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Abstract: Clustering algorithms and deep learning methods have been widely applied in the multi-
mode process monitoring. However, for the process data with unknown mode, traditional clustering
methods can hardly identify the number of modes automatically. Further, deep learning methods
can learn effective features from nonlinear process data, while the extracted features cannot follow
the Gaussian distribution, which may lead to incorrect control limit for fault detection. In this paper,
a comprehensive monitoring method based on modified density peak clustering and parallel varia-
tional autoencoder (MDPC-PVAE) is proposed for multimode processes. Firstly, a novel clustering
algorithm, named MDPC, is presented for the mode identification and division. MDPC can identify
the number of modes without prior knowledge of mode information and divide the whole process
data into multiple modes. Then, the PVAE is established based on distinguished multimode data
to generate the deep nonlinear features, in which the generated features in each VAE follow the
Gaussian distribution. Finally, the Gaussian feature representations obtained by PVAE are provided
to construct the statistics H2, and the control limits are determined by the kernel density estimation
(KDE) method. The effectiveness of the proposed method is evaluated by the Tennessee Eastman
process and semiconductor etching process.

Keywords: multimode process; density peak clustering; variational autoencoder; kernel density
estimation; Tennessee Eastman process

MSC: 68T07

1. Introduction

With the increasing demands for production efficiency, stable system, and safe op-
eration in modern industry, fault detection and diagnosis (FDD) has received more and
more attention. In recent years, data-driven methods, especially the multivariate statistical
process monitoring (MSPM) methods, have become very popular. Principal component
analysis (PCA) and partial least squares (PLS) are two major MSPM methods [1–4]. To solve
the dynamic problem, a novel dynamic weight principal component analysis (DWPCA)
algorithm and a hierarchical monitoring strategy were proposed [5]. In order to handle
missing or corrupted data, a variational Bayesian PCA (VBPCA)-based methodology was
presented and applied in wastewater treatment plants (WWTPs) [6]. For the large-scale
process data, Zhang et al. proposed a decentralized fault diagnosis approach based on
multiblock kernel partial least squares (MBKPLS) [7].

Many MSPM methods have also been proposed for processes with multiple operating
conditions. For the multiple working modes and plant-wide characteristics, Chang et al.
proposed an on-line operating performance evaluation approach based on a multiple three-
level multi-block hybrid model [8]. Peng et al. proposed a multiple PLS model and applied
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it to quality-related prediction and fault detection [9]. However, it should be noted that
traditional MSPM methods assume that data obey a single-peak distribution. The local
process information is not taken into consideration. This may lead to erroneous and costly
monitoring results [10].

In recent years, many methods have been developed to improve the performance
of multimode process monitoring. One intuitive idea is the global model. For exam-
ple, local least squares support vector regression (LSSVR) and two-step independent
component analysis–principal component analysis (ICA–PCA) were introduced for the
multimode on-line monitoring [11]. Song and Shi presented a global model based on
temporal–spatial global locality projections for multimode process [12]. However, most
global modeling methods are hardly able to represent each operating mode precisely due
to the statistical averaging. The local modeling methods are also developed to monitor the
status of a multimode process. A local neighborhood standardization strategy integrating
with PCA (LNS-PCA) was developed for multimode fault detection [13]. A fault detec-
tion method based on adaptive Mahalanobis distance and k-nearest neighbor (MD-kNN)
was proposed and applied in semiconductor manufacturing [14]. Deng et al. proposed
a local neighborhood similarity analysis method for monitoring processes [15]. However,
these methods require the nearest neighbor searching on each historical sample, which
is a high computational load. Meanwhile, the prior knowledge to select the number of
neighbors is difficult to obtain. Another common multimode process monitoring method is
based on mixture model, which is suitable to represent the data sources driven by different
operating modes. Yu and Qin proposed a probabilistic approach based on finite Gaus-
sian mixture model (FGMM) and Bayesian inference for fault detection under different
modes [16]. Taking the dynamic characteristics of industrial process into consideration,
an adaptive Gaussian mixture model (GMM) using some prior knowledge for adaptive
updating was proposed [17]. A novel monitoring strategy, which combines the advantages
of multiple modeling strategies and GMM, was proposed for multimode processes [18].
In addition, the clustering method is adopted to separate the different process modes.
Khediri et al. presented a procedure based on kernel k-means clustering and support vector
domain description (SVDD) to identify the nonlinear process modes and detect faults, re-
spectively [19]. The fuzzy c-means (FCM) clustering method was employed to partition the
multimode process data into multiple clusters [20]. A novel monitoring strategy based on
locality preserving projection (LPP) and FCM was proposed for extracting the multimode
feature [21]. Luo et al. proposed a mode partition method based on the warped k-means
clustering algorithm [22]. However, similar to the GMM-based methods, aforementioned
clustering methods must manually set the cluster numbers in advance [23].

Density peaks clustering (DPC) is a novel clustering algorithm proposed by Rodriguez
and Laio in 2014 [24]. It provides a simple way to find the cluster centers and an efficient
manner to group non-center data. DPC has been widely studied and applied in the field
of the multimode process monitoring. For example, a hierarchical mode division based
on hierarchical density peaks clustering and hybrid geodesic distance was presented to
extract more available information from the multimode process data, which can improve
the adaptability of industrial processes with uncertainty [25]. A kNN-based modified DPC
method was proposed and applied to multimode process monitoring [26]. The DPC can
find the cluster centers for each operation mode according to the distribution characteristics
of the process data. Nevertheless, there are still some unresolved problems existing in the
original DPC to hinder it from becoming a reliable clustering algorithm: (1) The magnitudes
of local density in different modes are inconsistent, which may lead to the wrong selection
of cluster centers, and (2) there is not a valid criterion to determine the optimal number of
cluster centers automatically.

In the past decade, deep learning has been widely studied due to its powerful feature
extracting and representation learning ability. Among various of deep learning methods,
autoencoder (AE) plays a central role. An anomaly detection method based on sequence
gated recurrent units (SGRU) and AE was proposed for industrial multimode process [27].
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A monitoring scheme based on GMM and stacked denoising autoencoder (GMM-SDAE)
was constructed to identify the mode and extract feature from monitoring data [28]. Since
AE is a self-reconstruction network, most AE-related methods cannot ensure the distribu-
tion characteristics of extracted features. This may cause improper control limit, which
leads to inferior monitoring performance. Recently, variational autoencoder (VAE) has
attracted increasing attention in the process monitoring domain. A significant advantage
of VAE is that the learned hidden features follow the Gaussian distribution. Associated
with the nonlinear reflection of neural network, VAE is suitable for the feature learning in
industrial process monitoring. A nonlinear process monitoring method based on VAE was
proposed to tackle the Gaussian assumption problem [29]. For the multivariate fault isola-
tion problem, a process monitoring framework was proposed using VAE and branch-bound
algorithm [30]. However, the VAE-based method is limited by the Gaussian distribution
assumption of the hidden feature, which is not suitable for data with multiple mixture
distributions [31,32].

Owing to the diversity of data distribution in different mode, the local density in DPC
is inappropriate as a measure for selecting cluster centers. In addition, the number of the
cluster centers in DPC is usually selected manually. For the multimode process dataset
without mode information, improper number of modes may degrade the modeling and
monitoring performance. Meanwhile, VAE shows good performance in the single-mode
process monitoring, but it cannot model well for multimode data.

To address the problem above, this paper proposes a multimode process monitoring
method based on modified density peak clustering and parallel variational autoencoder
(MDPC-PVAE). The MDPC-PVAE can fully extract the informative nonlinear feature from
the multimode process data. The MDPC can effectively identify and divide the process
data in different modes, and the learned features by PVAE follow the Gaussian distribution.
The proposed method contains two phases: mode identification and feature generation. In
the mode identification phase, the MDPC is proposed to identify the mode information
and determine the process data in each mode. As a modified decision graph measure,
local density ratio is presented to unify the local density peak and reduce the local density
diversity in different clusters. Moreover, total entropy estimation is employed as a criterion
to determine the optimal number of cluster centers. In the feature generation phase, the
PVAE is presented to learn the multimode data and generate representative features for
process monitoring. It is constituted by multiple VAEs, in which the process data of a mode
is utilized for constructing a VAE. The learned features in each VAE follows the Gaussian
distribution. Finally, the monitoring statistics H2 are constructed based on the Gaussian
features generated by PVAE. The corresponding control limits are determined by the kernel
density estimation (KDE) method. Different from most multi-model methods, in the on-line
monitoring, the new sample is directly fed into the MDPC-PVAE without determining
which mode the sample belongs to in advance.

The remainder of this paper is organized as follows: in Section 2, DPC and VAE are
briefly introduced. In Section 3, the proposed MDPC-PVAE and its multimode monitoring
procedure are described. In Section 4, the performance of proposed method is compared
with some related multimode process monitoring methods on the Tennessee Eastman
(TE) process and semiconductor etching (SE) process. Finally, conclusions are drawn
in Section 5.

2. Preliminaries

In this section, we briefly review the basic concepts related to DPC and VAE.

2.1. Density Peak Clustering

DPC is a simple density-based clustering algorithm. Different from traditional center-
based clustering algorithms such as k-means and FCM, DPC is able to detect non-spherical
clusters and to recognize the correct number of clusters by artificial observation. There
are two basic assumptions about cluster centers. First, the cluster center has higher local
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density than that of their neighbor points. Second, the distances between cluster centers
are relatively large. For a dataset X ∈ Rn×m with n samples and m variables, the Euclidean
distance dij between two samples xi and xj is calculated as follows:

dij =‖ xi − xj ‖2, (1)

For a sample xi, two important measures, i.e., the local density ρi and the minimum
distance δi are defined to select the cluster centers. The local density ρi is defined as:

ρi = ∑j χ
(
dij − dc

)
, (2)

where, in χ(x), if x < 0, χ(x) = 1. Otherwise, χ(x) = 0. dc is a cutoff distance. ρi presents
the number of data points that have a distance to xi less than dc. The local density can be
also calculated using the Gaussian function:

ρi = ∑j exp

(
−

d2
ij

d2
c

)
, (3)

The minimum distance δi of data point xi is measured by calculating the minimum distance
between xi and the other data points with higher local density. It is expressed as:

δi =


min

j:ρi<ρj

(
dij
)
, i f ∃j, s.t. ρi < ρj

max
j

(
dij
)
, otherwise

, (4)

Then, the measures ρi and δi are used to generate a two-dimensional decision graph.
Generally, the cluster centers are manually selected according to the location of measures.
The cluster centers always locate on the upper-right corner. In some studies, the cluster
centers can also be determined by the composite indicator εi as:

εi = ρiδi, i ∈ I, (5)

Obviously, the data point with larger εi is more likely the cluster center. After the cluster
centers are determined, each remaining data point is assigned to the cluster to which its
nearest neighbor with higher local density belongs.

2.2. Variational Autoencoder

The VAE is a stochastic generative model that can solve the inference problem. It
can replace the latent representation of given data with stochastic variables and force the
latent variables to obey an expected Gaussian distribution. The basic structure of VAE is
shown in Figure 1. Given the dataset X, the goal of VAE is to generate the data x̂ from
the unobserved latent variable z by optimizing the network parameters θ. To make the
generated data x̂ similar to the original data x with high probability, we should maximize
the likelihood pθ(x):

pθ(x) =
∫

pθ(x|z)pθ(z)dz (6)

The log likelihood log pθ

(
xi) can be expressed as:

log pθ

(
xi
)
= Eqφ(z|xi)

(
log pθ(xi|z)

)
− DKL(qφ(z|xi) ‖ pθ(z)) + DKL(qφ(z|xi) ‖ pθ(z ‖ xi)

)
, (7)

where pθ(xi|z) is the decoder, qφ(z|xi) is the encoder, θ and φ are the network parameters,
and DKL is the Kullback–Leibler (KL) divergence. In Equation (7), pθ(z ‖ xi) is intractable,
and KL divergence is non-negative. VAE considers an approximation of the marginal
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likelihood, denoted as evidence lower bound (ELBO), which is a lower bound of the log
likelihood as:

L
(

θ, φ; xi
)
= Eqφ(z|xi)

[
log pθ(xi|z)

]
− DKL(qφ(z|xi) ‖ pθ(z)), (8)

Figure 1. The basic structure of VAE.

The ELBO consists of two terms. The first term is the reconstruction error, which
is the same as the training objective of an autoencoder. The KL divergence term is
a distance measure between the probability distribution of generated data and expected
Gaussian distribution. Through maximizing the ELBO, the network parameters θ and φ
are optimized. Stochastic gradient descent algorithm is used for the network training.

3. Multimode Process Monitoring Based on MDPC-PVAE

This section introduces the detail of the proposed MDPC-PVAE and its multimode
process monitoring procedure.

3.1. MDPC-PVAE

In the original DPC, the cluster centers are selected from local density peaks. However,
for the multimode problem, the data distribution characteristics between different mode
are various. DPC only focuses on value of local density and neglects if the density is really
large in absolute magnitude. It means that a data point A in the higher density and wider
coverage area is more likely becoming a cluster center than the data point B in a low-density
and narrow coverage area even if the data point B has the highest local density in its area.
Considering density diversity in a different area, namely a new decision graph measure,
the local density ratio γi is proposed to handle the density differences as:

γi =
1
M ∑M

j=1
ρi
ρj

= ∑ρi
j=1

1
ρj

, ρj ∈ Si, (9)

where Si is the set containing the M data points with distances to xi less than dc. If data
point xi is a local density peak, all its M neighbor points have lower local density than
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ρi, i.e., ρi > ρj, and γi > 1. The local density ratio can reduce the influence from large
density differences across clusters.

After the γi for each data point has been calculated, integrated with the previously
mentioned measure δi, the candidate cluster centers Cca are obtained through introducing
the conditions as follows:

{Cca(γcan , δcan)}
P
n=1 = {x(γi, δi)|γi > Tγ ∩ δi > Tδ}, i = 1, 2, . . . , N, (10)

where Tγ and Tδ are the thresholds for γi and δi, respectively. Tγ can remove the non-center
data with low local density ratio. Tδ is used for eliminating the redundant data with high
local density ratio. In this study, Tγ is set to 1, and the average value of δi is taken as the
threshold Tδ. After that, the composite indicator ε′i about Cca is defined as:

ε′i = γcai δcai , i = 1, 2, . . . , P, (11)

The selection order of cluster centers is determined by the value of composite indicator
ε′i. We define {si}P

i=1 as the descending order index set of
{

ε′i
}P

i=1; that is:

εs1 ≥ εs2 ≥ . . . ≥ εsP (12)

Then, we can sort all the data points corresponding to the {si}P
i=1 as the selection

sequence of cluster centers Ci:

{Ci}P
i=1 =

{
Ccasi

}P

i=1
(13)

After the selection sequence of cluster centers is obtained, entropy estimation is
employed to determine the number of cluster centers. Renyi entropy is a nonparametric
estimation method that reflects the similarity or dissimilarity metric between data in the
same space. For a stochastic variable x with a probability density function f(x), its Renyi
entropy is:

Eα(x) =
1

1− α
log

∫
f α(x)dx, α > 0, α 6= 1, (14)

where α is the information order. If α = 2, the Renyi quadratic entropy is given as:

ER(x) = − log
∫

f 2(x)dx (15)

Equation (15) can be directly estimated by the Parzen window density estimation with
a multi-dimensional Gaussian window function. Probability density function estimation of
a cluster with the center Ck can be represented as follows:

f (x) =
1

Nk
∑Nk

i=1 G
(

x− xi, σ2 I
)

, (16)

where Nk is the number of data points belonging to the cluster with center Ck, and G is the
Gaussian window function with covariance matrix σ2 I. G is represented as follows:

G
(

x− xi, σ2 I
)
=

1

(2π)M/2σM
exp

(
−(x− xi)

T(x− xi)

2σ2

)
, (17)

where M is the dimension number of x. The scale parameter governs the width of the
Parzen window. By substituting (17) into (16), the entropy formula of cluster with center
Ck can be obtained as follows:

E(Ck) = − log V(Ck) , (18)
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where V(Ck) can be expressed as follows:

V(Ck) =
1

N2
k

Nk

∑
i=1

Nk

∑
j=1

G
(

xj − xi, 2σ2 I
)

(19)

Assume that there are R clusters in the dataset; the first R elements in the selection sequence
of cluster center, i.e., {C1, C2, . . . , CR}, are chosen as the cluster centers. Each remaining
point is assigned to the cluster to which its nearest neighbor with higher density belongs.
The total entropy can be calculated as follows:

Ẽ(R) =
R

∑
n=1

E(Cn), R ≤ P (20)

Note that, in calculating the E(Cn), the kernel size σ in the Gaussian window function
is unified and consistent with that of Ẽ(1). Obviously, if all the data points are assigned
to the proper clusters, the data in each cluster may be more similar, and then, the total
entropy becomes lower. The number of cluster centers Nc can be obtained through finding
the minimum total entropy in different combination of cluster centers:

Nc = argmin
(

Ẽ(R)
)

, R = 1, 2, . . . , P (21)

The overall procedures of MDPC are described in Algorithm 1. Considering that the
multimode data usually show the multi-clusters distribution characteristics,
three synthetic datasets (i.e., Aggregation, R15, and D31) are adopted to verify the clus-
tering effect of MDPC [33]. The γ− δ decision graph, total entropy with different num-
ber of clusters, and visual clustering result on the three synthetic datasets are shown in
Figures 2–4. The clustering results show that MDPC shows good clustering performance.
Through introducing local density ratio, the cluster centers can be found exactly. Entropy
estimation determines the optimal number of clusters. The clustering results of DPC,
DBSCAN, and MDPC on the Aggregation dataset re shown in Figure 5. It can be seen that
MDPC can find the accurate cluster center. DPC and DBSCAN can only determine cluster
centers with the high local density and ignore the local density peak.

Algorithm 1. MDPC.

Input: Dataset X = {x1, x2, . . . , xN}.
Output: Cluster centers C = {C1, C2, . . . , CNc}.
1: Calculate the distance dij between data point xi and xj.
2: Assign the cut-off distance dc.
3: Calculate the local density ρi of each data point.
4: Calculate the local density ratio γi and minimum distance δi of each data point.
5: Assign the thresholds Tγ and Tδ.
6: Determine the candidate cluster center set {Ccai}

P
i=1.

7: Calculate the composite indicator ε′i.
8: Sort the ε′i in descending order and record the index order {si}P

i=1.
9: Determine selection sequence of cluster centers {Ci}P

i=1.
10: for R = 1:P
Calculate the total entropy Ẽ(R).

End
11: Find the minimum Ẽ(R), obtain the number of cluster centers Nc, and determine the cluster
centers {Ci}Nc

i=1.
12: Return C = {C1, C2, . . . , CNc}.
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Figure 2. MDPC on the Aggregation dataset: (a) γ− δ decision graph; (b) total entropy with different
number of clusters; (c) visual clustering result.

Figure 3. MDPC on the R15 dataset: (a) γ− δ decision graph; (b) total entropy with different number
of clusters; (c) visual clustering result.

Figure 4. MDPC on the D31 dataset: (a) γ− δ decision graph; (b) total entropy with different number
of clusters; (c) visual clustering result.

Figure 5. Comparison of clustering results on the Aggregation dataset: (a) DPC; (b) DBSCAN;
(c) MDPC.



Mathematics 2022, 10, 2526 9 of 19

Based on the MDPC, the whole multimode process is distinguished as multiple single
modes. The process data X are divided in Nc data subsets {X1, X2, . . . , XNc}. Since there
are many differences between modes in the input profiles, conditions, process characteris-
tics, and control strategy, traditional VAE cannot fully describe these multimode process
data. Hence, the PVAE is constructed for the multimode process data, in which the samples
in each mode are used to build a corresponding VAE. Owing to the large difference in the
numerical range and magnitude between modes, it is firstly necessary to normalize the
data subsets, respectively. In the VAE, the form of the prior distribution pθ(h) is specified as
a standard normal distribution; that is, pθ(h) ∼ N(0, 1). The form of DKL(qφ(h

∣∣xi) ‖ pθ(h))
in Equation (8) can be computed as follows:

DKL(N(µ(X), Σ(X)) ‖ N(0, 1)) =
1
2

(
tr(Σ(X)) + µ(X)Tµ(X)− k− log det(Σ(X))

)
, (22)

where k is the dimension of the expected Gaussian distribution, tr(·) is the trace of the
matrix, and det(·) is the determinant of the matrix. The loss function of PVAE for the data
subsets Xi can be written as:

Li =‖ Xi − X̂i ‖2 +
1
2

(
tr(Σ(Xi)) + µ(Xi)

Tµ(Xi)− k− log det(Σ(Xi))
)

, (23)

where X̂i is the reconstruction sample subset. Stochastic gradient descent is adapted to
train the PVAE.

3.2. MDPC-PVAE for Multimode Process Monitoring

Once the PVAE is trained well, due to hidden feature h in VAE following the Gaussian
distribution, the H2 statistic can be directly constructed in the encoder feature subspace,
which is similar to the Hotelling’s T-squared statistic. The H2 statistic in the ith mode of
PVAE is defined as follows:

H2
(i) = hT

(i)Σ
−1
(i) h(i), i = 1, 2, . . . , Nc, (24)

where Σ is the covariance matrix of the hidden features. The control limit of statistics
H2 is calculated by the kernel density estimation (KDE) method [34]. The probability
density function of H2

(i) is fitted using the kernel function. Given the confidence level ζ,

the value of the density function at ζ is the control limit H2
(i, lim). When a new monitoring

sample xnew arrives, it is firstly normalized according to different data subsets, and the
hidden representations are obtained from the PVAE. Then, the statistics H2

(i) of xnew can

be calculated based on Equation (24). If ∀ i ∈ [1, Nc], ∃H2
(i) > H2

(i, lim), and xnew is
abnormal. Otherwise, xnew is normal; meanwhile, the current mode is the kth mode in
which H2

(k) < H2
(k, lim).

The procedure of MDPC-PVAE based multimode process monitoring is presented in
Figure 6. It includes two phases: off-line modeling and on-line monitoring.

Off-line modeling

1. Collect the multimode normal process data X and normalize the samples.
2. Divide X into Nc data subset X1, X2, . . . , XNc using MDPC.
3. Normalize the samples in the data subset and save the normalization parameters for

on-line monitoring.
4. Design the architecture of PVAE and train the PVAE with data subset X1, X2, . . . , XNc .
5. Compute the hidden features and construct the monitoring statistic H2

(i).

6. Calculate the control limit with a confidence level of 0.99 for each mode by KDE.

On-line monitoring
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1. Obtain the on-line sample xnew and normalize it by the saved normalization parame-

ters in off-line modeling as x(1)new, x(2)new, . . . , x(Nc)
new .

2. Map x(1)new, x(2)new, . . . , x(Nc)
new to the PVAE and obtain the hidden features.

3. Calculate statistics H2
(i); if each statistic is greater than its corresponding control limit

H2
(i, lim), xnew is faulty. Otherwise, xnew is normal and record the current mode type.

Figure 6. The procedure of MDPC-PVAE-based multimode process monitoring.

4. Case Study

In this section, two benchmark cases (i.e., TE process and SE process) were conducted
to test the monitoring performance of MDPC-PVAE. Based on the requirements of en-
vironment and different products, there are various operation conditions in TE process
and SE process. They are typical multimode processes that were extensively applied to
the performance evaluation of multimode fault detection methods. The simulations were
implemented on a computer with configurations as follows: Operating system: 64-bit
Microsoft Windows 10; CPU: Intel i7-8700 (3.20 GHz); RAM: 8GB; Software: Matlab2020.
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4.1. Tennessee Eastman Process

The TE process is a realistic simulation program of a large-scale chemical industrial
plan, which has become a benchmark platform for FDD methods evaluation [35]. This
process includes five units: the reactor, vapor–liquid separator, product condenser, recycle
compressor, and product stripper. There are total of 22 continuous measurement variables,
19 composition measurement variables, and 12 manipulated variables. The flow sheet of TE
process is exhibited in Figure 7. In this study, we used the revised TE simulation proposed
in [36]. There are six different process operation modes. In each mode, the simulation
data include 1 normal dataset and 28 faulty datasets. Table 1 lists the description of these
28 faults. Each dataset is simulated for a duration of 100 h at a sampling rate of 3 min,
resulting in 2000 observed samples. In the fault datasets, the abnormal conditions are
introduced from the 601st to the 2000th sample.

Figure 7. Flow sheet of TE process.

In this study, the operating Modes 1, 2, and 3 were chosen for multimode process
simulation. Thirty-three process-measured variables were selected for fault detection
modeling. The detail description can be found in [37]. The faults were selected based on
different types, including step faults (1, 2, 4–7), random variation faults (8, 10–13, 17, 18, 20,
24–28), sticking fault (14), and unknown faults (19). The three datasets in normal condition
are used for clustering analysis and network training. The γ− δ decision graph and total
entropy with different number of clusters are shown in Figure 8. The number of clusters
was calculated as three. The network parameters and hyperparameters were determined
properly by using grid searching. The network structures of PVAE were designed at
33-100-70, 33-95-70, and 33-100-65.

In this case study, three methods including LNS-PCA, MD-kNN, and GMM-SDAE
were constructed to compare with the MDPC-PVAE to verify the effectiveness of the
proposed method. The number of principal components for LNS-PCA is 17 [38]. The
number of neighbors in LNS-PCA and MD-kNN is set to five. The number of multimode
parameters in GMM-SDAE is three. The network structures of GMM-SDAE are the same
with PVAE. The confidence level of the control limits is 0.99.
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Table 1. Description of faults in the TE process.

Fault Description Type

1 A/C feed ratio, B composition constant (stream 4) Step
2 B composition, A/C ratio constant (stream 4) Step
3 D feed temperature (stream 2) Step
4 Water inlet temperature for reactor cooling Step
5 Water inlet temperature for condenser cooling Step
6 A feed loss (stream 1) Step
7 C header pressure loss (stream 4) Step
8 A/B/C composition of stream 4 Random variation
9 D feed (stream 2) temperature Random variation
10 C feed (stream 4) temperature Random variation
11 Cooling water inlet temperature of reactor Random variation
12 Cooling water inlet temperature of separator Random variation
13 Reaction kinetics Random variation
14 Cooling water outlet valve of reactor Sticking
15 Cooling water outlet valve of separator Sticking
16 Variation coefficient of the steam supply of the heat exchange of the stripper Random variation
17 Variation coefficient of heat transfer in reactor Random variation
18 Variation coefficient of heat transfer in condenser Random variation
19 Unknown Unknown
20 Unknown Random variation
21 A feed (stream 1) temperature Random variation
22 E feed (stream 3) temperature Random variation
23 A feed flow (stream 1) Random variation
24 D feed flow (stream 2) Random variation
25 E feed flow (stream 3) Random variation
26 A and C feed flow (stream 4) Random variation
27 Reactor cooling water flow Random variation
28 Condenser cooling water flow Random variation

Figure 8. MDPC on the multimode normal data of TE process: (a) γ− δ decision graph; (b) total
entropy with different number of clusters.

In the LNS-PCA and GMM-SDAE, two statistics, i.e., Hotelling’s T-squared (T2) and
squared prediction error (SPE), were calculated to detect process faults. The T2 statistic
and SPE statistic measure the variation of sample xi projected in the feature space (h) and
residual space (x− x̂), respectively [13,25]. The T2 and SPE statistics are defined as follows:

T2 = hT
i φ−1hi , (25)

SPE =‖ xi − x̂i ‖2, (26)
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where h is a vector representing the extracted features by LNS-PCA and GMM-SDAE, and
φ is the covariance matrix. The monitoring statistic D2 of MD-kNN is defined as [39]:

D2
i =

k

∑
j=1

M2
i,j, (27)

where M2
i,j denotes Mahalanobis distance from sample i to its jth nearest neighbor.

Two important indicators, i.e., fault detection rate (FDR) and false-alarm rate (FAR),
were taken for performance evaluation of MDPC-PVAE. They are defined as follows:

FDR =
Number o f alarms

Number o f f aulty samples
× 100%, (28)

FAR =
Number o f f alse alarms

Number o f normal samples
× 100% (29)

Figure 9 shows the monitoring charts of MDPC-PVAE in the TE process. As shown
in Figure 9a, the testing dataset is Fault 4 in Mode 1. The first 600 samples of H2

(1) are all

below its control limit. When the fault occurs at the 601st sample, H2
(1) begins to increase

and exceed the control limit. H2
(2) and H2

(3) are always above their control limits. Similarity,

in Figure 9b, the H2
(3) can also recognize the normal samples, and the other two statistics

are above the control limits. This is because, due to the generated hidden features from
PVAE following the Gaussian distribution, each sub-VAE in the PVAE only recognize the
within-mode normal condition. When detecting the faulty condition within-mode or the
arbitrary condition in the other modes, the corresponding statistic will be greater than its
control limit.

Figure 9. Monitoring charts of MDPC-PVAE in the TE process: (a) Fault 4 in Mode 1; (b) Fault 28
in Mode 3.

In this case study, a testing dataset for one fault type is composed of the corresponding
datasets in three modes. The comparison results of FAR/FDR are exhibited in Table 2. It
is obvious that MDPC-PVAE has a relatively high accuracy for most faults, especially for
Faults 12, 24, and 28. Moreover, the MDPC-PVAE has the highest average FDR with 86.05%
among all the comparison methods. The average FDRs of LNS-PCA (SPE) and GMM-SDAE
(T2) are relatively high with 84.68% and 85.49%, respectively. However, their average FARs
are also much higher with over 3%. MDPC-PVAE obtains the lowest FAR with 0.9%
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Table 2. FAR/FDR of MDPC-PVAE and the other methods on the TE process.

Fault
LNS-PCA MD-kNN GMM-SDAE MDPC-PVAE

T2 SPE D2 T2 SPE H2

1 3.67/99.86 3.39/99.86 0.89/99.88 2.67/99.81 2.5/99.71 0.67/99.88
2 3.28/99.36 1.56/98.81 0.94/99.29 2.11/99.24 4.17/98.64 0.22/99.26
4 4.33/99.93 2.39/99.93 0.89/99.93 2.83/99.86 2.08/99.86 0.33/99.93
5 5.83/34.96 2.89/34.1 1.61/33.45 4.89/35.12 5.42/33.62 2.33/33.69
6 2.67/100 2.22/100 0.67/100 1.67/99.93 1.46/99.93 0.06/100
7 3.72/99.93 3.06/99.93 1.28/99.93 3/99.86 3.75/99.86 0.39/99.93
8 4.39/99.26 3.06/98.17 1.22/99.21 4.61/99.19 2.5/98.86 1.28/99.24

10 3.78/79.14 2/91.93 0.67/93.09 3/92.88 3.33/92.43 0.28/93.1
11 4.67/98.02 5.11/97.71 0.72/98.21 4.95/98.69 4.38/93.69 1.11/97.93
12 3.89/59.55 2.39/49.74 0.94/55.48 2.55/65.48 2.71/48.24 0.61/64.27
13 6.06/96.07 3.33/95.93 1.67/96.83 6.22/96.83 3.13/92.74 1.94/96.57
14 3.78/97.83 3.33/97.86 1.17/98.62 3.17/98.55 3.13/94.4 0.78/98.31
17 3/91.45 3/94 0.94/93.1 2.72/94.52 1.04/90.24 0.56/93.43
18 5.56/80.02 1.22/82.17 0.67/83.6 4.11/85.6 1.25/78.93 1.11/83.21
19 3.33/98.43 3.06/98.81 1.44/99.02 2.11/99 1.46/98.12 0.28/98.93
20 6.83/97.57 6.78/98.5 1.06/98.31 8.05/98.31 3.75/96.95 2.67/98.33
24 4.5/68.36 4.39/83.88 0.89/87.62 5.39/73.55 3.13/88.52 1.06/88.71
25 3.67/60.64 3.94/68.71 0.33/82 4.11/66.05 2.29/64.19 0.89/73.05
26 4.11/67.55 4.06/86.38 1.5/82.7 3.17/85.55 3.54/69.36 1.17/85.55
27 3.72/77.05 3.17/78.98 0.72/78.40 2.33/83.05 2.08/50.45 0.5/78.81
28 3.56/21.19 3/22.93 0.33/1.48 4.17/24.31 3.13/16.38 0.72/25.11

FDR 4.21/82.2 3.21/84.68 0.98/84.77 3.71/85.49 2.87/81.2 0.9/86.05

The monitoring results of Fault 25 in Mode 1 with the four methods are shown in
Figure 10. The LNS-PCA (T2) only achieves the FDR with 82.14%. LNS-PCA (SPE) and
GMM-SDAE (T2 and SPE) can achieve the FDR with about 92%. Furthermore, the LNS-PCA
(T2) and GMM-SDAE (T2 and SPE) have higher FAR, about 2%. The performance of the
proposed MDPC-PVAE is slightly better than other methods, with an FDR of 94% and FAR
of 0.17%. Figure 11 shows the monitoring results of Fault 26 in Mode 2. The LNS-PCA (T2)
and GMM-SDAE (SPE) have lower FDRs with 68.71% and 69.71%, respectively. The FDRs
of LNS-PCA (SPE) and GMM-SDAE (T2) are relatively high with 86.79% and 84.64%, while
their FARs are also correspondingly high with about 1.6%. MD-kNN achieves the FAR of
0%, but its FAR is also low with 82.71%. The FDR and FAR of MDPC-PVAE are 84.14%
and 0.33%. MDPC-PVAE has higher FDR and lower FAR. This is because the generated
features by MDPC-SAE follow Gaussian distribution, which are more beneficial for statistic
construction and fault detection. Compared with the other methods, the proposed MDPC-
PVAE can more effectively capture features from the local process data, which improves its
performance of multimode fault detection.

The computational complexity of the model is an important evaluation indicator in
practical engineering applications. The computational times for the four methods are
presented in Table 3. The testing time for a batch size is 2000 samples. MDPC-PVAE
consumes 40.51 ms. LNS-PCA and MD-kNN consume more time with 67,982.97 and
72,103.54, respectively. This is not a surprise because they both need to search through
the whole dataset to find the nearest neighbors, which greatly increases the computational
time of the monitoring process. Compared with parallel network structure of MDPC-PVAE,
GMM-SDAE only uses a feature extraction network for on-line monitoring. However, the
mode of the monitoring sample should be firstly determined by GMM. Meanwhile, in
order to obtain the reconstruction error, the decoder network is also used for computing the
reconstruction sample. That means the number of hidden layers required for calculating is
twice that of MDPC-PVAE, which brings more parameters and more computational burden.
Both of the two factors can lead to the increase of testing time.
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4.2. Semiconductor Etching Process

The semiconductor dataset was collected from an A1 stack etch process performed on
a commercial scale LAM 9600 plasma etch tool at Texas Instrument, Dallas, USA [39,40].
The data consist of 108 normal wafers taken during three experiments and 21 wafers with
intentionally induced faults taken during the same experiments. There are 21 variables in
a wafer. Excluding the time and step number variables, we selected 19 variables for fault
detection modeling. Due to the fact that the original data in the semiconductor etching
process are three-dimensional, statistics pattern analysis (SPA) method was adopted to
replace the batch data with statistical characteristics of variables. The mean and variance of
variables were chosen to constitute the statistics pattern vector of batch.

The γ − δ decision graph and total entropy with different number of clusters are
shown in Figure 12. The number of clusters was calculated as three. The network structures
of PVAE were designed at 38-50-30, 38-55-30, and 38-55-35. The number of principal
components for LNS-PCA is 20. The number of neighbors in LNS-PCA and MD-kNN was
set to five. The number of multimode parameters in GMM-SDAE is three.

Figure 10. Monitoring results of Fault 25 in Mode 1: (a) LNS-PCA (T2); (b) LNS-PCA (SPE);
(c) GMM-SDAE (T2 ); (d) GMM-SDAE (SPE); (e) MD-kNN; (f) MDPC-PVAE.
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Figure 11. Monitoring results of Fault 26 in Mode 2: (a) LNS-PCA (T2); (b) LNS-PCA (SPE);
(c) GMM-SDAE (T2 ); (d) GMM-SDAE (SPE); (e) MD-kNN; (f) MDPC-PVAE.

Table 3. Testing time of 2000 sample for the four methods.

Method LNS-PCA MD-kNN GMM-SDAE MDPC-PVAE

Testing time (ms) 67,982.97 72,103.54 347.34 40.51

Figure 12. MDPC on the multimode normal data of semiconductor etching process: (a) γ− δ decision
graph; (b) total entropy with different number of clusters.
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The detection results of the 21 faults by the four methods are exhibited in Table 4.
The checkmark represents that the fault is detected by the corresponding method. In LNS-
PCA and GMM-SDAE, Faults 3 and 17 are not detected. The SPE statistic of GMM-SDAE
only recognizes five faults. LNS-PCA (SPE) and GMM-SDAE (SPE) cannot detect Fault
8. MD-kNN shows good performance in which only Fault 8 is not detected. LNS-PCA
(T2) and GMM-SDAE cannot detect Fault 10. Fault 17 is only detected by MD-kNN and
MDPC-PVAE. The FDRs of LNS-PCA (SPE), MD-kNN, and GMM-SDAE (T2) are all above
85%. Compared with the other methods, the proposed MDPC-PVAE has a significant
performance improvement in the detection of Faults 3, 8, 10, and 17. The result illustrates
that MDPC-PVAE has superior performance in multimode fault detection.

Table 4. Fault detection result of MDPC-PVAE and the other methods in the SE process.

Fault
LNS-PCA MD-kNN GMM-SDAE MDPC-PVAE

T2 SPE D2 T2 SPE H2

1
√ √ √ √ √

2
√ √ √ √ √

3
√ √ √

4
√ √ √ √ √ √

5
√ √ √ √ √

6
√ √ √ √

7
√ √ √ √ √ √

8
√ √ √

9
√ √ √ √

10
√ √ √

11
√ √ √ √ √

12
√ √ √ √ √ √

13
√ √ √ √ √ √

14
√ √ √ √ √ √

15
√ √ √ √ √

16
√ √ √ √ √

17
√ √

18
√ √ √ √ √

19
√ √ √ √ √

20
√ √ √ √ √

21
√ √ √ √ √

FDR 76.19% 90.48% 95.24% 85.71% 23.81% 100%

5. Conclusions

In this study, the modified density peak clustering and parallel variational autoencoder-
based multimode process monitoring method is proposed. The MDPC can identify the
number of modes and divide the process data without prior knowledge about mode
information. The PVAE is built up based on the divided multimode process data. The
Gaussian distribution characteristic of generated features from PVAE is beneficial for
improving the fault detection effect and reducing the false alarm. The MDPC-PVAE can
solve the inaccurate mode identification problem and the uncertainty of generated features
distribution. The effectiveness of the proposed method is verified in the TE process and the
SE process. Compared with related multimode process monitoring methods, such as LNS-
PCA, MD-kNN, and GMM-SDAE, the simulation results indicate that the MDPC-VPAE
has an excellent monitoring performance with the FDRs of 86.05% and 100%, respectively.
Furthermore, the testing times show that the MDPC-VPAE has good performance in
computational efficiency. It is suitable for real-time monitoring and fault detection in
practical engineering applications.

In the on-line monitoring, MDPC-PVAE can directly feed the monitoring data into
the generation network without the mode identification phase to detect faults, while the
mode information of the faulty data cannot be obtained. In addition, this work mainly
studies on the steady modes in multimode process. The transition modes are not explicitly
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considered. The further investigation is needed for extending this method to monitor
transition processes.
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