (e) Incremental motor voltage
supply reel. (f) Incremental motor voltage take-up reel.

Furthermore, considering that both implementations are run in multicore execution,
the processor utilization is evaluated, Table 9.

Table 9. Processor usage comparison.

VFM Approach

CPU 0 82.50% 53.49%
CPU 1 70.40% 56.84%
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As it can be seen, with the present research work, the processor usage was released
29.01% for CPU 0 (from 82.50% to 53.49%) and 13.56% for CPU 1 (from 70.40% to 56.84%).

7. Conclusions

This paper proposes a new software-based implementation for a constrained Multi-
Input-Multi-Output predictive control algorithm embedded in the NI myRIO 1900 us-
ing NI LabVIEW Real-Time Module. Based on the computer architecture concepts, a
software-based implementation is proposed. Thus, as an evaluation case, the proposed
implementation is used to control a jet transport aircraft during cruise flight.

Experimental results shows that the new software-based implementation has a good
performance regardless the computational modification effected. Additionally, compared
with the baseline algorithm implementations, there is a significant improvement on the
execution time without affecting the tracking performance for both study cases. The
proposed software-based implementation reaches a speedup factor up to 4.6× for the jet
transport aircraft and 3.17× for the tape transport system with respect to the baseline
implementation. In addition, the processor usage was released for both study cases, 35.93%
and 29.01% in CPU 0 and 15.59% and 13.56% in CPU 1, respectively. Thus, the obtained
results do benefit the implementation of MIMO MPC techniques by reducing the execution
time and the computational load.
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