
Citation: Bonilla-Nadal, P.; Cano, A.;

Gómez-Olmedo, M.; Moral, S.;

Retamero, O.P. Using Value-Based

Potentials for Making Approximate

Inference on Probabilistic

Graphical Models. Mathematics 2022,

10, 2542. https://doi.org/10.3390/

math10142542

Academic Editors: Carmen Lacave

and Ana Isabel Molina

Received: 13 June 2022

Accepted: 14 July 2022

Published: 21 July 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

mathematics

Article

Using Value-Based Potentials for Making Approximate
Inference on Probabilistic Graphical Models
Pedro Bonilla-Nadal † , Andrés Cano † , Manuel Gómez-Olmedo *,† , Serafín Moral †

and Ofelia Paula Retamero †

Computer Science and Artificial Intelligent Department, University of Granada, 18071 Granada, Spain;
pedrobn@ugr.es (P.B-N.); acu@decsai.ugr.es (A.C.); smc@decsai.ugr.es (S.M.); oretamero@decsai.ugr.es (O.P.R.)
* Correspondence: mgomez@decsai.ugr.es; Tel.: +34-958248487
† These authors contributed equally to this work.

Abstract: The computerization of many everyday tasks generates vast amounts of data, and this
has lead to the development of machine-learning methods which are capable of extracting useful
information from the data so that the data can be used in future decision-making processes. For a
long time now, a number of fields, such as medicine (and all healthcare-related areas) and education,
have been particularly interested in obtaining relevant information from this stored data. This interest
has resulted in the need to deal with increasingly complex problems which involve many different
variables with a high degree of interdependency. This produces models (and in our case probabilistic
graphical models) that are difficult to handle and that require very efficient techniques to store and
use the information that quantifies the relationships between the problem variables. It has therefore
been necessary to develop efficient structures, such as probability trees or value-based potentials, to
represent the information. Even so, there are problems that must be treated using approximation since
this is the only way that results can be obtained, despite the corresponding loss of information. The
aim of this article is to show how the approximation can be performed with value-based potentials.
Our experimental work is based on checking the behavior of this approximation technique on several
Bayesian networks related to medical problems, and our experiments show that in some cases there are
notable savings in memory space with limited information loss.

Keywords: probabilistic graphical models; bayesian networks; value-based potentials; approximate
inference; medical applications

MSC: 68T37; 62C10; 62F15

1. Introduction

Probabilistic Graphical Models (PGMs) [1–3] are a powerful framework to encode prob-
lems under uncertainty. PGMs are able to combine graphs and probability theory to com-
pactly represent the probabilistic dependency between random variables. Any PGM can be
defined by its two components:

• Qualitative component, given by a directed, acyclic graph (DAG), where each node
represents a random variable, and the presence of an edge connecting two of these
implies mutual dependency.

• Quantitative component, given by a set of parameters that quantify the degree of
dependence between the variables.

One of the most interesting properties of PGMs over discrete domains such as Bayesian
networks (BNs) [4,5] and influence diagrams (IDs) [6,7] is the efficient representation of joint
probability distributions, and traditionally marginal or conditional probability distributions
and utility functions are represented with tables or unidimensional arrays (1DA in general).
However, as the size of 1DAs grows exponentially with the number of variables, an exact

Mathematics 2022, 10, 2542. https://doi.org/10.3390/math10142542 https://www.mdpi.com/journal/mathematics

https://doi.org/10.3390/math10142542
https://doi.org/10.3390/math10142542
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com
https://orcid.org/0000-0003-0538-2792
https://orcid.org/0000-0001-7650-1221
https://orcid.org/0000-0002-3817-8723
https://orcid.org/0000-0002-5555-0857
https://orcid.org/0000-0002-6521-470X
https://doi.org/10.3390/math10142542
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com/article/10.3390/math10142542?type=check_update&version=2

Mathematics 2022, 10, 2542 2 of 27

representation might be arduous or even impossible (due to memory space restrictions).
Even in cases where problem representation using 1DA is possible, it may be difficult to
perform subsequent inference tasks as new potentials may appear larger than the initial ones.

This difficulty originates some works focused on improving the way of performing
operations with probability distribution and utility functions as a way to alleviate the
computational cost in complex models [8]. And another approaches have been explored
over the years in the search for efficient alternative representations to 1DAs, which are able
to work with complex models. Successful examples are standard and binary probability
trees (PTs and BPTs) [9–13]. Despite the advantages that these offer compared to the use of
1DA, they also present certain limitations, and not all context-specific independences can
result in smaller representations and therefore in memory space savings.

Another very well-studied strategy for saving memory space is to approximate the
structures, such as in PTs, by accepting a loss of information [14,15]. This operation is called
pruning and the PTs which have been pruned are called pruned probability trees (PPTs). This
operation consists of replacing certain contiguous values with their average value, always
remembering to select those values that produce the smallest information loss.

Value-based potentials (VBPs) [16] were recently introduced. These structures take advan-
tage of the repetition of values, regardless of the order in which they appear. VBPs were
tested with several BNs included in the bnlearn repository [17,18] and the UAI inference
competitions [19,20]. The paper compares the memory spaces required for representing
potentials with 1DAs, PTs, PPTs, and VBPs. The comparison demonstrates that there is an
overall reduction in memory space when VBPs are used. Their use is justified by observing
that, in a large number of BNs representing real-world problems (in the medical field, for
example), many repeated values appear in the potentials which quantify the probabilistic
relationships. For example, all those impossible events will have been assigned a probability
value equal to 0. Another source of repetition can occur in situations in which the models
include subjectively assigned probabilities through interviews with experts. Normally, the
assigned probabilities are reduced to a very limited set of values (for example, 0.25, 0.4, etc.,
and it is difficult for an expert to indicate that the probability of an event occurring is 0.23678).

Taking into account all of the previously mentioned work, the aim of our study will be
to make VBPs even more compact and to define an algorithm to approximate them. Such
an algorithm will be an iterative process, and each step will keep the approximated VBP
with the minimum Kullback–Leibler divergence in relation to the original one, thereby
minimizing loss of information.

This paper is organized as follows: Section 2 defines some necessary basic concepts
and notation; Section 3 contains the theory about classical structures and alternative VBPs;
Section 4 introduces the prerequisites for the approximation of VBPs and the approximation
algorithm itself; Section 5 studies the empirical evaluation of the algorithm by applying
it to real BNs; and finally Section 6 outlines our conclusions and presents our future lines
of research.

2. Basic Definitions and Notation

Let X = {X1, X2, . . . , XN} be a finite set of discrete random variables. For the sake
of simplicity, the states of each variable Xi (its domain) are assumed to be integers and
represented as ΩXi . The values for Xi are noted in lowercase ΩXi = {xi,j : j = 1, 2, . . . , ki}.
|ΩXi | denotes the cardinality of the variable, i.e., the number of elements in its domain
(|ΩXi | = ki).

The Cartesian product ∏Xi∈X ΩXi will be denoted as ΩX and its elements, called config-
urations of X, are defined by x := {X1 = x1, X2 = x2, . . . , XN = xn}, or x := {x1, x2, . . . , xn}
(if the variables are obvious from the context). A function defined over a subset of variables
Y ⊆ X and taking values in R+

0 will be termed as a potential φ(Y).

Mathematics 2022, 10, 2542 3 of 27

Example 1. Let us consider the variables X1, X2, and X3, with 2, 3, and 2 possible states, respec-
tively. Then φ(X1, X2, X3) is a potential defined on such variables with the values assigned to each
configuration shown in Figure 1. This potential expresses the conditional distribution P(X3|X1, X2).

Figure 1. Representation of the potential φ(X1, X2, X3) as a mapping that assigns a numeric value to
each configuration.

In order for some of the structures considered in our work to be better understood,
we need to clarify the concept of the index of configuration. This is a unique, numeric
identifier which represents each configuration on a given domain ΩX. Let us consider that
the indices start at 0 and end on |ΩX| − 1. In the given Example 1, index 0 is associated
with the configuration {0, 0, 0}, index 1 to {0, 0, 1}, and so on until the last one, 11, which is
associated with {1, 2, 1} (these indices are shown in the left-most column in Figure 1).

There is a relation between indices and configurations based on the concept of weight
(otherwise known as stride or step size). Assuming an order between variables X = {X1 . . . XN},
each variable Xi ∈ X has an associated weight wi that may be computed as follows (variable
with index N has the lowest weight):

wi =

{
1 i f i = N
|ΩXi+1 | · wi+1 otherwise.

(1)

The index corresponding to a certain configuration x = {x1, x2, . . . , xN} can be com-
puted as:

index(x) =
N

∏
i=1

xi · wi. (2)

Example 2. Considering the potential described in Example 1, the weights are w3 = 1, w2 =
2, w1 = 6, and the indices assigned to configurations are presented below:

index({0, 0, 0}) = 0 · 6 + 0 · 2 + 0 · 1 = 0

index({0, 0, 1}) = 0 · 6 + 0 · 2 + 1 · 1 = 1

index({0, 1, 0}) = 0 · 6 + 1 · 2 + 0 · 1 = 2

...

index({1, 2, 1}) = 1 · 6 + 2 · 2 + 1 · 1 = 11

More specifically, the value of a particular variable Xi in a configuration linked to an
index k, denoted by x(k) and satisfying index(x(k)) = k, can be computed as:

xi = (k//wi) % |ΩXi |, (3)

Mathematics 2022, 10, 2542 4 of 27

where // denotes integer division and % the modulus of the division.
As we mentioned previously, the association between indices and configurations

requires that the variable order in the domain be known. Any order is valid, but by default,
we will consider the order in which variables are written (e.g., for potential φ(X, Y, Z), the
first variable would be X). Additionally, we consider that the first variable has the highest
weight. However, the opposite approach could also be considered.

The links in the network define a set of conditional dependences and independences
that are expressed as X ⊥Z Y. This expression indicates that X is independent of Y once
the values of the variables in Z are known. The Markov blanket of X, mb(X), contains its
parents pa(X), its children ch(X), and the parents of the children pa(ch(X)); it is the set
of variables that makes X be independent of the other variables Z, Z = X \ {X ∪mb(X)},
once the value of variables in mb(X) is known, i.e., X ⊥mb(X) Z. The in-degree of X is the
number of parents |pa(X)|, and the out-degree is the number of children |ch(X)|. The average
degree considers the values of in-degree and out-degree. These values are used to characterize
the BNs used for experiments (see details in Table 5).

3. Representation of Potentials

3.1. Classic Structures
3.1.1. 1D-Arrays

A one-dimensional or single-dimensional array (1DA) is a storage structure for elements
of the same nature, which enables every element to be accessed individually by specifying
the index corresponding to the position where it is located.

Let φ be a potential defined over a set of N variables, φ can be represented by an array
Aφ as:

Aφ :=
[
φ(0, . . . 0), φ(0, . . . 1), . . . , φ(|ΩX1 | − 1, . . . , |ΩXN | − 1)

]
. (4)

The size of a 1DA, denoted by size(Aφ), is the number of entries, or the number of
configurations of the potential.

Example 3. The potential φ(X1, X2, X3) given in Example 1 can be represented as the following
1DA with 12 entries (see Figure 2).

0 1 2 3 4 5 6 7 8 9 10 11

0.1 0.9 0.5 0.5 0.0 1.0 0.8 0.2 0.2 0.8 0.9 0.1

Figure 2. φ(X1, X2, X3) as 1DA.

3.1.2. Probability Trees

A probability tree (PT) represents a given potential φ : ΩX → R+
0 , and allows exact or

approximate operations over it [11–13]. A probability tree T is a directed and labeled tree,
where each internal node represents one variable and each leaf node a non-negative real
number. Each internal node will have as many exiting arcs as the number of states that the
variable labeling the node has. The size of a PT, size(T), is defined as the number of nodes
it contains.

Example 4. The same potential given in the previous example is presented in Figure 3 as a PT.
This PT has 21 nodes (12 leaves and 9 internal nodes).

PTs can take advantage of context-specific independences [9] by combing equal values
into a single one. This operation is called pruning, and once PTs have been pruned, they
are known as pruned probability trees (PPTs).

Mathematics 2022, 10, 2542 5 of 27

X1

X2

X3

0.1

0

0.9

1

0

X3

0.5

0

0.5

1

1

X3

0.0

0

1.0

1

2

0

X2

X3

0.8

0

0.2

1

0

X3

0.2

0

0.8

1

1

X3

0.9

0

0.1

1

2

1

index 0 1 2 3 4 5 6 7 8 9 10 11

Figure 3. φ(X1, X2, X3) as PT.

Example 5. The potential in the previous examples presents a context-specific independence that
enables its size to be reduced: the value for X1 = 0, X2 = 1 is 0.5, regardless of the value of X3.
Once the pruning is complete, the result is a PPT consisting of 19 nodes (11 leaves and 8 internal
nodes) and this is shown in Figure 4.

X1

X2

X3

0.1

0

0.9

1

0

0.5

1

X3

0.0

0

1.0

1

2

0

X2

X3

0.8

0

0.2

1

0

X3

0.2

0

0.8

1

1

X3

0.9

0

0.1

1

2

1

index 0 1 2 3 4 5 6 7 8 9 10 11

Figure 4. φ(X1, X2, X3) as PPT.

A variant to a PT is the binary probability tree or BPT ([10,14,15]). In BPTs, two arcs exit
from each internal node, so one variable can label several nodes in a path from root to leaf
node. An example of BPT is presented in Figure 5 and described in the following example.

Example 6. On the left, a given PT is represented, and two equal values (0.4) can be observed for c
configuration (left sub-tree) but related to two different values of Xk. Both values can therefore be
combined to produce the BPT on the right-hand side of Figure 5. It is now apparent that the leftmost
branch of Xk simultaneously represents values for Xk = 0 and Xk = 2.

·

Xk

0.4

0

0.2

1

0.4

2

c

Xk

0.4

0

0.6

1

0

2

c′

·

Xk

0.4

0, 2

0.2

1

c

Xk

Xk

0.4

0

0.6

1

0, 1

0

2

c′

Figure 5. Binary tree representation.

With this property, although BPTs can avoid more repetitions of values than PPTs, there
are still situations in which repetitions cannot be avoided. This is the case for the values 0.4 of
the configurations given by c′, xk = 2 and c, xk = 0. Therefore, as we mentioned previously,
both PPTs and BPTs introduce the possibility of saving memory space by combining values
under pretty specific circumstances, but are not able to make the structure more efficient
otherwise. This fact opens various possible avenues of research into how to exploit different

Mathematics 2022, 10, 2542 6 of 27

patterns. In many cases, some combinations of values are not allowed and are represented
by 0’s or some values are repeated several times; a proper efficient structure should be able
to somehow compact the information using such patterns.

3.2. Alternative Structures: Value-Based Potentials

Valued-based potentials were recently introduced [16] as an alternative representation
based exclusively on the values. Once such new structure was applied on several BNs
from two different sources (bnlearn repository [17,18] and UAI competitions [19,20]) and
compared with 1DAs, PTs, and PPTs. It has been proven that the use of VBP structures saves
memory space. In VBPs, values must be stored paired with the indices (or configurations)
that define the events in which they appear. How these pairs value-indices are stored
determines two different VBP categories:

• Structures driven by values, using dictionaries in which the keys will be values:
value-driven with grains (VDG) and value-driven with indices (VDI).

• Structures driven by indices, where keys are indices: index-driven with pair of arrays
(IDP) and index-driven with map (IDM).

In all of these alternatives, a default value is set (in our case, 0.0) and any related index
will not be stored (in order to reduce memory space). Such a default value can be defined
in advance or may be conveniently selected as the most repeated one. As VBPs represent
potentials, it will be easy to adapt inference algorithms to use VBPs. A more complete
definition of VBPs can be found in [16].

A simple visual idea of how VBPs work can be presented as a set of conveniently
arranged probability values (i.e., each value is stored near its corresponding indices). Our
studied example will appear as in Figure 6. It should be observed that the index 4, relating
to value 0.0 (the default value), is not stored at all. This would be similar to storing the
values using a 1DA structure. However, the goal is to avoid storing duplicated values. The
example shows how each of the values, 0.1, 0.2, 0.5, 0.8, and 0.9, appear to be associated
with two different indices (or configurations).

0.1(0) 0.9(1) 0.5(2)

0.5(3) 1.0(5)

0.8(6) 0.2(7) 0.2(8)

0.8(9) 0.9(10) 0.1(11)

default value: 0.0

Figure 6. φ(X1, X2, X3) as the relation between values and indices.

By using VBPs, therefore, each value is represented only once and all the indices in
which it appears are linked to it. Figure 7 shows the groupings made and this highlights
the fact that only 6 probability values are stored. The purpose of VBPs is therefore to make
as many groups as different probability values exist to avoid repetitions and associate the
related indices of configurations.

Mathematics 2022, 10, 2542 7 of 27

0.1(0,11) 0.2(7,8)

0.5(2,3) 0.8(6,9)

0.9(1,10) 1.0(5)

default value: 0.0

Figure 7. Visual idea of φ(X1, X2, X3) as grouping equal probability values.

From the alternatives presented in [16], in this paper we will focus on value-driven with
indices (VDI) and index-driven with pairs (IDP), since both of these performed extremely well
on most of the studied BNs.

3.2.1. VDI: Value-Driven with Indices

Let us consider a certain potential φ defined over X. A VDI for φ, VDIφ, is a dictionary
D in which each entry < v, Lv > contains a value (as the key) and a list of indices Lv, such
that φ(l) = v, for each l ∈ Lv.

Example 7. The potential φ(X1, X2, X3) used before and described in Figure 1 will be represented
as VDI as shown in Figure 8. The outermost rectangle represents the dictionary and the entry keys
(values) are drawn as circles. Keys give access to the index lists (inner rectangles with rounded
corners). It can be seen that this dictionary faithfully represents the grouping of values shown in
Figure 7 as an intuitive explanation of the purpose of VBP structures.

default value: 0.0

0.1 0→ 11

0.2 7→ 8

0.5 2→ 3

0.8 6→ 9

0.9 1→ 10

1 5

Figure 8. φ(X1, X2, X3) as VDI.

3.2.2. IDP: Index-Driven with Pair of Arrays

Let φ be a potential defined over X. A structure IDP representing φ, IPDφ, is a pair
of arrays V and L. Non-repeated values in φ (excluding the default value) are stored in
V = {v0 . . . vd−1}. Let ndφ represent the number of indices storing non-default values. The
array L is then defined as follows:

L := {(i, j) : φ(xi) = vj, i ∈ ndφ}. (5)

Mathematics 2022, 10, 2542 8 of 27

This means that IDP is based on two components: firstly, an array storing the values
(without repetitions and excluding 0.0 as the default value), and secondly, an array of
pairs (index in potential, index in array of values). The second index of the pair saves the
relationship between the indices and values.

Example 8. The representation of potential φ(X1, X2, X3) as IDP is presented in Figure 9. The
upper array (V) stores non-default values. The lower one includes pairs of indices. The fourth one
(3, 2) represents the fact that φ(x3) = V(2) = 0.5.

default value: 0.0

0 1 2 3 4 5

0.1 0.2 0.5 0.8 0.9 1.0

(0, 0) (1, 4) (2, 2) (3, 2) (5, 5) (6, 3) (7, 1) (8, 1) (9, 3) (10, 4) (11, 0)

Figure 9. φ(X1, X2, X3) as IDP.

4. Approximating Value-Based Potentials

As we previously mentioned in Section 3, tables or 1DA were widely used in the
bibliography to represent quantitative information in BNs or IDs. There is, however, a
limitation of representing potentials with the 1DA structure and that is that they increase
exponentially in size as the number of variables increases. Inferring or even dealing with
these may therefore be (in the case of complex models) computationally unfeasible. For
this purpose, it is convenient not only to define new structures which are able to compactly
represent such potentials, but also methods to approximate them so that the memory space
may be reduced without any significant loss of information. PTs can take advantage of
context-specific independences, thereby reducing the number of stored values, but can
also be approximated and so produce PPTs (this feature was presented as an additional
advantage of PTs from their definition). However, the guiding procedure for the approach is
computationally very expensive as it is necessary to determine the degree of information of
each variable in order to ensure that the most informative ones appear as close as possible to
the root. This ensures that the values stored in the tree leaves are most similar and, therefore,
the loss of information is less when various values are replaced with their average value.

VBP structures [16] may produce a relevant decrease in the memory space when
repeated values are present. Moreover, the approximation operation can be applied in a
very simple way. This work presents an algorithm for this operation and also provides a
theoretical justification for it. Our experimental work will show the performance of the
algorithm using two different alternatives for VBPs: value-driven with indices (VDI) and
index-driven with pairs (IDP).

4.1. Algorithm

The method to approximate a given potential φ : ΩX → R+
0 is explained by consid-

ering potentials represented as VDI because this structure is simpler, but the practical
application follows the same idea as for any other alternative (such as IDP, for example).
Let the VBP potential to approximate be denoted as V. Let us assume that it stores n
different values, denoted as v1 . . . vn in increasing order of size. As we mentioned in our
description of VBPs, although each different value vi is only stored once, the information
about the set of corresponding indices (or configurations) is saved, where Si is ni = |Si|
(which means that ni is the number of configurations in Si).

Mathematics 2022, 10, 2542 9 of 27

Definition 1. The basic approximation step consists of reducing the number of values by applying a
reduction operation. This operation replaces two consecutive values, vi and vi+1, with their weighted
average. Reduction can generally be described using the following notation:

• va and vb will be the values to reduce with Sa and Sb as their sets of indices, with na = |Sa|
and nb = |Sb|.

• vr is the new value that replaces va and vb, with Sr = Sa ∪ Sb and nr = |Sr|. This value is
computed as:

vr =
na · va + nb · vb

na + nb
.

• It is important to observe that this operation does not modify the total sum of the potential
values. Therefore, if φ is the original potential and V the result of successive reductions, then
sum(φ) = sum(V).

Consequently, at the end of this operation, the number of values is reduced. The
complete algorithm employed for approximating Vφ can now be intuitively described
as follows:

1 There are a number of different approximation alternatives resulting in candidate
structures which will become the one chosen for the final approximation. As there
are n different values, there will be n− 1 candidate structures produced by reducing
every pair of consecutive values. Iterate from i = 1 to i = n− 1:

1.1 Let us consider two successive values: vi and vi+1. The candidate structure is
then obtained by reducing both values as previously explained in Definition 1.
The result of this operation will be Vi.

1.2 Calculate the Kullback–Leibler divergence between the original potential V and
Vi. This value is denoted by D(V, Vi).

2 Select the candidate structure Vm = arg min
j=1...n−1

D(V, Vj) .

3 Repeat the previous steps until the selected stopping condition has been satisfied.

Before presenting a detailed description of the algorithm, we wish to include a number
of considerations:

• It is evident that it is not necessary to build the candidate structures but only to
evaluate the loss of information of the corresponding reduction operations.

• The Kullback–Leibler divergence between a candidate structure Vi and the original
one can be computed by taking into account only those values and indices involved in
the reduction, and the measure to compute is in fact the loss of information produced
by this operation. The way to compute this measure will be explained below.

• A possible stopping criteria (this is the one used in the experimental work although
others could be considered) consists of setting a global information loss threshold, tl .
Therefore, the procedure of reducing consecutive values will continue as long as the
addition of information losses does not reach the threshold tl .

4.2. Theoretical Background

Let us consider a potential φ(X) where V(X) is its representation as VBP. The degree of
approximation between them will be measured with the Kullback–Leibler divergence [21]
between the corresponding normalized potentials (φ and V):

D(φ, V) = ∑
x∈ΩX

φ(x)log
φ(x)
V(x)

. (6)

The divergence is a non-negative real number which would only be equal to zero if V
provides an exact representation of φ. As we explained previously, the key operation for
approximating φ represented as V is reduction, as described in Definition 1 and Algorithm 1.

Mathematics 2022, 10, 2542 10 of 27

Algorithm 1 Approximation of a potential φ represented as V (VBP).

1: function APPROXIMATE(V, tl) . tl : global loss threshold
2: loss← 0
3: while loss < tl do . loss threshold is not reached
4: n← number of values in φ
5: for i ∈ {1, ..., n− 1} do
6: consider the reduction of vi and vi+1
7: // compute information loss in V due to reduction
8: compute I(V, Si, Si+1)
9: end for

10: choose Vm which minimizes I(V, Si, Si+1), i = 1 . . . n− 1)
11: loss← loss + I(V, Sm, Sm+1)
12: V ← Vm . keeps reducing V if possible
13: end while
14: return V . return V after reaching the loss threshold
15: end function

Definition 2. Let us use Vj to denote the approximated VBP structure obtained in the j-th iteration
of the algorithm under consideration in the j + 1-th iteration. The new reduction to consider will be
described in the previously presented terms. The information loss produced by this reduction is
defined as:

I(Vj, Sa, Sb) = D(φ, Vj)− D(φ, Vj+1). (7)

The selection of the pair of values minimizing the information loss will consequently
lead to the minimum value of the Kullback–Leibler divergence between the original poten-
tial and the approximate one.

Proposition 1. The information loss obtained by reducing va and vb in V can be computed as follows:

I(V, Sa, Sb) =
1

sum(V)

[
log(vr)sum(V↓Sr)− log(va)sum(V↓Sa)− log(vb)sum(V↓Sb)

]
. (8)

where sum(V) denotes the addition of every value of V and V↓S represents the potential V restricted
to the configurations included in S and all remaining values are discarded. If we consider φ to be
the original potential and V its representation as VBP (perhaps after applying several reduction
operations), then sum(φ) = sum(V) and the previous equation can be expressed as:

I(V, Sa, Sb) =
1

sum(φ)

[
log(vr)sum(φ↓Sr)− log(va)sum(φ↓Sa)− log(vb)sum(φ↓Sb)

]
. (9)

Proof. Let φ be a potential represented by V (a VBP). Vj denotes the potential obtained from
V as a result of the j-th iteration of the approximation algorithm. According to Definition 2:

I(Vj, Sa, Sb) = D(φ, Vj)− D(φ, Vj+1). (10)

This difference can be calculated by separating the configurations defined in X into
three different subsets: ΩX = {ΩX \ Sr} ∪ Sa ∪ Sb:

Mathematics 2022, 10, 2542 11 of 27

I(Vj, Sa, Sb) = D(φ, Vj)− D(φ, Vj+1) =

∑
x∈{ΩX\Sr}

[
φ(x)log(

φ(x)
V j(x)

)− φ(x)log(
φ(x)

V j+1(x)
)

]
+

∑
x∈Sa

[
φ(x)log(

φ(x)
va/sum(φ))

− φ(x)log(
φ(x)

vr/sum(φ)
)

]
+

∑
x∈Sb

[
φ(x)log(

φ(x)
vb/sum(φ))

− φ(x)log(
φ(x)

vr/sum(φ)
)

]
.

(11)

It should be noted that the first part of the summation is equal to 0 since the values
of the configurations that are not involved in the reduction (x ∈ ΩX\Sr) are identical in Vj
and Vj+1. Additionally, when the properties of the logarithm are considered, the previous
equation can be expressed as follows:

∑
x∈Sa

φ(x)

[
log(φ(x))− log(

va

sum(φ)
)− log(φ(x)) + log(

vr

sum(φ)
)

]
+

∑
x∈Sb

φ(x)

[
log(φ(x)− log(

vb
sum(φ)

)− log(φ(x)) + log(
vr

sum(φ)
)

]
=

∑
x∈Sa

φ(x)log(
vr

va
) + ∑

x∈Sb

φ(x)log(
vr

vb
).

(12)

Since φ(x) =
φ(x)

sum(φ)
and if we remove the logarithm from the sum as it does not

depend on the configurations, the previous equation can then be written as follows:

log(
vr

va
) ∑

x∈Sa

φ(x)
sum(φ)

+ log(
vr

vb
) ∑

x∈Sb

φ(x)
sum(φ)

=

1
sum(φ)

[
log(vr)sum(φ↓Sa)− log(va)sum(φ↓Sa) + log(vr)sum(φ↓Sb)− log(vb)sum(φ↓Sb)

]
=

1
sum(φ)

[
log(vr)sum(φ↓Sr)− log(va)sum(φ↓Sa)− log(vb)sum(φ↓Sb)

]
.

(13)

4.3. Example

The application of the approximation algorithm will be exemplified using the potential
presented in Example 1 and stored as a VDI, as shown in Figure 10. The practical implemen-
tation of the algorithm attempts to simplify computations as much as possible. Therefore,
the global sum of the potential values in Equation (8) can be avoided, as it is not needed for
determining the candidate structure with lower loss of information.

As the potential stores 6 different probability values, the initial iteration must therefore
consider 5 candidate structures, i.e., 5 different reduction operations, and then calculate
their respective information losses. This information is presented in Table 1. Each row
considers the values to be reduced (va and vr) and the new value (vr) in addition to their
corresponding sets of indices (Sa, Sb and Sr). The alternative with the lowest information
loss is presented in bold.

Mathematics 2022, 10, 2542 12 of 27

default value: 0.0

0.1 0→ 11

0.2 7→ 8

0.5 2→ 3

0.8 6→ 9

0.9 1→ 10

1 5

Figure 10. Potential to approximate.

Table 1. Candidate structures for the first iteration. Bold typeface is used for the preferred candidate
structure.

va − Sa vb − Sb vr − Sr I(V , Sa, Sb)

0.1− {0, 11} 0.2− {7, 8} 0.15− {0, 7, 8, 11} 0.014757
0.2− {7, 8} 0.5− {2, 3} 0.35− {2, 3, 7, 8} 0.057686
0.5− {2, 3} 0.8− {6, 9} 0.65− {2, 3, 6, 9} 0.030339
0.8− {6, 9} 0.9− {1, 10} 0.85− {1, 6, 9, 10} 0.002556

0.9− {1, 10} 1− {5} 0.93333− {1, 5, 10} 0.001533

Therefore, the preferred candidate structure is the final one and the resulting approxi-
mate structure is the one presented in Figure 11. The total loss is 0.001533.

default value: 0.0

0.1 0 → 11

0.2 7 → 8

0.5 2 → 3

0.8 6 → 9

0.93333 1 → 5 → 10

Figure 11. Approximation of φ obtained in the first iteration.

In the second iteration, there are only 4 candidate structures to consider, as shown
in Table 2.

Mathematics 2022, 10, 2542 13 of 27

Table 2. Candidate structures for the second iteration. The best reduction is presented with bold
typeface.

va − Sa vb − Sb vr − Sr I(V , Sa, Sb)

0.1− {0, 11} 0.2− {7, 8} 0.15− {0, 7, 8, 11} 0.014757
0.2− {7, 8} 0.5− {2, 3} 0.35− {2, 3, 7, 8} 0.057686
0.5− {2, 3} 0.8− {6, 9} 0.65− {2, 3, 6, 9} 0.030339
0.8− {6, 9} 0.93333− {1, 5, 10} 0.88− {1, 5, 6, 9, 10} 0.005323

The reduction of the values 0.8 and 0.93333 therefore performs the best. The approxi-
mate structure after this iteration is presented in Figure 12. The global loss is now 0.006856.

default value: 0.0

0.1 0→ 11

0.2 7→ 8

0.5 2→ 3

0.88 1→ 5→ 6→ 9→ 10

Figure 12. Approximation of φ obtained in the second iteration.

In the next step, we will consider a third iteration by selecting from among the candidate
reductions presented in Table 3.

Table 3. Candidate structures for the third iteration. The best reduction is presented with bold typeface.

va − Sa vb − Sb vr − Sr I(V , Sa, Sb)

0.1− {0, 11} 0.2− {7, 8} 0.15− {0, 7, 8, 11} 0.014757
0.2− {7, 8} 0.5− {2, 3} 0.35− {2, 3, 7, 8} 0.057686
0.5− {2, 3} 0.88− {1, 5, 6, 9, 10} 0.65− {2, 3, 6, 9} 0.063298

If we combine the values 0.1 and 0.2, we obtain the new approximated potential shown
in Figure 13.

default value: 0.0

0.15 0→ 7→ 8→ 11

0.5 2→ 3

0.88 1→ 5→ 6→ 9→ 10

Figure 13. Final approximation of φ obtained in the third iteration.

The loss of information in relation to the original potential is now 0.021613. The next
iteration must select between only two reductions, as shown in Table 4.

Mathematics 2022, 10, 2542 14 of 27

Table 4. Candidate structures for the fourth iteration.

va − Sa vb − Sb vr − Sr I(V , Sa, Sb)

0.15− {0, 7, 8, 11} 0.5− {2, 3} 0.5333− {0, 2, 3, 7, 8, 11} 0.123074
0.5− {2, 3} 0.88− {1, 5, 6, 9, 10} 0.65− {2, 3, 6, 9} 0.063298

If the global loss threshold is 0.05, then there are no more reductions to apply and the
process ends with the approximate potential shown in Figure 13. We need to make one last
comment about the operation of the algorithm. If we look at the tables, it is apparent that
information loss values for each reduction remain constant, regardless of the other values.
This facilitates the consideration of alternative structures by storing the already calculated
loss values, thereby avoiding repeated computations.

5. Empirical Evaluation

The application of the approximation algorithm will be evaluated by considering
various BNs developed for modeling medical problems. All of these are included in the
bnlearn repository (see [17,18]) and are either categorized as large (HEPAR II) or very large
(diabetes, munin, and pathfinder) networks. The main features of these are described below.

• The hepar2 network was defined by A. Onisko in her Ph.D. dissertation [22] as part of
the HEPAR II project. The project was inspired by the HEPAR system [23], the aim of
which is to support the diagnosis of liver and biliary tract disorders.

• pathfinder ([24]) is a system which, when combined with expert knowledge from
surgical pathologists, can assist in the diagnosis of lymphnode diseases. As a result of
this study, the discrete pathfinder network was defined.

• The munin network was defined while creating the expert system identified by the
same acronym MUNIN (MUscle and Nerve Inference Network) [25]. The aim of
this system was to help electromyographics (EMCs), which are designed to localize
and characterize lesions of the neuro-muscular system, from a patho-physiological
approach combined with expert knowledge.

• The diabetes [26] BN represents a differential equation model which attempts to adjust
the insulin therapy for diabetic people. The model considers the patient’s state by
measuring blood glucose, biologically active insulin, and the amount of undigested
carbohydrate within an hour gap in addition to other known variables involved in the
glucose metabolism process. The diabetes network enabled predictions to be extended
to 24-hour blood glucose profiles and the insulin treatment to be adjusted.

Table 5 presents a summary of the information for each network: number of nodes,
number of arcs, number of parameters (np), average Markov blanket (M.B.) size, average degree,
and maximum in-degree. The networks are ordered according to the number of parameters
because this is the most relevant feature in terms of the experimental work.

Table 5. Bayesian network features.

Network Nodes arcs np avg. M.B.
Size avg. deg Max.

in-deg

hepar2 70 123 2139 4.51 3.51 6
pathfinder 223 338 97,851 5.61 3.03 6

munin 1041 1397 98,423 3.54 2.68 3
diabetes 413 606 461,069 3.97 2.92 2

The experimental section is organized in the following way:

1. Analysis of the memory space necessary to store the complete networks using the
different representation alternatives in order to compare it with the representation
using 1DA, since this is considered to be the base representation (see Section 5.1).

Mathematics 2022, 10, 2542 15 of 27

2. Analysis of the main characteristics of the specific potentials of some variables that
will later be used to perform inference, as well as the memory space necessary for
their representation with the different structures considered (see Section 5.2).

3. Examination of the effect of the approximation on the memory space necessary for
the storage of each network (see Section 5.3). The relationship with the memory space
required by the base representation is determined, as well as the reduction produced
in relation to the alternative representations but without any approximation. In this
case, the results are presented by means of a specific table for each network in order
to collect the information on the threshold values considered.

4. Propagation errors produced by the approximation, both local (only the potential of
the target variable is approximated) and global (all potentials are approximated) (see
Section 5.4). A table is presented for each network and this collects the results for the
selected variables and for the set of thresholds used.

5. In order to obtain further information about the effect of the approximation, some
charts are also included to show the effect of the approximation on the order of the
probabilities of the marginal distributions obtained as a result of the propagation. If
these distributions are used to make decisions, it is important that the alternatives are
kept in the same order (according to their probability value) in which they appear in
the exact result, without approximation (see Section 5.5).

5.1. Global Memory Size Analysis

This section analyzes the networks in order to determine the necessary memory size
for each form of representation being considered: 1DA, PT, PPT, VDI, and IPD. This part
serves to check the convenience of using alternative VBP-type representations in networks
modeling real-world medical problems. In this way, a base memory size is available and it
will enable the effect of the approximation on memory spaces required for the VBP-type
representations to be subsequently checked. Table 6 includes the following information:

• network: name of the network;
• 1DA: memory size indispensable for 1DA storing the complete set of potentials;
• PT: memory size required for PT representation and the saving or increase in space in

terms of 1DA. This last value is included in the second line and is computed as

as ∗ 100
bs

− 100, (14)

where as refers to the memory size of the alternative representation, and bs to the
memory size of the 1DA representation;

• PPT, VDI, and IDP: the same as the previous line for the remaining representations:
pruned probability trees, VDI and IDP.

In Table 6, the best savings values are shown in bold. The results show that VBP
structures behave better than PT and PPT in every network, although in some of these
there are no savings in terms of the space required for the simplest representation of all:
1DA. Some more specific comments are included below:

• In hepar2, we can see that PPT offers little improvement in relation to PT, which indi-
cates that in reality there are few repeated values that can be used by the PPT pruning
operation. The VDI structure provides a saving of approximately 44% compared to
PT, while IPD represents a saving of 62%.

• In the case of pathfinder, there are notable savings in relation to 1DA and very important
ones with respect to PT and PPT. The biggest savings come from the VDI structure.

• With respect to the munin network, VDI representation needs almost the same mem-
ory space as 1DA and there is a saving of about 23% in IDP (moreover, significant
reductions can also be seen with respect to PT and PPT).

• Finally, for diabetes, both VBP structures represent a substantial reduction in memory
space and this is slightly greater in the case of VDI.

Mathematics 2022, 10, 2542 16 of 27

Table 6. Global memory size analysis. Bold typeface denotes the structure with the best saving
percentage (or with the smallest increase percentage).

Network 1DA PT PPT VDI IDP

hepar2 32,530 132,026 131,756 74,070 49,602
305.8592 305.0292 127.6975 52.4808

pathfinder 806,982 4,249,768 3,779,470 301,602 482,438
426.6249 368.3463 −62.6259 −40.2170

munin 994,672 3,393,878 3,353,900 997,864 766,072
241.2057 237.1865 0.3209 −22.9825

diabetes 3,773,200 10,044,948 10,044,810 964,380 1,105,728
166.2183 166.2146 −74.4413 −70.6952

In short, these data show the capacity of these structures to offer efficient mechanisms
for representing quantitative information, and, as will be seen below, they allow the use of
the approximation operation with the possibility of achieving additional memory savings.

5.2. Local Memory Size Analysis

This experiment gathers information about the selected variables of each network in order
to determine their features and verify the relationship between representation and memory
size. These variables will later be used as target variables using the VE algorithm ([27–29]) to
compute their marginal distributions. The columns included in Table 7 are:

• network: name of the network;
• variable: name of the variable being examined;
• np: global number of parameters of the target variable potential;
• nd: number of different values in the potential (these are the values actually stored in

the VBP representation);
• 1DA: memory size for the 1DA representation;
• PT: memory size required for PT representation and saving or increase regarding 1DA.

This last value is included in the second line and computed as before;
• PPT, VDI, and IDP: the same as the previous line for PPT, VDI, and IDP.

In this experiment, we have selected the variables with the largest number of parame-
ters: hepar2 (ggtp, ast, alt, and bilirubin); pathfinder (F39, F74, and F40); munin
(v1 (L_LNLPC5_DELT_MUSIZE), v2 (L_LNLE_ADM_MUSIZE), and v3 (L_MED_ALLCV_EW)); and diabetes (cho_0,
cho_1, and cho_2). The best savings values are shown in bold. We wish to make the following
comments about the results in Table 7:

• In hepar2 variables, the number of different probability values is slightly lower than
the number of parameters. This justifies the fact that memory space requirements do
not reduce those required by 1DA, although they do offer significant savings with
respect to PT and PPT.

• Selected pathfinder variables present a high degree of repetition, so the number of
different values is significantly lower than the number of parameters. This produces
very significant memory savings in relation to 1DA which are larger in the case of VDI.

• For the first two munin variables, there are only 12 different values but 600 parameters.
This accounts for the notable memory space savings for VBP structures. In the case of
the third variable, there are more different values (133), although this does suppose a
high degree of repetition compared to the 600 necessary parameters.

• Diabetes variables have similar characteristics: only 45 different values (and 7056 pos-
sible values). Consequently, the memory space savings are very noticeable and appre-
ciably better in the case of VDI.

Mathematics 2022, 10, 2542 17 of 27

Table 7. Local memory size analysis. Numbers in bold typeface denotes the best saving percentages
(or with the smallest increase percentage).

Network Variable np nd 1DA PT PPT VDI IDP

hepar2

ggtp 384 334 3454 19,452 19,452 9990 6150
463.1731 463.1731 189.2299 78.0544

ast 288 231 2636 13,648 13,648 7084 4508
417.7542 417.7542 168.7405 71.0167

alt 288 249 2636 13,648 13,648 7516 4652
417.7542 417.7542 185.1290 76.4795

bilirubin 288 244 2636 13,426 13,426 7396 4612
409.3323 409.3323 180.5766 74.9621

pathfinder

F39 8064 30 64,794 376,442 359,850 15,114 28,698
480.9828 455.3755 −76.6738 −55.7089

F74 7560 111 60,712 293,736 152,072 28,676 52,632
383.8187 150.4810 −52.7672 −13.3087

F40 4032 43 32,488 116,076 114,588 5640 9280
257.2888 252.7087 −82.6397 −71.4356

munin

v1 600 12 5032 19,132 19,132 1112 1464
280.2067 280.2067 −77.9014 −70.9062

v2 600 12 5032 19,132 19,132 1112 1464
280.2067 280.2067 −77.9014 −70.9062

v3 600 133 4982 15,012 15,012 4066 2582
201.3248 201.3248 −18.3862 −48.1734

diabetes

cho_0 7056 45 56,630 139,546 139,546 9454 16,878
146.4171 146.4171 −83.3057 −70.1960

cho_1 7056 45 56,630 139,546 139,546 9454 16,878
146.4171 146.4171 −83.3057 −70.1960

cho_2 7056 45 56,630 139,546 139,546 9454 16,878
146.4171 146.4171 −83.3057 −70.1960

5.3. Global Memory Size with Approximation

This experiment considers the effect of the approximation on every potential in the
network in terms of the necessary memory space after approximating with different thresh-
olds. This determines the degree to which the approximation enables a reduction in the
memory size for storing the networks. The results for this section are divided into various
tables, one for each network (Tables 8–11), and all have a similar structure.

• The first column shows the threshold.
• The second presents data relating to the VDI structure: memory size after approxima-

tion, savings over 1DA and savings with respect to the exact VDI representation.
• The third column is identical to the second but with data for the IDP structure.

5.3.1. hepar2 Network

The number of parameters is 2139, and the memory sizes of 1DA, PT, and PPT structures
are 32, 530, 132, 026, and 131, 756, respectively. Table 8 includes savings when approximation
is applied.

Mathematics 2022, 10, 2542 18 of 27

Table 8. hepar2—Global approximation memory size analysis.

Threshold VDI IDP

0.00001 63,846 (96.2681/−13.8032) 46,194 (42.0043/−6.8707)

0.00005 58,062 (78.4875/−21.6120) 44,266 (36.0775/−10.7576)

0.00010 55,302 (70.0031/−25.3382) 43,346 (33.2493/−12.6124)

0.00050 48,558 (49.2714/−34.4431) 41,098 (26.3388/−17.1445)

0.00100 45,678 (40.4181/−38.3313) 40,138 (23.3876/−19.0799)

0.00500 39,798 (22.3425/−46.2697) 38,178 (17.3624/−23.0313)

0.01000 37,518 (15.3335/−49.3479) 37,418 (15.0261/−24.5635)

0.05000 33,798 (3.8979/−54.3702) 36,178 (11.2143/−27.0634)

0.10000 32,550 (0.0615/−56.0551) 35,762 (9.9354/−27.9021)

Table 9. pathfinder—Global approximation memory size analysis.

Threshold VDI IDP

0.00001 293,178 (−63.6698/−2.7931) 479,630 (−40.5650/−0.5820)

0.00005 290,682 (−63.9791/−3.6207) 478,798 (−40.6681/−0.7545)

0.00010 289,266 (−64.1546/−4.0902) 478,326 (−40.7266/−0.8523)

0.00050 285,450 (−64.6275/−5.3554) 477,054 (−40.8842/−1.1160)

0.00100 283,170 (−64.9100/−6.1114) 476,294 (−40.9784/−1.2735)

0.00500 277,002 (−65.6743/−8.1564) 474,238 (−41.2331/−1.6997)

0.01000 274,050 (−66.0401/−9.1352) 473,254 (−41.3551/−1.9037)

0.05000 267,090 (−66.9026/−11.4429) 470,934 (−41.6426/−2.3846)

0.10000 264,450 (−67.2298/−12.3182) 470,054 (−41.7516/−2.5670)

Table 10. munin—Global approximation memory size analysis.

Threshold VDI IDP

0.00001 880,744 (−11.4538/−11.7371) 727,032 (−26.9074/−5.0961)

0.00005 829,096 (−16.6463/−16.9129) 709,816 (−28.6382/−7.3434)

0.00010 800,584 (−19.5128/−19.7702) 700,312 (−29.5937/−8.5840)

0.00050 725,440 (−27.0674/−27.3007) 675,264 (−32.1119/−11.8537)

0.00100 692,296 (−30.3996/−30.6222) 664,216 (−33.2226/−13.2959)

0.00500 615,976 (−38.0725/−38.2705) 638,776 (−35.7802/−16.6167)

0.01000 587,848 (−40.9003/−41.0894) 629,400 (−36.7229/−17.8406)

0.05000 533,728 (−46.3413/−46.5130) 611,360 (−38.5365/−20.1955)

0.10000 518,272 (−47.8952/−48.0619) 606,208 (−39.0545/−20.8680)

Here are some comments about Table 8:

• For VDI, it is apparent that there is a very noticeable increase in memory space savings
as the threshold used for the approximation becomes greater, reaching very similar
sizes to those of 1DA for the threshold 0.1. For every threshold, there is a reduction in
relation to the exact VDI structure (without the use of approximation).

• With the IDP structure, the behavior is similar, although the reductions are not as
notable as with VDI.

Mathematics 2022, 10, 2542 19 of 27

Table 11. diabetes—Global approximation memory size analysis.

Threshold VDI IDP

0.00001 843,180 (−77.6535/−12.5677) 1,065,328 (−71.7659/−3.6537)

0.00005 799,932 (−78.7996/−17.0522) 1,050,912 (−72.1480/−4.9575)

0.00010 776,868 (−79.4109/−19.4438) 1,043,224 (−72.3517/−5.6527)

0.00050 719,148 (−80.9406/−25.4290) 1,023,984 (−72.8617/−7.3928)

0.00100 694,908 (−81.5831/−27.9425) 1,015,904 (−73.0758/−8.1235)

0.00500 644,076 (−82.9302/−33.2135) 998,960 (−73.5249/−9.6559)

0.01000 626,172 (−83.4047/−35.0700) 992,992 (−73.6830/−10.1956)

0.05000 594,324 (−84.2488/−38.3724) 982,376 (−73.9644/−11.1557)

0.10000 585,636 (−84.4791/−39.2733) 979,480 (−74.0411/−11.4176)

5.3.2. pathfinder Network

This contains 97, 851 parameters, and the memory sizes for 1DA, PT, and PPT are
806, 982, 4, 249, 768, and 3, 779, 470. The memory sizes for several degrees of approximation
are presented in Table 9.

It is worth remembering that in this network, the VDI structure without approximation
already represented a saving of approximately 62.7% in relation to 1DA, which increases as
the threshold value grows. For the highest threshold value, the saving is 12.3% with respect
to the VDI structure without approximation. Similar results can be observed for IDP.

5.3.3. munin Network

This network requires 994, 672 parameters to store the quantitative information and
the memory sizes required for alternative representation structures with approximation
operation are 994, 672, 3, 393, 878, and 3, 353, 900 for 1DA, PT, and PPT. The effect of
approximation can be observed in Table 10.

In this network, the reduction of space is extremely notable both with respect to 1DA
and also to the exact representations through VDI and IDP, although the reduction is more
important in the case of VDI.

5.3.4. diabetes Network

In the diabetes network, the number of parameters is 461, 069, and the memory sizes
for representations as 1DA, PT, and PPT are 3, 773, 200, 10, 044, 948, and 10, 044, 810. The
effect of approximation in memory sizes is presented in Table 11.

As in the case of the munin network, memory size reductions are important and
especially relevant for VDI.

5.4. Propagation Errors with Approximation

The objective of this part is to check the effect of approximation on propagation errors
using the VE algorithm on the set of selected variables. For each target variable, two different
values are presented: the error when approximation is limited to the potential of the target
variable and when approximation is applied to the entire set of potentials. As VDI and
IDP approximations will produce the same potentials, this experiment will be performed
exclusively on the VDI representation. The steps followed to produce the results are:

1. Perform a VE propagation on each target variable for storing the marginal obtained
as the ground result Vg.

2. Modify the network by approximating the potential of the target variable, saving the
remaining ones as defined in the network specification.

3. Perform a second VE propagation on the modified network setting the selected target
variable. The result is termed as Vla.

4. Apply the approximation on the entire set of potentials.

Mathematics 2022, 10, 2542 20 of 27

5. Compute a third VE propagation for the selected variable, producing Vga.
6. Compute the divergences between the ground result and the approximate ones:

D(Vg, Vla) and D(Vg, Vga).

In order to introduce the results obtained, Tables 12–15 are organized as follows.
Threshold values are presented in the first column; for each variable the local columns
contain the errors of propagation with approximation on target variable, that is D(Vg, Vla);
and global columns show the errors of propagation when approximation is applied on all
the potentials (D(Vg, Vga)). It should be noted that the values presented in the following
tables are rounded to include only three decimal places. Therefore, the value of divergence
dl = 0.001 will be referred to as the limit value.

5.4.1. hepar2 Network

It is apparent that if the threshold value is below 0.005, then the errors remain below
dl . Errors above this threshold value only appear for the last three threshold values, and
even for these values there are variables in which both the global and local approximations
remain below dl . The largest error value is 0.005 (quite small) for the ggtp variable in the
case of global approximation with a threshold value of 0.1.

Table 12. hepar2—local and global approximation propagation error analysis.

Threshold ggtp ast alt bilirubin
Local Global Local Global Local Global Local Global

0.00001 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

0.00005 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

0.00010 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

0.00050 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

0.00100 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

0.00500 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

0.01000 0.000 0.001 0.000 0.000 0.000 0.000 0.000 0.001

0.05000 0.002 0.004 0.001 0.001 0.000 0.000 0.000 0.001

0.10000 0.002 0.005 0.003 0.004 0.001 0.002 0.001 0.001

Table 13. pathfinder—local and global approximation propagation error analysis.

Threshold F39 F74 F40
Local Global Local Global Local Global

0.00001 −0.000 0.000 0.000 0.000 0.000 0.000

0.00005 0.000 0.000 0.000 0.000 0.000 0.000

0.00010 0.000 0.000 0.000 0.000 0.000 0.000

0.00050 0.000 0.000 0.000 0.000 0.000 0.000

0.00100 0.000 0.000 0.000 0.000 0.000 0.000

0.00500 0.000 0.000 0.000 0.000 0.000 0.000

0.01000 0.000 0.000 0.000 0.000 0.000 0.000

0.05000 0.000 0.004 0.000 0.000 0.000 0.005

0.10000 0.000 0.005 0.000 0.001 0.000 0.006

Mathematics 2022, 10, 2542 21 of 27

Table 14. munin—local and global approximation propagation error analysis.

Threshold v1 v2 v3
Local Global Local Global Local Global

0.00001 0.000 0.000 0.000 0.000 0.000 0.000

0.00005 0.000 0.000 0.000 0.000 0.000 0.000

0.00010 0.000 0.000 0.000 0.000 0.000 0.000

0.00050 0.000 0.000 0.000 0.000 0.000 0.001

0.00100 0.000 0.000 0.000 0.000 0.000 0.001

0.00500 0.000 0.001 0.000 0.001 0.000 0.005

0.01000 0.000 0.001 0.000 0.001 0.000 0.006

0.05000 0.000 0.002 0.000 0.003 0.000 0.096

0.10000 0.000 0.002 0.000 0.003 0.000 0.093

Table 15. diabetes—local and global approximation propagation error analysis.

Threshold cho_0 cho_1 cho_2
Local Global Local Global Local Global

0.00001 0.000 0.000 0.000 0.000 0.000 0.000

0.00005 0.000 0.000 0.000 0.000 0.000 0.000

0.00010 0.000 0.000 0.000 0.000 0.000 0.000

0.00050 0.001 0.001 0.000 0.001 0.000 0.000

0.00100 0.001 0.001 0.000 0.001 0.000 0.000

0.00500 0.001 0.001 0.000 0.000 0.000 0.000

0.01000 0.001 0.001 0.000 0.000 0.000 0.000

0.05000 0.000 0.000 0.000 0.001 0.000 0.000

0.10000 0.001 0.001 0.001 0.002 0.000 0.002

5.4.2. pathfinder Network

The results for this network are similar to those obtained for the hepar2 network. All
errors are below dl for threshold values between 0.00001 and 0.01. Even above these values,
the local approximation produces errors that are below dl in every variable. The largest
error occurs for the threshold 0.1 and global approximation for the variable F40.

5.4.3. munin Network

In the case of the munin network, there are only significant errors for the case of global
approximation and with high thresholds (0.0096 for threshold 0.05 and 0.093 for threshold
0.1 and variable v3). The local approximation always produces error values lower than the
limit value dl .

5.4.4. diabetes Network

For the diabetes network, the variable cho_0 is the one that offers the worst results, with
errors equal to the limit value dl in the case of local approximation and with threshold values
over 0.0005. In any case, all the error values are very small, even for global approximation
and large threshold values.

5.5. Order of Preferences

As stated earlier, the results of propagation can be used to aid in a decision-making
process. It is therefore important that the errors are kept low (as demonstrated by the
previous experiments) but that the order between the probability values of the states of the

Mathematics 2022, 10, 2542 22 of 27

variables on which the propagation is performed is also maintained. In the charts included
in this experimentation (see Tables 16–20), the possible states of the variables are denoted
as si. Let us imagine a variable with the three states: s1, s2, s3. Let us also suppose that
exact propagation indicates that the order of the states according to their probability, from
highest to lowest, is s2, s11, s3. This will therefore be the order of preferences that should
be maintained so that the decision does not change as a result of errors produced by the
approximation. In this way, the ideal situation will be one in which the order of preferences
is not altered despite the approximation made, whether global or local. The colors in
the tables also represent the differences between the probability values obtained for each
alternative (with respect to the probability values obtained in the exact propagation), with
colors ranging from green for the lowest differences to red for the highest values and those
in between in varying shades of yellow.

Table 16. Preferences for hepar2 variables.

ggtp ast alt bilirubin

s4 s3 s2 s1

s4 s3 s2 s1

s4 s3 s2 s1

s4 s3 s2 s1

s4 s3 s2 s1

s4 s3 s2 s1

s4 s3 s2 s1

s4 s3 s2 s1

s4 s3 s2 s1

s4 s3 s2 s1

s4 s3 s2 s1

s4 s3 s2 s1

s4 s3 s2 s1

s4 s3 s2 s1

s4 s3 s2 s1

s4 s3 s2 s1

s4 s3 s2 s1

s4 s3 s2 s1

s4 s3 s2 s1

0(e)

1e-05(l)

1e-05(g)

5e-05(l)

5e-05(g)

1e-04(l)

1e-04(g)

5e-04(l)

5e-04(g)

0.001(l)

0.001(g)

0.005(l)

0.005(g)

0.01(l)

0.01(g)

0.05(l)

0.05(g)

0.1(l)

0.1(g)

p1 p2 p3 p4

diff.

0

0.01

0.02

0.03

0.04

s3 s4 s2 s1

s3 s4 s2 s1

s3 s4 s2 s1

s3 s4 s2 s1

s3 s4 s2 s1

s3 s4 s2 s1

s3 s4 s2 s1

s3 s4 s2 s1

s3 s4 s2 s1

s3 s4 s2 s1

s3 s4 s2 s1

s3 s4 s2 s1

s3 s4 s2 s1

s3 s4 s2 s1

s3 s4 s2 s1

s3 s4 s2 s1

s3 s4 s2 s1

s3 s4 s2 s1

s3 s4 s2 s1

0(e)

1e-05(l)

1e-05(g)

5e-05(l)

5e-05(g)

1e-04(l)

1e-04(g)

5e-04(l)

5e-04(g)

0.001(l)

0.001(g)

0.005(l)

0.005(g)

0.01(l)

0.01(g)

0.05(l)

0.05(g)

0.1(l)

0.1(g)

p1 p2 p3 p4

diff.

0

0.01

0.02

0.03

0.04

s3 s4 s2 s1

s3 s4 s2 s1

s3 s4 s2 s1

s3 s4 s2 s1

s3 s4 s2 s1

s3 s4 s2 s1

s3 s4 s2 s1

s3 s4 s2 s1

s3 s4 s2 s1

s3 s4 s2 s1

s3 s4 s2 s1

s3 s4 s2 s1

s3 s4 s2 s1

s3 s4 s2 s1

s3 s4 s2 s1

s3 s4 s2 s1

s3 s4 s2 s1

s3 s4 s2 s1

s3 s4 s2 s1

0(e)

1e-05(l)

1e-05(g)

5e-05(l)

5e-05(g)

1e-04(l)

1e-04(g)

5e-04(l)

5e-04(g)

0.001(l)

0.001(g)

0.005(l)

0.005(g)

0.01(l)

0.01(g)

0.05(l)

0.05(g)

0.1(l)

0.1(g)

p1 p2 p3 p4

diff.

0

0.005

0.01

0.015

0.02

s4 s3 s2 s1

s4 s3 s2 s1

s4 s3 s2 s1

s4 s3 s2 s1

s4 s3 s2 s1

s4 s3 s2 s1

s4 s3 s2 s1

s4 s3 s2 s1

s4 s3 s2 s1

s4 s3 s2 s1

s4 s3 s2 s1

s4 s3 s2 s1

s4 s3 s2 s1

s4 s3 s2 s1

s4 s3 s2 s1

s4 s3 s2 s1

s4 s3 s2 s1

s4 s3 s2 s1

s4 s3 s2 s1

0(e)

1e-05(l)

1e-05(g)

5e-05(l)

5e-05(g)

1e-04(l)

1e-04(g)

5e-04(l)

5e-04(g)

0.001(l)

0.001(g)

0.005(l)

0.005(g)

0.01(l)

0.01(g)

0.05(l)

0.05(g)

0.1(l)

0.1(g)

p1 p2 p3 p4

diff.

0

0.005

0.01

0.015

0.02

Mathematics 2022, 10, 2542 23 of 27

Table 17. Preferences for pathfinder variables.

F39 F74 F40

s1 s3 s2 s4

s1 s3 s2 s4

s1 s3 s2 s4

s1 s3 s2 s4

s1 s3 s2 s4

s1 s3 s2 s4

s1 s3 s2 s4

s1 s3 s2 s4

s1 s3 s2 s4

s1 s3 s2 s4

s1 s3 s2 s4

s1 s3 s2 s4

s1 s3 s2 s4

s1 s3 s2 s4

s1 s3 s2 s4

s1 s3 s2 s4

s1 s3 s2 s4

s1 s3 s2 s4

s1 s3 s2 s4

0(e)

1e-05(l)

1e-05(g)

5e-05(l)

5e-05(g)

1e-04(l)

1e-04(g)

5e-04(l)

5e-04(g)

0.001(l)

0.001(g)

0.005(l)

0.005(g)

0.01(l)

0.01(g)

0.05(l)

0.05(g)

0.1(l)

0.1(g)

p1 p2 p3 p4

diff.

0

0.01

0.02

0.03

0.04

s4 s3 s2 s1

s4 s3 s2 s1

s4 s3 s2 s1

s4 s3 s2 s1

s4 s3 s2 s1

s4 s3 s2 s1

s4 s3 s2 s1

s4 s3 s2 s1

s4 s3 s2 s1

s4 s3 s2 s1

s4 s3 s2 s1

s4 s3 s2 s1

s4 s3 s2 s1

s4 s3 s2 s1

s4 s3 s2 s1

s4 s3 s2 s1

s4 s3 s2 s1

s4 s3 s2 s1

s4 s3 s2 s1

0(e)

1e-05(l)

1e-05(g)

5e-05(l)

5e-05(g)

1e-04(l)

1e-04(g)

5e-04(l)

5e-04(g)

0.001(l)

0.001(g)

0.005(l)

0.005(g)

0.01(l)

0.01(g)

0.05(l)

0.05(g)

0.1(l)

0.1(g)

p1 p2 p3 p4

diff.

0

0.005

0.01

0.015

s1 s2 s3 s4 s7 s5 s8 s6

s1 s2 s3 s4 s7 s5 s8 s6

s1 s2 s3 s4 s7 s5 s8 s6

s1 s2 s3 s4 s7 s5 s8 s6

s1 s2 s3 s4 s7 s5 s8 s6

s1 s2 s3 s4 s7 s5 s8 s6

s1 s2 s3 s4 s7 s5 s8 s6

s1 s2 s3 s4 s7 s5 s8 s6

s1 s2 s3 s4 s7 s5 s8 s6

s1 s2 s3 s4 s7 s5 s8 s6

s1 s2 s3 s4 s7 s5 s8 s6

s1 s2 s3 s4 s7 s5 s8 s6

s1 s2 s3 s4 s7 s5 s8 s6

s1 s2 s3 s4 s7 s5 s8 s6

s1 s2 s3 s4 s7 s5 s6 s8

s1 s2 s3 s4 s7 s5 s8 s6

s1 s2 s3 s4 s7 s5 s6 s8

s1 s2 s3 s4 s7 s5 s8 s6

s1 s2 s3 s4 s7 s5 s6 s8

0(e)

1e-05(l)

1e-05(g)

5e-05(l)

5e-05(g)

1e-04(l)

1e-04(g)

5e-04(l)

5e-04(g)

0.001(l)

0.001(g)

0.005(l)

0.005(g)

0.01(l)

0.01(g)

0.05(l)

0.05(g)

0.1(l)

0.1(g)

p1 p2 p3 p4 p5 p6 p7 p8

diff.

0

0.02

0.04

0.06

Table 18. Preferences for munin variables.

L_LNLPC5_DELT_MUSIZE L_LNLE_ADM_MUSIZE L_MED_ALLCV_EW

s3 s1 s2 s4 s5 s6

s3 s1 s2 s4 s5 s6

s3 s1 s2 s4 s5 s6

s3 s1 s2 s4 s5 s6

s3 s1 s2 s4 s5 s6

s3 s1 s2 s4 s5 s6

s3 s1 s2 s4 s5 s6

s3 s1 s2 s4 s5 s6

s3 s1 s2 s4 s5 s6

s3 s1 s2 s4 s5 s6

s3 s1 s2 s4 s5 s6

s3 s1 s2 s4 s5 s6

s3 s1 s2 s5 s4 s6

s3 s1 s2 s4 s5 s6

s3 s1 s2 s5 s4 s6

s3 s1 s2 s4 s5 s6

s3 s1 s2 s5 s4 s6

s3 s1 s2 s4 s5 s6

s3 s1 s2 s5 s4 s6

0(e)

1e-05(l)

1e-05(g)

5e-05(l)

5e-05(g)

1e-04(l)

1e-04(g)

5e-04(l)

5e-04(g)

0.001(l)

0.001(g)

0.005(l)

0.005(g)

0.01(l)

0.01(g)

0.05(l)

0.05(g)

0.1(l)

0.1(g)

p1 p2 p3 p4 p5 p6

diff.

0

0.001

0.002

0.003

0.004

s3 s4 s1 s2 s5 s6

s3 s4 s1 s2 s5 s6

s3 s4 s1 s2 s5 s6

s3 s4 s1 s2 s5 s6

s3 s4 s1 s2 s5 s6

s3 s4 s1 s2 s5 s6

s3 s4 s1 s2 s5 s6

s3 s4 s1 s2 s5 s6

s3 s1 s2 s4 s5 s6

s3 s4 s1 s2 s5 s6

s3 s1 s2 s4 s5 s6

s3 s4 s1 s2 s5 s6

s3 s5 s4 s1 s2 s6

s3 s4 s1 s2 s5 s6

s3 s5 s4 s1 s2 s6

s3 s4 s1 s2 s5 s6

s3 s5 s4 s1 s2 s6

s3 s4 s1 s2 s5 s6

s3 s5 s4 s1 s2 s6

0(e)

1e-05(l)

1e-05(g)

5e-05(l)

5e-05(g)

1e-04(l)

1e-04(g)

5e-04(l)

5e-04(g)

0.001(l)

0.001(g)

0.005(l)

0.005(g)

0.01(l)

0.01(g)

0.05(l)

0.05(g)

0.1(l)

0.1(g)

p1 p2 p3 p4 p5 p6

diff.

0

0.005

0.01

s1 s3 s2 s4 s5 s10 s6 s7 s8 s9

s1 s3 s2 s4 s5 s10 s6 s7 s8 s9

s1 s3 s2 s4 s5 s10 s6 s7 s8 s9

s1 s3 s2 s4 s5 s10 s6 s7 s8 s9

s1 s3 s2 s4 s5 s10 s6 s7 s8 s9

s1 s3 s2 s4 s5 s10 s6 s7 s8 s9

s1 s3 s2 s4 s5 s10 s6 s7 s8 s9

s1 s3 s2 s4 s5 s10 s6 s7 s8 s9

s1 s3 s2 s4 s10 s5 s6 s7 s8 s9

s1 s3 s2 s4 s5 s10 s6 s7 s8 s9

s1 s3 s2 s4 s10 s5 s6 s7 s8 s9

s1 s3 s2 s4 s5 s10 s6 s7 s8 s9

s1 s3 s2 s4 s10 s5 s6 s8 s7 s9

s1 s3 s2 s4 s5 s10 s6 s7 s8 s9

s1 s3 s2 s4 s10 s5 s6 s8 s7 s9

s1 s3 s2 s4 s5 s10 s6 s7 s8 s9

s1 s3 s4 s2 s10 s5 s8 s9 s7 s6

s1 s3 s2 s4 s5 s10 s6 s7 s8 s9

s1 s3 s4 s2 s10 s5 s8 s9 s7 s6

0(e)

1e-05(l)

1e-05(g)

5e-05(l)

5e-05(g)

1e-04(l)

1e-04(g)

5e-04(l)

5e-04(g)

0.001(l)

0.001(g)

0.005(l)

0.005(g)

0.01(l)

0.01(g)

0.05(l)

0.05(g)

0.1(l)

0.1(g)

p1 p2 p3 p4 p5 p6 p7 p8 p9 p10

diff.

0

0.05

0.1

0.15

Mathematics 2022, 10, 2542 24 of 27

Table 19. Preferences for cho_0 and cho_1.

cho_0

s21 s20 s19 s18 s1 s8 s9 s10 s7 s11 s12 s13 s14 s15 s17 s16 s6 s5 s2 s4 s3

s21 s20 s19 s18 s1 s8 s9 s10 s7 s11 s12 s13 s14 s15 s17 s16 s6 s5 s2 s4 s3

s21 s20 s19 s18 s1 s8 s9 s10 s7 s11 s12 s13 s14 s15 s17 s16 s6 s5 s2 s4 s3

s21 s20 s19 s18 s1 s8 s9 s10 s7 s11 s12 s13 s14 s15 s17 s16 s6 s5 s2 s4 s3

s21 s20 s19 s18 s1 s8 s9 s10 s7 s11 s12 s13 s14 s15 s17 s16 s6 s5 s2 s4 s3

s21 s20 s19 s18 s1 s8 s9 s10 s7 s11 s12 s13 s14 s15 s17 s16 s6 s5 s2 s4 s3

s21 s20 s19 s18 s1 s8 s9 s10 s7 s11 s12 s13 s14 s15 s17 s16 s6 s5 s2 s4 s3

s21 s20 s19 s18 s1 s8 s9 s10 s7 s11 s12 s13 s14 s15 s17 s16 s6 s5 s2 s4 s3

s21 s20 s19 s18 s1 s8 s9 s10 s7 s11 s12 s13 s14 s15 s17 s16 s6 s5 s2 s4 s3

s21 s20 s19 s18 s1 s8 s9 s10 s7 s11 s12 s13 s14 s15 s17 s16 s6 s5 s2 s4 s3

s21 s20 s19 s18 s1 s8 s9 s10 s7 s11 s12 s13 s14 s15 s17 s16 s6 s5 s2 s4 s3

s21 s20 s19 s18 s1 s8 s9 s10 s7 s11 s12 s13 s14 s15 s16 s17 s6 s5 s2 s4 s3

s21 s20 s19 s18 s1 s8 s9 s10 s7 s11 s12 s13 s14 s15 s16 s17 s6 s5 s2 s4 s3

s21 s20 s19 s1 s18 s8 s9 s10 s7 s11 s12 s13 s14 s15 s16 s17 s6 s5 s2 s4 s3

s21 s20 s19 s1 s18 s8 s9 s10 s7 s11 s12 s13 s14 s15 s16 s17 s6 s5 s2 s4 s3

s21 s20 s19 s1 s18 s8 s9 s10 s7 s11 s12 s13 s14 s15 s16 s17 s6 s5 s2 s4 s3

s21 s20 s19 s1 s18 s8 s9 s10 s7 s11 s12 s13 s14 s15 s16 s17 s6 s5 s2 s4 s3

s21 s20 s19 s1 s18 s8 s9 s10 s7 s11 s12 s13 s14 s15 s16 s17 s6 s5 s2 s4 s3

s21 s20 s19 s1 s18 s8 s9 s10 s7 s11 s12 s13 s14 s15 s16 s17 s6 s5 s2 s4 s3

0(e)

1e-05(l)

1e-05(g)

5e-05(l)

5e-05(g)

1e-04(l)

1e-04(g)

5e-04(l)

5e-04(g)

0.001(l)

0.001(g)

0.005(l)

0.005(g)

0.01(l)

0.01(g)

0.05(l)

0.05(g)

0.1(l)

0.1(g)

p1 p2 p3 p4 p5 p6 p7 p8 p9 p10 p11 p12 p13 p14 p15 p16 p17 p18 p19 p20 p21

diff.

0

0.01

0.02

0.03

cho_1

s21 s20 s19 s18 s1 s17 s16 s15 s12 s13 s14 s11 s10 s7 s6 s9 s8 s5 s2 s4 s3

s21 s20 s19 s18 s1 s17 s16 s15 s12 s13 s14 s11 s10 s7 s6 s9 s8 s5 s2 s4 s3

s21 s20 s19 s18 s1 s17 s16 s15 s12 s13 s14 s11 s10 s7 s6 s9 s8 s5 s2 s4 s3

s21 s20 s19 s18 s1 s17 s16 s15 s12 s13 s14 s11 s10 s7 s6 s9 s8 s5 s2 s4 s3

s21 s20 s19 s18 s1 s17 s16 s15 s12 s13 s14 s11 s10 s7 s6 s9 s8 s5 s2 s4 s3

s21 s20 s19 s18 s1 s17 s16 s15 s12 s13 s14 s11 s10 s7 s6 s9 s8 s5 s2 s4 s3

s21 s20 s19 s18 s1 s17 s16 s15 s12 s13 s14 s11 s10 s7 s6 s9 s8 s5 s2 s4 s3

s21 s20 s19 s18 s1 s17 s16 s15 s12 s13 s14 s11 s10 s7 s6 s9 s8 s5 s2 s4 s3

s21 s20 s19 s18 s1 s17 s16 s15 s12 s13 s14 s11 s10 s7 s6 s9 s8 s5 s2 s4 s3

s21 s20 s19 s18 s1 s17 s16 s15 s12 s13 s14 s11 s10 s7 s6 s9 s8 s5 s2 s4 s3

s21 s20 s19 s18 s1 s17 s16 s15 s12 s13 s14 s11 s10 s7 s6 s9 s8 s5 s2 s4 s3

s21 s20 s19 s18 s1 s17 s16 s15 s13 s12 s14 s11 s10 s7 s6 s9 s8 s5 s2 s4 s3

s21 s20 s19 s18 s1 s17 s16 s15 s13 s14 s12 s11 s10 s7 s6 s9 s8 s5 s2 s4 s3

s21 s20 s19 s18 s1 s17 s16 s15 s13 s12 s14 s11 s10 s7 s6 s9 s8 s5 s2 s4 s3

s21 s20 s19 s18 s1 s17 s16 s15 s14 s13 s12 s11 s10 s7 s6 s9 s8 s5 s2 s4 s3

s21 s20 s19 s18 s1 s17 s16 s15 s13 s12 s14 s11 s10 s7 s6 s9 s8 s5 s2 s4 s3

s21 s20 s19 s18 s1 s17 s15 s16 s14 s13 s12 s11 s10 s6 s7 s9 s8 s5 s2 s4 s3

s21 s20 s19 s18 s1 s17 s16 s15 s13 s12 s14 s11 s10 s7 s6 s9 s8 s5 s2 s4 s3

s21 s20 s19 s18 s1 s13 s12 s14 s17 s15 s11 s16 s10 s6 s7 s9 s8 s5 s2 s4 s3

0(e)

1e-05(l)

1e-05(g)

5e-05(l)

5e-05(g)

1e-04(l)

1e-04(g)

5e-04(l)

5e-04(g)

0.001(l)

0.001(g)

0.005(l)

0.005(g)

0.01(l)

0.01(g)

0.05(l)

0.05(g)

0.1(l)

0.1(g)

p1 p2 p3 p4 p5 p6 p7 p8 p9 p10 p11 p12 p13 p14 p15 p16 p17 p18 p19 p20 p21

diff.

0

0.005

0.01

0.015

0.02

Mathematics 2022, 10, 2542 25 of 27

Table 20. Preferences for cho_2.

cho_2

s21 s20 s19 s18 s1 s17 s16 s15 s14 s13 s12 s11 s6 s10 s7 s9 s8 s5 s2 s4 s3

s21 s20 s19 s18 s1 s17 s16 s15 s14 s13 s12 s11 s6 s10 s7 s9 s8 s5 s2 s4 s3

s21 s20 s19 s18 s1 s17 s16 s15 s14 s13 s12 s11 s6 s10 s7 s9 s8 s5 s2 s4 s3

s21 s20 s19 s18 s1 s17 s16 s15 s14 s13 s12 s11 s6 s10 s7 s9 s8 s5 s2 s4 s3

s21 s20 s19 s18 s1 s17 s16 s15 s14 s13 s12 s11 s6 s10 s7 s9 s8 s5 s2 s4 s3

s21 s20 s19 s18 s1 s17 s16 s15 s14 s13 s12 s11 s6 s10 s7 s9 s8 s5 s2 s4 s3

s21 s20 s19 s18 s1 s17 s16 s15 s14 s13 s12 s11 s6 s10 s7 s9 s8 s5 s2 s4 s3

s21 s20 s19 s18 s1 s17 s16 s15 s14 s13 s12 s11 s6 s10 s7 s9 s8 s5 s2 s4 s3

s21 s20 s19 s18 s1 s17 s16 s15 s14 s13 s12 s11 s6 s10 s7 s9 s8 s5 s2 s4 s3

s21 s20 s19 s18 s1 s17 s16 s15 s14 s13 s12 s11 s6 s10 s7 s9 s8 s5 s2 s4 s3

s21 s20 s19 s18 s1 s17 s16 s15 s14 s13 s12 s11 s6 s10 s7 s9 s8 s5 s2 s4 s3

s21 s20 s19 s18 s1 s17 s16 s15 s14 s13 s12 s11 s6 s10 s7 s9 s8 s5 s2 s4 s3

s21 s20 s19 s18 s1 s17 s16 s15 s14 s13 s12 s11 s6 s10 s7 s9 s8 s5 s2 s4 s3

s21 s20 s19 s18 s1 s17 s16 s15 s14 s13 s12 s11 s6 s10 s7 s9 s8 s5 s2 s4 s3

s21 s20 s19 s18 s1 s17 s16 s15 s14 s13 s12 s11 s6 s10 s7 s9 s8 s5 s2 s4 s3

s21 s20 s19 s18 s1 s17 s16 s15 s14 s13 s12 s11 s6 s10 s7 s9 s8 s5 s2 s4 s3

s21 s20 s19 s18 s1 s17 s16 s15 s14 s13 s12 s11 s6 s10 s7 s9 s8 s5 s2 s4 s3

s21 s20 s19 s18 s1 s17 s16 s15 s14 s13 s12 s11 s6 s10 s7 s9 s8 s5 s2 s4 s3

s21 s20 s19 s18 s1 s17 s16 s15 s14 s13 s12 s11 s6 s10 s7 s9 s8 s5 s2 s4 s3

0(e)

1e-05(l)

1e-05(g)

5e-05(l)

5e-05(g)

1e-04(l)

1e-04(g)

5e-04(l)

5e-04(g)

0.001(l)

0.001(g)

0.005(l)

0.005(g)

0.01(l)

0.01(g)

0.05(l)

0.05(g)

0.1(l)

0.1(g)

p1 p2 p3 p4 p5 p6 p7 p8 p9 p10 p11 p12 p13 p14 p15 p16 p17 p18 p19 p20 p21

diff.

0

0.005

0.01

0.015

0.02

5.5.1. hepar2 Network

For this network, the order of preferences (s3, s3, s2, s1 for ggtp and bilirubin, and
s3, s4, s2, s1 for ast and alt) are always maintained, both for global and local approximation
as well as for every threshold value. Similarly, it can be seen that the probability differences
are always small, with maximum values of 0.04 for the case of the ggtp and ast variables.

5.5.2. pathfinder Network

For the three variables in this network, the same behavior is observed as in the case of
the previous network: the preference orders are maintained for every threshold and for
both forms of approximation. The largest probability difference value is 0.06 for the variable
F40, and this appears in the global approximation case with the highest threshold values.

5.5.3. munin Network

For this network, there are changes in the order of preferences, although these do
not affect the most probable alternatives. For the three variables, the changes appear with
threshold values starting at 0.0005 and always for the case of global approximation. The
highest values of probability difference occur for the third variable, reaching 0.15 with high
thresholds and global approximation.

5.5.4. diabetes Network

The results for this network have been divided into two tables due to the number of
states of the variables considered (21 in total).

For these two variables, there are changes in the orders of preferences for threshold
values from 0.005 with both types of approximation. It should be noted that the differences
between probability values are very low (the maximum is 0.02) and that the changes do not
affect the first preferences (3 first in the case of cho_0 and 6 first in the case of cho_1).

Mathematics 2022, 10, 2542 26 of 27

For the last variable, there are no changes in the preference orders and the difference
between probability values is very small, even in the case of large thresholds and global
approximation (the maximum value is 0.02).

6. Discussion

In this work, we have analyzed the characteristics of some BNs that model real medical
problems. This analysis has allowed us to observe that the probability distributions that
quantify the uncertainty of the problem have various common characteristics, and these
include the fact that there are many impossible events and that some probability values
tend to appear several times. For example, when analyzing the pathfinder network (see
Table 7), it can be seen that although the probability distribution for the variable F39 has
8064 parameters, there are only 30 different values for these. However, these repetitions
do not always appear in a way that can be used by tree-like structures such as PPT or
BPT. This justifies the use of the considered VBP structures, which in some cases enable a
considerable saving of memory space in relation to other possible representation structures.

The need to deal with increasingly complex problems may subsequently lead to
situations where models cannot be evaluated by exact inference algorithms, such as the
VE algorithm. In such cases, our work considers the possibility of approximating the VBP
structures, forcing an additional saving of space at the cost of losing information. Our
work presents the way in which this operation should be carried out and experimentally
demonstrates that the errors it induces in the results of the inference algorithms are small
and that in many cases they do not alter the preference orders between variable alternatives.
In this way, the decision-making process based on the approximate results would match
the one performed if the exact propagation could be computed.

Author Contributions: Writing–review & editing, P.B.-N., A.C., M.G.-O., S.M. and O.P.R. All authors
have read and agreed to the published version of the manuscript.

Funding: This paper is supported by the Spanish Ministry of Education and Science under project
PID2019-106758GB-C31 and the European Regional Development Fund (FEDER). Funding for open
access publication has been provided by the Universidad de Granada/CBUA.

Data Availability Statement: The software used in this paper was implemented in Scala. The code is
available at https://github.com/mgomez-olmedo/VBPots (accessed on 15 June 2022).. This repository
also stores the information required for reproducing the experiments.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations
The following abbreviations are used in this manuscript:

BN Bayesian network
BPT Binary probability tree
DAG Decision acyclic graph
ID Influence diagram
IDM Index-driven with map
IDP Index-driven with pair of arrays
PGM Probabilistic graphical model
PPT Pruned probability tree
PT Probability tree
VBP Value-based potential
VDG Value-driven with grains
VDI Value-driven with indices
1DA Unidimensional array

https://github.com/mgomez-olmedo/VBPots

Mathematics 2022, 10, 2542 27 of 27

References
1. Koller, D.; Friedman, N. Probabilistic Graphical Models: Principles and Techniques; MIT Press: Cambridge, MA, USA, 2009.
2. Lauritzen, S.L. Graphical Models; Oxford University Press: Oxford, UK, 1996.
3. Pearl, J. Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference; Morgan Kaufmann: Burlington, MA, USA, 1988.
4. Pearl, J. Bayesian Networks: A Model of Self-Activated Memory for Evidential Reasoning; Computer Science Department, University of

California, California, LA, USA, 1985.
5. Pearl, J.; Russell, S. Bayesian Networks. Computer Science Department, University of California. 1998. Available online:

https://people.eecs.berkeley.edu/~russell/papers/hbtnn-bn.pdf (accessed on 15 June 2022).
6. Howard, R.A.; Matheson, J.E. Influence diagram retrospective. Decis. Anal. 2005, 2, 144–147. [CrossRef]
7. Olmsted, S.M. On Representing and Solving Decision Problems. Ph.D. Thesis, Department of Engineering-Economic Systems,

Stanford University, Stanford, CA, USA, 1983.
8. Arias, M.; Díez, F. Operating with potentials of discrete variables. Int. J. Approx. Reason. 2007, 46, 166–187. [CrossRef]
9. Boutilier, C.; Friedman, N.; Goldszmidt, M.; Koller, D. Context-specific independence in Bayesian networks. In Proceedings of the

12th Annual Conference on Uncertainty in Artificial Intelligence (UAI-96), Portland, OR, USA, 1–3 August 1996; pp. 115–123.
10. Cabañas, R.; Gómez, M.; Cano, A. Using binary trees for the evaluation of influence diagrams. Int. J. Uncertain. Fuzziness Knowl.

Based Syst. 2016, 24, 59–89. [CrossRef]
11. Cano, A.; Moral, S.; Salmerón, A. Penniless propagation in join trees. Int. J. Approx. Reason 2000, 15, 1027–1059. [CrossRef]
12. Gómez-Olmedo, M.; Cano, A. Applying numerical trees to evaluate asymmetric decision problems. In Symbolic and Quantitative

Approaches to Reasoning with Uncertainty of Lecture Notes in Computer Science; Nielsen, T., Zhang, N., Eds.; Springer: Berlin/Heidelberg,
Germany, 2003; Volume 2711.

13. Salmerón, A.; Cano, A.; Moral, S. Importance sampling in Bayesian networks using probability trees. Comput. Stat. Data Anal.
2000, 34, 387–413. [CrossRef]

14. Cabañas, R.; Gómez-Olmedo, M.; Cano, A. Approximate inference in influence diagrams using binary trees. In Proceedings of the
Sixth European Workshop on Probabilistic Graphical Models (PGM-12), Granada, Spain, 19–21 September 2012.

15. Cano, A.; Gómez-Olmedo, M.; Moral, S. Approximate inference in Bayesian networks using binary probability trees. Int. J.
Approx. Reason. 2011, 52, 49–62. [CrossRef]

16. Gómez-Olmedo, M.; Cabañas, R.; Cano, A.; Moral, S.; Retamero, O.P. Value-Based Potentials: Exploiting Quantitative Information
Regularity Patterns in Probabilistic Graphical Models. Int. J. Intell. Syst. 2021, 36, 6913–6943. [CrossRef]

17. Scutari, M. Learning Bayesian networks with the bnlearn R package. J. Stat. Softw. 2010, 35, 1–22. [CrossRef]
18. Scutari, M. Bayesian network constraint-based structure learning algorithms: Parallel and optimized implementations in the

bnlearn R package. J. Stat. Softw. 2017, 77, 1–20. [CrossRef]
19. UAI 2014 Inference Competition. 2014. Available online: https://personal.utdallas.edu/~vibhav.gogate/uai14-competition/

index.html (accessed on 15 June 2022).
20. UAI 2016 Inference Competition. 2016. Available online: https://personal.utdallas.edu/~vibhav.gogate/uai16-evaluation/index.

html (accessed on 15 June 2022).
21. Kullback, S.; Leibler, R.A. On information and sufficiency. Ann. Math. Stat. 1951, 22, 76–86. [CrossRef]
22. Onisko, A. Probabilistic Causal Models in Medicine: Application to Diagnosis of Liver Disorders. Ph.D. Dissertation, Institute of

Biocybernetics and Biomedical Engineering, Polish Academy of Science, Warsaw, March 2003.
23. Bobrowski, L. HEPAR: Computer system for diagnosis support and data analysis. In Prace IBIB 31; Institute of Biocybernetics and

Biomedical Engineering, Polish Academy of Science: Warsaw, Poland, 1992.
24. Heckerman, D.; Horwitz, E.; Nathwani, B. Towards Normative Expert Systems: Part I. The Pathfinder Project. Methods Inf. Med.

1992, 31, 90–105. [CrossRef] [PubMed]
25. Andreassen, S.; Jensen, F.V.; Andersen, S.K.; Falck, B.; Kjærulff, U.; Woldbye, M.; Sørensen, A.R.; Rosenfalck, A.; Jensen, F. MUNIN—

An Expert EMG Assistant. In Computer-Aided Electromyography and Expert Systems; Elsevier: Amsterdam, The Netherlands, 1989;
Chapter 21.

26. Andreassen, S.; Hovorka, R.; Benn, J.; Olesen, K.G.; Carson, E.R. A Model-based Approach to Insulin Adjustment. In Proceedings
of the 3rd Conference on Artificial Intelligence in Medicine, Vienna, Austria, 21–24 June 1991; pp.239–248.

27. Dechter, R. Bucket elimination: A unifying algorithm for Bayesian inference. Artif. Intell. 1997, 93, 1–27.
28. Shenoy, P.P.; Shafer, G.R. Axioms for probability and belief-function propagation. In Uncertainty in Artificial Intelligence of Machine

Intelligence and Pattern Recognition; Shachter, R.D., Levitt, T.S., Kanal, L.N., Lemmer, J.F., Eds.; North-Holland: Amsterdam, The
Netherlands, 1990; Volume 9.

29. Zhang, N.L.; Poole, D. Exploiting causal independences in Bayesian networks inference. J. Artif. Intell. Res. 1996, 5, 301–328.
[CrossRef]

https://people.eecs.berkeley.edu/~russell/papers/hbtnn-bn.pdf
http://doi.org/10.1287/deca.1050.0050
http://dx.doi.org/10.1016/j.ijar.2006.12.002
http://dx.doi.org/10.1142/S0218488516500045
http://dx.doi.org/10.1002/1098-111X(200011)15:11<1027::AID-INT4>3.0.CO;2-
http://dx.doi.org/10.1016/S0167-9473(99)00110-3
http://dx.doi.org/10.1016/j.ijar.2010.05.006
http://dx.doi.org/10.1002/int.22573
http://dx.doi.org/10.18637/jss.v035.i03
http://dx.doi.org/10.18637/jss.v077.i02
https://personal.utdallas.edu/~vibhav.gogate/uai14-competition/index.html
https://personal.utdallas.edu/~vibhav.gogate/uai14-competition/index.html
https://personal.utdallas.edu/~vibhav.gogate/uai16-evaluation/index.html
https://personal.utdallas.edu/~vibhav.gogate/uai16-evaluation/index.html
http://dx.doi.org/10.1214/aoms/1177729694
http://dx.doi.org/10.1055/s-0038-1634867
http://www.ncbi.nlm.nih.gov/pubmed/1635470
http://dx.doi.org/10.1613/jair.305

	Introduction
	Basic Definitions and Notation
	Representation of Potentials
	Classic Structures
	1D-Arrays
	Probability Trees

	Alternative Structures: Value-Based Potentials
	VDI: Value-Driven with Indices
	IDP: Index-Driven with Pair of Arrays

	Approximating Value-Based Potentials
	Algorithm
	Theoretical Background
	Example

	Empirical Evaluation
	Global Memory Size Analysis
	Local Memory Size Analysis
	Global Memory Size with Approximation
	hepar2 Network
	pathfinder Network
	munin Network
	diabetes Network

	Propagation Errors with Approximation
	hepar2 Network
	pathfinder Network
	munin Network
	diabetes Network

	Order of Preferences
	hepar2 Network
	pathfinder Network
	munin Network
	diabetes Network

	Discussion
	References

