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Abstract: Betweenness centrality evaluates the importance of nodes and edges in networks and
is one of the most pivotal indices in complex network analysis; for example, it is widely used in
centrality ordering, failure cascading modeling, and path planning. Existing algorithms are based on
single-source shortest paths technology, which cannot show the change of betweenness centrality
with the growth of paths, and prevents deep analysis. We propose a novel algorithm that calculates
betweenness centrality hierarchically and accelerates computing via GPUs. Based on the novel
algorithm, we find that the distribution of shortest path has an intrinsic correlation with betweenness
centrality. Furthermore, we find that the betweenness centrality indices of some nodes are 0, but these
nodes are not edge nodes, and they characterize critical significance in real networks. Experimental
evidence shows that betweenness centrality is closely related to the distribution of the shortest paths.
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1. Introduction

Since the new millennium, the informatization tide has swept across the world
rapidly [1], and networks now appear in almost all aspects of society as the represen-
tatives of informatization. Communication networks [2], transportation networks [3], social
networks [4], industrial networks [5], and the Internet of Things [6] have been superim-
posed on each other to form the network named the “Internet of Everything,” and the
prototype of intelligent life has even appeared. Cyberspace has gradually become large and
complex, and researchers have paid attention to complex networks [7,8]. Network science
has emerged as the times require [9], transforming into influencer science and shifting the
focus to network modeling, centrality measures and global characteristics of networks, link
prediction and recommendation algorithms based on networks, control and optimization
of networks, and network propagation dynamics.

At present, the identification of key nodes and edges in the network has become a
multidisciplinary research hotspot, involving areas such as medicine [10], biology [11],
geography [12], systems science [13], physics [14], and mathematics [15], and network
measure centrality highlights its role in evaluating the importance of nodes and edges [16].
Betweenness centrality is a core index for evaluating the importance of nodes and edges,
which has recently been widely used in the networks related to information flow along the
shortest path, including medicine [17], biology [18], social network analysis [19], IoT proto-
col formulation [20], environmental engineering [21], transportation network analysis [22],
trade and global supply chain analysis [23], etc. Moreover, the calculation of betweenness
centrality was incorporated into DARPA HPCS SSCA in 2008; this index is a benchmark
used extensively to evaluate the performance of emerging high-performance computing
architectures for graph analysis [24].
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Brandes’ algorithm, the best-known algorithm for computing betweenness centrality,
is based on [25,26]; however, it cannot fully meet the demand for analysis of complex
networks. There is a bottleneck in the existing algorithm, as Brandes’ algorithm is based
on single-source shortest path traversal algorithms and the accumulation technique [4].
This bottleneck restricts the in-depth study of betweenness centrality to a certain extent,
which masks the trend of betweenness centrality changing with path length, and does not
support hierarchical analysis networks.

In this paper, we propose a Novel Algorithm for Hierarchical Analysis Networks
(NAHAN), which is developed based on an all-pair shortest paths algorithm named
DAWN [27]. We have mathematically demonstrated a strong correlation with betweenness
and shortest path distributions, and confirmed the correlation through experiments on
multiple networks. Further, we find that there are some special nodes and subgraphs in the
network, whose significance cannot be evaluated only by betweenness. Each measure of
centrality has its focus and shortcomings. Even nodes with 0 betweenness centrality may
play an important role in the network, and evaluating node importance by a single index
may no longer be suitable for increasingly complex networks. We discuss how to make up
for the lack of betweenness centrality by other measures of centrality, in conjunction with
the special cases found in this paper.

The main contributions of this work are as follows:

1. We propose a novel algorithm that can analyze networks hierarchically and is conve-
nient for conducting in-depth study on betweenness centrality;

2. We discover the distribution of shortest paths has intrinsic correlation with the be-
tweenness distribution, and experimental evidence confirms this relationship;

3. We find that the betweenness centrality indices of some nodes are 0, but these nodes
are not edge nodes and characterize critical significance in real networks.

In Section 2, we introduce the theoretical foundation of betweenness centrality and
its typical algorithms. In Section 3, we elaborate the design of the NAHAN algorithm. In
Section 4, we describe the intrinsic relationship with betweenness and the shortest paths
distribution. In Section 5, we prove that some special nodes with betweenness centrality
indices of 0 have critical significance in the network. In Section 6, we demonstrate that the
distribution function of the shortest path and betweenness almost coincide. In Section 7,
we conclude the work of this paper.

2. Related Work

In this section, we describe the related work of this paper in three aspects: the concept
and properties of betweenness centrality, an introduction to Brandes’ algorithm, and an
introduction to DAWN algorithm.

2.1. Betweenness Centrality

Bavelas et al. proposed betweenness centrality in an in-depth study of social net-
works [28]. Freeman described that the frequency of nodes’ occurrence on the shortest
path directly affects their importance in the network, and proposed that evaluating the
influence of nodes via betweenness centrality is rigorous [29,30]. Freeman expounded on
the mathematical definition of betweenness centrality and the calculation method, which
has complexities of O(n3) in time and O(n2) in space, where n is the number of nodes in
the network.

Construct the connected network G = (V, E), where V represents the set of nodes in
the network, and E represents the set of edges. Betweenness centrality is usually divided
into node betweenness centrality and edge betweenness centrality and has been defined as:
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Bet(v) = ∑
vi ,vj∈V

σ(vi, vj | v)
σ(vi, vj)

,

Bet(e) = ∑
vi ,vj∈V

σ(vi, vj | e)
σ(vi, vj)

,
(1)

where σ(vi, vj) represents the number of shortest paths passing between vi and vj, and
σ(vi, vj | v) and σ(vi, vj | e) represents the number of shortest paths passing through v and
e between vi and vj, respectively.

2.2. Brandes’ Algorithm

At present, Brandes’ algorithm is the best-known algorithm that exactly computes the
betweenness centrality, which requires O(m + n) space and runs in O(mn) and O(mn +
n2log2n) time on unweighted and weighted networks, respectively, where m is the number
of links [4]. Erdős, Dóra et al. proposed its optimization [31–33]. Brandes’ algorithm has
been integrated into a notable open-source project in the network analysis “NetworkX” [34].

Given the network G = (V, E), the betweenness centrality of node v is defined as

Bet(v) = ∑
s 6=t 6=v∈V

σst(v)
σst

= ∑
s 6=t 6=v∈V

Betst(v), (2)

and Brandes proposed the following formula to calculate betweenness centrality:

Bets·(v) = ∑
w:v∈Ps(w)

σsv

σsw
[1 + Bets·(w)], (3)

where Bets·(v) represents the betweenness centrality of node v, which has the shortest path
to other nodes, with node s being the source node in the network.

2.3. DAWN Algorithm

DAWN is a more efficient algorithm based on adjacency matrix operations for solving
the all-source shortest paths problem, which requires O(n2) space and O(dim · n2.387) time,
where dim is the diameter of the graph. DAWN can accelerate computing via a multi-GPU
system, and its time complexity mainly depends on the number of nodes and is insensitive
to the density of the graphs [27].

Feng et al. computed special matrix multiplications and vector multiplications to
generate the number and length of shortest paths between all pairs of nodes, and adopted
a dual matrix mode to store the calculation results: one for the shortest path lengths and
another for the amount of the shortest paths with all pairs of nodes. The DAWN algorithm
is expressed as follows on unweighted and weighted graphs:

Aij = ∑
1≤i≤n

∑
1≤j≤n

a(k)ij ,

Aw
ij = ∑

1≤i≤n
∑

1≤j≤n
a(k)ij + h(k)ij ,

(4)

where a(k)ij represents the number of shortest paths between nodes i and j, h(k)ij represents
the number of weighted edges, k represents the length of the path between nodes i and j in
the graph, and Formula (4) holds under the condition a(k)ij 6= 0∧ i 6= j ∧∑1≤p≤k−1 a(p)

ij = 0.

3. Design of the NAHAN Algorithm

Classic complex network models mainly include the Erdős–Rényi random network
model [35], Barabási–Albert scale-free network model [36–38], and Watts–Strogatz small-



Mathematics 2022, 10, 2521 4 of 18

world network model [39,40]. In this section, we introduce the design of the NAHAN
algorithm on the unweighted networks and weighted networks.

3.1. Unweighted Networks

The unweighted network G = (V, E) is conveniently described as an adjacency matrix:

A =

a11 · · · a1n
...

. . .
...

an1 · · · ann

. (5)

The entry aij = 1 in adjacency matrix A means that there is an edge with a distance
of 1 between node i and node j. We strip the edges connecting v to other nodes from the
network, which means setting all the values in row i and column j to 0 in the adjacency
matrix A to obtain a matrix Bv. We define the iterative formulas of matrices A(k),B(k)

v and
C(k)

v as 
A(k+1) = A(k) × A(1),

B(k+1)
v = B(k)

v × B(1)
v ,

C(k+1)
v = A(k+1) − B(k+1)

v ,

(6)

where the equation holds under condition 1 ≤ k < k + 1 ≤ n− 1. Although the definitions
of the three matrices are similar, the slight gaps between them are the focus of the DAWN
algorithm. We define them as follows:

1. The element a(k)ij in matrix A(k) =
(

a(k)ij

)
represents the number of paths with the

length k between nodes i and j in the network.
2. The element b(k)ij in matrix B(k)

v =
(

b(k)ij

)
represents the number of paths with the

length k that do not pass through node v when going between nodes i and j in
the network.

3. The element c(k)ij in matrix C(k)
v =

(
c(k)ij

)
represents the number of paths with the

length k that pass through node v when going between nodes i and j in the network.

Given the above definitions of the matrices, we propose a new betweenness centrality
calculation formula:

BetAM(v) = ∑
1≤k≤n−1∧1≤i,j≤n∧i 6=j

Fij(k|v). (7)

We define Fij(k) as

Fij(k|v) =


c(k)ij

a(k)ij

, a(k)ij 6= 0∧ i 6= j ∧ ∑
1≤p≤k−1

a(p)
ij = 0

0, Otherwise

(8)

where i 6= j means not to calculate the circular path, which is consistent with the definition
of betweenness described in Formula (2). ∑1≤p≤k−1 a(p)

ij = 0 represents that there is no path

in the range [1, k− 1], and a(k)ij 6= 0 represents that there is the path from i to j. The paths
that satisfy both conditions at the same time are the shortest paths from i to j. Formula (8)
uses the matrix to describe Formula (2), which is the definition of betweenness.
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The paths in the matrix Fij(k|v) are directed. The undirected edge can be represented
by two directed edges, and the Fij(k|v) is a symmetric matrix on the undirected networks.
To better analyze betweenness centrality, we suggest using the normalized Formula (9),

betAM(v) =
1

(n− 1)× (n− 2) ∑
1≤k≤n−1∧1≤i,j≤n∧i 6=j

Fij(k|v). (9)

We use pseudocode to describe the algorithm in Algorithm 1. We describe the mathe-
matical foundation of the matrix and provide an example to facilitate the understanding of
the algorithm in Appendices A and B.

Algorithm 1 Unweighted Networks

Input: A(n), B(n)

Output: betAM(ν)

1: function MAIN(A(n), B(n), betAM(ν))
2: betAM(ν)← 0
3: for i = 1→ n− 2 do
4: A(i+1) ← A(i) × A
5: B(i+1) ← B(i) × B
6: C(i+1) ← A(i+1) − B(i+1)

7: end for
8: for k = 1→ n do
9: sum← sum + F(k)

10: end for

11: betAM(ν)←
1

(n− 1)× (n− 2)
× sum

12: return betAM(ν)
13: end function

3.2. Weighted Networks

The weighted network G = (V, E, W) is conveniently described as an adjacency matrix:

Aw =

w11 · · · w1n
...

. . .
...

wn1 · · · wnn

. (10)

Let w be the weight indices of the edges. We assume that w ∈ N, where N is the set of
natural numbers, and wij represents the weight of the edge between nodes i and j.

First, we define matrices A(k)
w , B(k)

v|w, C(k)
v|w and H(k)

Aw
:

1. Matrix A(k)
w represents the number of paths with the weight k between nodes i and

j in the network. Matrix A(1)
w represents the adjacency matrix corresponding to the

subnetwork formed by the edges with the weight 1 in the adjacency matrix Aw.
2. Matrix B(k)

v|w represents the number of paths with weight k that do not pass through

node v between nodes i and j in the network. Matrix B(1)
v|w represents the adjacency

matrix corresponding to the subnetwork formed by the edges with a weight of 1 that
do not pass through node v in the adjacency matrix Aw.

3. Matrix C(k)
v|w represents the number of paths with the weight k that pass through node

v between nodes i and j in the network. Matrix C(k)
v|w represents the adjacency matrix

corresponding to the subnetwork formed by the edges with the weight 1 that pass
through node v in the adjacency matrix Aw.
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4. Matrix H(k)
Aw

represents the adjacency matrix corresponding to the subnetwork formed
by the edges with the weight k in the adjacency matrix Aw. If there is no edge with
the weight k in the network, then H(k)

Aw
is a null matrix, and we also define H(1)

Aw
as a

null matrix.

Then, we define iterative formulas for matrix A(k)
w as follows: A(k+1)

w =A(k)
w × A(1)

w + H(k+1)
Aw

, 1 ≤ k < k + 1 ≤ w0

A(k)
w =A(r)

w × A(λw0)
w , w0 < k < n

(11)

where r = k mod w0, and λ = b k−r
w0
c. Similar to matrix A(k)

w , we define iterative formulas

for matrix B(k)
w as follows: B(k+1)

v|w =B(k)
v|w × B(1)

v|w + H(k+1)
Bw

, 1 ≤ k < k + 1 ≤ wv

B(k)
v|w =B(r)

v|w × B(λwv)
v|w , wv < k < n

(12)

where r = k mod wv, and λ = b k−r
wv
c. H(k)

Bw represents the adjacency matrix corresponding

to the subnetwork formed by the edges with the weight k in the adjacency matrix B(k)
v|w, and

H(1)
Bw is a null matrix. w0 represents the upper limit of the weight of the weighted network

represented by matrix A(k)
w , and wv represents the upper limit of the weight of the weighted

network represented by matrix B(k)
v|w.

According to Formulas (11) and (12), we define the matrix C(k)
v|w as

C(k)
v|w = A(k)

w − B(k)
v|w. (13)

The calculation processes of the unweighted and weighted networks are the same
except for the different matrix definitions and iterative formulas. Finally, we calculate the
betweenness centrality of unweighted and weighted networks with Formula (7)–(9), re-
spectively.

4. Distribution of Betweenness and Shortest Paths

Barabási–Albert scale-free networks and Erdős–Rényi random networks are the classic
complex network models [35]. Betweenness centrality represents the frequency of nodes’
occurrence on the shortest path in the network. Previously, we studied the relationship of
the betweenness and the average shortest path, which provided ideas for the research in
this paper [41–43]. We obtain the following identity:

∑
v∈V

bet(v) = l − 1,

∑
e∈E

bet(e) = l,
(14)

where l represents the average shortest path of the networks.
The previous research proves the betweenness identities by exemplifying some spe-

cial small-scale networks, due to being limited by the insufficiency of methods. In this
section, we mathematically demonstrate the hierarchical correlation with betweenness
and the distribution of shortest paths, which is an essential finding and makes the sum of
betweenness equal to the shortest path average. We can calculate betweenness hierarchi-
cally by methodological advances and verify that correlation is ubiquitous and rigorous on
real networks.

Katzav et al. studied the shortest paths distribution in the Erdős–Rényi network and
proposed a distribution function [44]. Given the close connection between the shortest
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paths of betweenness centrality, we assume that there is a correlation between the dis-
tribution functions of the contribution value of betweenness centrality and the shortest
paths on the general networks. First, we perform the sum operation on the definition of
betweenness centrality:

∑
v∈V

Bet(v) = ∑
i 6=j∈V−{v}

σ(i, j|v)
σ(i, j)

, (15)

and we obtain the derivation according to the formula (18):

∑
v∈

Bet(v) = ∑
v∈V

Fij(k|v) = ∑
v∈V

∑
1≤i≤n∧1≤j≤n

c(k)ij

a(k)ij

. (16)

As the path length grows, the corresponding number of paths changes. To evaluate
the effect of paths of different lengths on the betweenness distribution, we introduce the
concept of k-order contribution value and use DBet(k|v) to represent. We calculate the value
within the current F matrix to obtain an intermediate value, and define this intermediate
value as the k-order contribution values of betweenness centrality. The k-order contribution
values represent the sum of the betweenness of all nodes under the condition that the
length of shortest paths is k. We give the definition formula:

DBet(k|v) = ∑
i 6=j∈V−{v}∧dist(i,j)=k

σ(i, j|v)
σ(i, j)

, (17)

where DBet(k|v) represents the k-order contribution values of node v, and dist(i, j) repre-
sents the length of the shortest paths between i and j. We notice that the function DBet(k|v)
is a piecewise function that is only related to k after summing all nodes in the networks:

DBet(k) = ∑
v∈V

DBet(k|v) = ∑
v∈V

∑
i 6=j∈V−{v}∧dist(i,j)=k

σ(i, j|v)
σ(i, j)

. (18)

There are k + 1 nodes in the paths of length k, and the head and tail nodes of the paths
are not included in the computations of betweenness centrality, which makes the number of
nodes included in the calculation in each path k− 1. Based on the derivation, we simplify
the above equation as

DBet(k) = ∑
v∈V

∑
i 6=j∈V−{v}∧dist(i,j)=k

σ(i, j|v)
σ(i, j)

= ∑
i 6=j∈V−{v}∧dist(i,j)=k

dist(i, j)− 1. (19)

We sum the shortest paths that exist between all pairs of nodes in the network:

DBet(k) = ∑
i 6=j∈V−{v}∧dist(i,j)=k

dist(i, j)− 1 = (k− 1) f (k), (20)

where f (k) represents the number of shortest paths of the length k.
This is a novel finding that reveals the correlation between the k-order contribu-

tion values of betweenness centrality and the shortest paths. We accumulate the k-order
contribution values to reveal the relationship of betweenness centrality and average short-
est paths:

∑
v∈V

bet(v) =
dim

∑
k=1

Dbet(k) =
dim

∑
k=1

(k− 1)
(n

2)
f (k), (21)

where (n
2) is the normalization coefficient. We construct the shortest path distribution func-

tion:

Fsp(k) =
f (k)

∑dim
k=1 f (k)

= µ f (k), (22)
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where µ represents the constant coefficients of f (k). We notice that there is a weighted rela-
tionship between the distribution functions of the shortest path and the k-order contribution
values. We define the weighted shortest path distribution function as

Fw
sp(k) =

(k− 1) f (k)

∑dim
k=1(k− 1) f (k)

= µw(k− 1) f (k), (23)

where µw represents the constant coefficients of f (k).
We have mathematically proved that there is a relationship between betweenness

centrality and the shortest path distribution.

5. Betweenness Centrality of Special Nodes

Nodes with the betweenness centrality index 0 are ubiquitous in real networks. Re-
searchers typically believe that these nodes appear at the edge of the networks. Combining
the distribution of shortest paths, we find that such nodes appear even in the center of the
networks. We propose three sufficient conditions for the betweenness centrality indices
of nodes to be 0: Nodes have a degree of 1, specific nodes appear in the networks, and
nodes appear within a specific connected component. It is generally accepted that the
betweenness centrality indices of nodes with a degree of 1 are 0, and we discuss how to
make up for the lack of single centrality by combined use of multiple centrality under
special circumstances.

5.1. Specific Nodes in the Networks

Theorem 1. There are specific nodes in undirected networks that form fully connected subgraphs
with their first-order neighbor nodes, and the betweenness centrality indices of specific nodes are 0.

Proof of Theorem 1. We prove Theorem 1 in the following four steps:

1. We assume that there is the node 1, which forms the undirected network G1 with the
first-order neighbor nodes 2, 3 (G1 is shown in Figure 1);

2. There is a shortest path of length 1 between nodes 2 and 3, so the betweenness
centrality index of node 1 is 0;

3. Step 2 illustrates that Theorem 1 holds in Figure 1, and we add the node 3, which is
potentially connected to any of three nodes;

• When node 4 is connected to node 2 and 3, the betweenness centrality index of
node 1 is 0;

• When node 4 is connected to node 1, the shortest path from node 4 to node 2 and
3 passes through node 2, and the betweenness centrality index of node 2 is not 0;

• It is necessary to add edges and nodes, which makes the betweenness centrality
index of the node 1 , and forms an undirected network (G2), which is shown in
Figure 2);

• The network shown in Figure 2 is a fully connected subgraph formed by node 1
and its first-order neighbor nodes.

4. Arbitrary networks containing the special nodes can be formed by adding nodes and
edges to the networks shown in Figures 1 and 2.

In summary, we have proved Theorem 1.



Mathematics 2022, 10, 2521 9 of 18

(a) (b)

Figure 1. Example Networks with Specific Nodes. (a) is composed of nodes 1, 2 and 3, and (b) is
composed of nodes 1, 2 , 3, and 4. Example networks are composed of a specific node (1) and its
first-order neighbor nodes, which form fully connected subgraphs. (a) Undirected Network G1;
(b) Undirected Network G2.

We have proved that Theorem 1 holds in arbitrary networks containing special nodes,
and define the subgraph formed by nodes 1, 2, and 3, as the B0− triangle. The isolated
nodes in the networks are the special B0− triangle, which forms a fully connected subgraph
with itself. It is not guaranteed to find the B0− triangle in arbitrary networks, which is
why Theorem 1 is irreversible, such as the star networks (shown in Figure 2).

Figure 2. The star-sharp network proves that the inverse propositions of Theorems 1 and 2 do not
hold. The star-sharp network consists of 17 nodes and 16 edges.

5.2. Fully Connected Component

Theorem 2. There are fully connected components in undirected networks, and the betweenness
centrality indices of nodes in the connected component are 0 except for the nodes connected to the
other component.

Proof of Theorem 2. We prove Theorem 2 in the following four steps:

1. We assume that there is a specific connected component, which is a fully connected
component and is represented by an undirected network (G3) (shown in Figure 3);

2. Each pair of nodes in the connected component has the shortest paths of length 1,
which makes the betweenness centrality indices of nodes 0;
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3. Step 2 illustrates that Theorem 2 is established in Figure 3; we add node vs to Figure 3,
and it can reach arbitrary nodes under the condition that the shortest path length is 2;

4. In the case of step 3, in the connected component, except for the nodes connected to
the vs, the betweenness centrality indices of nodes is 0.

In summary, we have proved Theorem 2.

Figure 3. Example Networks as Specific Connected Components. Example networks are composed
of fully connected components with 8 nodes and 28 edges.

We have proved that Theorem 2 holds on the fully connected components. Theorems 1
and 2 can be associated and verified with each other, but they describe different objects.
Theorem 1 guarantees that the betweenness centrality of the special node under certain
conditions is 0, and Theorem 2 describes the universal phenomenon that all nodes in fully
connected components obey. In real networks, the nodes described by Theorems 1 and 2
usually behave as redundant backup paths and aggregated communities, respectively.

5.3. Contribution of Special Nodes

Theorem 3. The arbitrary path that is the shortest path with a length greater than 2 and passing
through node v contains a shortest path with the length 2 that passes through node v.

Theorem 3 can be proved by the definition of the shortest path, which will not be
repeated here. The sum of the frequencies of all nodes appears on the shortest path in
the hierarchical network, which we call the k-order contribution value, and the network
is layered according to the shortest path length. We rigorously formulate the k-order
contribution values using mathematical formulas in Section 4. Combining Theorem 3, we
can obtain two corollaries:

1. For the nodes for which betweenness centrality is not 0, there is at least one shortest
path of length 2 passing through the node;

2. The betweenness centrality indices of the node with a second-order contribution value
of 0 must be 0.

We propose a mathematical foundation that supports the optimization of the NAHAN
algorithm. The nodes with the second-order contribution value of 0 do not need to continue
the operation, which reduces the computation time. The optimization does not affect
the accuracy and is only related to the structure of the networks. When the network is
extremely sparse, there may be nodes with a degree of almost 1. In the study of real
networks, some fully connected components also appear when they are relatively sparse.
These nodes can be quickly searched by computing the 2-order betweenness contribution
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values via the NAHAN algorithm without having to compute the betweenness centrality
of the entire network.

5.4. Discussion of Centrality Measures

Each centrality measure has its focus, and it is difficult to fully evaluate the importance
of nodes with the single centrality measure. For example, the shortest path may not be
selected in a routing network, since the processing power and line bandwidth of the router
are limited. It is impossible to rigorously evaluate the importance of all nodes in the real
networks through the single centrality measure. In order to evaluate the importance of
the node, we need to choose the centrality measures according to the requirements in the
scenarios. The importance of nodes can be objectively evaluated by using a combination of
multiple centrality measures which considers the effects from multiple aspects.

Centrality measures are mainly defined based on the node neighbors, the paths,
the eigenvectors, and the node set shrinkage, such as degree centrality measure [30],
Katz centrality measure [45], eigenvector centrality measure [46], and residual closeness
centrality measure [47]. The Katz centrality measure considers not only the shortest path
between node pairs, but also other non-shortest paths between them, and assigns weights
to the paths of different lengths. The Katz centrality measure takes into account the impact
of other paths on node importance, and requires O(n3) time [48].

The importance of the special nodes we found can be correctly evaluated by using
the eigenvector centrality measure and PageRank [49]. We can use the degree centrality
measure to correctly evaluate the importance of nodes in the special subgraphs. Nodes
in the special subgraphs have the same importance, except for nodes connected to other
nodes out of the subgraph. The degree centrality measure can also effectively evaluate
the importance of nodes in the global network. The number of links between nodes in the
subgraph is fixed, which means that the number of links to nodes outside the subgraph
determines the importance of the node.

6. Experimental Results

We verify the fit of the two distribution functions on the Erdős–Rényi networks, the
Barabási–Albert networks, and the real networks. The Erdős–Rényi and Barabási–Albert
network models were generated by NetworkX, which is widely used for the study of the
complex networks [34]. The real network was derived from the Stanford University public
dataset, which is a collaboration network covering scientific collaborations between authors
of papers submitted to the general relativity and quantum cosmology categories on the
e-print arXiv [50].

In order to intuitively reflect the relationship between the contribution value and the
shortest path distribution, we normalized them as

Fsp(k) =
f (k)

∑dim
k=1 f (k)

, (24)

Fw
sp(k) =

(k− 1) f (k)

∑dim
k=1(k− 1) f (k)

, (25)

Fd(k) =
Dbet(k)

∑dim
k=1 Dbet(k)

, (26)

and we plotted the shortest path distribution, the weighted shortest path distribution,
and the k-order contribution value distribution curve. We used NetworkX to generate an
Erdős–Rényi network with 1000 nodes and the connection probability of 0.004; the results
are shown in Figure 4.
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Figure 4. The distribution of weighted shortest path and the k-order contribution value in the
Erdős–Rényi network with 1000 nodes and the connection probability of 0.004.

For the Erdős–Rényi networks, the weighted shortest path distribution and the k-
order contribution values distribution line almost completely coincided, showing a good
degree of fit. We tested the fitting performance of the k-order contribution value distribution
function on the Barabási–Albert network, and used NetworkX to generate a Barabási–Albert
network with 1000 nodes and one edge to attach from a new node to existing nodes. The
results are shown in Figure 5.

Figure 5. The distribution of weighted shortest path and the k-order contribution value in the
Barabási–Albert network with 1000 nodes and one edge to attach from a new node to existing nodes.

Figures 4 and 5 show that there was a good fit between the distribution functions
on the network model generated by calculations. The real networks were not strictly
Barabási–Albert networks and Erdős–Rényi networks, so we tested the fit of the distribution
function on the real network to verify the generality of predicting the distribution of shortest
paths in the network via the k-order contribution values. The results are shown in Figure 6.
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Figure 6. The distribution of weighted shortest path and the k-order contribution value on the real
network with 5242 nodes and 14,496 edges, which is a collaboration network covering scientific
collaborations between authors of papers submitted to general relativity and quantum cosmology
categories on the e-print arXiv.

We studied the special nodes and connected components that exist in routing networks.
A typical example of a special node is a backup route, whose main role is to balance network
traffic and improve network survivability. A typical example of a special connected branch
is the core of a routing network, consisting of multiple interconnected routers. The routes
that are not connected to the outside are mainly responsible for balancing the load of the
core network. Even nodes with 0 betweenness centrality may play an important role in the
network, and evaluating node importance by a single index may no longer be suitable for
increasingly complex networks.

7. Conclusions

In this paper, we propose an algorithm for hierarchical analysis networks, enabling
us to study betweenness centrality in depth. We discover that the distribution of shortest
path has intrinsic correlation with the betweenness distribution, and verify the fact both
on the generated networks and real networks. The intrinsic correlation shows that the
shortest paths with various lengths have different effects on the betweenness centrality.
Furthermore, we identify that there are some special nodes with betweenness centrality
indices of 0 which are not edge nodes. Even nodes with 0 betweenness centrality may
play an important role in the real networks, such as backup routes and fixed academic
teams. Thus, evaluating node importance by the single centrality measure may no longer be
suitable for increasingly complex networks. We discuss that the combination of centrality
measures to evaluate the importance of nodes would be more objective and rigorous.
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Abbreviations
The following abbreviations are used in this manuscript:

Notation Definition
G A graph
V, E, W Set of nodes, edges and weights
v, e, w A node, edge and weight of edges
Bet, bet Betweenness centrality and its normalization
A, Aw Adjacency matrix of unweighted graphs and weighted graphs
Bv, Bv|w Adjacency matrix of unweighted graphs and weighted graphs without v
Cv, Cv|w Adjacency matrix of unweighted graphs and weighted graphs through v
Fij(k|v) Occurrence frequency of node v with the shortest paths length k
DBet(k|v) K-order contribution value of node v with the shortest paths length k
µ Constant parameter

Appendix A. Example

This is a undirected and unweighted graph G = (V, E) with 8 nodes and 13 edges.

Figure A1. Example figure of undirected and unweighted graph G = (V, E) with 8 nodes and 13
edges. The diameter of the graph is 3.

We denote its adjacency matrix as:

A =



0 1 0 1 0 0 1 1
1 0 1 0 0 1 0 0
0 1 0 1 1 0 0 0
1 0 1 0 1 0 0 0
0 0 1 1 0 1 0 1
0 1 0 0 1 0 1 0
1 0 0 0 0 1 0 1
1 0 0 0 1 0 1 0


. (A1)

We exemplify the matrices A(k), B(k)
1 , C(k)

1 and F(k|1) of this graph. The range of k is
[1, 3], because the diameter of the graph is 3.

A(1) =



0 1 0 1 0 0 1 1
1 0 1 0 0 1 0 0
0 1 0 1 1 0 0 0
1 0 1 0 1 0 0 0
0 0 1 1 0 1 0 1
0 1 0 0 1 0 1 0
1 0 0 0 0 1 0 1
1 0 0 0 1 0 1 0


, B(1)

1 =



0 0 0 0 0 0 0 0
0 0 1 0 0 1 0 0
0 1 0 1 1 0 0 0
0 0 1 0 1 0 0 0
0 0 1 1 0 1 0 1
0 1 0 0 1 0 1 0
0 0 0 0 0 1 0 1
0 0 0 0 1 0 1 0


, (A2)
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A(2) =



4 0 2 0 2 2 1 1
0 3 0 2 2 0 2 1
2 0 3 1 1 2 0 1
0 2 1 3 1 1 1 2
2 2 1 1 4 0 2 0
2 0 2 1 0 3 0 2
1 2 0 1 2 0 3 1
1 1 1 2 0 2 1 3


, B(2)

1 =



0 0 0 0 0 0 0 0
0 3 0 2 2 0 2 1
0 0 3 1 1 2 0 1
0 2 1 3 1 1 1 2
0 2 1 1 4 0 2 0
0 0 2 1 0 3 0 2
0 2 0 1 2 0 3 1
0 1 1 2 0 2 1 3


, (A3)

A(3) =



2 8 2 8 5 3 7 7
8 0 7 2 3 7 1 4
2 7 2 6 7 1 5 3
8 2 6 2 7 4 3 2
5 3 7 7 2 8 2 8
3 7 1 4 8 0 7 2
7 1 5 3 2 7 2 6
7 4 3 2 8 2 6 2


, B(3)

1 =



0 0 0 0 0 0 0 0
0 0 7 2 3 7 1 4
0 7 2 6 7 1 5 3
0 2 6 2 7 4 3 2
0 3 7 7 2 8 2 8
0 7 1 4 8 0 7 2
0 1 5 3 2 7 2 6
0 4 3 2 8 2 6 2


. (A4)

We exemplify the matrices C(k)
1 and F(k|1) as follows. “#” represents that the value of

this position is not included in the calculation of the betweenness centrality indices. “∗”
represents that the value is to be calculated, and if the value does not appear, it will finally
be recorded as 0. F(k|1) corresponds to the operations of betweenness centrality for node 0
in the networks. The values in row 0 and column 0 are not included in the calculations. We
do not consider the situation in which the path starts and ends overlap in calculating the
shortest path, so we exclude the case of i = j.

C(1)
1 =



0 1 0 1 0 0 1 1
1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0


, F(1|1) =



# # # # # # # #
# # 0 ∗ ∗ 0 ∗ ∗
# 0 # 0 0 ∗ ∗ ∗
# ∗ 0 # 0 ∗ ∗ ∗
# ∗ 0 0 # 0 ∗ 0
# 0 ∗ ∗ 0 # 0 ∗
# ∗ ∗ ∗ ∗ 0 # 0
# ∗ ∗ ∗ 0 ∗ 0 #


, (A5)

C(2)
1 =



4 0 2 0 2 2 1 1
0 1 0 1 0 0 1 1
2 0 0 0 0 0 0 0
0 1 0 1 0 0 1 1
2 0 0 0 0 0 0 0
2 0 0 0 0 0 0 0
1 1 0 1 0 0 1 1
1 1 0 1 0 0 1 1


, F(2|1) =



# # # # # # # #
# # 0 0.5 0 0 0.5 1
# 0 # 0 0 0 ∗ 0
# 0.5 0 # 0 0 1 0.5
# 0 0 0 # 0 0 0
# 0 0 0 0 # 0 0
# 0.5 ∗ 1 0 0 # 0
# 1 0 0.5 0 0 0 #


, (A6)

C(3)
1 =



2 8 2 8 5 3 7 7
8 0 2 0 2 2 1 1
2 2 0 2 0 0 2 2
8 0 2 0 2 2 1 1
5 2 0 2 0 0 2 2
3 2 0 2 0 0 2 2
7 1 2 1 2 2 2 2
7 1 2 1 2 2 2 2


, F(3|1) =



# # # # # # # #
# # 0 0.5 0 0 0.5 1
# 0 # 0 0 0 0.4 0
# 0.5 0 # 0 0 1 0.5
# 0 0 0 # 0 0 0
# 0 0 0 0 # 0 0
# 0.5 0.4 1 0 0 # 0
# 1 0 0.5 0 0 0 #


. (A7)

The betweenness centrality of node 0 is 0.18571428571428572, and it can be verified by
the Brandes’ algorithm.
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Appendix B. Mathematical Foundation

The unweighted network G = (V, E) is conveniently described as an adjacency matrix:

A =

a11 · · · a1n
...

. . .
...

an1 · · · ann

. (A8)

The adjacency matrix is a square matrix which represent the graphs, in which the entry
aij = 1 if path between node i and j is in the graph, while aij = 0 if path between node i
and j is not in the graph [51].

Theorem A1. The element a(k)ij in matrix A(k) =
(

a(k)ij

)
represents the number of paths with the

length k between nodes i and j in the network.

Proof. We use the cumulative formula to express the multiplication of matrices:

C = A× B =
(
cij
)

n×n, (A9)

Thus, cij is obtained from the ith row of A and the jth column of B.

cij = ai1b1j + ai2b2j · · ·+ ainbnj =
n

∑
k=1

aikbkj, (A10)

Matrix multiplication and its applicability to graphs are illustrated in Appendix A.
The adjacency matrix A of the graph is shown together with its powers A2 and A3. Some
of the entries of A2 will now be worked out in detail:

a(2)12 = a11a12 + a12a22 + a13a32 + a14a42 + a15a52 + a16a62 + a17a72 + a18a82

= 0 · 1 + 1 · 0 + 0 · 1 + 1 · 0 + 0 · 0 + 0 · 1 + 1 · 0 + 1 · 0,

= 0,

(A11)

Together these lines form a number of length 2 from 1 to 2, which in this case is not
a existing path. The fact that there is in the G exactly no path of length 2 from 1 to 2 is
reflected in the value a(2)12 = 0.

In summary, we have proved the above Theorem A1, which is the mathematical
foundation of the algorithm.
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