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Abstract: To improve the accuracy of predicting rockburst intensity, game theory and an improved
maximum entropy-attribute measure interval model were established. First, by studying the mecha-
nism of rockburst and typical cases, rock uniaxial compressive strength σc, rock compression-tension
ratio σc/σt, rock shear compression ratio σθ/σc, rock elastic deformation coefficient Wet, and rock
integrity coefficient Kv were selected as indexes for predicting rockburst intensity. Second, by com-
bining the maximum entropy principle with the attribute measure interval and using the minimum
distance Di−k between sample and class as the guide, the entropy solution of the attribute measure
was obtained, which eliminates the greyness and ambiguity of the rockburst indexes to the maximum
extent. Third, using the compromise coefficient to integrate the comprehensive attribute measure,
which avoids the ambiguity about the number of attribute measure intervals. Fourth, from the
essence of measurement theory, the Euclidean distance formula was used to improve the attribute
identification mode, which overcomes the effect of the confidence coefficient taking on the results.
Moreover, in order to balance the shortcomings of the subjective weights of the Analytic Hierarchy
Process and the objective weights of the CRITIC method, game theory was used for the combined
weights, which balances experts’ experience and the amount of data information. Finally, 20 sets of
typical cases for rockburst in the world were selected as samples. On the one hand, the reasonableness
of the combined weights of indexes was analyzed; on the other hand, the results of this paper’s model
were compared with the three analytical models for predicting rockburst, and this paper’s model had
the lowest number of misjudged samples and an accuracy rate of 80%, which was better than other
models, verifying the accuracy and applicability.

Keywords: prediction of rockburst intensity; maximum entropy-attribute measure interval; comprehensive
attribute measure; attribute identification mode; combined weights

MSC: 28E99

1. Introduction

A rockburst is a dynamic hazard from deep rock. In high ground stress environments,
considerable energy accumulates within the rock, which is suddenly released when external
disturbances upset the equilibrium, with the characteristics of being sudden, widespread,
and uncontrollable [1,2]. As human activity continues to develop in-depth, more and more
large projects are being built in deeper areas, such as tunnels, mines, or subways. Rockburst
accidents often endanger the safety of construction personnel, equipment, and buildings
and even induce surface subsidence, earthquakes, and other disasters in serious cases [3,4].
There have been numerous cases of rockburst during construction worldwide, resulting
in significant damage: On 13 March 1989, a mining rock explosion in Merker, Germany,
triggered a 5.4 magnitude earthquake that injured three people and damaged some build-
ings [5]. In China, 186 rockbursts occurred in the 3# diversion tunnel of the Jinping II
Hydropower Station during construction in 2010–2011, including 24 strong rockbursts,
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which slowed the progress of the project and caused damage to people and equipment [6].
On 31 May 2015, a strong rockburst in a deeply buried tunnel at the Neelum-Jhelum hy-
dropower plant in Pakistan caused severe damage to the structures and TBM equipment,
taking more than six months to complete site clearance and support recovery [4,7]. From
the above accidents, it is clear that the hazards caused by rockburst are enormous. In order
to reduce the risk of rockburst, it is often controlled during construction by improving
the stress on the wall rock, improving the nature of the wall rock, and maintaining the
integrity of the wall rock by using controlled blasting techniques, water spraying, or water
injection, enhanced support or advanced support, and other technical means to control
rockburst [8,9]. In general, however, rockburst should be dealt with on a preventive basis,
and advanced rockburst prediction will reduce costs and prevent major losses, so in-depth
research into rockburst prediction is urgently needed.

The mechanisms and conditions under which rockbursts occur are not known, making
it difficult to predict them accurately [10]. Overall, the study of rockburst prediction is an
evolving process. From early empirical methods to later numerical algorithmic models,
physical experimental simulation methods, and the rapidly developing artificial intelli-
gence methods of recent years [11–13], relevant experts and scholars around the world have
conducted very intensive research. Since 1966, when Cook et al. [14,15] studied the stability
of rockburst and explored their rock mechanical behavior, the assessment and study of
rockburst have entered the methodological era. In the early stages of empirical methods,
rockburst prediction began mainly with a single index, in terms of stress intensity, brittle-
ness, energy, depth, etc. [3,13,16–18]. However, an increasing number of examples showed
that rockbursts do not occur as a result of the action of a single index [19], so a multi-factor
empirical approach to rockburst prediction emerged, such as three-factor, four-factor, five-
factor, etc. [20–22]. As research gradually progressed, the statical limitations of empirical
methods became more and more apparent [11], so researchers began to perform rockburst
prediction by physical experimental simulation methods or numerical algorithmic models,
including methods based on finite element model simulations [23], local energy release
rate simulations [24], scaled-down model simulations with the same rock material [25],
mathematical models based on uncertainty theory (fuzzy mathematical synthesis criterion
method [26], extension matter-element analysis model [27], cloud model [28–30], distance
discriminant method [31], entropy weight model [32–34], unascertained measure theory
method [4,35], attribute measure theory model [36]), set-pair analysis method based on
statistical analysis [37], etc. With the rapid spread of computer technology, artificial intel-
ligence methods such as big data, deep learning, and machine learning are widely used
in rockburst prediction, in terms of their applications in the field, specifically: ant colony
algorithms [38], hierarchical cluster analysis [39], artificial neural networks [40–42], Bayes
networks [43], particle swarm optimisation algorithms [13], classification tree models [44],
support vector machines [45], etc. For the current state of affairs, the study of rockburst
prediction mainly consists of two aspects: on the one hand, the selection of indexes that
accurately reflect the intensity of rockburst, as well as the scientific weights for the indexes;
on the other hand, based on the many methods of criteria for predicting rockburst, the study
of algorithms, models, or methods with high accuracy [46]. From the rockburst mechanism,
taking into account the mechanical and physical properties of the rock, it can be found
that the indexes for predicting rockburst have obvious roughness and ambiguity, so the
choice of index weighting method is particularly important, and a single weighting method
has very obvious shortcomings [4]. In addition, in order to deal with the uncertainty of
rockburst indexes, the algorithm model used for prediction should also have the ability to
adjust the number field and transform the indexing ambiguity.

Both maximum entropy theory and attribute measure interval theory can eliminate
the ambiguity and roughness of the data, and when used together can adjust the number
field of the indexes to better fit the set of objectives; game theory can combine multiple
methods to achieve an overall optimum by competing with each other, taking into account
the advantages and balancing the shortcomings of each. Since these methods are well
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suited for predicting rockburst, game theory and an improved maximum entropy-attribute
measurement interval model were proposed for predicting rockburst intensity in this
paper. Indexes for predicting rockburst intensity were selected, taking into account both
the mechanical and physical properties of the rock. Combining the maximum entropy
principle and the attribute measure interval theory to eliminate the greyness and ambiguity
of the rockburst index to the greatest extent, and in view of the shortcomings of the
confidence criterion identification mode, the Euclidean distance formula is used to improve
the attribute measure identification mode from the essence of the measure theory. Using
the compromise coefficient to integrate the comprehensive attribute measure avoids the
ambiguity about the number of attribute measure intervals. Using game theory, both the
subjective and objective weights of the indexes for rockburst intensity are considered
comprehensively, balancing the shortcomings of the Analytic Hierarchy Process and the
CRITIC, while taking into account experts’ experience and data information. Finally,
the prediction results of this paper’s model are compared and validated with those of other
analytical algorithmic models, proving their usability and accuracy.

2. The Model Framework Based on Maximum Entropy-Attribute Measure Interval
2.1. Overview of Subject Theory
2.1.1. Maximum Entropy Principle

In 1957, E.T. Jaynes proposed the maximum entropy principle [47], based on the
information entropy theory. If partial information about a random variable is known,
the probability distribution obtained is the most realistic when the constraints are satisfied
and the information entropy reaches its maximum value. The probability distribution
that is obtained from the maximum entropy principle for a variable has the characteris-
tics of less subjectivity and high fitting accuracy and has been widely used in various
disciplines [48,49]. The equation is shown as follows:

max K(x) = −
∫

U y(x) ln y(x) dx∫
U y(x) dx = 1∫
U y(x)wi(x) dx = α(i)

(1)

where K(x) denotes the information entropy of the variable x, y(x) denotes the probability
density function of the variable x, α(i) denotes the i-order moments of origin of x, wi(x) is
the weight function of x, and U denotes the whole set of values taken by the variable x.

2.1.2. Attribute Measure Interval Theory

Attribute measure interval theory is a mathematical method for analyzing the metric
problem of qualitative descriptions, the relationship between different qualitative descrip-
tions, and the relationship between the corresponding metrics on the basis of attribute
sets, attribute test spaces, and ordered partition classes, specifically studying the relevant
criteria, theoretical models and applications for attribute identification [50–52]. Generally
speaking, they are divided into partition sets and orderly partition sets of attribute intervals
as well as single index attribute measure intervals, which are described as follows:

1. Partition sets and orderly partition sets

Assuming that C is a certain class of attribute space in a variable set X, C1, C2, . . . , CK

denotes the set of attribute intervals of C. When C =
K
∪

i=1
Ci, and Ci∩Cj = ∅(i 6= j),

{C1, C2, . . . , CK} is a partitioned set of C. If C1 < C2 < . . . < CK or C1>C2> . . . >CK,
then {C1, C2, . . . , CK} is an orderly partitioned set of C. Specifically, if there are n samples
xi(i = 1, 2, . . . , n) in X, each with m indexes Ij(j = 1, 2, . . . , m), then the jth index value of
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the ith sample is denoted as xij. When the classification criteria for the indexes of X are
known, the classification matrix is obtained as follows:

C1 C2 . . . CK
I1 [a11, b11] [a12, b12] . . . [a1K, b1K]
I2 [a21, b21] [a22, b22] . . . [a2K, b2K]
...

...
... . . .

...
Im [am1, bm1] [am2, bm2] . . . [amK, bmK]

 (2)

where
[

ajk, bjk

]
denotes the kth partition set of the jth index on C and satisfies ajk ≤ bjk,

k = 1, 2, . . . , K.

2. Attribute measure interval of a single index

If xij in the variable set X has an orderly partition set Ck, the attribute measure interval
of Ck is denoted as: [

τijk

]
=
[
τijk, τijk

]
, (xij ∈ Ck) (3)

where τijk, τijk, respectively, denotes the lower bound attribute measure and the upper
bound attribute measure of xij on the orderly partitioned set Ck.

Assuming that the lower bound standard matrix is A =
[

ajk

]
m×K

and the upper bound

standard matrix is B =
[
bjk

]
m×K

, then for the sample matrix X =
[
xij
]

n×m, the intervals of

the attribute measures for n samples for K classes are as follows:
I I I . . . K

x1
[
τ11, τ11

] [
τ12, τ12

]
. . .

[
τ1K, τ1K

]
x2

[
τ21, τ21

] [
τ22, τ22

]
. . .

[
τ2K, τ2K

]
...

...
... . . .

...
xn

[
τn1, τn1

] [
τn2, τn2

]
. . .

[
τnK, τnK

]

 (4)

where τik is the lower bound attribute measure interval of sample xi for class k, with the

restriction that
K
∑

k=1
τik = 1, τik ∈ [0, 1], and τik is the upper bound attribute measure interval,

with the restriction that
K
∑

k=1
τik = 1, τik ∈ [0, 1].

2.2. Establishment of the Relative Affiliation Matrix
2.2.1. Boundaries of Class Intervals

If the index of a sample is divided into 1, 2, . . . , K classes, then defining class 1 as the
left pole of the affiliation reference system, its relative affiliation is rj1 = 0, and class K as the
right pole of the reference system, its relative affiliation is rjK = 1. For class k, the equations
for the relative affiliation rjk of class k for the lower bound ajk, and the relative affiliation rjk

of class k for the upper bound bjk in respect of an index xij are as follows: rjk =
ajk−aj1
ajK−aj1

rjk =
bjk−bj1
bjK−bj1

(5)

By calculating, the lower bound standard matrix A =
[

ajk

]
m×K

and the upper

bound standard matrix B =
[
bjk

]
m×K

are transformed into the relative affiliation matrices

R =
[
rjk

]
m×K

and R =
[
rjk

]
m×K

, respectively.
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2.2.2. The Data from Actual Measurements

Usually, each index of the sample xi will have an actual measured engineering value
in the case, and the attribution of the index value to a certain class partition set means that
it is subordinated to that class. Because of the ambiguity and grey character of the sample
objects, in attribute measure interval theory, the relative affiliation between the index value
xij and the class partition set

[
ajk, bjk

]
should also be calculated, and the equation for

calculating the relative affiliation fij of xij to the lower bound ajk [47,53] is as follows:

fij =


0, xij < aj1∣∣∣ xij−aj1

ajK−aj1

∣∣∣, aj1 ≤ xij ≤ ajK

1, xij > ajK

I f positive indicator (6)

fij =


0, xij > aj1∣∣∣ xij−aj1

ajK−aj1

∣∣∣, ajK ≤ xij ≤ aj1

1, xij < ajK

I f reverse indicator (7)

The equation for calculating the relative affiliation fij of xij to the upper bound bjk is
as follows:

fij =


0, xij < bj1∣∣∣ xij−bj1

bjK−bj1

∣∣∣, bj1 ≤ xij ≤ bjK

1, xij > bjK

I f positive indicator (8)

fij =


0, xij > bj1∣∣∣ xij−bj1

bjK−bj1

∣∣∣, bjK ≤ xij ≤ bj1

1, xij < bjK

I f reverse indicator (9)

Thus, the sample matrix X =
[
xij
]

n×m becomes a relative affiliation matrix F =
[

fij

]
n×m

for the lower bound standard matrix of A =
[

ajk

]
m×K

and a relative affiliation matrix

F =
[

fij

]
n×m

for the upper bound standard matrix of B =
[
bjk

]
m×K

.

2.3. Calculation of Attribute Measure Intervals
2.3.1. Attribute Measures for Class Interval Boundaries

For the classification of samples, the key question is whether there is an exact fit
between the sample to be evaluated and the evaluation class. The ambiguity of the values
in the sample indexes, as well as the class, determine together that there is a difference
between the sample and the evaluation class [32,54,55]. The difference Di−k between a
sample xi and a class Ck is defined in terms of the generalized weight distance, shown in
the equation as follows:

Di−k = τik

m

∑
j=1

(ωj

∣∣∣ fij − rjk

∣∣∣) (10)

where ωj denotes the weight of the jth index.

Since the sample matrix X =
[
xij
]

n×m becomes F =
[

fij

]
n×m

and F =
[

fij

]
n×m

,

and rjk is also transformed into relative affiliation with respect to the upper or lower bound,
Equation (10) is transformed into the following equation:

Di−k = τik
m
∑

j=1
(ωj

∣∣∣ fij − rjk

∣∣∣)
Di−k = τik

m
∑

j=1
(ωj

∣∣∣ fij − rjk

∣∣∣) (11)
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Clearly, the class of a sample is most accurate when the sum of the differences Di−k
between the entire sample and the class is the smallest. According to the maximum entropy
principle, in order to achieve the best results, the maximal information entropy should be
the goal to determine, Equation (1) is transformed into K(x) = −∑

U
y(x) ln y(x) according

to the principle of definite integral area, then the information entropy maximum condition

maxK =
n
∑

i=1
(−

K
∑

k=1
τik ln τik) [54]. By considering the minimal sum of Di−k and the maximal

information entropy, and using the Lagrangian function to deal with the multi-objective
problem [56], the entropy equation for calculating the attribute measure was obtained
as follows:

τik =
e
[−θ

m
∑

j=1
(ωj | fij−rjk |)]

K
∑

k=1
e
[−θ

m
∑

j=1
(ωj | fij−rjk |)]

(12)

where θ is the entropy-weighted constant, which generally takes the value θ = 10 [47,55].
The attribute measure of the upper bound and the attribute measure of the lower

bound are then calculated as follows:

τik =
e
[−10

m
∑

j=1
(ωj | fij−rjk |)]

K
∑

k=1
e
[−10

m
∑

j=1
(ωj | fij−rjk |)]

τik =
e
[−10

m
∑

j=1
(ωj | fij−rjk |)]

K
∑

k=1
e
[−10

m
∑

j=1
(ωj | fij−rjk |)]

(13)

2.3.2. Comprehensive Attribute Measure

After obtaining the lower bound attribute measure τik and the upper bound attribute
measure τik of the sample xi, the compromise coefficient ε of the compromise decision
method is used as a transformed coefficient to transform the attribute measure interval into
the averaged attribute measure value of the sample, avoiding ambiguity introduced by
the number of intervals used to calculate the attribute measure [54,55,57]. The averaged
attribute measure is calculated as follows:

τik = ετik + (1− ε)τik (14)

where ε is the transformed coefficient of the attribute measure interval, and ε ∈ (0, 1),
which is generally taken as the value ε = 0.5 in the averaging calculation.

2.4. Improvement of Attribute Recognition Mode Based on Euclidean Distance Formula

In general, the confidence criterion is used as an attribute identification for measure the-
ory, and the accuracy depends strongly on the confidence level λ. Normally, the confidence
level λ is taken in [0.5, 1.0], and different values will affect the results [52,57,58]. Essentially,
it is identifying the “distance” between the attribute measure τik and the class partition
set Ck. The smaller the distance, the more the sample belongs to that class. The Euclidean
distance formula is therefore used as the attribute identification equation, as follows:

dC1 =
√
(τi1 − 1)2 + (τi2 − 0)2 + . . . + (τiK − 0)2

dC2 =
√
(τi1 − 0)2 + (τi2 − 1)2 + . . . + (τiK − 0)2

...

dCK =
√
(τi1 − 0)2 + (τi2 − 1)2 + . . . + (τiK − 1)2

(15)
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The class of the sample is determined according to the size relationship of dCk , which
is Cxi = min dCk .

3. Combined Weights Based on Game Theory

From Section 2.3.1, it is clear that the prediction of rockburst intensity requires index
weights as important parameters. The index weights for rock burst not only focus on the
data from the sample but also take into account experts’ experience, but a single weighting
method cannot fully reflect both aspects. Therefore, the subjective weights are reflected
by the Analytic Hierarchy Process, the objective weights are reflected by the CRITIC
method, and game theory is used to balance the shortcomings of both to obtain reasonably
combined weights.

3.1. The Analytic Hierarchy Process for Weighting

The Analytic Hierarchy Process (AHP) was developed by Saaty [59] and has been
widely used in the assignment of indexes, evaluation of schemes, and strategy research [60].
It is particularly useful when the target factors lack the necessary data and the importance
of the index needs to be judged by the experience of the decision maker. The main processes
are: building a recursive hierarchical model; constructing a judgement matrix; calculating
the weight vector; and testing for consistency, where the 1–9 scale is used for the judgement
matrix. In the consistency test, the corrected values of the compatibility indicators in
different dimensions are selected as in Table 1.

Table 1. Dimensions and corresponding RI values.

Dimensions 1 2 3 4 5 6 7 8 9

RI 0 0 0.58 0.9 1.12 1.24 1.32 1.41 1.45

3.2. The CRITIC Weighting Method

The CRITIC weighting method is a comprehensive measure of objective weights of
indexes based on the comparative strength of the evaluation indexes and the conflicting
nature of the indexes, taking into account the size of the variability of the indexes while
considering the correlation between the indexes [61,62]. In research on predicting rockburst
intensity, the CRITIC weighting method can make full use of data information from sample
indexes. The specific calculation steps are as follows:

Step 1: The data matrix and its standardization

Assuming that there are i schemes, each with j indexes, the initial matrix of indexes X
can be formed as follows:

X =


x11 x12 . . . x1j
x21 x22 · · · x2j

...
...

...
...

xi1 xi2 · · · xij

 (16)

where xij denotes the value of the jth index for the ith sample.
Assuming that xmax = max

1≤i≤a
xij, xmin = min

1≤i≤a
xij, the data in matrix X is processed

positively or inversely with the equation as follows:

zij =
xij − xmin

xmax − xmin
I f positive index (17)

zij =
xmax − xij

xmax − xmin
I f inverse index (18)
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Next, the matrix X is standardized, and according to Equation (17) or Equation (18),
the standardized matrix Z can be obtained as follows:

Z =


z11 z12 . . . z1j
z21 z22 · · · z2j

...
...

...
...

zi1 zi2 · · · zij

 (19)

Step 2: Calculation of the index variability

The average of the jth index is calculated as follows:

−
z j =

n
∑

i=1
zij

n
(20)

The standard deviation Sj is used to represent the fluctuation of variance within the
jth index and is calculated as follows:

Sj =

√√√√√ n
∑

i=1

(
zij −

−
zj

)2

n− 1
(21)

where j is taken to be {1, 2, . . . , p}.
Step 3: Calculation of the indexes conflicting

The correlation coefficient between any two indexes j and k is calculated with the
equation as follows:

rjk =

n
∑

i=1

(
xij −

−
xj

)(
xik −

−
xk

)
√

n
∑

i=1

(
xij −

−
xj

)2
√

n
∑

i=1

(
xik −

−
xk

)2
(22)

where i = {1, 2, . . . , n}, j = {1, 2, . . . , p}.
Then, the conflicting correlation coefficients for the indexes are calculated as follows:

Rj =
p

∑
k=1

(
1− rjk

)
(23)

Step 4: Calculation of index weighting

The information content of the index is calculated using the following equation:

Cj = Sj × Rj (24)

Then the weight of the jth index is calculated as follows:

Wj =
Cj

p
∑

j=1
Cj

(25)

3.3. Combined Weights Based on Game Theory

The combined weights are based on game theory and are a combination of multiple
methods of determining weights. On the one hand, it reduces the loss of information
caused by a single weighting; on the other hand, it can integrate the subjective experience
of experts, so as to obtain a more objective and comprehensive index weighting [63].
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Step 1: Assuming that the weights of n indexes are calculated by x (x ≥ 2) methods, then
the set of weights ωi = {ωi1, ωi2, . . . , ωim} (i = 1, 2, . . . , n, ), can be formed and the linear
combination of vectors is denoted as:

ω =
n

∑
i=1

δiω
T
i (26)

where ωT
i is the basic weight vector, δi is a linear combination of coefficients for different

weighting methods, and has
n
∑

i=1
δi = 1.

Step 2: Optimization of linear combination coefficients. The purpose of this step is to
minimize the deviation between the weights calculated by the following equation:

min

[
n

∑
i=1

δiω
T
i −ωT

j

]2

(27)

where i = {1, 2, . . . , n}, j = {1, 2, . . . , n}.
According to the matrix differentiation property, the optimal first-order derivative of

Equation (27) is: ω1ωT
1 · · · ω1ωT

n
...

. . .
...

ωnωT
1 · · · ωnωT

n


δ1

...
δn

 =

ω1ωT
1

...
ωnωT

n

 (28)

δi = {δ1, δ2, . . . , δn} is calculated from Equation (28). The equation for standardizing
δi is as follows:

δ∗i =
δi

n
∑

i=1
δi

(29)

where δ∗i is the linear combination coefficient of the different weighting methods after optimisation.

Step 3: Combined weights obtained from game theory are as follows:

ω∗ =
n

∑
i=1

δ∗i ωT
i (30)

4. Prediction of Rockburst Intensity
4.1. The Framework of the Model

In this study, the prediction of rockburst intensity is based on game theory and an
improved maximum entropy-attribute measure interval model. The overall framework of
the model consists of the following main components:

(1) Studying the mechanism of rockburst occurrence, selecting reasonable indexes for
rockburst prediction, and analysing the number field to measure relationships be-
tween the indexes and the rockburst class.

(2) Choosing typical rockburst cases from around the world as the data source for the
model study, establishing the measurement relationship between indexes and inten-
sity, and processing the data using the maximum entropy-attribute measurement
interval in accordance with the model’s requirements.

(3) Calculating the subjective weights of the indexes by the Analytic Hierarchy Process
method and the objective weights by the CRITIC method based on the data of the
case, and proposing the combined weighting method based on game theory, taking
into account the subjective advantages and objective advantages.

(4) Combining the combined weights to calculate the attribute measures of the boundary
for the sample and transforming the attribute measures of the boundary into the compre-
hensive attribute measures of the sample by means of compromise decision coefficient.
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(5) Based on the improved attribute identification mode, the Euclidean distance formula
was used to determine the class of intensity for the rockburst. By summarising
elements of the model framework, the overall flow of the framework is made as
shown in Figure 1.

4.2. Research on the Application of Model
4.2.1. The Indexes of the Rockburst and Intensity Classification Standard

The prediction of rockburst intensity is based on the study of the mechanism of rock-
burst occurrence. The mechanism and induced conditions for the occurrence of rockburst
are still unclear, generally focusing on stress indexes and rock property parameters as the
main objects of study. From the many research results [3,4,46,64–68], the stress indexes of
rockburst prediction are mainly uniaxial compressive strength of rock σc, shear compres-
sion ratio of rock σθ/σc, compression-tension ratio of rock σc/σt, and elastic deformation
coefficient of rock Wet. Rock property parameters are mainly studied for the integrity
coefficient of rock Kv. In this study, five indexes were selected as indexes for predicting
rockburst intensity. By consulting the relevant literature, the single index of rockburst inten-
sity classification criteria are listed as shown in Table 2, and the single index measurement
is shown in Figure 2.

Table 2. Single index classification standard for rockburst intensity.

Classification Behavior σc [64–68] σc/σt [64–68] σθ/σc [64–68] Wet [64–68] Kv [64–68]

I No rockburst 0~80 40~50 0~0.3 0~2 0~0.55
II Low rockburst 80~120 26.7~40 0.3~0.5 2~4 0.55~0.65
III Medium rockburst 120~180 14.5~26.7 0.5~0.7 4~6 0.65~0.75
IV Heavy rockburst 180~320 10~14.5 0.7~1.0 6~20 0.75~1.0

4.2.2. Calculation of Comprehensive Attribute Measures for Case Samples

In order to verify the accuracy of the game theory and improved maximum entropy-
attribute measure interval model for predicting rockburst intensity, 20 groups of typical
rockburst cases in the world were selected as samples [4,31–35,69,70], and the data of
the cases are listed as shown in Table 3 according to the selected indexes for predicting
rockburst intensity. Sample 1 was used for model validation, and the calculation process for
the remaining 19 groups of samples was consistent with that of Sample 1 and is presented
in the analysis of results.
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Figure 1. Model framework for predicting rockburst intensity.
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Figure 2. Single index measurement function for rockburst. (a) Measurements of rock uniaxial
compressive strength. (b) Measurements of rock compres-sion-tension ratio. (c) Measurements of rock
shear compression ratio. (d) Measurements of rock elastic deformation coefficient. (e) Measurements
of rock integrity coefficient.
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Table 3. Actual data for the rockburst intensity index of samples.

Sample
Actual Data for Rockburst Indexes

σc σc/σt σθ/σc Wet Kv

1 148.4 17.5 0.45 5.1 0.68

2 181 21.7 0.42 4.5 0.67

3 150 27.8 0.23 3.9 0.59

4 165 17.5 0.38 4.5 0.56

5 115 23 0.10 4.7 0.52

6 170 15 0.53 6.5 0.7

7 180 21.7 0.39 5 0.73

8 78.7 29.7 0.41 3.3 0.64

9 140 26.9 0.44 5.5 0.78

10 120 18.5 0.81 3.8 0.68

11 115 23 0.10 5.7 0.34

12 82.4 17.5 0.54 6.6 0.61

13 236 28.4 0.38 5 0.58

14 130 19.7 0.38 5 0.69

15 170 15.04 0.53 9 0.82

16 140 17.5 0.77 5.5 0.86

17 175 24.14 0.36 5 0.92

18 180 21.69 0.42 5 0.87

19 180 21.69 0.32 5 0.79

20 130 21.67 0.38 5 0.78

(1) Construction of the relative affiliation matrix

According to Equation (2) and Table 2, the classification matrix of sample 1 is presented
as follows E:

E =



I I I I I I IV
σc [0, 80] [80, 120] [120, 180] [180, 320]
σc/σt [40, 50] [26.7, 40] [14.5, 26.7] [10, 14.5]
σθ/σc [0, 0.3] [0.3, 0.5] [0.5, 0.7] [0.7, 1]
Wet [0, 2] [2, 4] [4, 6] [6, 20]
Kv [0, 0.55] [0.55, 0.65] [0.65, 0.75] [0.75, 1]

 (31)

According to the index values of Sample 1 and the single index measure function in
Figure 2, the lower boundary standard matrix A and the upper boundary standard matrix
B are, respectively, transformed into the corresponding relative affiliation matrices R1 and
R1 as follows:

R1 =



I I I I I I IV
σc 0 0.44 0.67 1

σc/σt 0 0.44 0.85 1
σθ/σc 0 0.43 0.71 1
Wet 0 0.33 0.67 1
Kv 0 0.73 0.87 1

 R1 =



I I I I I I IV
σc 0 0.17 0.42 1

σc/σt 0 0.28 0.66 1
σθ/σc 0 0.29 0.57 1
Wet 0 0.11 0.22 1
Kv 0 0.22 0.44 1

 (32)

Following Equations (6)–(9) and the actual data of the rock burst index for sample 1,
the relative affiliation matrices F1 and F1 of the actual measured values of sample 1 with
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respect to the lower boundary standard matrix A and the upper boundary standard matrix
B were calculated as follows:

F1 =


σc 0.82

σc/σt 0.75
σθ/σc 0.64
Wet 0.85
Kv 0.91

 F1 =


σc 0.29

σc/σt 0.92
σθ/σc 0.21
Wet 0.17
Kv 0.29

 (33)

(2) Combined weights of the indexes

Assuming that the set of indicator values obtained by the AHP method is W1 =
{W1.11, W1.12, . . . , W1.45} and the set of indicator values obtained by the CRITIC method
is W2 = {W2.11, W2.12, . . . , W2.45}, the combination weights can be obtained from
Equation (30) as ω∗ = δ∗1ωT

1 + δ∗2ωT
2 , and there is a set of equations reflecting the re-

lationship between the set of indicators and δi is as follows:{
δ1ω1ωT

1 + δ2ω1ωT
2 = ω1ωT

1
δ2ω2ωT

1 + δ2ω2ωT
2 = ω2ωT

2
(34)

By calculating this, δ1 = 0.8198 and δ2 = 0.2064 are obtained. Normalising δ1 and δ2
results in δ∗1 = 0.7989 and δ∗2 = 0.2011. The weights of the rock burst indexes are shown
in Table 4.

Table 4. Index weights for rockburst intensity.

Indexes AHP CRITIC Game Theory

σc 0.112 0.235 0.137
σc/σt 0.257 0.223 0.250
σθ/σc 0.221 0.192 0.215
Wet 0.288 0.168 0.264
Kv 0.122 0.182 0.134

(3) Calculation of attribute measurement intervals

The upper boundary attribute measure and lower boundary attribute measure for
sample 1 are calculated using Equations (13), (32), and (33):

τ11 = 0.00084 τ11 = 0.06692
τ12 = 0.07357 τ12 = 0.40387
τ13 = 0.68162 τ13 = 0.52041
τ14 = 0.24398 τ14 = 0.00881

 (35)

Next, from Equation (14), the comprehensive attribute measure for sample 1 is calcu-
lated as follows:

τ11 = 0.03388
τ12 = 0.23872
τ13 = 0.60102
τ14 = 0.12641

 (36)

4.2.3. Determination of Rockburst Intensity Class

According to the description in Section 2.4, the partition set Ci for each class is set
as follows:

C1 = [1, 0, 0, 0]
C2 = [0, 1, 0, 0]
C3 = [0, 0, 1, 0]
C4 = [0, 0, 0, 1]

 = Ci (37)
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Then, the results of the Euclidean distance calculation for sample 1 are shown below:

dc11 =
√
(0.03388− 1)2 + (0.23872− 0)2 + (0.60102− 0)2 + (0.12641− 0)2 = 1.16944

dc12 =
√
(0.03388− 0)2 + (0.23872− 1)2 + (0.60102− 0)2 + (0.12641− 0)2 = 0.97872

dc13 =
√
(0.03388− 0)2 + (0.23872− 0)2 + (0.60102− 1)2 + (0.12641− 0)2 = 0.48301

dc14 =
√
(0.03388− 0)2 + (0.23872− 0)2 + (0.60102− 0)2 + (0.12641− 1)2 = 1.08744


(38)

Comparing the distance results for each class yields: dC13 < dC12 < dC14 < dC11 ,
therefore the comprehensive attribute measure is closest to Class III, predicting the intensity
class for Sample 1 rockburst index conditions to be III.

4.3. Analysis of Results

(1) Analysis for reasonableness of indexes

According to the weights of the three assignment methods listed in Table 4, the weights
of the five indexes reflecting the rock burst intensity are plotted as shown in Figure 3.
Analysis of the distribution of the index weights in the graph reveals the following results:

a. The difference between subjective weights and objective weights for the same index
is large, suggesting that a single weighting method is not scientific in the study of
rockburst prediction. This difference could significantly affect the accuracy of the
prediction results.

b. The different focus of weighting in the Analytic Hierarchy Process and CRITIC
methods leads to a significant difference in the extent to which information is used
in the weighting process.

c. Based on game theory, the combined weights balance the shortcomings of the two
single weighting methods, and Figure 4 shows that the overall distribution of the
combined weights is more even, taking into account both experts’ experience and
objective data information.

(2) Comparison with other model results

According to the model steps of Sample 1, the remaining 19 sets of rockburst case data
are calculated. The game theory and an improved maximum entropy-attribute measure
interval model for predicting rockburst intensity (abbreviated in tables and figures as the
IME-AMI model) are compared with the fuzzy comprehensive evaluation model result,
matter-element extension analysis model result, uncertainty measurement model result,
and the actual situation for validation, as shown in Table 5.

Calculating the accurate judgments, misjudgments, and inaccurate judgments of each
model in predicting rockburst intensity is shown in Table 6. The game theory and an
improved maximum entropy-attribute measure interval model for predicting rockburst
intensity present better results in terms of accuracy, with 80% accuracy of prediction results
for 20 sets of samples; 70% accuracy of prediction results for a fuzzy comprehensive evalu-
ation model; 60% accuracy of prediction results for a matter-element extension analysis
model; and 70% accuracy of prediction results for the uncertainty measurement model.
The model in this paper has a higher accuracy rate, with more cases accurately judged than
other models, and the number of inaccurate and misjudged cases is kept at a low level,
indicating that this rockburst intensity model is more accurate and reliable in application.
For both inaccurate and misjudged cases, the predicted rockburst results of this model are
higher than the actual classes, which means more guaranteed safety if rockburst accidents
are prevented according to the predicted results of this model, as shown in Figure 5.
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Figure 3. Index weight distribution of rockburst intensity.
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Table 5. Statistics on the predicted result of the case sample.

Sample Actual Class

Predicted Result (Rockburst Intensity Class)

IME-AMI Model Fuzzy Comprehensive
Evaluation

Matter-Element
Extension Analysis

Uncertainty
Measurement Model

1 III III III III III

2 III III III III III

3 I II ∆ II I II ∆

4 III III Not unique ∆ II ∆ III

5 I II~III ∆ I I II ∆

6 III~IV III • III~IV III • III~IV

7 III III III III III

8 II II III ∆ III ∆ II

9 III III III~IV • IV ∆ IV ∆

10 III III III~IV • III III

11 I III ∆ I I I

12 III III III~IV • III II ∆

13 III III III III II ∆

14 III III III III III

15 III III III III~IV • III

16 III III IV ∆ III~IV • IV ∆

17 III III III III III

18 III III III No result ∆ III

19 III III III III III

20 III III III No result ∆ III

In the table, ∆ indicates a misjudgement and • indicates an inaccurate judgement.

Table 6. Rockburst prediction situation.

Sample IME-AMI Model Fuzzy Comprehensive
Evaluation

Matter-Element
Extension Analysis

Uncertainty
Measurement Model

Accurate (1.0) 16 14 12 14

Inaccurate (0.5) 1 3 3 0

Misjudged (0) 3 3 5 6

Accuracy 80% 70% 60% 70%
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Figure 5. Comparison of prediction results of different models.

5. Conclusions

(1) By using the maximum entropy-attribute measure interval model for predicting rock-
burst intensity, the greyness and ambiguity of index data are eliminated to the greatest
extent. Establishing a correspondence between the prediction of rockburst intensity
and the partition set of attribute measures, enabling the unification of rockburst pre-
diction and intensity class. Using a compromise decision coefficient integrates the
upper and lower boundary of the attribute measure, avoiding the roughness of the
numerical interval in the form of the comprehensive attribute measure.

(2) Starting from the principles of measure theory, the Euclidean distance formula is used
to improve the attribute measure recognition mode, and the new measure recognition
mode overcomes the shortcomings of the original confidence criterion and improves
the accuracy.

(3) By studying the mechanism of rockburst and typical cases around the world, five in-
dexes (uniaxial compressive strength σc, shear compression ratio σθ/σc, compression-
tension ratio σc/σt, elastic deformation coefficient Wet, and integrity coefficient Kv) are
identified for the prediction of rockburst intensity. Establishing the measure matrix of
indexes and partition set of classes, makes the indexes fit the model better. By balanc-
ing the shortcomings of the subjective weights of the Analytic Hierarchy Process and
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the objective weights of the CRITIC with game theory, the final combined weights
take into account the advantages of both types of single index weighting methods.

(4) Selecting 20 sets of typical rockburst cases in the world, the results of the game theory
and an improved maximum entropy-attribute measure interval model for predicting
rockburst intensity are compared with the results of three analytical rockburst predic-
tion models, confirming that the present model is better than the other three models
both in terms of accuracy and applicability.
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Nomenclature

σc Rock uniaxial compressive strength
σc/σt Rock compression-tension ratio
σθ/σc Rock shear compression ratio
Wet Rock elastic deformation coefficient
Kv Rock integrity coefficient
Di−k is the Generalized weight distance between a sample and a class
AHP Analytic Hierarchy Process
CRITIC is an objective weights method
X is a variable set of rockburst
C is a certain class of attribute space
Ck is an orderly partition set
Ij is jth rockburst index
τik is the attribute measure of the lower bound
τik is the attribute measure of the upper bound
τik is comprehensive attribute measure
rjk is the relative affiliation of class k for the lower bound

rjk is the relative affiliation of class k for the upper bound
ajk is the lower bound of class k
bjk is the upper bound of class k
fij is the relative affiliation to the lower bound

fij is the relative affiliation to the upper bound
ε is the compromise coefficient
λ is the confidence level
A is the lower bound standard matrix
B is the upper bound standard matrix
R is the relative affiliation matrix of lower bound A
R is the relative affiliation matrix of upper bound B
F is a relative affiliation matrix of lower bound A for X
F is a relative affiliation matrix of upper bound A for X
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