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Abstract: We present a pursuit differential game for an infinite system of two-block differential
equations in Hilbert space l2. The pursuer and evader control functions are subject to integral
constraints. The differential game is said to be completed if the state of the system falls into the origin
of l2 at some finite time. The purpose of the pursuer is to bring the state of the controlled system to
the origin of the space l2, whereas the evader’s aim is to prevent this. For the optimal pursuit time,
we obtain an equation and construct the optimal strategies for the players.
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1. Introduction

The concept of differential games was introduced by R. Isaacs [1], although some
differential games were considered before Isaacs. The majority of the past literature on this
subject is devoted to finite-space differential games (see, for example, [2–5]).

Control problems described by partial differential equations can be studied in some
Banach spaces (see, for example, [6–9]).

In many cases, control problems governed by partial differential equations can be
reduced to those written by an infinite system of differential equations, such as those
in [6,8,10–14].

In the paper of Azamov et al. [15], for an infinite system of linear ordinary differential
equations, the principle diagonal of the coefficient matrix is λ and the upper diagonal
entries of the matrix are 1 s. The stability of λ ≤ −1 and the controllability of the system
were studied. The exact controllability for the trajectories the Korteweg–de Vries–Burgers
equation was studied through a linearized system in [13]. Furthermore, the work in [16]
relates to a control problem for an infinite system of differential equations.

Differential games problems were studied for the first time in [8,17] in systems with
distributed parameters.

The studies presented in [18–26] were devoted to differential games for infinite-
dimensional spaces.

The study presented in [22] was devoted to the differential games described by the
partial differential equation of the parabolic type given on some interval, [0, T]. The
differential games were reduced to those described by the following infinite system of
differential equations:

żi = λizi − ui + vi, zi(0) = zi0, i = 1, 2, ..., 0 > λ1 ≥ λ2 ≥ ...→ −∞,
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where ui, vi, i = 1, 2, . . . are the control parameters of pursuer and evader, respectively. In
that paper, four differential games corresponding to the following constraints on controls
were considered and sufficient conditions of evasion and completion pursuit were obtained:

(i)
∫ T

0

∞
∑

i=1
u2

i (t)dt ≤ ρ2,
∫ T

0

∞
∑

i=1
v2

i (t)dt ≤ σ2 (ii)
∞
∑

i=1
u2

i (t) ≤ ρ2,
∞
∑

i=1
v2

i (t) ≤ σ2

(iii)
∫ T

0

∞
∑

i=1
u2

i (t)dt ≤ ρ2,
∞
∑

i=1
v2

i (t) ≤ σ2 (iv)
∞
∑

i=1
u2

i (t) ≤ ρ2,
∫ T

0

∞
∑

i=1
v2

i (t)dt ≤ σ2

A simple motion-evasion differential game of infinitely numerous evaders and pur-
suers was studied in [18] in the Hilbert space l2. The fact that l2 is an infinite-dimensional
space played a key role in the construction of the evasion strategy.

The soft-landing differential game problem of one pursuer and one evader described
by the following infinite system of equations was studied in [19]:

ẍk = −αkxk + βkyk − uk1 + vk1, xk(0) = xk0, ẋk(0) = xk1
ÿk = βkxk + αkyk − uk2 + vk2, yk(0) = yk0, ẏk(0) = yk1

, k = 1, 2, . . . ,

In the case of integral constraints on the controls of players, a theorem on the completion of
the game was proved.

The construction of optimal strategies of players is a difficult and important task in
differential games (see, for example, [20,27]). The study presented in [27] is devoted to the
construction of such strategies for the differential game governed by the following infinite
system of differential equations:

ẋj = γjxj − δjyj + uj1 − vj1, xj(0) = xj0,
ẏj = δjxj + γjyj + uj2 − vj2, yj(0) = yj0,

(1)

j = 1, 2, . . . in Hilbert space l2, where γj, δj are given real numbers; γj ≤ 0, ξ0 =
(ξ10, ξ20, . . . ) = (x10, y10, x20, y20, . . . ) is the initial state with ξ j0 = (xj0, yj0);
u = (u11, u12, u21, u22, . . . ) is the pursuer’s control parameter; and v = (v11, v12, v21, v22, . . . )
is the evader’s control parameter. It is assumed that ξ0 ∈ l2 and ξ0 6= 0.

The present paper studies a pursuit–evasion differential game of one pursuer and a
single evader governed by an infinite system of two-block differential Equation (1) under
the condition of γj ≥ 0. The control functions of both the pursuer and evader are subjected
to integral constraints. The pursuer’s purpose is to bring the state of system (1) to the origin
of the space l2, the evader’s purpose is to avoid this. We find the optimal pursuit time, and
construct optimal strategies of pursuer and evader. First, for an auxiliary control problem,
the optimal time is found and the optimal control is constructed. Then, an equation for the
optimal pursuit time is given and the optimal strategies of the players are constructed.

2. Statement of the Problem

Let ρ0 be a given positive number.

Definition 1. We call the function w(t) = (w11(t), w12(t), w21(t), w22(t), . . . ), 0 ≤ t ≤ T, with
the values in l2 an admissible control if its coordinates, wj1(t), wj2(t), 0 ≤ t ≤ T, j = 1, 2, . . . ,
are measurable and satisfy the following condition:

T∫
0

||w(s)||2ds ≤ ρ2
0, ||w(s)|| =

(
∞

∑
j=1

(
w2

j1(s) + w2
j2(s)

))1/2

,

where T is a sufficiently large fixed positive number.
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We use S(ρ0) to denote the set of all admissible controls. Let

Cj(t) = eγjt
[

cos δjt − sin δjt
sin δjt cos δjt

]
, j = 1, 2, . . . . (2)

It can be easily seen that, for the matrices Cj(t),

Cj(t + h) = Cj(t)Cj(h) = Cj(h)Cj(t), |Cj(t)ξ j| = |C∗j (t)ξ j| = eγjt|ξ j|, (3)

where C∗ denotes the transpose of the matrix C. Let

ξ j(t) = (xj(t), yj(t)), ξ(t) = (ξ1(t), ξ2(t), . . . ) = (x1(t), y1(t), x2(t), y2(t), . . . ),

|ξ j| =
√

x2
j + y2

j , ‖ξ‖ =
(

∞

∑
j=1

(x2
j + y2

j )

)1/2

, ‖ξ0‖ =
(

∞

∑
j=1

(x2
j0 + y2

j0)

)1/2

.

We will use the symbol C(0, T; l2) to denote the space of continuous functions ξ(t) ∈ l2,
0 ≤ t ≤ T. The following statement will be needed.

Proposition 1 ([28]). If w(·) ∈ S(ρ0) and 0 ≤ γj ≤ a for some a > 0, then, for any given T > 0,
the following infinite system of two-block differential equations

ẋj = γjxj − δjyj + wj1, xj(0) = xj0
ẏj = δjxj + γjyj + wj2, yj(0) = yj0

, j = 1, 2, . . . , (4)

has a unique solution ξ(t) = (ξ1(t), ξ2(t), . . . ), 0 ≤ t ≤ T, in the space C(0, T; l2), where

ξ j(t) = Cj(t)ξ j0 +
∫ t

0
Cj(t− s)w(s)ds, j = 1, 2, . . . .

From now on, we consider the solution of system (4) on the finite time interval [0, T]
since Proposition 1 was proved [28] for any fixed T > 0. Therefore, T is assumed to be
sufficiently large number.

Definition 2. A function u(·) ∈ S(ρ) and v(·) ∈ S(σ), where ρ and σ are given positive numbers,
are referred to as the admissible controls of pursuer and evader, respectively.

Let wj = (wj1, wj2), uj = (uj1, uj2), vj = (vj1, vj2), j = 1, 2, . . .. We give the definition
for the strategy of pursuer.

Definition 3. A function

u(t, v) = (u1(t, v), u2(t, v), . . . ), u : [0, T]× l2 → l2,

of the form

uj(t, v) = vj(t) + wj(t), w(·) = (w1(·), w2(·), . . . ) ∈ S(ρ− σ),

subject to the integral constraint

∞

∑
j=1

T∫
0

|uj(t, v(t))|2dt ≤ ρ2 f or any v(·) ∈ S(σ),

is called a strategy of the pursuer.
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Definition 4. If, for any admissible control of evader, the equality ξ(τ) = 0 holds at some time
τ ∈ [0, θ] depending on the admissible control of evader, we state that the strategy u(·) guarantees
the completion of pursuit for the time θ. Here, the number θ is called a guaranteed pursuit time.

Let

µ(t) =
(

ρ2 −
∫ t

0
‖u(s)‖2ds

)1/2
, ν(t) =

(
σ2 −

∫ t

0
‖v(s)‖2ds

)1/2
.

Definition 5. A function

v(t, ξ, µ, ν, u(t− ε)), v : [0, T]× l2 × [0, ρ0]× [0, σ0]× l2 → l2,

of the form

v(t, ξ, µ, ν, u(t− ε)) =


v0(t), µ(t) > ν(t),
0, τ ≤ t ≤ τ + ε,
u(t− ε), τ + ε < t ≤ T,

(5)

that satisfies the constraint

∞

∑
j=1

T∫
0

|vj(t, ξ, µ, ν, u(t− ε))|2dt ≤ σ2,

is called a strategy of the evader, where ε is a positive number which will be chosen during the game,
and τ is the first time when µ(τ) = ν(τ).

Next, we give a definition for the optimal pursuit time and optimal strategies of players.

Definition 6. A number θ is called the optimal pursuit time if the following conditions are met:

(i) There exists a strategy u0(·) of the pursuer of pursuer such that, for any admissible control of
the evader, the differential game can be completed on the time interval [0, θ];

(ii) There exists a strategy v0(·) of the evader, for which ξ(t) 6= 0, 0 ≤ t < θ, for an arbitrary
admissible control of the pursuer.

In this case, we say that evasion is possible on [0, θ). Furthermore, the strategies u0(·) and
v0(·) are called optimal strategies of the pursuer and evader, respectively.

The main problem of the paper is to find the optimal pursuit time and to construct the
optimal strategies of pursuer and evader in the differential game (1).

3. Time-Optimal Control Problem

First, we consider the following time-optimal control problem for the system (4).

Problem 1. Find the optimal time to transfer the state of the system (4) from the given initial state
ξ(0) = ξ0 to the origin of l2.

To solve this problem, we let

φj(t) =
∫ t

0
e−2γjtdt =

{
1−e−2γj t

2γj
, γj 6= 0,

t, γj = 0.
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Observe 1
φj(t)
→ +∞ as t→ 0+ for each j = 1, 2, . . . . Since ξ0 6= 0, at least one term of the

sum in the left-hand side of the equation

∞

∑
j=1

|ξ j0|2

φj(t)
= ρ2

0, (6)

which corresponds to the non-zero ξ j0, approaches +∞ as t → 0+. Consequently, the
left-hand side of Equation (6) approaches +∞ as t→ 0+. Moreover, the left part of (6) is
decreasing function of t, t > 0, because the functions φj(t) are increasing. Since, for γj > 0,

0 <
1

φj(t)
− 2γj =

2γj

1− e−2γjt
− 2γj =

2γje
−2γjt

1− e−2γjt

=
2γj

e2γjt − 1
≤

2γj

2γjt + 1− 1
=

1
t

,

then

∞

∑
j=1

2γj|ξ j0|2 ≤
∞

∑
j=1

|ξ j0|2

φj(t)
= ∑

γj=0

|ξ j0|2

t
+ ∑

γj>0

|ξ j0|2

φj(t)

≤ ∑
γj=0

|ξ j0|2

t
+ ∑

γj>0

(
2γj +

1
t

)
|ξ j0|2

=
∞

∑
j=1

2γj|ξ j0|2 +
||ξ0||2

t
.

Consequently,

lim
t→∞

∞

∑
j=1

|ξ j0|2

φj(t)
=

∞

∑
j=1

2γj|ξ j0|2,

where the series on the right-hand side is convergent since γj ≤ a and ξ0 ∈ l2; therefore,

∞

∑
j=1

2γj|ξ j0|2 ≤
∞

∑
j=1

2a|ξ j0|2 = 2a||ξ0||2.

Thus, if
∞

∑
j=1

2γj|ξ j0|2 < ρ2
0, (7)

then Equation (6) has a unique root t = θ.
We use the following statement to prove the main results of the present paper.

Lemma 1 ([29]). Let C(t), 0 ≤ t ≤ τ, be a continuous-matrix function of the order n, and
its determinant be not identical to 0 on [0, τ]. Then, among the measurable functions, ω(·),
ω : [0, τ]→ Rn, satisfying the condition∫ τ

0
C(s)ω(s)ds = ξ0

the control defined at almost everywhere on [0, τ] by the formula

ω(s) = C∗(s)W−1(τ)ξ0, W(τ) =
∫ τ

0
C(s)C∗(s)ds, (8)

gives the minimum to the functional
∫ τ

0 |ω(s)|2ds.
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Theorem 1. If ξ0 satisfies Equation (7), then the number θ, the unique root of Equation (6), is the
optimal time for the time-optimal control problem.

Proof. Since

ξ j(θ) = Cj(θ)ηj(θ), ηj(θ) = ξ j0 +
∫ θ

0
Cj(−s)wj(s)ds j = 1, 2, . . . ,

to show that ξ(θ) = 0, we need only to show that ηj(θ) = 0 for all j = 1, 2, . . ., that is,

∫ θ

0
Cj(−s)wj(s)ds = −ξ j0, j = 1, 2, . . . ,

To apply Lemma 1 to this equation, we let

Wj(θ) =
∫ θ

0
Cj(−s)C∗j (−s)ds,

where E2 is the 2× 2 identity matrix. It can be easily shown that Wj(θ) = φj(θ)E2 and
W−1

j (θ) = 1
φj(θ)

E2. Using Formula (8), we define the control w(t) = (w1(t), w2(t), . . . ),

0 ≤ t ≤ θ, by the equation

wj(t) = C∗j (−t)W−1
j (θ)(−ξ0) = −

1
φj(θ)

C∗j (−t)ξ j0, j = 1, 2, ..., 0 ≤ t ≤ θ. (9)

Then, by (3)

∞

∑
j=1

∫ θ

0
|wj(t)|2dt =

∞

∑
j=1

1
φ2

j (θ)

∫ θ

0
|C∗j (−t)ξ j0|2dt

=
∞

∑
j=1

|ξ j0|2

φ2
j (θ)

∫ θ

0
e−2γjtdt =

∞

∑
j=1

|ξ j0|2

φj(θ)
= ρ2

0.

Hence, the control (9) is admissible.
Next, we show that ξ j(θ) = 0, j = 1, 2, . . .. Indeed,

ηj(θ) = ξ j0 +
∫ θ

0
Cj(−s)wj(s)ds = ξ j0 −

1
φj(θ)

∫ θ

0
Cj(−s)C∗j (−s)ξ j0ds

= ξ j0 −
1

φj(θ)

∫ θ

0
e−2γjsξ j0ds = ξ j0 − ξ j0 = 0, j = 1, 2, . . . .

Hence, ξ j(θ) = 0, j = 1, 2, . . ..
What is left is to show is that ξ(t) 6= 0, 0 ≤ t < θ, where ξ(t) is the state of the

system (4). To obtain a contradiction, we assume that there exists time τ, 0 < τ < θ,
and an admissible control w̄(·) = (w̄1(·), w̄2(·), . . . ), such that ξ(τ) = 0. Consequently,
η(τ) = (η1(τ), η2(τ), . . . ) = 0, i.e.,∫ τ

0
Cj(−s)w̄j(s)ds = −ξ j0,

∫ τ

0
||w̄(s)||2ds ≤ ρ2

0. (10)

Then, by Lemma 1 for the control

w0(t) = (w10(t), w20(t), . . . ), wj0(t) = −
1

φj(τ)
C∗j (−t)ξ j0, j = 1, 2, . . . , (11)
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(10) is satisfied and the functional

I(w(·)) =
∞

∑
j=1

∫ τ

0
|wj(t)|2dt

takes its minimum. Substituting the control (11) into the functional I yields

I(w̄(·)) ≥ I(w0(·)) =
∞

∑
j=1

|ξ j0|2

φj(τ)
>

∞

∑
j=1

|ξ j0|2

φj(θ)
= ρ2

0

This means the control w̄(·) is not admissible—this is a contradiction. This completes the
Proof of Theorem 1.

4. Differential Game Problem

Now, we examine the differential game (1). From the reasoning of the previous section,
we conclude that the equation

∞

∑
j=1

|ξ j0|2

φj(t)
= (ρ− σ)2

has the only solution t = θ1. Since T is sufficiently large number, we assume that θ1 < T.

Theorem 2. The number θ1 is the optimal pursuit time in the game (1).

Proof. First, we establish that the time θ1 is a guaranteed pursuit time in a differential
game (1). To establish this, we let the pursuer use the following strategy

uj(t, v) = vj(t)−
1

φj(θ1)
C∗(−t)ξ j0, j = 1, 2, . . . , (12)

where v(t), 0 ≤ t ≤ θ1, is an arbitrary admissible control of the evader. To see that the
strategy (12) is admissible, we use the definition of the time θ1 and apply the Minkowski
inequality(

∞

∑
j=1

∫ b

a
( f j(t) + gj(t))2dt

)1/2

≤
(

∞

∑
j=1

∫ b

a
f 2
j (t)dt

)1/2

+

(
∞

∑
j=1

∫ b

a
g2

j (t)dt

)1/2

where a ≤ b, and f j(t), gj(t), i = 1, 2, . . ., t ∈ [a, b], are scalar measurable functions, to obtain

(
∞

∑
j=1

∫ θ1

0
|uj(t, v(t))|2dt

)1/2

=

(
∞

∑
j=1

∫ θ1

0
|vj(t)−

1
φj(θ1)

C∗(−t)ξ j0|2dt

)1/2

≤
(

∞

∑
j=1

∫ θ1

0
|vj(t)|2dt

)1/2

+

(
∞

∑
j=1

∫ θ1

0

1
φ2

j (θ1)
|C∗(−t)ξ j0|2dt

)1/2

≤ σ +

(
∞

∑
j=1

|ξ j0|2

φj(θ1)

)1/2

≤ σ + ρ− σ = ρ.

It is straightforward to show that ξ j(θ1) = 0, j = 1, 2, . . .. Thus, θ1 is a guaranteed
pursuit time.
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We next claim that evasion is possible on [0, θ1). We divide the construction of evader’s
strategy into two parts. If µ(t) > ν(t), we set

vj(t) = −
1

φj(θ1)
· σ

ρ− σ
C∗j (−t)ξ j0, j = 1, 2, . . . . (13)

If µ(τ) = ν(τ) at some τ ∈ [0, θ1), then starting from the time τ, the evader applies
the second part of its strategy to be constructed later.

We let the evader use the control (13). We claim that ξ(t) 6= 0, t ∈ [0, θ1), while
µ(t) ≥ ν(t).

On the contrary, suppose that the game is completed at some t = θ0 < θ1, that is,

ξ j(θ0) = Cj(θ0)ηj(θ0) = 0, j = 1, 2, . . . ,

hence

ηj(θ0) = ξ j0 −
∫ θ0

0
Cj(−s)uj(s)ds +

∫ θ0

0
Cj(−s)vj(s)ds = 0, j = 1, 2, . . . ,

when
µ(θ0) ≥ ν(θ0). (14)

We have from (13) that∫ θ0

0
Cj(−s)uj(s)ds = ξ j0 +

∫ θ0

0
Cj(−s)vj(s)ds

= ξ j0 +
σ

ρ− σ

φj(θ0)

φj(θ1)
ξ j0, j = 1, 2, . . . .

For this equation, applying Lemma 1, we obtain the minimum of the functional∫ θ0
0 |uj(s)|2ds at

uj(s) =
1

φj(θ0)
C∗j (−s)ξ j0

(
1 +

σ

ρ− σ

φj(θ0)

φj(θ1)

)
almost everywhere on [0, θ0]. Therefore,

∫ θ0

0
|uj(s)|2ds =

1
φj(θ0)

|ξ j0|2
(

1 +
σ

ρ− σ

φj(θ0)

φj(θ1)

)2

, j = 1, 2, . . . .

By (13) ∫ θ0

0
|vj(s)|2ds =

σ2

(ρ− σ)2

φj(ρ)

φ2
j (θ1)

|ξ j0|2, j = 1, 2, . . . .

This gives, for j = 1, 2, . . . , that∫ θ0

0
|uj(s)|2ds−

∫ θ0

0
|vj(s)|2ds =

1
φj(θ0)

|ξ j0|2 +
2σ

ρ− σ

1
φj(θ1)

|ξ j0|2.

Consequently,

∞

∑
j=1

(∫ θ0

0
|uj(s)|2ds−

∫ θ0

0
|vj(s)|2ds

)
=

∞

∑
j=1

1
φj(θ0)

|ξ j0|2 +
2σ

ρ− σ

∞

∑
j=1

1
φj(θ1)

|ξ j0|2 (15)

Since θ0 < θ1 and φj(t), t > 0, is an increasing function, therefore in by the definition of θ1
we obtain

∞

∑
j=1

1
φj(θ0)

|ξ j0|2 >
∞

∑
j=1

1
φj(θ1)

|ξ j0|2 = (ρ− σ)2.
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Hence, by (15)

∞

∑
j=1

(∫ θ0

0
|uj(s)|2ds−

∫ θ0

0
|vj(s)|2ds

)
> (ρ− σ)2 +

2σ

ρ− σ
· (ρ− σ)2 = ρ2 − σ2,

or, equivalently,

σ2 −
∞

∑
j=1

∫ θ0

0
|vj(s)|2ds > ρ2 −

∞

∑
j=1

∫ θ0

0
|uj(s)|2ds.

This gives ν2(θ0) > µ2(θ0), contrary to our assumption µ(θ0) ≥ ν(θ0). Thus, when the
evader uses control (13), we have ξ(t) 6= 0, t ∈ [0, θ1) whenever µ(t) ≥ ν(t).

What if µ(t1) < ν(t1) at some time t1 ∈ [0, θ1)? If so, using the continuity of the
functions µ(t), ν(t), t ≥ 0, and the relation µ(0) > ν(0) (that is, ρ > σ), we deduce that
there exists τ, 0 ≤ τ < t1, such that µ(τ) = ν(τ). In view of the inequality ξ(t) 6= 0,
0 ≤ t ≤ τ, proved above, we have ξ(τ) 6= 0.

Starting from the time τ the evader applies the second part of their strategy to be
constructed below. Note that the inequality ξ(τ) = (ξ1(τ), ξ2(τ), . . . ) 6= 0, implies that
ξ j(τ) = Cj(τ)ηj(τ) 6= 0 for some j. Hence, ηj(τ) 6= 0. Consider the following equation:

ηj(t) = ηj(τ)−
∫ t

τ
Cj(−s)(uj(s)− vj(s))ds, t ≥ τ,

corresponding to the number j. We suggest the following strategy

vj(s) =
{

0, τ ≤ s ≤ τ + ε,
uj(s− ε), τ + ε < s ≤ T,

for the evader, where ε is a positive number which will be chosen below, and show that
ξ j(t) 6= 0, τ ≤ t ≤ T. If τ ≤ t ≤ τ + ε, then

ηj(t) = ηj(τ)−
∫ t

τ
Cj(−s)uj(s)ds

and

|ηj(t)| ≥ |ηj(τ)| −
∣∣∣∣∫ t

τ
Cj(−s)uj(s)ds

∣∣∣∣ ≥ |ηj(τ)| −
∫ t

τ
|Cj(−s)uj(s)|ds

= |ηj(τ)| −
∫ t

τ
e−γjs|uj(s)|ds ≥ |ηj(τ)| −

(∫ τ+ε

τ
e−2γjsds ·

∫ τ+ε

τ
|uj(s)|2ds

)1/2
.

The right-hand side of the last inequality approaches |ηj(τ)| as ε→ 0 since

∫ τ+ε

τ
|uj(s)|2ds ≤

∫ T

0
|uj(s)|2ds ≤ ρ2.

If τ + ε < t ≤ T, then we have

ηj(t) = ηj(τ)−
∫ t

τ
Cj(−s)uj(s)ds +

∫ t

τ+ε
Cj(−s)uj(s− ε)ds

= ηj(τ)−
∫ t

τ
Cj(−s)uj(s)ds +

∫ t−ε

τ
Cj(−s− ε)uj(s)ds

= ηj(τ) +
∫ t−ε

τ
[Cj(−s− ε)− Cj(−s)]uj(s)ds +

∫ t

t−ε
Cj(−s)uj(s)ds.
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We use the Cauchy–Schwartz inequality to obtain

|ηj(t)| ≥ |ηj(τ)| − aj ·
(∫ t−ε

τ
|uj(s)|2ds

)1/2
−
(∫ t

t−ε
e−2γjsds ·

∫ t

t−ε
|uj(s)|2ds

)1/2
,

where aj =
(∫ t−ε

τ ‖Cj(−s− ε)− Cj(−s)‖2ds
)1/2

→ 0 as ε → 0 since ‖Cj(−s − ε) −
Cj(−s)‖ → 0, s ∈ [0, T], as ε → 0. Clearly, |ηj(τ)| > 0, and the second and the third
summands on the right-hand side tends to 0 as ε→ 0.

Consequently, for some ε0 > 0, we have ηj(t) > |ηj(τ)|/2, t ≥ τ, whenever 0 < ε < ε0.
This clearly ensures that ηj(t) 6= 0 for all t ≥ τ. Therefore, ξ j(t) 6= 0, τ ≤ t ≤ T. Hence,
ξ(t) 6= 0, τ ≤ t ≤ T. The proof of the theorem is complete.

5. Conclusions

We have studied a pursuit differential game for an infinite system of two-block dif-
ferential equations in the Hilbert space l2. We found an equation for the optimal transfer
time for an auxiliary optimal control problem, which is of independent importance. Fur-
thermore, we have constructed the corresponding optimal control for this problem. For
the differential game, we obtained a formula for the optimal pursuit time and constructed
optimal strategies of players.
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