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Abstract: This study investigates the optimization of an integrated production–inventory system that
consists of an original equipment manufacturer (OEM) supplier and an OEM brand company. The
cognitive and skill learning effect, imperfect quality, and fuzzy random demand are incorporated into
the integrated two-echelon supply chain model to minimize the total cost. We contribute to dividing
the learning effect into cognitive learning and skill learning, we build a new learning curve to resemble
the real complexity more closely and avoid the problem that production time tends towards zero
after production is stable. In total, five production–inventory models are constructed. Furthermore,
a solution procedure is designed to solve the model to obtain the optimal order quantities, and the
optimal shipment size. Additionally, the symbolic distance method is used to deal with the inverse
fuzzification. Then numerical analysis shows that the increase of the cognitive learning coefficient
and skill learning coefficient will reduce the total cost of the production–inventory system. With the
increase of the cognitive learning coefficient, the gap between the total cost of cognitive learning and
skill learning, and that of Wright learning, correspondingly decreases consistently. However, with the
increase of the skill learning coefficient, there is a consistent corresponding increase. The total cost of
cognitive learning and skill learning shows hyperbolic characteristics. The important insights of this
study for managers are that employees’ knowledge plays an important role in reducing costs in the
early learning stage and humanistic management measures should be taken to reduce employees’
turnover. Compared with the skill learning training for production technicians, we should pay more
attention to the training of cognitive learning.

Keywords: production–inventory; learning effects; fuzzy random demand

MSC: 90B05

1. Introduction

In labor-intensive manufacturing enterprises, when employees carry out repetitive
labor, the time to complete one unit will decrease with each iteration, which indirectly leads
to the lowering of production cost per unit. This kind of phenomenon is called the learning
phenomenon or learning effect. Studying the impact of employees’ learning behavior
can better establish an incentive system and reduce the turnover rate of front-line core
employees, to reduce the production cost of manufacturing enterprises. Employee learning
can improve production efficiency and reduce production costs, but with the increase of
productivity, inventory accumulation is accelerated, and inventory costs are increased. It is
necessary to balance storage and production.

Although there are many studies on vendor–buyer in the current literature [1–4].
Few researchers paid too much attention on the vendor–buyer model with simultaneous
consideration of learning effects and fuzzy random demand. In order to make up for
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the deficiency of the existing research on vendor–buyer model consisting of learning
effects and fuzzy random demand, this paper tries to develop an integrated production–
inventory model to minimize the average annual cost of an integrated two stage supply
chain. Additionally, an algorithm is provided to obtain an optimal production–inventory
policy for a single-vendor (the OEM supplier)–single-buyer (the OEM Brand Corporation)
system with imperfect products and fuzzy demand.

The research problem of this paper is to give the optimal supply strategy when
employees have a learning effect in the JIT production environment, that is, the optimal
supply times and single supply quantity. In addition, this paper aims to solve the problem
that the production time cannot be zero after the production is stable.

The remainder of this paper is organized as follows: Section 2 is the literature review,
Section 3 is the problem description, symbolic description, and model hypothesis. Then,
Section 4 covers the production–inventory joint optimization model without learning
characteristics, while Section 5 covers the production–inventory joint optimization model
under different learning efficiency curves. Section 6 elucidates the solution algorithm of
the model, and Section 7 compares the solution results of each model. Finally, Section 8
concludes and summarizes this paper.

2. Literature Review

The literature related to this paper can be divided into three groups, the first group is
about the just-in-time (JIT) production–inventory optimization, the second group is about
the production–inventory optimization with learning effects, and the third group is about
the production–inventory optimization considering imperfect quality.

2.1. Related Works on JIT Production–Inventory Optimization

There is a great deal of extant literature around the just-in-time (JIT) production–
inventory systems. JIT is one of the important pillars of the Toyota Production System
(TPS), which pursues a policy of zero inventory. Practice has proven that JIT strategy can
reduce inventory costs and increase profits. The lot-for-lot policy is a salient feature of JIT
strategy. Small lot size production with small lot shipment is used in lot-for-lot policy. Small
lot shipments need frequent delivery. Since frequent deliveries can significantly reduce
buyer inventory costs, many manufacturers adopt small lot shipment in JIT implementation.
It is necessary to balance inventory and delivery costs.

Many researchers have studied the integrated manufacturer retailer inventory model
for JIT production and shipment policy. Dmua et al. [1] undertook a systematic review
of integrated production–inventory model. Based on resource recycling and emission
reduction, Chen and Bidanda [5] took component recovery and emission control into
consideration and addressed a new production–inventory problem of multiple factories
with the JIT policy. By treating the random demand process as a compound Poisson process,
De et al. [6] solved a production–inventory problem in which the production rate can be
continuously controlled. Nambiar et al. [7] studied an inventory allocation problem in a
two-echelon setting with lost sales. Sepehri et al. [8] elaborated a sustainable production–
inventory model for poor quality deteriorating items to help decision makers make more
efficient replenishment and pricing decisions.

2.2. Related Works on Production–Inventory Optimization with Learning Effect

The existence of the learning effect makes manufacturing costs decrease, according
to certain rules. This provides conditions for enterprises to create additional value. Many
scholars introduced the learning effect into the economic production quality (EPQ) model.
By accounting for rework time, Jaber and Guiffrida [9] proposed a composite learning
curve which comprised two learning curves: one describes the reduction in time for
normal operation, while the other describes the reduction in time for reworking production.
Jaber et al. [10] extended [11] by assuming the percentage of defective items per lot reduces
according to a learning curve. In [9–11], the researchers did not take learning effects in
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the supply chain into consideration, they just considered the learning effect in economic
production quantity (EOQ)/(EPQ) models of a single-stage production–inventory system.
Some scholars studied the two-stage production–inventory problem by taking learning
effects into consideration. Khan et al. [12] took human factors into a two-level supply
chain, in which suppliers provided imperfect raw materials to the vendor. Considering the
learning effect of employees and the errors in the quality inspection process, Khan et al. [13]
expanded the model of Huang [14] and Khan et al. [12] and analyzed the impact of producer
risk and consumer risk on the number of supply and single supply.

In the research of production–inventory optimization, there are two methods to deal
with the uncertainty of demand. One is to use probability theory and the stochastic pro-
cess method and the other is to introduce fuzzy concepts. Generally, probability theory
and stochastic process methods are used to deal with demand uncertainty in academic
circles. However, when the random distribution characteristics of demand are not clear,
the processing method of fuzzy mathematics can solve the problem of demand uncer-
tainty more effectively. Based on the partial backlogging of shortage, Mahata [15] investi-
gated the learning effect on optimal lot size for the imperfect production process in fuzzy
random environments.

Previously, when studying the learning effect, most scholars neglected the cognitive
learning process, or simply mixed cognitive learning with skill learning, which made the
learning curve unrealistic. Cognitive learning refers to people’s learning in the cognitive
process. Cognitive learning is mainly a process of information exchange. In the process of
information exchange, people acquire information through perception, attention, memory,
and understanding [16]. Skill learning refers to the individual’s learning in the process
of operation. The existence of skill learning results in the operator’s proficiency continu-
ously increasing. Prior to manufacturing, the manufacturer needs to spend a lot of time
understanding the structure, composition, and the production process of the product, and
then time is spent processing the product after mastering the relevant product knowledge.
Therefore, it is of practical significance to consider this cognitive and skill learning effect in
the simulation of the learning curve of productivity improvement.

2.3. Related Works on Production–Inventory Optimization with Imperfect Quality

In the actual production process, there is a possibility that the process veers out
of control, thus producing imperfect items. Since the imperfectness of production con-
ditions in practice, considering imperfect quality problem in production–inventory op-
timization, has become an important topic, many authors have conducted research in
this area. The imperfection of the actual production process leads to the quality defects
of the products. Many scholars pointed out the incomplete characteristics of quality in
inventory optimization [17–19]. Assuming shortages are allowed, as is price-dependent
demand, Khanna et al. [20] developed an inventory model for items of imperfect quality
under trade–credit policies. Salas-Navarro et al. [21] proposed an EPQ inventory model
considering imperfect items and probabilistic demand for a two-echelon supply chain.
They found that the collaborative approach generates greater profits for the supply chain.
Sepehri et al. [22] elaborated a sustainable production–inventory model for poor quality
deteriorating items to help decision makers make more efficient replenishment and pricing
decisions. Kurdhi et al. [23] developed an integrated inventory model considering the
imperfect quality items, inspection error, controllable lead time, and budget capacity con-
straints. Establishing the optimal solution using Kuhn–Tucker’s conditions, they obtained
minimum integrated inventory total cost rather than separated inventory. Salameh and
Jaber [11] considered the impact of product quality defects when establishing the classical
EOQ model. Huang [14] considered the incompleteness in the production process and
established a production–inventory joint optimization model with quality defects under
the assumption that the quality defects obey uniform distribution. However, Huang [14]
did not consider the incompleteness of the quality inspection process itself and the two
types of quality inspection risks in the quality inspection process. Hsu and Hsu [23] also
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considered two types of quality inspection risks in the quality inspection process based on
Huang [14]. Hsu and Hsu [24] considered allowing out of stock and completely delaying
the supply of out of stock, which was expanded based on Hsu and Hsu [23] models. A
comparison between previous studies and this study is shown in Table 1.

The paper establishes five JIT production–inventory joint optimization models, which
are based on the learning effect in the process of employees’ work and the uncertain fuzzy
demand of retailers due to the product quality defects caused by the incomplete production
process. Our models consider no learning effect, instant Wright learning effect, average
learning effect, cognitive learning, and skill learning effect. The contribution of this paper
is that the learning behavior of employees is divided into cognitive learning and skill
learning, and a new learning curve closer to the real complexity is constructed. The new
learning curve can avoid the problem that the production time tends towards zero after
the production is stable under Wright learning. The FCLCM curve presented in this paper
is closer to the complexity of real production. The model built in the paper is based on
Huang’s [14] model and Pan and Yang’s [25] method. The difference between Model 1 and
Huang’s [14] is that the fuzzy demand is considered; Model 2 and Khan’s [13] are different
because the fuzzy demand is considered; Model 3 is based on the Wright learning curve
and on Model 1, where the Wright joint production–inventory optimization model with
average productivity is established. Model 4 is based on the JGLCM proposed by Jaber and
Glock [16]. On the basis of Model 1, the JGLCM joint production–inventory optimization
model is established. Model 5 is based on the FCLCM curve proposed by the author and
on the basis of Model 1, thus the FCLCM joint production–inventory optimization model is
established. The paper enriches the JIT production–inventory literature but also enriches
the learning curve theory.

Table 1. Major considerations of the models in the different literature.

Production–
Inventory

Fuzzy
Demand

Imperfect
Quality

Skill
Learning

Cognitive
Learning

Chen and Bidanda [5] Yes No No No No

Jaber and Guiffrida [9] No No Yes Yes No

Jaber et al. [10] No No Yes Yes No

Salameh and Jaber [11] No No Yes Yes No

Khan et al. [12] Yes No No Yes No

Khan et al. [13] Yes No Yes Yes No

Huang [14] Yes No Yes No No

Mahata [15] Yes Yes Yes Yes No

Jaber and Glock [16] No No No Yes No

Khanna et al. [20] Yes No Yes No No

Hsu and Hsu [23] Yes No Yes No No

Dar-el [26] No No No Yes Yes

This paper Yes Yes Yes Yes Yes

3. Problem Description, Symbol Description, and Model Assumptions

A situation is developed with a two-echelon supply chain system made up of one
OEM supplier and one OEM brand under learning effects and fuzzy random demand, in
which a lot-for-lot strategy in a production cycle is executed. The OEM Brand Corporation
sells a kind of sports shoe, which is limited to its production capacity. After designing a
sample of the sports shoe, the OEM Brand Corporation outsources the whole production
process of the shoes to a supplier of OEM. OEM suppliers and OEM brand companies
constitute a production–inventory system. OEM suppliers need to organize workers to
learn about the production process of the sports shoes after receiving orders from OEM
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brands. Knowledge learning and skill learning are extant in the process of production and
manufacturing.

For OEM suppliers, there are many uncertainties in the process of employees’ opera-
tion, which leads to the defects of sports shoes. For the OEM brand, it carries out a quality
inspection on the sports shoes provided by OEM suppliers every time. The defective
products detected are transported back to OEM suppliers for processing, and the qualified
products are used for exhibition cabinet sales.

To satisfy the demand for items, the OEM brand purchases items with the order size
(nQ) from the OEM supplier. The objective of this production–inventory systems is to
determine the economic lot size, Q, and number of deliveries, n, to keep the joint annual
cost incurred by the OEM supplier and OEM brand corporation as low as possible.

The establishment of this study’s model is based on the following assumptions:

1. The production–inventory system consists of one OEM supplier and one OEM brand.
OEM brand company entrusts OEM suppliers to produce a class of sports shoes. Due
to the uncertainty in the process of employees’ work, there are quality defects in the
sports shoes produced and the defect rate is constant γ (%);

2. Employees of OEM suppliers have learning behaviors in the process of production
and operation. Learning behaviors include cognitive learning and skill learning.
Employees’ learning behavior makes productivity change dynamically;

3. OEM brand suppliers carry out 100% quality inspection of sports shoes supplied by
the OEM suppliers, and the quality inspection process is completed instantaneously.
The unit cost of OEM brand suppliers is ϑ ($/unit). After quality inspection, the
number of qualified products available for retail sale by OEM brands is Q;

4. The demand of OEM brand dealers is a triangular fuzzy number D̃, D̃ = (D − ∆1,
D, D + ∆2), 0 < ∆1 < D, 0 < ∆2. D − ∆1 is the lower limit of fuzzy demand,
D is the average demand, and D + ∆2 is the upper limit of fuzzy demand. Under
the condition of fuzzy demand D̃, the time interval of two consecutive deliveries is
T = Q(1 − γ)/D̃;

5. The production–inventory system does not allow an out-of-stock situation, OEM
suppliers must have sufficient production capacity to meet the OEM brand order
needs, that is, P > D̃

1−γ , where P is the OEM supplier staff efficiency, abbreviated as
employee productivity;

6. OEM brand carries the transportation cost, and the cost of each transportation is fixed.

The parameters and variables used in this model are defined as follows.
Parameters and variables related to the OEM supplier:

b—Learning coefficient under WLC;
ϕ—Learning efficiency;
bc—Cognitive learning coefficient;
bm—Skills learning coefficient;
b∗—Compound learning coefficients of employees with cognitive learning and skill

learning characteristics;
T1—The production time required to complete the first pair of sneakers;
Tp—Employees’ working behavior does not have the learning characteristics of one

cycle production time;
Td—Employees’ work behavior does not have one cycle of non-production time under

learning characteristics;
TiQ—The time required for the first production of Q pairs of sneakers in the ith cycle

with learning characteristics;
Tpi—The production time of the ith cycle under the learning characteristics of employ-

ees’ work behavior;
Tdi—The non-production time of the ith cycle under the learning characteristics of

employees’ work behavior;
D̃—The demand;
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Sv—Production preparation cost (USD/year);
hv—Unit time storage cost per unit product (USD/unit/year);
v—Unit defect quality assurance cost (USD/unit);
Q—Quantities of a shipment from the OEM supplier to the OEM brand in a production

cycle (a decision variable);
n—The number of shipments from the OEM supplier to the OEM brand in a produc-

tion lot (a decision variable, a positive integer);
Qp—Qp = nQ, the lot size in a production cycle.
c—Production cost (USD/year);
P—Employee’s productivity (unit/year) without learning characteristics;
Pw—The average productivity of employees with Wright learning characteristics

(unit/year);
Pcm—Employees’ work behavior has the average productivity (unit/year) under the

characteristics of knowledge learning and skill learning.

Parameters and variables related to the OEM brand enterprise:

SB—Ordering fee (RMB/time);
F—Fixed cost per transport (USD/time);
ϑ—Unit Quality Inspection Cost (USD/time);
bB—Unit time storage cost per unit product (USD/unit/year).

4. Joint Production–Inventory Optimization without Learning Characteristics for
Employees’ Operational Behavior (Model 1)

(1) OEM supplier cost model

The production–inventory cost model without learning characteristics is the basis of
this paper, which provides a reference for the establishment of other models. Figure 1a
reflects the actual inventory level of the OEM supplier over time in a production cycle;
In Figure 1b, the solid part of the figure shows the cumulative inventory level of OEM
suppliers over time when the OEM supplier is not supplying, and the shaded part shows
the cumulative inventory of the OEM supplier to the OEM brand enterprise.

Figure 1. Inventory level change and cumulative supply of OEM suppliers.

Following the method in Khan et al. [13], Huang [14], and Goyal et al. [27], the cost of
the OEM supplier and the OEM brand enterprise is calculated. The time of a production
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cycle includes production time and non-production time. Production time is Tp = nQ
P , and

non-production time is Td = nT − nQ
P . The length of DE time in Figure 1 is T − Q

P , where

T = (1−γ)Q
D̃

. CD duration is (n − 1)
[

Q(1−γ)

D̃
− Q

P

]
. In Figure 1b, the area of triangle ACH is

n2Q2

2P , the area of quadrilateral CDHI is n(n − 1)Q2
(

1−γ

D̃
− 1

P

)
, and the area of the shadow

part is n(n−1)(1−γ)Q2

2D̃
.

The average inventory of the OEM supplier is:

n2Q2

2P
+ n(n − 1)Q2

(
1 − γ

D̃
− 1

P

)
− n(n − 1)(1 − γ)Q2

2D̃
. (1)

The total cost of the OEM supplier in a production cycle is the sum of production
preparation cost, defective quality assurance cost, production cost, and storage cost.

TCv(n, Q) = Sv + vnQγ + c
nQ
P

+ hv

[
n2Q2

2P
+ n(n − 1)Q2

(
1 − γ

D̃
− 1

P

)
− n(n − 1)(1 − γ)Q2

2D̃

]
. (2)

(2) The OEM Brand enterprise Cost Model

OEM brand companies use a continuous inventory control strategy to control inven-
tory. Considering the quality defects caused by the uncertainty of employees’ working

behavior, the average inventory of the OEM brand after one delivery is (1−γ)2Q2

2D̃
. In a

production cycle, under the condition of the OEM supplier’s n supply times, the total
annual cost of the OEM Brand enterprise is as follows:

TCB(n, Q) = SB + nF + ϑnQ +
nhB(1 − γ)2Q2

2D̃
. (3)

The first item in Equation (3) is the order cost, the second item is the transportation
cost, the third item is the quality inspection cost, and the fourth item is the storage cost.

When the OEM brand enterprise and the OEM supplier form a virtual stakeholder,
the virtual stakeholder can make centralized decisions based on the overall interests and
make decisions to minimize the cost of the production–inventory system. The total cost of
an integrated production–inventory system is:

TC(n, Q) = TCv(n, Q) + TCB(n, Q)

= Sv + vnQγ + c nQ
P + SB + nF + ϑnQ + nhB(1−γ)2Q2

2D̃

+hv

[
n2Q2

2P + n(n − 1)Q2
(

1−γ

D̃
− 1

P

)
− n(n−1)(1−γ)Q2

2D̃

] . (4)

From Equation (4), the average annual cost of an integrated production–inventory
system can be obtained.

ATC(n, Q) = TC(n,Q)
nT = D̃(SB+Sv+nF)

n(1−γ)Q + D̃(ϑ+vγ)
1−γ + cD̃

P(1−γ)

+ hBQ(1−γ)
2 + hvQ

[
2D̃−nD̃
2P(1−γ)

+ n−1
2

] . (5)

In Equation (5), the average cost of the system is a fuzzy function because the demand
is fuzzy. To obtain the optimal number of times and quantity of supply, it is necessary to
perform ATC(n, Q) inverse fuzzification. Let Ũ(n, Q) = ATC(n, Q), the symbolic distance
method [25] is used to deal with the inverse fuzzification. The symbol distance from
Ũ(n, Q) to 0̃1 is

d[Ũ(n, Q), 0̃1] = d(D̃, 0̃1)

[
SB + Sv + nF

n(1 − γ)Q
+

ϑ + vγ

(1 − γ)
+

c
P(1 − γ)

+
hvQ(2 − n)
2P(1 − γ)

]
.

+
hBQ(1 − γ)

2
+

hvQ(n − 1)
2

(6)
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In Equation (6), d(D̃, 0̃1) is the symbolic distance from D̃ to 0̃1. According to the
calculating rule of the symbolic distance of triangular fuzzy numbers, there is:

d(D̃, 0̃1) =
1
4
[(D − ∆1) + 2D + (D + ∆2)] = D +

1
4
(∆2 − ∆1). (7)

Substitute Equation (7) into Equation (6), let U(n, Q) = d[Ũ(n, Q), 0̃1] so that:

U(n, Q) =
[

D + 1
4 (∆2 − ∆1)

][
SB+Sv+nF
n(1−γ)Q + ϑ+vγ

(1−γ)
+ c

P(1−γ)
+ hvQ(2−n)

2P(1−γ)

]
.

+ hBQ(1−γ)
2 + hvQ(n−1)

2

(8)

The following properties are needed to determine the optimal batch Q and the number
of shipments n in the derivation of the annual expected cost U(n, Q).

Property 1. For fixed n, U(n, Q) is convex in Q. There is a Q∗(n) making a U(n, Q) minimization.

Proof of Property 1. Taking the first and second partial derivatives U(n, Q) with respect to
Q, we have

∂U(n,Q)
∂Q =

[
D + 1

4 (∆2 − ∆1)
][
− SB+Sv+nF

n(1−γ)Q2 + hv(2−n)
2P(1−γ)

]
+ hB(1−γ)

2 + hv(n−1)
2

, ∂2U(n,Q)
∂Q2 =

[
D + 1

4 (∆2 − ∆1)
]

2(SB+Sv+nF)
n(1−γ)Q3 > 0.

Obviously, ∂2U(n,Q)
∂Q2 > 0. By letting ∂U(n,Q)

∂Q = 0, which yields

Q∗(n) =

√√√√ 2P(SB + Sv + nF)[D + (∆2 − ∆1)/4]

n
{
[D + (∆2 − ∆1)/4]hv(2 − n) + PhB(1 − γ)2 + hvP(n − 1)(1 − γ)

}
Thus, for fixed n, U(n, Q) is convex in Q. There is a Q∗(n) making a U(n, Q) minimization. �

Property 2. Relaxing n as a continuous variable for fixed Q, U(n, Q) is convex in n.

Proof of Property 2. Taking the first and second partial derivatives of U(n, Q) with respect
to n, we have,

∂U(n,Q)
∂n = [D + 1

4 (∆2 − ∆1)]
{
− (SB+Sv)

n2(1−γ)Q − hvQ
2P(1−γ)

}
+ hvQ

2
∂2U(n,Q)

∂n2 = [D + 1
4 (∆2 − ∆1)]

2(SB+Sv)
n3(1−γ)Q > 0

Obviously, ∂2U(n,Q)
∂n2 > 0, thus for a fixed Q, U(n, Q) is convex in n. �

Since n is an integer, n∗ should be satisfied with the following conditions:

U(n∗, Q∗(n∗)) ≤ U(n∗ + 1, Q∗(n∗ + 1)), (9)

U(n∗, Q∗(n∗)) ≤ U(n∗ − 1, Q∗(n∗ − 1)). (10)

5. Joint Optimization of Production–Inventory with Learning Characteristics of
Employees’ Operation Behavior
5.1. Joint Optimization Model under Wright (IW) Immediate Productivity (Model 2)

When the employees’ working behavior has Wright learning characteristics, the actual
inventory level of the OEM supplier changes with time in a production cycle, as shown
in Figure 2a. When the OEM supplier does not supply to the OEM brand enterprise, the
time-varying cumulative inventory of the OEM supplier can be indicated by the solid line
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in Figure 2b. When the OEM supplier supplies to the OEM brand enterprise, the cumulative
supply inventory of the OEM supplier can be indicated by the shaded part in Figure 2b.

Figure 2. Inventory level change and cumulative supply of the OEM supplier under WLC.

According to the Wright learning curve theory, the production time of the xth product
is Tx = T1x−b, in which T1 is the time needed to complete the first product. The relationship
between the learning coefficient b and learning efficiency ϕ satisfied b = − log(ϕ)/ log(2).
The ϕ range is between 50% and 100% and the corresponding b range is between 1 and 0.

Let the production time of the first product be K. Under the Wright learning theory,
the total working hours of a batch of products are:

t(X) =
∫ X

0
Kx−bdx =

Kx1−b

1 − b
. (11)

According to Equation (11), in the ith cycle, the production time TiQ required for the
first batch of quantity products is:

TiQ =
∫ Q+(i−1)nQ

(i−1)nQ
T1m−bdm =

T1Q1−b
{
[1 + (i − 1)n]1−b − [(i − 1)n]1−b

}
1 − b

. (12)

In the ith cycle, the total production time Tpi is:

Tpi =
∫ inQ

(i−1)nQ
T1m−bdm =

T1(nQ)1−b[i1−b − (i − 1)1−b]

1 − b
. (13)

According to [13], when the OEM supplier does not supply to the OEM brand company,
the variance of Equation (12) can be obtained. The cumulative inventory level of the OEM
supplier is as follows:

I(t) =

{
t(1 − b)

T1[i1−b − (i − 1)1−b]

} 1
1−b

. (14)
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In Figure 2, the time length of CD is nT − Tpi − (T − TiQ), the area of quadrilateral
CDIH is nQ[nT − Tpi −(T − TiQ)

]
, the average inventory of the OEM supplier in non-

production time is as follows:

nQ

 (n − 1)(1 − γ)Q
D̃

− T1(nQ)1−b[i1−b − (i − 1)1−b]

1 − b
+

T1Q1−b
{
[1 + (i − 1)n]1−b − [(i − 1)n]1−b

}
1 − b

. (15)

The area of the approximate triangle ACH is:
∫ Tpi

0 I(t)dt = T1[i1−b−(i−1)1−b ](nQ)2−b

2−b .
In Figure 2b, the area of the non-shaded part is equal to the area of the approximate

triangle ACH plus the area of the quadrilateral CDIH minus the area of the shaded part,
thus the inventory cost of the OEM supplier in the ith cycle is as follows:

ICvi = hv
T1[i1−b−(i−1)1−b ](nQ)2−b

2−b + hvnQ
T1Q1−b

{
[1+(i−1)n]1−b−[(i−1)n]1−b

}
1−b +

hvnQ
[
(n−1)(1−γ)Q

D̃
− T1(nQ)1−b [i1−b−(i−1)1−b ]

1−b

]
− hv

n(n−1)(1−γ)Q2

2D̃

. (16)

Under immediate productivity, the total cost of the OEM supplier in the ith cycle is:

TCIW
i (n, Q)

= Sv + vnQγ + c T1(nQ)1−b [i1−b−(i−1)1−b ]
1−b + hvnQ

T1Q1−b
{
[1+(i−1)n]1−b−[(i−1)n]1−b

}
1−b

+hv
T1[i1−b−(i−1)1−b ](nQ)2−b

2−b + hvnQ
[
(n−1)(1−γ)Q

2D̃
− T1(nQ)1−b [i1−b−(i−1)1−b ]

1−b

] . (17)

The first item in Equation (17) is setup cost; the second item is defective quality assur-
ance cost; the third item is production cost; and the fourth, fifth and sixth items are storage
cost. Setup cost is the preparation and adjustment costs incurred in self-made production
materials, it usually includes the costs of preparing work orders, arranging operations,
preparing before production, and quality acceptance. Defective quality assurance cost
are production losses caused by product quality defects. Production cost, also known as
manufacturing cost, refers to the cost of production activities, that is, the cost incurred
by an enterprise to produce products. Storage cost refers to all the costs incurred after
materials are stored in the warehouse for a certain period of time, that is, the costs incurred
to maintain inventory.

In Equation (17), the demand is fuzzy, so the cost of the whole production–inventory
system is also fuzzy after considering the cost of the OEM brand enterprise. After calculat-
ing the average cost of the fuzzy system, the inverse fuzzification is needed. The average
annual cost of the inverse fuzzification of the production–inventory system in the ith cycle
is as follows:

UIW
i (n, Q) = D+(∆2−∆1)/4

1−γ

{
Sv+SB+nF

nQ + vγ + ϑ + c T1(nQ)−b [i1−b−(i−1)1−b ]
1−b

−hv
T1[i1−b−(i−1)1−b ](nQ)1−b

(2−b)(1−b) +hv
T1Q1−b

{
[1+(i−1)n]1−b−[(i−1)n]1−b

}
1−b

}
+ (n−1)hvQ

2 + hB(1−γ)Q
2

. (18)

Property 3. For fixed n, when i > 1, n > 1, UIW
i (n, Q) is convex in Q. There exists a unique

Q∗(n) making UIW
i (n, Q) minimization.

Proof of Property 3. Taking the first and second partial derivatives of UIW
i (n, Q) with

respect to Q, we have
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∂UIW
i (n,Q)

∂Q = D+(∆2−∆1)/4
1−γ

{
− Sv+SB+nF

nQ2 + c(−b) T1n−bQ−b−1[i1−b−(i−1)1−b ]
1−b

−hv
T1[i1−b−(i−1)1−b ]n1−bQ−b

(2−b) +hvT1Q−b
{
[1 + (i − 1)n]1−b − [(i − 1)n]1−b

}}
+ (n−1)hv

2 + hB(1−γ)
2 ,

∂2UIW
i (n,Q)
∂Q2 = D+(∆2−∆1)/4

1−γ

{
2(Sv+SB+nF)

nQ3 + cb(1 + b) T1n−bQ−b−2[i1−b−(i−1)1−b ]
1−b

+ hvbT1Q−b−1[i1−bn1−b−(i−1)1−bn1−b ]
(2−b) −

(2−b)bhvT1Q−b−1
{
[1+(i−1)n]1−b−[(i−1)n]1−b

}
(2−b)

}
.

When i > 1, n > 1, obviously ∂2UIW
i (n,Q)

∂Q2 > 0. By letting ∂Uw
i (n,Q)
∂Q = 0, using the

one-dimensional search method, Q∗(n) can be obtained.
When the workers’ work behavior has Wright learning characteristics, the number of

the OEM supplier supplying to the OEM brand is an integer, and the optimal shipments
should also satisfy Equations (9) and (10). �

5.2. Joint Optimization Model under Wright (AW) Average Productivity (Model 3)

Model 2 adopts the method of instant productivity in the process of modeling, and
the productivity varies from moment to moment. In this section, the average productivity
method is used. In any production cycle, the average productivity is used in the production
cycle. According to Equation (13), the production time of the OEM supplier in the ith cycle
is as follows:

TAW
pi =

∫ inQ

(i−1)nQ
T1m−bdm =

T1(nQ)1−b
[
i1−b − (i − 1)1−b

]
1 − b

, (19)

According to the definition of average productivity, the average productivity of quan-
tity Qp of products produced by the OEM supplier in the ith cycle is:

PAW =
Qp

TAW
pi

=
(nQ)b(1 − b)

T1

[
i1−b − (i − 1)1−b

] , (20)

By replacing P within Equation (8), it can be concluded that the average annual cost of
an integrated production–inventory system based on average productivity is as follows:

UAW
i (n, Q) = [D + 1

4 (∆2 − ∆1)]
{

SB+Sv+nF
nQ(1−γ)

+ ϑ+vγ
1−γ +

cT1(nQ)−b
[
i1−b−(i−1)1−b

]
(1−b)(1−γ)

+

hvn−bQ1−b(2−n)T1

[
i1−b−(i−1)1−b

]
2(1−b)(1−γ)

}
+ hBQ(1−γ)

2 + hvQ (n−1)
2

, (21)

The optimal shipments n∗ and lot size Q∗ can be obtained by solving the algorithm
described in Section 5.

5.3. Joint Optimization Model under Cognitive Learning and Skill Learning (JGLCM) (Model 4)

Sections 5.1 and 5.2 establish a cost model with the Wright learning characteristics
of employees’ activity behavior. When considering the learning characteristics of an em-
ployee’s activity behavior, the cognitive learning process is neglected or the cognitive learn-
ing process is simply mixed with the skill learning process. This section divides the learning
characteristics of employees’ work behavior into cognitive learning and skill learning.

The cognitive learning characteristics of an employee’s work behavior refer to the
learning process of explicit and tacit knowledge in the process of work. Cognitive learning
is mainly a process of information exchange, in which information is acquired through
perception, attention, memory, and understanding. Employees’ job-related behavior has
the characteristics of skill learning, which means that the individual’s skill proficiency
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level grows higher and higher in the process of job-related activities. Figure 3 shows the
cognitive learning and skill learning processes involved in employees’ job behavior.

Figure 3. Cognitive learning and skill learning process of employees’ homework behaviors.

Dar-el et al. [26] extended the Wright learning curve based on the cognitive learning
and skill learning characteristics of employees’ work behavior and put forward a dual-phase
learning curve model under cognitive learning and skill learning, which is abbreviated as
DPLCM. When the learning characteristics of employees’ work behavior conform to the
DPLCM model, the required work hours for completing the xth product are:

Tx = (Tc
1 + Tm

1 )x−b∗ = Tc
1 x−bc + Tm

1 x−bm , (22)

The production time Tc
1 required to complete the first product in Form 21 when there

are only cognitive learning characteristics for employees’ work behavior. The production
time Tm

1 required to complete the first product for employees with only skill learning
characteristics. The relationship between compound learning coefficient b∗ and cognitive
learning coefficient bc and skill learning coefficient bm is satisfied (23).

b∗ = bc −
log
[
(}+ nbc−bm)/(}+ 1)

]
log(n)

, (23)

In Equation (23), } = Tc
1/Tm

1 . Jaber and Glock [16] improved Dar-el’s model by
dividing the initial production time and put forward the Jaber–Glock learning curve model,
which is abbreviated as JGLCM. Through the simulation analysis of a large amount of data,
it was found that the improved JGLCM is more suitable for the actual situation. When the
learning characteristics of an employee’s work behavior conform to the JGLCM model, the
time required to complete the xth product is:

Tx = αT1x−bc + (1 − α)T1x−bm , (24)

In Equation (24), α indicates the proportion of time spent on cognitive learning, 1 − α
indicates the proportion of time spent on skill learning. Let ň = α/(1 − α); in this paper
ň is called the initial cognitive skill coefficient, which is abbreviated as the cognitive
skill coefficient.

When the learning characteristics of employees’ job behavior conform to the JGLCM
model, the production time required to complete the number of products in the first cycle
is as follows:

TJGCM
pi =

∫ iQp
(i−1)Qp

[
αT1x−bc + (1 − α)T1x−bm

]
dx

=
αT1Q1−bc

p

[
i1−bc−(i−1)1−bc

]
1−bc

+
(1−α)T1Q1−bm

p

[
i1−bm−(i−1)1−bm

]
1−bm

, (25)

The average productivity of quantities Qp completed in the xth cycle:

PJGCM =
Qp

TJGCM
pi

=
(1 − bm)(1 − bc)

αT1(1 − bm)Q−bc
p

[
i1−bc − (i − 1)1−bc

]
+ (1 − α)T1(1 − bc)Q−bm

p

[
i1−bm − (i − 1)1−bm

] (26)
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When the learning characteristics of employees’ activity behavior conform to the
JGLCM model, the average annual cost of the inverse fuzzification of an integrated
production–inventory system can be obtained by replacing P with PJGCM in Equation (8).

UJGCM
i (n, Q) = [D + 1

4 (∆2 − ∆1)]
{

SB+Sv+nF
nQ(1−γ)

+ ϑ+vγ
1−γ +

c
PJGCM(1−γ)

+ hvQ(2−n)
2PJGCM(1−γ)

}
+ hBQ(1−γ)

2 + hvQ (n−1)
2

, (27)

The optimal shipments n∗ and lot size Q∗ can be obtained by solving the algorithm
described in Section 5.

5.4. Joint Optimization Model under Improved Cognitive Learning and Skill Learning (FCLCM)
(Model 5)

In the whole production process, there is a part of production time that is not affected
by cognitive learning and skill learning. This part of production time is the shortest time
to ensure the completion of product work. Based on this, this paper improves the JGLCM
model and constructs the Fu–Chen learning curve model, which is briefly referred to as
FCLCM. When the learning characteristics of employees’ work behavior conform to the
FCLCM model, the time required to complete the xth product is:

Tx = δT1 + βT1x−bc + (1 − β − δ)T1x−bm , (28)

In Equation (28), T1 represents the production time required to complete the first prod-
uct when the employees’ work behavior does not have learning characteristics. δ represents
the proportion of time spent completing a product in which there is neither cognitive learn-
ing nor skill learning. β represents the proportion of time spent on cognitive learning and
1 − β − δ represents the proportion of time spent on skill learning. At the time δ = 0, the
FCLCM model degenerated into the JGLCM model. It can be considered that the JGLCM
model is a special case of the FCLCM model.

When the learning characteristics of employees’ job behavior conform to the FCLCM
model, the production time required to complete the number of Qp products in the xth
cycle is as follows:

TFCCM
pi =

∫ iQp
(i−1)Qp

[
δT1 + βT1x−bc + (1 − β − δ)T1x−bm

]
dx

= δT1Qp +
βT1Q1−bc

p

[
i1−bc−(i−1)1−bc

]
1−bc

+
(1−β−δ)T1Q1−bm

p

[
i1−bm−(i−1)1−bm

]
1−bm

, (29)

Under the learning effect of FCLCM, the average productivity of Qp quantity of
products completed in the xth cycle is:

PFCCM =
Qp

TFCCM
pi

= (1−bm)(1−bc)

δT1(1−bm)(1−bc)+βT1Q−bc
p (1−bm)

[
i1−bc−(i−1)1−bc

]
+(1−β−δ)(1−bc)T1Q−bm

p

[
i1−bm−(i−1)1−bm

] ,

(30)
The average annual cost of the inverse fuzzification of the integrated production–

inventory system under the learning effect of FCLCM can be obtained by replacing P with
PJGCM in Equation (8).

UFCCM
i (n, Q) = [D + 1

4 (∆2 − ∆1)]
{

SB+Sv+nF
nQ(1−γ)

+ ϑ+vγ
1−γ + c

PFCCM(1−γ)

+ hvQ(2−n)
2PFCCM(1−γ)

}
+ hBQ(1−γ)

2 + hvQ (n−1)
2

, (31)

Property 4. PAW > PJGCM > PFCCM.
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Proof of Property 4. From the analysis of the following examples, it is clear that Property 1
is valid. �

6. Solution Algorithm of Production–Inventory Joint Optimization Model
under FCLCM

Since UIW
i (n, Q), UAW

i (n, Q), UJGCM
i (n, Q), and UFCCM

i (n, Q) has high non-linearity,
it is impossible to give the analytic solution of the optimal shipments n∗ and the lot size Q∗.
The algorithm for solving UIW

i (n, Q), UAW
i (n, Q), UJGCM

i (n, Q), and UFCCM
i (n, Q) are the

same, here we only give the solution algorithm to UFCCM
i (n, Q).

Step 1: Set i = 1;

Step 2: Set Z1(n, Q) =
∂UFCCM

i (n,Q)
∂n , Z2(n, Q) =

∂UFCCM
i (n,Q)

∂Q ; the allowable error is e;
and (n(j), Q(j)) represents the value of the jth iteration substitution (n, Q);

Step 3: Given the initial value (n(j), Q(j)), from the beginning j = 1;
Step 4: Calculate Z1(n(j), Q(j)) and Z2(n(j), Q(j)) separately;
Step 5: If Z1(n(j), Q(j)) < e, Z2(n(j), Q(j)) < e, go to Step 6, otherwise go to Step 7;
Step 6: The optimal shipments n∗ = n(j) and the lot size Q∗ = Q(j);
Step 7: Calculate Z1(n(j), Q(j)), Z2(n(j), Q(j)) and the partial derivative at (n(j),

Q(j)), respectively,

Ij =

 ∂Z1(n,Q)
∂n

∣∣∣
(n,Q)=(n(j),Q(j))

∂Z1(n,Q)
∂n

∣∣∣
(n,Q)=(n(j),Q(j))

∂Z2(n,Q)
∂n

∣∣∣
(n,Q)=(n(j),Q(j))

∂Z2(n,Q)
∂n

∣∣∣
(n,Q)=(n(j),Q(j))

;

Step 8: Calculate the tangents at the intersection points (n(j), Q(j)) of two surfaces,
set Z1(n(j + 1), Q(j + 1)) = 0 and Z2(n(j + 1), Q(j + 1)) = 0, so that the next iteration
point (n(j + 1), Q(j + 1)) can be obtained, and then return to Step 4, until the optimal
solution (n∗, Q∗) is obtained;

Step 9: Substitute (n∗, Q∗) into UFCCM
i (n, Q), so U∗FCCM

i (n∗, Q∗) is available;
Step 10: Set i = i + 1;
Step 11: Repeat steps 2–9 until i = N (N is the number of production cycles after the

learning curve is stable, which is the optimal production cycle, determined after testing);
Step 12: When the learning curve is stable, the (n∗, Q∗) is available, and then the

optimal annual average cost U∗FCCM
i (n∗, Q∗) can be obtained.

7. Parameter Setting and Comparative Analysis
7.1. Parameter Setting

Because of commercial confidentiality considerations, the data of case analysis are
simulated data, rather than the real enterprise data. According to the documents [11,14],
the following are set: productivity, P = 160, 000 (double/year); triangular fuzzy demand,
D̃ = (46, 000, 49, 000, 56, 000) (double/year), of which 49,000 (double/year) is the aver-
age demand, 46,000 (double/year) is the lower limit of demand, 56,000 (double/year) is
the upper limit of demand; production preparation cost, Sv = 300 (USD/year); ordering
fee, SB = 100 (USD/year); fixed cost of each transportation, F = 25 (USD/time); the
OEM supplier unit storage cost, hv = 2 (USD/double/year); OEM brand merchant unit
storage cost, hB = 5 (USD/double/year); brand enterprise unit quality inspection cost,
ϑ = 0.5 (USD/double); the OEM supplier defect quality assurance cost, v = 30 (USD/double);
defect rate γ = 0.02; annual production cost, c = 300, 000.

For the learning coefficient, the cognitive learning rate is φc = 70% and the skill
learning rate is φm = 90%, that is, the learning coefficients bc = 0.514 and bm = 0.152. To
facilitate the comparison between Model 3 and Model 4, set } = ň, the learning coefficient
in Model 3 is calculated by Equation (22). In this paper, we take α = 0.68, ň = 2.125, and
obtain the learning coefficient under WLC as b = 0.295. In Model 5, δ = 0.01 and β = 0.65.
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7.2. Comparative Analysis

When an employee’s activity behavior does not have learning characteristics, ac-
cording to the proof process of Property 1 and the applicable conditions of the optimal
number of deliveries are the optimal number of deliveries n∗ = 7 (times) and the optimal
single quantity of deliveries are Q∗ = 782 (double), the optimal average annual cost is
USD 162,506.09.

When the employee’s job behavior has learning characteristics, the optimal number of
times of supply, the optimal single quantity of supply, and the average annual cost of the
first 30 production cycle Models 2, 3, 4, and 5 can be obtained by solving the UFCCM(n, Q)
algorithm (Table 2). By comparing the data of the first production cycle of Models 2, 3, 4,
and 5 with Model 1, it was found that the average cost of the system is much less than that
of the case without learning characteristics and the optimal quantities of single supply are
greater than those of the case without learning characteristics. This is due to the higher
than average productivity of employees with learning characteristics. The OEM supplier is
encouraged to produce more products because of their learning characteristics.

Table 2. Optimal solutions of Models 2, 3, 4, and 5.

Model 2 (IW) Model 3 (AW) Model 4 (JGLCM) Model 5 (FCLCM)

i n∗ Q∗ UIW(n,Q) n∗ Q∗ UAW(n,Q) n∗ Q∗ UJGCM(n,Q)n∗ Q∗ UFCCM(n,Q)

1 7 911 78,498.61 7 917 78,488.01 6 915 79,265.39 7 912 80,709.86
2 6 923 74,675.71 6 924 74,693.69 6 920 76,389.6 6 917 77,788.99
3 6 925 73,724.33 6 926 73,740.74 6 922 75,643.15 6 919 77,013.83
4 6 927 73,179.66 6 927 73,194.8 6 923 75,202.86 6 920 76,555.40
5 6 927 72,807.54 6 928 72,821.71 6 923 74,895.34 6 920 76,234.68
6 6 928 72,529.54 6 928 72,542.95 6 924 74,661.44 6 921 75,990.45
7 6 928 72,310.15 6 929 72,322.94 6 924 74,474.02 6 921 75,794.58
8 6 929 72,130.43 6 929 72,142.71 6 924 74,318.46 6 922 75,631.88
9 6 929 71,979.19 6 929 71,991.02 6 925 74,186.00 6 922 75,493.26
10 6 929 71,849.26 6 930 71,860.72 6 925 74,070.99 6 922 75,372.85
11 6 930 71,735.83 6 930 71,746.95 6 925 73,969.63 6 922 75,266.67
12 6 930 71,635.51 6 930 71,646.33 6 925 73,879.17 6 923 75,171.88
13 6 930 71,545.82 6 930 71,556.38 5 925 73,797.64 6 923 75,086.42
14 5 930 71,464.92 5 930 71,475.23 5 926 73,723.53 6 923 75,008.71
15 5 930 71,391.37 5 930 71,401.46 5 926 73,655.68 6 923 74,937.54
16 5 931 71,324.07 5 931 71,333.97 5 926 73,593.18 6 923 74,871.96
17 5 931 71,262.14 5 931 71,271.85 5 926 73,535.29 6 923 74,811.21
18 5 931 71,204.85 5 931 71,214.39 5 926 73,481.42 6 923 74,754.67
19 5 931 71,151.63 5 931 71,161.00 5 926 73,431.09 6 924 74,701.83
20 5 931 71,101.98 5 931 71,111.21 5 926 73,383.89 5 924 74,652.26
21 5 931 71,055.50 5 931 71,064.59 5 926 73,339.46 5 924 74,605.60
22 5 931 71,011.85 5 931 71,020.81 5 926 73,297.54 5 924 74,561.56
23 5 931 70,970.74 5 931 70,979.58 5 927 73,257.86 5 924 74,519.88
24 5 931 70,931.92 5 931 70,940.63 5 927 73,220.22 5 924 74,480.32
25 5 931 70,895.16 5 931 70,903.77 5 927 73,184.42 5 924 74,442.70
26 5 932 70,860.28 5 932 70,868.78 5 927 73,150.31 5 924 74,406.85
27 5 932 70,827.12 5 932 70,835.53 5 927 73,117.75 5 924 74,372.62
28 5 932 70,795.53 5 932 70,803.84 5 927 73,086.61 5 924 74,339.88
29 5 932 70,765.39 5 932 70,773.61 5 927 73,056.77 5 924 74,308.52
30 5 932 70,736.58 5 932 70,744.71 5 927 73,028.15 5 924 74,278.42

By comparing Model 2 (IW) and Model 3 (AW) in Table 2, it can be seen that in the
first production cycle, the average annual cost of the system obtained by the average
productivity method is slightly lower than the average annual cost of the system obtained
by the instant productivity method, but in other production cycles, the average annual
cost obtained by the average productivity method is slightly higher than that obtained by
the instant productivity method. The results of calculating the optimal annual average
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cost of the production–inventory system by using the average productivity method or the
instant productivity method are almost the same. This also shows that it is reasonable to
use the average productivity method to calculate the annual average cost of the production–
inventory system when the employees’ activities have cognitive learning characteristics
and skills learning characteristics.

When the production tends to be stable, the optimal number of deliveries and the
single quantity of deliveries in Model 2 and Model 3 are the same. When the production
tends to be stable, no matter what the situation is, the optimal number of supply times is
the same. In the AW case, the single quantity of supply is the largest, and in the FCLCM
case, the single quantity of supply is the smallest. This is due to the maximum amount of
production in Wright learning situations. As shown in Table 1, the annual average cost of
Model 3 in the 30th production cycle is USD 7743.30 lower than that in the 1st production
cycle. The average annual cost of Model 4 in the 30th production cycle is USD 6237.24 lower
than that in the 1st production cycle. With the continuation of production, the average cost
of the system becomes smaller and smaller, the optimal single supply volume becomes
larger and larger, and the optimal number of times of supply becomes smaller and smaller.
When production tends to be stable, the 30 production cycles are selected to explore the
effects of cognitive learning coefficient, skill learning coefficient, and λ change on Models 2,
3, 4, and 5.

The OEM supplier’s productivity varies with the existence of learning characteristics
of an employee’s job behavior. According to Figure 4, Figure 6 and Figure 8, Wright learning
has the highest average productivity, followed by JGLCM and FCLCM. Compared with
JGLCM, AW has learning integration, while JGLCM has learning disassembly. JGLCM
further subdivides learning and weakens part of the learning effect, so the average pro-
ductivity is smaller. Compared with JGLCM, FCLCM contains a part of production time
that does not have a learning effect. It further dismantles learning and further weakens
the learning effect of some assignments, thus the average productivity of FCLCM is the
lowest. In theory, according to the Wright learning curve theory, the production time of
the xth product is Tx = T1x−b, no matter in AW or JGLCM, only the production goes on,
the production time of the product is close to zero, but in actual production, there is a
minimum production time to complete a product. This part of production time has no
learning effect, so the FCLCM in Model 5 is closer to the real-life complexity.

Figure 4. Impact of i on average productivity.

(1) Impact of production cycle changes

Figure 4 shows the change in average productivity in different production cycles with
different learning characteristics. In the early stage of operation, the learning effect of
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employees’ operation behavior makes productivity increase greatly. In the later stage of
operation, the productivity increases slowly in JGLCM and FCLCM situations and the
productivity difference tends to be stable. Overall, the average productivity growth rate
becomes smaller and smaller, and the growth rate in the AW case is greater than that in the
JGLCM case and FCLCM case.

Figure 5 shows the impact of different production cycles on the optimal annual average
cost of the production–inventory system. In the early stage of operation, the annual average
cost of the system decreases significantly due to the significant increase in productivity.
The learning effect in employees’ activity behavior plays a significant role in reducing costs.
In the latter stage, because the operation tends to be stable, the increase in productivity is
not obvious, resulting in a decrease in the annual average cost of the system is not obvious.
Compared with the AW case, the JGLCM case and the FCLCM case tend to be stable ahead
of time. The difference between the average annual cost of FCLCM and JGLCM in the latter
stage of the operation is stability, which is caused by the production time in which there is
no learning effect.

Figure 5. Effect of i on optimal cost.

(2) The influence of the change in cognitive learning coefficient

The change of cognitive learning coefficient bc can be transformed into the change
of overall learning coefficient by Equation (22). Figure 6 shows that with the increase of
cognitive learning coefficient bc in employees’ work behavior, cognitive learning efficiency
becomes smaller and smaller, and productivity increases in AW, JGLCM, and FCLCM,
but the productivity increases in AW are larger than that in JGLCM and FCLCM, and the
differences between AW and JGLCM and FCLCM become larger and larger. In the three
cases, the increase in productivity becomes smaller and smaller. When cognitive learning
coefficient is bc > 0.5, the productivity of JGLCM and FCLCM remains stable, while that of
AW continues to increase. The productivity in the JGLCM case is higher than that in the
FCLCM case because there is no learning effect in part of the production time in the FCLCM
case. The change in cognitive learning coefficient leads to the change in productivity and
further affects the change in annual average cost. With the increase in cognitive learning
coefficient, bc, the annual average cost of all three kinds of cases decreases and the rate
of decline becomes smaller and smaller (Figure 7). JGLCM and FCLCM tend to be stable
before AW. The cost difference between the JGLCM case and AW case becomes bigger
and bigger.
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Figure 6. Effect of bc change on average productivity.

Figure 7. Effect of bc change on optimal cost.

(3) Impact of changes in skill learning coefficient

Figure 8 shows that with the increase in the skill learning coefficient, the average
productivity increases in all three situations. At that time, the average productivity in
AW and JGLCM cases has significantly increased process. In the AW case and JGLCM
case, the average rate increases more and more, while in the FCLCM case, the average rate
increases almost linearly. Figure 9 shows that with the increase of skill learning coefficients,
the annual average cost of the three types of situations becomes smaller and smaller. The
average annual cost in the AW case and JGLCM case converged and the average annual cost
in the FCLCM case and JGLCM case maintained a stable difference, which was caused by
the absence of learning effect in some activities. The annual average cost of the production–
inventory system in the FCLCM case does not converge with that in the AW case and
JGLCM case.
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Figure 8. Effect of bm changes on average productivity.

Figure 9. Effect of bm changes on optimal cost.

Observing the curve of Figures 7 and 9 when the cost tends to be stable, the cognitive
learning coefficient is less than the skill learning coefficient (0.4 < 0.6), that is, the cognitive
learning rate is greater than the skill learning rate. The management implication is that
when cognitive learning tends to stabilize, the cost reduction of improving skill learning is
limited. Managers need to strengthen cognitive learning training for grass-root workers.

(4) The influence of the change of recognition coefficient

Figure 10 shows that the average productivity increases with the increase of λ in
the AW and JGLCM cases, and the difference between them also increases. As shown in
Figure 11, the change of λ in optimal cost in AW and JGLCM shows hyperbolic characteris-
tics. The increase of λ means that cognitive learning plays an increasingly important role
in learning. When bc and bm stay unchanged, λ increasing means an increase in α. The
decreasing trend of the optimal annual average cost caused by the increase of α is similar
to that caused by the increase of bm on the optimal annual average cost.
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Figure 10. Effect of λ changes on average productivity.

Figure 11. Effect of λ changes on optimal cost.

Given δ, set ` = β/(1 − δ − β), to examine the impact of ` changes on average
productivity and annual average cost in the case of FCLCM. Combining Figure 12 with
Figure 13 δ means the smaller the production time without the learning effect, the larger
the average productivity and the smaller the average annual cost. With ` increasing, the
average productivity increases, the average annual cost decreases, and the incremental
range of the average productivity decreases, which leads to the decrease in the average
annual cost.
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Figure 12. Effect of ` changes on average productivity.

Figure 13. Effect of ` changes on optimal cost.

8. Managerial Insights

The learning characteristics of employees’ work behavior exist generally and objec-
tively in production practice. The learning effect has an obvious influence on completion
time and production cost. Therefore, enterprises need to consider the learning effect in the
process of employees’ work when formulating a business strategy, a production plan, and
salary design. This will ensure that the production plan formulated by enterprises is more
in line with the current situation.

The insights of this paper for managers reveal that targeted induction training can
help employees acquire the necessary skills needed for production as soon as possible and
promote employees to integrate into the enterprise faster. The knowledge that employees
gain causes the learning effect to play a key role in reducing costs in the early stage of
production. Employee turnover is not conducive to the steady exertion of the learning effect
on the improvement of productivity and the reduction of costs, so humanistic management
measures should be taken to reduce employee turnover.

In the later stage of production, it is more and more difficult to improve production
efficiency and reduce costs. It is not realistic to reduce production costs by learning effect.
OEM suppliers need to invest more research and development (R&D) resources to produce
new products to form a new learning effect. When enterprises renew their products, new
learning effects emerge, which requires the retraining of old employees.
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Compared with the skill learning training for production technicians, it is necessary to
pay more attention to the training of cognitive learning. OEM suppliers need to strengthen
the training of cognitive learning for production technicians. When cognitive learning
tends to be stable, the cost reduction of improving skill learning is limited. Currently, it is
not wise to invest in skill improvement.

9. Conclusions

Based on the dynamic change of productivity caused by the learning effect, this paper
establishes five kinds of production–inventory joint optimization models, which are, in
turn, non-learning effects, instant productivity under Wright learning, average productivity
under Wright learning, cognitive learning, and skill learning. The cognitive learning
(JGLCM) and skill learning (FCLCM) situations were improved. The production–inventory
system consists of a brand enterprise and an OEM supplier. The main conclusions obtained
by theoretical and numerical analysis include:

(1) Based on cognitive learning and skill learning, FCLCM is constructed. By using
FCLCM, the problem that the production time cannot be zero after production is
stable is solved.

(2) Compared with the JGLCM case, the AW case involves learning integration, while the
JGLCM case involves learning disassembly. JGLCM further subdivides learning and
weakens part of the learning effect, so the average productivity is smaller. Increasing
productivity does not necessarily reduce the average cost of the system. When demand
is stable, excessive productivity leads to the overstocking of inventory and increases
the inventory holding cost.

(3) The total cost under the learning effect is lower than that without the learning effect.
The total cost under cognitive learning and skill learning is higher than that under
Wright learning, but the optimal lot size under cognitive learning and skill learning
is smaller than that under Wright learning. A learning effect plays an important
role of increasing productivity and decreasing costs in the early stage, whereas after
production tends to be stable, the role of a learning effect is very limited.

(4) The increase in the cognitive learning coefficient and skill learning coefficient reduces
the total cost of the production–inventory system. With the increase in cognitive
learning coefficient, the gap between the total cost of cognitive learning and skill
learning and that of Wright learning becomes smaller and smaller, and with the
increase of the skill learning coefficient, the gap between the total cost of cognitive
learning and skill learning and that of Wright learning becomes wider and wider. With
the increase of the cognitive coefficient, the total cost of cognitive learning and skill
learning and the total cost of Wright learning show hyperbolic characteristics. When
cognitive learning tends to be stable, the cost reduction brought about by improving
skill learning is limited.

The paper does not consider the impact of forgetfulness on employees’ work behavior.
Forgetting occurs after production is interrupted. Forgetting causes the accumulated
knowledge and skills in the production process to be lost. When production starts again,
it cannot maintain the high-level operational advantage as at the end of the previous
production. The impact of forgetting cannot be ignored. In the future, we will consider the
impact of the forgetting characteristics of employees’ work behavior.
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