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Abstract: Much has been written on variable exponent spaces in recent years. Most of the literature
deals with the normed space structure of such spaces. However, because of the variability of the
exponent, the underlying modular structure of these spaces is radically different from that induced
by the norm. In this article, we focus our attention on the progress made toward the study of the
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survey of the state of the art regarding modular geometric properties in variable exponent spaces.
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1. Introduction

It was recognized as early as during the 1930s by many prominent mathematicians that
the Lp spaces and the mathematical methods inherent in their study, though an essential
mathematical tool, created many complications and were insufficient to treat non-power
type integral equations; see [1]. In particular, Orlicz and Birnbaum considered spaces of
functions with growth properties different from those of the power type growth control
provided by the Lp norms. More precisely, they realized that by replacing the power
function ϕ(t) = tp, 1 ≤ p < ∞, with a more general function ϕ with similar properties (see
below) and by defining the function space

Lϕ = { f : R→ R : there exists λ > 0 such that
∫
R

ϕ(λ| f (x)|) dm(x) < ∞},

one is provided with a fruitful generalization of the Lp spaces, which is not only non-
trivial from the mathematical point of view, but also much more flexible in the realm of
applications.

Throughout the present work, we assume that the function ϕ : [0, ∞) → [0, ∞)
is convex and increasing to infinity; thus, it behaves similarly to the power functions
ϕ(t) = tp. A typical example of such a function is ϕ(t) = et2 − 1.

These Lϕ spaces, now known as Orlicz spaces, can be endowed with a linear metric
structure that induces a vast richness of mathematical properties; in particular, Orlicz
spaces are of the utmost importance in the study of differential and integral equations with
non-power type kernels. For these reasons, the theory of Orlicz spaces, as well as their
applications and generalizations, experienced a vigorous development during the second
half of the twentieth century [2].

In the seminal work by Orlicz, [3], Lebesgue spaces of variable exponents, Lp(·),
were introduced as an example; later in the twentieth century, this generalization of the
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classical Lebesgue spaces was bound to transcend the field of pure mathematics after
their importance in the field of partial differential equations with non-standard growth
was realized.

The variability of the exponent amounts to a substantial, highly non-trivial deviation
from the classical Lp setting. From the standpoint of the present survey, it suffices to say
that the modular structure of Lp(·) differs dramatically from the Banach space structure.
This is to be contrasted with the case of constant exponent, in which both, the modular and
the norm topology coincide. Another level of difficulty emerges from the point of view of
harmonic analysis. Specifically, optimal conditions on the variable exponent p(x) under
which the Hardy–Littlewood maximal function is bounded on Lp(·) are still unknown.
Variable exponent spaces were first presented in a systematic way in [4]. Some questions
related to electromagnetism studied by Zhikov [5] required the consideration of integrals
such as ∫

Ω

|∇ f (x)|p(x)dx,

the minimization of which is related to the following Lagrange–Euler equation:

∆p(·)u := div
(
|∇u|p(·)−2∇u

)
= 0. (1)

Due to the dependence of p(x) on x, (1) is said to possess non-standard growth.
The solution spaces of differential equations of this type must necessarily account for the
variability of p(x). This is the reason why the classical Lp theory, which presupposes a
constant value for the exponent p, is inadequate in this context. This can be remedied by
requiring the solution to satisfy the following condition:∫

Ω

|∇u(x)|p(x)dx < ∞.

A similar discussion is necessary in the study of the hydrodynamic equations that
describe the behavior of non-Newtonian fluids [6,7]. Electrorheological fluids, whose
viscosity changes dramatically and abruptly when exposed to an electric or magnetic field,
are examples of such fluids. The study of electrorheological fluids is a field of vigorous
mathematical research; their importance in applications to civil engineering, military science
and medicine cannot be overemphasized [8–12]. The necessity of a clear understanding of
spaces with variable integrability is reinforced by their potential applications.

The material outlined in the sequel requires tools from the fields of fixed point theory
and modular vector spaces, for which the reader is referred to the books [13,14].

2. Basic Definitions and Results

In 1931 Orlicz gave an interesting example which we denote by `p(·).

Definition 1 ([3]). For p : N→ [1, ∞), the linear space `p(·) is defined by

`p(·) =
{
(yn) ⊂ RN; ∃β > 0 for which

∞

∑
n=0

1
p(n)

∣∣∣∣yn

β

∣∣∣∣p(n) < +∞,
}

.

These spaces inspired Nakano, who developed a more general theory of modular
vector spaces [15–17].

Definition 2 ([15,18]). Let X be a linear vector space over the field R. A modular on X is a
function $ : X → [0, ∞] satisfying the following conditions:

(1) $(x) = 0 if and only if x = 0,
(2) $(αx) = $(x), if |α| = 1,
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(3) $(αx + (1− α)y) ≤ $(x) + $(y), for any α ∈ [0, 1] and any x, y ∈ X.

If (3) is replaced by
$(αx + (1− α)y) ≤ α$(x) + (1− α)$(y)

for any α ∈ [0, 1] and x, y ∈ X, then $ is called a convex modular. In addition, $ is said to be
left-continuous if lim

r→1−
$(rx) = $(x) for any x ∈ X.

A modular function on a vector space X engenders a modular space in a natural fashion.

Definition 3 ([18]). Given a convex modular $ defined on the vector space X, the modular space
generated by $ is the set

X$ = {x ∈ X; lim
α→0

$(αx) = 0}.

The Luxemburg norm on X, ‖.‖$ : X$ → [0, ∞), is defined by

‖x‖$ := inf
{

α > 0 : $
( x

α

)
≤ 1

}
.

In what follows it is assumed that $ is left-continuous

Example 1 ([15,19,20]). Consider the vector space `p(·) introduced in Definition 1. The functional
$ : `p(·) → [0, ∞] defined by

$(u) = $((un)) =
∞

∑
n=0

1
p(n)

|un|p(n)

is a convex modular functional. Note that $ is left-continuous. The spaces defined above have a rich
mathematical structure and have been widely studied, in particular, `p(·) is reflexive if and only if
1 < inf

n
p(n) ≤ sup

n
p(n) < ∞ [21].

The `p(·) spaces have a continuous counterpart, as the next example shows.

Example 2. Let Ω ⊂ Rn be a domain. The notationM(Ω) will be used for the vector space of
all real-valued Borel-measurable functions defined on Ω. Let P(Ω) be the subset ofM consisting
of functions p : Ω −→ [1, ∞]. For each such p, define the set Ω∞ := {x ∈ Ω : p(x) = ∞}. The
function $p :M(Ω) −→ [0, ∞], defined by

$p(u) =
∫

Ω\Ω∞

|u(x)|p(x)dµ + sup
x∈Ω∞

|u(x)|,

is a convex and continuous modular onM(Ω). The associated modular vector space is denoted
by Lp(·).

We next introduce the ∆2 condition, the deep implications of which have an essential
significance in the theory of modular vector spaces. Specifically:

Definition 4 ([18]). A modular $ defined on a vector space X is said to satisfy the ∆2-condition if
there exists K ≥ 0 such that, for any x ∈ X$, we have

$(2x) ≤ K $(x). (2)

We set ω(2) to be the infimum of all constants K for which the preceding condition holds [22].

Further discussions regarding the ∆2-condition, its importance and its variants may
be found in [14,18,23].
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A central idea in the geometry of Banach spaces is that of uniform convexity. More
precisely, the norm ‖ · ‖ on a vector space X with unit sphere SX is said to be uniformly
convex if for each 0 < ε ≤ 2, there exists δ(ε) > 0 such that

δ(ε) = inf
{

1−
∥∥∥∥ x + y

2

∥∥∥∥ : x, y ∈ SX , ‖x− y‖ ≥ ε

}
> 0.

A natural question arises in the realm of modular vector spaces, namely whether the
normed vector space (X$, ‖.‖$) is uniformly convex. It is not surprising that the answer
to this question depends on the behavior of the modular $. This problem has been fully
investigated in Orlicz function spaces in [18,24].

On the other hand, the idea of uniform convexity can be studied directly as a property
of the modular, with no reference whatsoever to the norm. Modular uniform convexity
was introduced and studied by Nakano [16]. In more precise terms:

Definition 5 ([23]). Let $ be a modular on a vector space X.

(a) Let r > 0 and ε > 0 be given. Define

D1(r, ε) :=
{
(x, y); x, y ∈ X$, $(x) ≤ r, $(y) ≤ r, $(x− y) ≥ εr

}
.

If D1(r, ε) 6= ∅, let

δ1(r, ε) := inf
{

1− 1
r

$

(
x + y

2

)
; (x, y) ∈ D1(r, ε)

}
.

If D1(r, ε) = ∅, we set δ1(r, ε) = 1. The modular $ is said to satisfy (UC1) if for every r > 0
and ε > 0, we have δ1(r, ε) > 0 [16]. Observe that by selecting ε > 0 small enough, we have
D1(r, ε) 6= ∅ for any r > 0.

(b) $ is said to satisfy (UUC1) [14] if for every s ≥ 0 and ε > 0, there exists η1(s, ε) > 0
depending on s and ε such that

δ1(r, ε) > η1(s, ε) > 0 for r > s.

(c) $ is said to be uniformly convex in every direction (in short, (UCED)) [25,26] if for any
z1 6= z2 in X$ and R > 0, there exists δ = δ(z1, z2, R) > 0 such that{

$(x− z1) ≤ R
$(x− z2) ≤ R

=⇒ $

(
x− z1 + z2

2

)
≤ R(1− δ)

for any x ∈ X$. X$ is said to be (UUCED) if δ(z1, z2, R) ≥ δ(z1, z2, R∗) whenever R ≤ R∗.
(d) $ is said to be strictly convex, (SC), if for every x, y ∈ X$ such that

$

(
x + y

2

)
= $(x) = $(y),

we have x = y.

The above modular geometric properties were introduced by mimicking the geometric
properties of the norm in Banach spaces. After carefully studying the proof of the uniform
convexity of the classical Banach spaces Lp, for p ∈ (1,+∞), the authors in [27] introduced
a new geometric property which became central in understanding the modular geometric
nature of some spaces, the geometry of which was previously out of reach.

Definition 6 ([23]). Given a modular $ on a vector space X, we introduce the following uniform
convexity type properties of $:
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(a) Let r > 0 and ε > 0 be given. Define

D2(r, ε) :=
{
(x, y); x, y ∈ X$, $(x) ≤ r, $(y) ≤ r, $

(
x− y

2

)
≥ εr

}
.

If D2(r, ε) 6= ∅, let

δ2(r, ε) = inf
{

1− 1
r

$

(
x + y

2

)
; (x, y) ∈ D2(r, ε)

}
.

If D2(r, ε) = ∅, we set δ2(r, ε) = 1. $ is said to satisfy (UC2) if for every r > 0 and ε > 0,
one has δ2(r, ε) > 0. Observe that given r > 0, ε > 0 can be chosen small enough so that
D2(r, ε) 6= ∅.

(b) $ is said to satisfy (UUC2) if for every s ≥ 0 and ε > 0, there exists η2(s, ε) > 0 depending
on s and ε such that

δ2(r, ε) > η2(s, ε) > 0 f or r > s.

We underline the observations that for i = 1, 2, we have δi(r, 0) = 0 and that for fixed
r > 0,

ε −→ δi(r, ε)

is an increasing function. The following properties follow easily from the above defini-
tion [14].

Proposition 1. The following statements hold for the geometric concepts introduced in the preced-
ing paragraph:

(a) (UUCi) implies (UCi) f or i = 1, 2.;
(b) δ1(r, ε) ≤ δ2(r, ε);
(c) (UC1) implies (UC2) and (UUC1) implies (UUC2);
(d) (UUC2) implies (UUCED), which in turn implies (SC).

We emphasize the fact that (UC1) and (UC2) are equivalent as long as $ satisfies the
∆2-condition. In the next section, these modular geometric properties are discussed in both
the `p(·) and the Lp(·) spaces.

3. The Case of the `p(·) and LP(·) Spaces

Contrary to what might seem intuitive, modular uniform convexity results for the
Lp(·) spaces cannot be derived by slightly modifying the arguments used for the case of the
`p(·) spaces. Profound differences emerge between the two cases. These differences are of
interest even in the classical, constant exponent `p and Lp spaces.

The following example, introduced by Orlicz [3], is of central importance in the sequel.
It helps one appreciate the novelty behind the modular uniform convexity property (UUC2).

Example 3 ([3,17,20]). Consider the function $ defined on X = RN by

$(x) := $((xn)) =
∞

∑
n=1
|xn|n+1.

It can easily be verified that $ is a convex modular as specified in Definition 2. In this case, $
does not satisfy the ∆2-condition: to see this, it suffices to observe that for x = (xn) with xn = 1/2
for n ≥ 1, we have $(x) < ∞ whereas $(2x) = ∞. For p ≥ 2, the inequality

|a + b|p + |a− b|p ≤ 2p−1
(
|a|p + |b|p

)
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holds, from which it follows that∣∣∣∣ a + b
2

∣∣∣∣p + ∣∣∣∣ a− b
2

∣∣∣∣p ≤ 1
2

(
|a|p + |b|p

)
for any a, b ∈ R. This easily implies that

$

(
x + y

2

)
+ $

(
x− y

2

)
≤ 1

2

(
$(x) + $(x)

)
for any x, y ∈ X$. Thus, $ is (UC2) with δ2(r, ε) ≥ ε for each r > 0 and ε > 0. In fact, $ is
(UUC2), but it can easily be verified that $ is not (UC1). This is because setting em = (xn), with
xn = 0 if n 6= m and xm = 1 for any m ≥ 1 and considering the sequences

xm =

(
1 +

1
m + 1

)
em + b em+1 and ym =

(
1 +

1
m + 1

)
em − b em+1

for m ≥ 1 and 1/2 < b < 1, we see that

$(xm) = $(ym) =

(
1 +

1
m + 1

)m+1
+ bm+2, $

(
xm + ym

2

)
=

(
1 +

1
m + 1

)m+1

and $(xm − ym) = $(2b em+1) = (2b)m+2. This yields

lim
m→∞

$(xm) = lim
m→∞

$(ym) = lim
m→∞

$

(
xm + ym

2

)
= e

and lim
m→∞

$(xm − ym) = ∞, which would be impossible if $ were (UC1).

The preceding example shows the difference between the two modular uniform
convexity properties. Most of the published research that deals with uniform convexity
in modular spaces focuses mainly on (UC1). As will be seen later, this is an important
observation: in fact, a number of important modular geometric properties that are not
known to hold in the absence of (UC1), can be dealt with using (UC2).

The following lemma, of a rather technical nature, is crucial when dealing with variable
exponent spaces.

Lemma 1. The following inequalities hold:

(i) [28] If p ≥ 2, then ∣∣∣∣ a + b
2

∣∣∣∣p + ∣∣∣∣ a− b
2

∣∣∣∣p ≤ 1
2

(
|a|p + |b|p

)
for any a, b ∈ R.

(ii) [20] If 1 < p ≤ 2, then∣∣∣∣ a + b
2

∣∣∣∣p + p(p− 1)
2

∣∣∣∣ a− b
|a|+ |b|

∣∣∣∣2−p∣∣∣∣ a− b
2

∣∣∣∣p ≤ 1
2

(
|a|p + |b|p

)
for any a, b ∈ R such that |a|+ |b| 6= 0.

One of the first results regarding modular uniform convexity was obtained in [29]. In
the interest of completeness and with the intention of providing the reader with a glimpse
of the theory of variable exponent spaces, we include the proof of this result.

Theorem 1. For p : N→ [1, ∞] such that p− = inf
n∈N

p(n) > 1, the modular $ on `p(·) introduced

in Example 1 is (UUC2).
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Proof. Assume that p− = inf
n∈N

p(n) > 1, r > 0 and ε > 0. Pick x, y ∈ `p(·) in such a

way that

$(x) ≤ r, $(y) ≤ r and $

(
x− y

2

)
≥ r ε.

Since $ is convex, we have

r ε ≤ $

(
x− y

2

)
≤ $(x) + $(y)

2
≤ r.

It follows that ε ≤ 1. Now let I = {n ∈ N; p(n) ≥ 2} and J = {n ∈ N; p(n) < 2} =
N \ I. For any subset K of N, we set

$K(x) = $K((xn)) = ∑
n∈K

1
p(n)

|xn|p(n).

If K = ∅, we set $K(x) = 0. Note that we have $(z) = $I(z) + $J(z) for any z ∈ `p(·).
It is clear from the assumptions that either $I((x− y)/2) ≥ r ε/2 or $J((x− y)/2) ≥ r ε/2.

Suppose that $I((x− y)/2) ≥ r ε/2. Then, Lemma 1 yields

$I

(
x + y

2

)
+ $I

(
x− y

2

)
≤ $I(x) + $I(y)

2
,

which implies that

$I

(
x + y

2

)
≤ $I(x) + $I(y)

2
− r ε

2
.

Since

$J

(
x + y

2

)
≤

$J(x) + $J(y)
2

,

we obtain

$

(
x + y

2

)
≤ $(x) + $(y)

2
− r ε

2
≤ r
(

1− ε

2

)
.

On the other hand, if one assumes $J((x− y)/2) ≥ r ε/2, then setting C = ε/4,

J1 =
{

n ∈ J; |xn − yn| ≤ C(|xn|+ |yn|)
}

and J2 = J \ J1,

we see that

$J1

(
x− y

2

)
≤ ∑

n∈J1

Cp(n)

p(n)

∣∣∣∣ |xn|+ |yn|
2

∣∣∣∣p(n) ≤ C
2 ∑

n∈J1

|xn|p(n) + |yn|p(n)
p(n)

,

because the power function is convex and C ≤ 1. Hence

$J1

(
x− y

2

)
≤ C

2

(
$J1(x) + $J1(y)

)
≤ C

2

(
$(x) + $(y)

)
≤ C r.

Since $J((x− y)/2) ≥ r ε/2, we obtain

$J2

(
x− y

2

)
= $J

(
x− y

2

)
− $J1

(
x− y

2

)
≥ r ε

2
− C r.

For any n ∈ J2, we have

p− − 1 ≤ p(n)(p(n)− 1) and C ≤ C2−p(n) ≤
∣∣∣∣ xn − yn

|xn|+ |yn|

∣∣∣∣2−p(n)
,
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which implies by Lemma 1 that∣∣∣∣ xn + yn

2

∣∣∣∣p(n) + (p− − 1)C
2

∣∣∣∣ xn − yn

2

∣∣∣∣p(n) ≤ 1
2

(
|xn|p(n) + |yn|p(n)

)
.

Hence

$J2

(
x + y

2

)
+

(p− − 1)C
2

$J2

(
x− y

2

)
≤

$J2(x) + $J2(y)
2

and this yields

$J2

(
x + y

2

)
≤

$J2(x) + $J2(y)
2

− r
(p− − 1)ε2

8

because C = ε/4. Thus,

$

(
x + y

2

)
≤ r− r

(p− − 1)ε2

8
= r
(

1− (p− − 1)ε2

8

)
.

Using the definition of δ2(r, ε), we conclude that

δ2(r, ε) ≥ min
(

ε

2
, (p− − 1)

ε2

8

)
> 0.

Therefore, $ is (UC2) and setting η2(r, ε) = min
(
ε/2, (p− − 1)ε2/8

)
, we see that $ is,

in fact, (UUC2).

It is easy to realize that the function η2(r, ε) introduced in the preceding proof is, in
fact, a function of ε only. It will be noticed later that this observation is of the utmost
importance in the derivation of some uniform convexity type modular properties.

Remark 1. Even if p− = inf
n∈N

p(n) > 1, it may happen that p+ = +∞. In this case $ fails

to satisfy the ∆2-condition. The modular geometry of `p(·) in the absence of the ∆2-condition,
that is, in the case where p+ = +∞, remained an unsolved challenge up to the publication of the
preceding result.

Once Theorem 1 was established, the interest in the extreme cases p− = 1 and p+ =
+∞ intensified. The first result that delved into these cases was discovered in [30].

Theorem 2. For p : N→ [1, ∞], the following statements are equivalent:

(i) The cardinality of the set {n ∈ N; p(n) = 1} is at most one (that is, p(·) satisfies condition
(AO));

(ii) The modular $ is (UUCED) on the vector space; `p(·);
(iii) The modular $ is (SC) on the vector space `p(·).

This conclusion represents a major breakthrough because uniform convexity in every
direction, initially introduced in Banach spaces, is stronger than strict convexity.

These two results have been extended to the spaces Lp(·). This endeavor is far from a
straightforward consequence of the discrete case since it necessitates a profound control of
the underlying functional nature of these spaces and the measure involved. Theorem 3 is
the extension of Theorem 1 to the Lp(·) spaces.

Theorem 3 ([31]). Consider an open set Ω ⊆ Rn and let p ∈ P(Ω). If |Ω∞| = 0 and p− > 1,
then for fixed r > 0, 0 < ε ≤ 1 and for arbitrary x ∈ Lp(·)(Ω), y ∈ Lp(·)(Ω) such that $(x) ≤ r,
$(y) ≤ r and $((x− y)/2) ≥ εr, one has the inequality

$

(
x + y

2

)
≤ r
(

1−min
{

ε

2
, (p− − 1)

ε2

2

})
,
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which implies that the modular $ satisfies the (UUC2) property.

In the notation of Example 2, it is indispensable that |Ω∞| = 0, since it is easy to prove
that if |Ω| > 0, then L∞(Ω) does not have the (UUC2) property.

The following technical lemma is needed for the next result.

Lemma 2 ([4,24,32]). Consider a domain Ω ⊆ Rn and assume that p ∈ P(Ω) satisfies p+ < ∞.
Then

‖u‖p(·) ≤ max

{(∫
Ω
|u|p dt

) 1
p−

,
(∫

Ω
|u|p dt

) 1
p+
}
·

The next result is an extension of Theorem 2 to the Lp(·) spaces. In order to convey a
feeling of the degree of difficulty involved in the passage from `p(·) to Lp(·), the proof of
this result is given below.

Theorem 4 ([33]). Let Ω ⊆ Rn be a bounded domain and let p ∈ P(Ω). Then, the following
properties are equivalent:

(a) |Ω1| = |Ω∞| = 0, where

Ω1 = {t ∈ Ω : p(t) = 1} and Ω∞ = {t ∈ Ω : p(t) = ∞}.

(b) The modular $ is strictly convex.
(c) The modular $ is (UUCED).

Proof. It can readily be seen that (c) implies (b). Since neither L1(Ω1) nor L∞(Ω∞) are
strictly convex, (b) implies (a). The proof will be completed by showing that (a) implies
(c). By virtue of assumption (a) it follows that 1 < p(t) < ∞ a.e.. Pick z1 and z2 in Lp(·)(Ω)
such that z1 6= z2. Then the set

Ω̃ = {t ∈ Ω; z1(t) 6= z2(t)}

has positive measure, that is, |Ω̃| > 0. Fix a ∈ (1, 2). Setting

Ω1a = {t ∈ Ω̃ : 1 < p(t) < a} and Ωa∞ = {t ∈ Ω̃ : a ≤ p(t)},

we see that Ω̃ = Ω̃1a ∪ Ω̃a∞. Fix R > 0 and let u ∈ Lp(·)(Ω) be chosen in such a way that

$(u− z1) ≤ R and $(u− z2) ≤ R.

In what follows, we will find δ(z1, z2, R) > 0 such that

$

(
u− z1 + z2

2

)
≤ R (1− δ(z1, z2, R)).

For notational convenience, we set, for v ∈ Lp(·)(Ω),

$1a(v) =
∫

Ω̃1a

|v(t)|p(t)dt and $c
1a(v) =

∫
(Ω̃1a)c

|v(t)|p(t)dt.

In the proof of Theorem 4, we consider two separate cases: |Ω̃1a| > 0 and |Ω̃1a| = 0.
Case 1 : |Ω̃1a| > 0
By definition, using the convention agreed to above, one has

$

(
u− z1 + z2

2

)
= $1a

(
u− z1 + z2

2

)
+ $c

1a

(
u− z1 + z2

2

)
.
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For t ∈ Ω̃1a, Lemma 1 implies that∣∣∣∣u(t)− z1(t) + z2(t)
2

∣∣∣∣p(t) + Z(t) ≤ 1
2

(
|u(t)− z1(t)|p(t) + |u(t)− z2(t)|p(t)

)
, (3)

where

Z(t) =
p(t)(p(t)− 1)

2

∣∣∣∣ z1(t)− z2(t)
|u(t)− z1(t)|+ |u(t)− z2(t)|

∣∣∣∣2−p(t)∣∣∣∣ z1(t)− z2(t)
2

∣∣∣∣p(t)
=

p(t)(p(t)− 1)
2p(t)+1

|z1(t)− z2(t)|2∣∣∣|u(t)− z1(t)|+ |u(t)− z2(t)|
∣∣∣2−p(t)

·

To facilitate the computations, for t ∈ Ω̃1a, set

γ(t) =
p(t)(p(t)− 1)

2p(t)+1
<

a(a− 1)
4

<
1
2

,

f (t) = γ(t)|z1(t)− z2(t)|2,

g(t) =
1(

|u(t)− z1(t)|+ |u(t)− z2(t)|
)2−p(t)

·

By assumption, one has

∫
Ω̃1a

(
1

g(t)p(t)/2

)2/(2−p(t))
dt =

∫
Ω̃1a

(
|u(t) + z1(t)|+ |u(t)− z2(t)|

)p(t)
dt

≤
∫

Ω̃1a

2p(t)−1
(
|u(t)− z1(t)|p(t) + |u(t)− z2(t)|p(t)

)
dt

≤ 2
∫

Ω̃1a

(
|u(t)− z1(t)|p(t) + |u(t)− z2(t)|p(t)

)
dt

≤ 2(2R) = 4R.

A straightforward application of Hölder’s inequality [[4], Theorem 2.1] yields∫
Ω̃1a

f (t)p(t)/2dt =
∫

Ω̃1a

( f (t)g(t))p(t)/2 1
g(t)p(t)/2

dt

≤ Cp

∥∥∥( f (t)g(t))p(t)/2
∥∥∥

2/p

∥∥∥ 1
g(t)p(t)/2

∥∥∥
2/2−p

.

The constant Cp > 0 only depends on the exponent function p(·); moreover, it is
possible to select Cp in such a way that it only depends on the constant a. Next, observe that
for t ∈ Ω̃1a, one has 2/p(t) ≤ 2 and 2/(2− p(t)) ≤ 2/(2− a). Next, in view of Lemma 2,
we have

∫
Ω̃1a

f (t)p(t)/2dt ≤ Cp

( ∫
Ω̃1a

f (t)g(t)dt

)α ( ∫
Ω̃1a

1
g(t)p(t)/(2−p(t))

dt

)β

≤ Cp (4 R)β

( ∫
Ω̃1a

f (t)g(t)dt

)α

.
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In the last statement, we have set α ∈ A = {(2/p)+, (2/p)−} and
β ∈ B = {(2/(2− p))+, (2/(2− p))−}.

Now put

∆(R, z1, z2, α, β) =
1(

Cp (4 R)β
)1/α

( ∫
Ω̃1a

γ(t)p(t)/2|z1(t)− z2(t)|p(t)dt

)1/α

and define
∆(R, z1, z2) = min{∆(R, z1, z2, α, β), α ∈ A, β ∈ B}.

It is clear that the condition 1 < p(t) < ∞ a.e. implies that ∆(R, z1, z2) > 0, from
which it follows that∫

Ω̃1a

f (t)g(t)dt =
∫

Ω̃1a

γ(t)|z1(t)− z2(t)|2(
|u(t)− z1(t)|+ |u(t)− z2(t)|

)2−p(t)
dt ≥ ∆(R, z1, z2).

In conclusion, on account of inequality (3), we have

$1a

(
u− z1 + z2

2

)
+ ∆(R, z1, z2) ≤

$1a(u− z1) + $1a(u− z2)

2
. (4)

When combined with the convexity of $c
1a, which in particular implies that

$c
1a

(
u− z1 + z2

2

)
≤

$c
1a(u− z1) + $c

1a(u− z2)

2
,

inequality (4) yields the following inequality:

$

(
u− z1 + z2

2

)
+ ∆(R, z1, z2) ≤

$(u− z1) + $(u− z2)

2
.

Set δ1(z1, z2, R) =
1
R

∆(R, z1, z2). Then, δ1(z1, z2, R) > 0 and

$

(
u− z1 + z2

2

)
≤ R(1− δ1(z1, z2, R)).

Case 2: |Ω̃1a| = 0, that is, Ω̃ = Ω̃a∞
Under this condition, the restriction of p(·) to Ω1 satisfies p− ≥ a > 1. Let u1, z11 and

z12 be the restrictions to Ω1 of u, z1 and z2, respectively. For v ∈ Lp(·)(Ω), write

$1a(v) =
∫
Ω̃

|v(t)|p(t)dt and $c
1a(v) =

∫
(Ω̃)c

|v(t)|p(t)dt.

It follows from the fact that z1 = z2 on (Ω̃)c that

$c
1a(u− z1) = $c

1a(u− z2) = $c
1a

(
u− z1 + z2

2

)
= Ru ≤ R.

For the same reason, we have

$1a

(
z1 − z2

2

)
= $

(
z1 − z2

2

)
> 0.
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Set ε = $((z1 − z2)/2)/R. Then,

R ε = $1a

(
z1 − z2

2

)
≤ $1a(u− z1) + $1a(u− z2)

2
≤ R− Ru ≤ R.

Thus, 
$1a

(
z1 − z2

2

)
≥ (R− Ru) ε,

$1a(u− z1) ≤ R− Ru,
$1a(u− z2) ≤ R− Ru.

Since |Ω∞| = 0, it follows from an application of Theorem 3 to the modular $1a on
Lp(·)(Ω1) with r = R− Ru that

$1a

(
u− z1 + z2

2

)
≤ (R− Ru)

(
1− δ2(ε)

)
.

Here we wrote

δ2(ε) = min
{

ε

2
,
(

p− − 1
) ε2

2

}
.

Hence

$

(
u− z1 + z2

2

)
= $1a

(
u− z1 + z2

2

)
+ $c

1a

(
u− z1 + z2

2

)
= $1a

(
u− z1 + z2

2

)
+ Ru

≤ (R− Ru)
(

1− δ2(ε)
)
+ Ru

= R
(

1− R− Ru

R
δ2(ε)

)
≤ R(1− ε δ2(ε))

because R− Ru ≥ Rε. Set

δ(z1, z2, R) = min
{

δ1(z1, z2, R),
$((z1 − z2)/2)

R
δ2

(
$((z1 − z2)/2)

R

)}
.

Then δ(z1, z2, R) > 0 and we have

$

(
u− z1 + z2

2

)
≤ R (1− δ(z1, z2, R)),

which completes the proof of our assertion.

4. Applications

As described in the previous section, even when p− = 1 or p+ = +∞, the spaces
`p(·) and Lp(·) may enjoy modular convexity properties, hitherto unknown to hold in these
extreme cases. Our next order of business is to explore the functional analytic significance
of these properties. We focus, in particular, on the implications of the modular uniform
convexity properties in fixed point theory. With this objective in mind, we first recall some
standard notation and terminology before proceeding.

Firstly, we point out that any modular on a vector space X induces a topology (referred
to as the modular topology) which is reminiscent of the one generated by a metric. Specific
details are given in the following definition.
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Definition 7 ([34]). Let $ be a modular defined on a vector space X.

(a) We say that a sequence {xn} ⊂ X$ is $-convergent to x ∈ X$ if $(xn − x) → 0. If the $
limit exists, its uniqueness follows easily.

(b) If a sequence {xn} ⊂ X$ satisfies $(xn − xm) → 0 as n, m → ∞, then it is said to be
$-Cauchy.

(c) X$ is said to be $-complete if and only if any $-Cauchy sequence in X$ is $-convergent.
(d) A set C ⊂ X$ is said to be $-closed if for any sequence of {xn} ⊂ C which $-converges to x,

we have x ∈ C.
(e) A set C ⊂ X$ is said to be $-bounded if δ$(C) = sup{$(x− y); x, y ∈ C} < ∞.
(f) If K ⊂ X$ has the property that any sequence {xn} in K has a subsequence that $-converges

to a point in K, then K is said to be $-compact.
(g) If whenever {yn} $-converges to y ∈ X$, we have $(x − y) ≤ lim inf

n→∞
$(x − yn) for any

x ∈ X$, then $ is said to have the Fatou property.

The Fatou property is closely tied to the modular geometry. As a particular instance
we emphasize the important fact that the validity of the Fatou property implies that $-balls
are $-closed. More precisely, any subset of the form

B$(x, r) = {y ∈ X$; $(x− y) ≤ r},

for any x ∈ X$ and r ≥ 0 (a $-ball), is $-closed, provided $ has the Fatou property. The
following technical lemma is a powerful tool in many applications.

Lemma 3. Let $ be a convex modular on a vector space X. Assume that $ satisfies the Fatou
property, is (UUC2) and that X$ is complete. Then the following properties hold true.

(i) Let ∅ 6= C ⊂ X$ be $-closed and convex, and let x ∈ X$ satisfy

d$(x, C) = inf{$(x− y); y ∈ C} < ∞.

Then there exists a unique c ∈ C, for which d$(x, C) = $(x− c).
(ii) X$ has property (R). Specifically, for any decreasing sequence {Cn}n≥1, ∅ 6= Cn ⊂ X$ of $-

closed and convex sets such that, for some x ∈ X$, sup
n≥1

d$(x, Cn) < ∞, we have
⋂

n≥1
Cn 6= ∅.

Proof. Since C is $-closed, it can be assumed without any loss of generality that x 6∈ C
It follows that d$(x, C) > 0. Write R = d$(x, C), so that for each n ≥ 1, there exists
yn ∈ C such that $(x − yn) < R(1 + 1/n). We contend that the sequence {yn/2} is $-
Cauchy. For if it were not, there would exist a subsequence {yϕ(n)} and ε0 > 0 satisfying

$
(
(yϕ(n) − yϕ(m))/2

)
≥ ε0 for all n > m ≥ 1. Since for each n ≥ 1, R(1 + 1/n) > R/2 = s,

it would follow that

δ2(R(1 + 1/n), 2ε0/R) ≥ η2(R/2, 2ε0/R) > 0

for each n ≥ 1. Using the inequalities max
(

$(x− yϕ(n)), $(x− yϕ(m))
)
≤ R(1 + 1/ϕ(m))

and

$

(yϕ(n) − yϕ(m)

2

)
≥ ε0 ≥ R

(
1 +

1
ϕ(m)

)
ε0

2R
,

valid for all n > m ≥ 1, we can easily conclude that

$

(
x−

yϕ(n) + yϕ(m)

2

)
≤ R

(
1 +

1
ϕ(m)

)
(1− η2(R/2, 2ε0/R)).
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Thus, for any m ≥ 1, one has

R = d$(x, C) ≤ R
(

1 +
1

ϕ(m)

)
(1− η2(R/2, 2ε0/R)).

Letting m→ ∞, we see that R ≤ R(1− η2(R/2, 2ε0/R)). However, the latter inequal-
ity contradicts the inequalities R > 0 and η(R/2, 2ε0/R) > 0. Thus, {yn/2} is $-Cauchy
and by virtue of the $-completeness of X$, {yn/2} $-converges to some y. Next, we show
that 2y ∈ C. To see this, observe that for any m ≥ 1, the sequence {(yn + ym)/2} $-
converges to y + ym/2 and that C is $-closed and convex, which implies y + ym/2 ∈ C.
Moreover, the sequence {y + ym/2} $-converges to 2y, from which it follows that 2y ∈ C.
Let c = 2y. Using the Fatou property, which $ is assumed to have, it follows that

d$(x, C) ≤ $(x− c)

≤ lim inf
m→∞

$
(

x− (y + ym/2)
)

≤ lim inf
m→∞

lim inf
n→∞

$
(

x− (yn + ym/2)
)

≤ lim inf
m→∞

lim inf
n→∞

(
$(x− yn) + $(x− ym)

)
/2

= R = d$(x, C).

Hence, $(x− c) = d$(x, C). Since $ is (SC), it also follows that c is unique.
To prove (ii), suppose that for some n0 ≥ 1, we have x 6∈ Cn0 . The sequence {d$(x, Cn)}

is increasing and bounded; write lim
n→∞

d$(x, Cn) = R. No generality is lost by assuming

that R > 0, for if this were not so, we would have x ∈ Cn for any n ≥ 1. It can be observed
that due to (i), there exists a unique yn ∈ Cn for which d$(x, Cn) = $(x − yn) for each
n ≥ 1. It can be shown analogously that {yn/2} $-converges to some y ∈ X$. Next, we
observe that {Cn} is decreasing, and that each Cn is convex and $-closed. This implies that
2y ∈ ⋂

n≥1
Cn.

At this point, a natural question arises, namely, whether property (R) extends to arbi-
trary decreasing families of subsets. In this connection, we have the following proposition.

Proposition 2. Let $ be a convex modular on the space X. Suppose X$ is complete and $ is
(UUC2). Let ∅ 6= C ⊂ X$ be $-closed, convex and $-bounded. Consider a family of nonempty,
$-closed and convex subsets of C, say {Ci}i∈I , and suppose that for any finite subset F ⊂ I, one has⋂
i∈F

Ci 6= ∅. Then
⋂
i∈I

Ci 6= ∅.

Property (R) was first introduced in metric spaces in [35]. It was inspired by the fact
that a Banach space has property (R) if and only if it is reflexive. It is still not known how to
extract from given sequences, subsequences which converge in some sense, when property
(R) holds.

Following the work of Garkavi [25,26], similar properties can be derived when the
modular is (UCED).

Proposition 3. Let $ be a convex modular defined on X. Assume X$ is complete. Let ∅ 6= C ⊂ X$

be $-closed, convex and $-bounded.

(i) If C has property (R) and ∅ 6= K ⊂ C is $-closed and convex, then K is $-proximinal in C.
This is to say that for any x ∈ C, the set P$,K(x) = {y ∈ C; $(x− y) = inf

z∈K
$(x− z)} is

not empty. Moreover, if $ is (SC), then K is a C̆ebys̆ev subset, that is, P$,K(x) is a singleton
for any x ∈ C.
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(ii) If C has property (R), $ is (UUCED) and ∅ 6= K ⊂ C is $-closed and convex, then K has a
unique $-C̆ebys̆ev center x ∈ K. In other words,

sup{$(x− y); y ∈ K} = inf
z∈K

(
sup{$(z− y); y ∈ K}

)
.

This implies, in particular, that X$ has the $-normal structure property. More precisely, this
means that for any ∅ 6= C ⊂ X$, which is $-closed, convex, $-bounded and not a singleton,
there exists a point x ∈ C such that sup

y∈C
$(x− y) < δ$(C).

The concept of $-type functions plays a major role in many applications [14,36].

Definition 8 ([14,36]). Consider a sequence {xn} X$ and let ∅ 6= C ⊂ X$. The function
τ : C → [0, ∞] defined by

τ(x) := lim sup
n→∞

$(x− xn)

is referred to as a $-type function. A minimizing sequence of τ in C is a sequence {cn} such that
lim

n→∞
τ(cn) = inf

x∈C
τ(x).

We now recall that $-type functions possess a number of powerful properties which
are worth mentioning.

Proposition 4 ([14,36]). Let X$ be $-complete and suppose that $ has the Fatou property. Let
∅ 6= C ⊂ X$ be convex and $-closed. Let τ : C → [0, ∞] be the $-type function generated by a
sequence {xn} in X$ and suppose that τ0 = inf

x∈C
τ(x) < ∞. Then

(i) If $ is (SC), then τ has at most one minimum point.
(ii) If $ is (UUC1), then any two minimizing sequences of τ $-converge to the same limit.
(iii) If $ is (UUC2) and {cn} is a minimizing sequence of τ, then {cn/2} $-converges and its

limit is independent of {cn}.

In general, it is very difficult to prove the existence of the minimum of modular types.
In Banach spaces, the type functions are lower semi-continuous for the weak topology and
continuous for the strong topology. Therefore, if some form of compactness is assumed,
then the existence of the minimum point is guaranteed. The situation is considerably more
involved in the case of modular vector spaces. We begin our discussion by recalling the
definition of a uniformly continuous modular.

Definition 9 ([14]). Consider a bounded domain Ω ⊆ Rn and p ∈ P(Ω). The modular $ on
Lp(·)(Ω) is said to be uniformly continuous if the following condition holds: for every ε > 0 and
L > 0, there exists δ > 0 such that for any x, y ∈ Lp(·)(Ω) with $(y) ≤ δ and $(x) ≤ L, we have

|$(x + y)− $(x)| ≤ ε.

It was proved by Chen [37] and Kaminska [38] that the uniform continuity of the
modular $ defined on Lp(·)(Ω) is equivalent to the boundedness condition p+ < ∞. The
following result follows from Lemma 5.1 in [14].

Lemma 4. Consider a bounded domain Ω ⊆ Rn; let p ∈ P(Ω). If $ is uniformly continuous,
then any $-type function τ is $-lower semicontinuous.

Thus, we have the following interesting result, which has major applications in modu-
lar fixed point theory.
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Lemma 5. Consider a bounded domain Ω ⊆ Rn such that |Ω1| = 0, let p ∈ P(Ω) with p+ < ∞
and assume that $ has property (R). Let ∅ 6= C ⊂ Lp(·)(Ω) be $-bounded, $-closed and convex.
Then, any $-type function τ : C → [0, ∞] such that inf

w∈C
τ(w) < ∞ has a minimum point in C.

We finish this section by stating a fixed point result for modular nonexpansive map-
pings [14].

Definition 10 ([14]). Let $ be a convex modular defined on X. Let C be a nonempty subset of X$

and T : C → C be a mapping. If there exists a number K ≥ 0 such that

$(T(x)− T(y)) ≤ K $(x− y), for any x, y ∈ C,

then T is said to be $-Lipschitzian.

(i) T is said to be a $-contraction if K < 1.
(ii) T is said to be $-nonexpansive if K = 1.
(iii) A point x ∈ C that satisfies T(x) = x is said to be a fixed point of T.

We finally arrive at the high point of this section, namely, the modular version of
Kirk’s celebrated fixed point theorem[39].

Theorem 5. Let Ω ⊆ Rn be a bounded domain and let p ∈ P(Ω); assume that |Ω1| = 0,
p+ < ∞ and that $ has property (R). Let ∅ 6= C ⊂ Lp(·)(Ω) be $-bounded, $-closed and convex.
If a map T : C → C is $ nonexpansive, then it has a fixed point.

Proof. Fix x0 ∈ C and define the $-type function τ : C → [0, ∞] by

τ(w) := lim sup
n→∞

$(Tn(x0)− w).

By virtue of the $-boundedness of C, it is clear that τ(w) ≤ sup
w1,w2∈C

$(w1 − w2) < ∞

for any w ∈ C, which implies that inf
w∈C

τ(w) < ∞. Lemma 5 implies that τ possesses a

unique minimum point z ∈ C. It now follows from

τ(T(z)) = lim sup
n→∞

$(Tn(x0)− T(z))

≤ lim sup
n→∞

$(Tn−1(x0)− z)

= τ(z),

that T(z) must also be a minimum point of τ. Since the minimum point must be unique, it
follows that T(z) = z. Thus, the map T indeed has a fixed point, as asserted.
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