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Abstract: The paper deals with the contactless detection of a rod permanent magnet’s position within
a ferrofluid. The working principle of the proposed approach is grounded on the solenoidal nature of
the field lines. For the line detection technique analyzed in this article, where the magnetic field is
scanned along the line parallel to the magnet’s axial direction, the center of the magnet corresponds
to the point on the line where the radial component of the magnetic field vanished. The concept
introduced here was evaluated numerically, where the results showed a promising perspective for
the technique to be employed in practice. In contrast to the X-ray or Vernier-caliper-based technique,
the one proposed here is somewhat more suitable for employment in applications where simplicity
and robustness are of vital importance.

Keywords: permanent magnet; levitation; ferrofluid; magnetic sensor; magnetic field; finite element
method (FEM)
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1. Introduction

Ferrofluid-based devices and applications have captured the attention of many re-
searchers around the globe. This artificial magnetically sensitive liquid substance exhibits
some special properties when it is exposed to a magnetic field, and thus it has found
its place in some promising applications, such as dampers [1–5], accelerometers [6–8],
vibration absorbers [9–14], and various sensors [15–17].

Especially attractive for practical adoption is the self-levitation phenomenon that
occurs with the permanent magnet (PM) immersed in a ferrofluid. The phenomenon was
first observed and reported by Rosensweig in 1966 [18,19], and it is known under the term
second-order buoyancy (SOB). Through the years, the SOB was studied theoretically and
experimentally. The main focus of the researchers in the field was devoted to the evaluation
of the SOB force. Some recent and relevant research studies covering the topic are enlisted
in the references and discussed briefly below.

One of the first attempts to evaluate the second-order buoyancy force numerically was
reported in the work of Yang et al., where the force calculation was performed through the
current image method and finite element method (FEM) [20,21]. FEM-based calculation
and experimental verifications of SOB can be also found in the work of Qian et al. [7],
where the SOB was measured with the dynamometer and Vernier caliper attached rigidly
to the PM. It is somewhat worth mentioning that the early stage SOB force measurement
technique was based on the tensile force of the rope attached to the top of the magnet
within the ferrofluid [22]. A series of scientific reports published by Yu and some other
authors were dedicated to extensive theoretical consideration of SOB, but the experimental
setup was still based on the Dynamometer and Vernier caliper [8,23–25].

Even though the SOB phenomenon has been well covered by theory and by exper-
iments, there is always space left for some new ideas. The technique used so far in the
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force measurements is purely mechanical, for which a rigid connection is required between
the PM and the dynamometer. Such a construction solution can pose a concrete issue
when the suitable design of the SOB device is in question. On the other hand, the sensitive
measurement equipment that comes with such a measuring technique is not applicable in
heavy working conditions; thus, the alternative method for PM position detection and SOB
force evaluation seems to be more than welcome.

To fill the gap in the field, a novel magnetically based technique for detecting the PM’s
position within the ferrofluid is presented in the article. Instead of the caliper, the magnetic
sensor placed in the air near the magnet is used to detect the magnet’s levitation height.
The sensor should be able to move vertically, or, in general, parallel to the magnetization
direction of the PM. The key concept of the technique is grounded on the solenoidal nature
of magnetic field lines; therefore, the center of the PM is determined at the point where the
radial component of the magnetic field equals zero. Moreover, the approach demands no
physical connection between the sensor and magnet. Although the proposed technique
was originally devoted to the detection of the magnet’s levitation height it can be adopted
to evaluate the SOB force as well. To do that, the magnet’s geometry and density should be
known in advance, along with the density of the ferrofluid, and, afterward, the calculation
of the SOB is straightforward [26]. The simulation-based results presented in this article
predict a promising perspective for the technique to be employed in practice.

In this paper, the magnetic field distribution in the space is calculated by the FEM
software, where a two-dimensional axisymmetric model is used in cylindrical coordinates.
Although FEM is the most widely used numerical method in computational electromag-
netics, other methods can also be employed for computation. For instance, in cases where
the system is very sensitive, the spectral element method (SEM) could be utilized to obtain
better accuracy [27–30].

2. Materials and Methods

As mentioned in the introduction, a novel contactless magnetic-based technique is
proposed to determine the PM’s position. To bring a clear and understandable physical
picture to the reader, the following theoretical consideration should be discussed first.

Imagine for the moment an empty cylindrical container with a cylindrical PM placed
in it, as depicted in Figure 1. For simplicity, let us assume that the magnetic symmetry
exists along the ϕ direction. Now, if the magnetic field distribution along the z-axis at
a distance a from the magnet’s center is in question, it can be measured by bringing the
magnetic field sensor to the desired point. While the magnetic field is a vector quantity, it
is somewhat desired to have a sensor able to pick up all three fields’ components. Presume
the experimental setup such that the sensor starts scanning the field at point 1 and ends
at point 5 (the sensor is moving solely along the vertical position). However, at a specific
sensor position, only the z component will remain due to the solenoidal nature of the
magnetic field. In other words, the point where the radial component of the magnetic field
vanishes lies in the plane which goes through the PM’s center. In the magnetic sense, it
represents the plane normal to the field lines. Following the presented physical picture,
it can easily be deduced that the magnet’s position can be determined by virtue of the
magnetic field distribution in the space.

2.1. Theoretical Background
2.1.1. Permanent Magnet in Nonmagnetic Media

To satisfy the formality, a brief mathematical formulation of the aforementioned physical
abstraction is derived in the following section. The magnetic field produced in the space by
the PM (Figure 2a) can also be presented as a field evoked by the current loops, as shown in
Figure 2b. For simplicity, let us consider a PM model equivalently described only by a single
circular steady current loop (Figure 2c). Referring to electromagnetic theory, a magnetic field
density around such a structure is defined straightforwardly by Equations (1) and (2) [31].
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Figure 1. Illustrative depiction of a key concept in the contactless determination of the PM’s position:
(a) the magnetic sensor (Hall sensor) is moving vertically along the evaluation line scanning the
magnetic field at points 1–5; (b) vectorial representation of the field at the corresponding points.

Br =
µ0 I
4π
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(
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r
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, (2)

where µ0 is the absolute permeability of the free space; I is a steady current in the loop;
r0 is the radius of the current loop; r is a radial distance component; z is an axial distance
component; m is an elliptic integral module defined as m = 4r0r

(r0+r)2+z2 ; K(m) and E(m) are

the complete elliptic integrals of the first and the second kind of argument m, respectively.
The geometry arrangement which pertains to Equations (1) and (2) is provided in Figure 3a.

Figure 2. A permanent magnet and its circular current loop models; (a) PM, (b) multi current loops’
model, and (c) single current loop model.
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Figure 3. The geometrical arrangement of the current loop accompanying Equations (1) and (2). (a) A
thin circular current loop structure and (b) the magnetic field distribution calculated along the z-axis
at the distance r = a from the loop origin.

By close examination of Equations (1) and (2) or Figure 3b, it is seen that the radial
component of the field vanishes at z = 0, and the z-component reaches its extreme value
there. The magnitudes of the field’s components are illustrated in Figure 3b. The field
is evaluated along the line parallel to the z-axis at r = a. Referring back to the setup
in Figure 1, the PM’s position can be determined by finding the point on the line along
the z-coordinate where Br equals zero and Bz attains its extreme value. While the field
orientation in a space depends on the current direction (or the direction of magnetization in
the case of a PM), the term extreme mentioned in context with Bz can refer to a minimum
or maximum value.

2.1.2. Permanent Magnet within Ferrofluid

So far in the consideration of the problem, the PM has been surrounded by a nonmag-
netic and transparent material, i.e., air, but in the case of the PM immersed in the ferrofluid,
the transparency is lost, and the magnet’s position within the ferrofluid is not detectable by
the eye. Another phenomenon shows up with the PM immersed in ferrofluid. Namely, the
PM’s self-levitation mechanism will appear due to the presence of magnetic fluid pressure
in the ferrofluid. Consequently, the magnet will no longer sit on the container’s bottom,
but will move vertically to a new stable position at z0 (Figure 4). Thus, it is somewhat
reasonable to expect a change in the magnetic field distribution, i.e., the distribution in
Figure 3b will shift higher with respect to the z-coordinate.

Here, the stable PM position can be determined by the nonmagnetic caliper, X-ray [32],
or the already discussed magnetic approach. The latter has some promising advantages
over the other two, so let us point out some of them. Measuring the magnet’s position by
caliper involves a special housing design; the measurement is performed mechanically, and
it is much more sensitive to mechanical shocks in operation. Moreover, the whole system
should be designed with special care due to all the moving components it consists of. The
X-ray method is costly and requires appropriate safety measures; thus, it is somewhat
unacceptable for usage in a wide range of applications such as various sensor devices.

On the other hand, ferrofluid is magnetically sensitive material, and its presence in
the vicinity of the PM will change the magnetic field distribution to some extent. However,
due to the relatively low permeability of ferrofluid, which is moving around 1.2–4 in its
relative value, the detection of the magnet’s center can be determined on the same basis as
suggested in Section 2.1.1.



Mathematics 2022, 10, 2499 5 of 12

Figure 4. PM and the magnetic field distribution along the container’s wall in the air. (a) The container
is filled with the air, and (b) the container is filled with the ferrofluid.

2.2. FEM Model and Simulation Setup

The FEM model of a PM levitating in ferrofluid was built to prove the concept and
to visualize the field lines. The simulation setup used in this study is related directly to
the research already conducted by the authors of the text, which is well covered, both
theoretically and experimentally [26]. For details about the experimental verification,
the reader is directed to [23]. However, the model’s dimensions and material properties
employed in the presented model corresponded to the ones in [26] (Table 1). Due to the
new contactless technique presented here, the nonmagnetic rod that comes with the caliper
was no longer required to detect the PM’s position within the ferrofluid; thus, it is omitted
from the FEM model.

Table 1. Values of the parameters used with the FEM models 1.

Permanent Magnet
(PM) Ferrofluid Free Space

(AIR)

material NdFeB (N38) - Air
ρ (kgm−3) 7450 1377.6 1.2

µr 1 1.31 1
Brem (T) 1.24 - -

Hc (kAm−1) 986.7 - -
χi 0 0.31 0

Max. mesh size in material (mm) 0.25 0.25 10
Max. mesh size at
boundary (mm) 0.05 0.05 -

Max. mesh size near the eval.
line (mm) - - 0.1

1 Data from ref. [26].

The 2D axisymmetric magnetostatic model was constructed in the FEMM 4.2 soft-
ware [33]. In the study, two cases are considered as follows. In the first setup, let us
call it case A, the PM was placed at the bottom of the empty container (z = 0), and the
magnetic field distribution was evaluated along the straight line outside the container at
r = a parallel to the z-coordinate. The second one indicated as case B involved a container
filled with ferrofluid where the PM levitated at some stable height z0 above the container’s
bottom, in particular z0 = 7.64 mm. The magnetic field was evaluated along the same
straight line as in case A. The geometrical proportions and virtual experiment setups are
shown in Figure 5.
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Figure 5. The geometry pertains to the simulation setup. (a) The PM and container dimensions.
(b) The FEM model related to case A in pre-processor mode. (c) The FEM model related to case B in
pre-processor mode.

The materials’ properties listed in Table 1 were chosen to fit well with the ones
in [23,26]. The meanings of the symbols in Table 1 are as follows: ρ is the material or
substance density; µr is the relative permeability; Brem and Hc are the remanence and
coercive force of the PM, respectively; and χi is the initial magnetic susceptibility defined at
low magnetic field intensity. While the PM consists of a rare earth hard magnetic material,
its slope in the B-H characteristic is very close to unity. Actually, in reality, the value of the
PM’s relative permeability µr is about 1.05, but the unity value is applied in the simulations
to agree with the one in [23]. The mesh size within the PM and container was chosen
so as to provide an accurate field approximation, especially because the used software,
FEMM 4.2, deals only with the first order triangular elements. To obtain a better accuracy, a
very fine mesh was used in the space where the evaluation line was placed. The automatic
triangle mesh size option was posed in the outer space (free space) outside the container,
as is shown in Figure 5b,c. The total number of elements involved with the FEM model
was 38,750.

3. Results and Discussion

A numerical verification of the PM’s position detection based on the proposed tech-
nique was generated regarding two cases, case A and case B. In case A, the PM was placed
at the bottom of the empty container and its center position was known in advance and
corresponded to z = h0

2 (Figure 5b). By filling the container with ferrofluid, the PM will
start to levitate at the equilibrium height z = z0, and its center will move towards a higher
value to z = h0

2 + z0, which is announced in case B (Figure 5c). The stable levitation height
z0 of the magnet was calculated by the surface integral method (SIM) in FEMM 4.2 software
and was deduced from [26].

3.1. Position Detection of the PM within an Empty Container—Case A

Simulation of the magnetic field distribution in the free space around the PM within
the empty container along with the spatial distribution of the field’s components Br and Bz
is given in Figure 6. The field was evaluated along the vertical line 1 mm from the container.
The shapes of the curves in the figure apparently corresponded to those predicted by the
presented theory. Moreover, from the numerical results, it was evident that the PM center
located at z = 10 mm coincided with the point on the evaluation line where Br was equal
to zero and Bz reached its extreme value. The field distribution revealed more information.
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Examining the shape of the radial magnetic field component Br in Figure 6, one can see
that the PM height h0 was almost equal the distance between its extreme values. It should
be pointed out that the last condition held only for the field evaluated not too far from the
magnet, as will be shown with the parametric analysis at the end of the chapter. However,
the aforementioned condition was met in most of the applications of interest.

Figure 6. The magnetic field distribution for case A encapsulated from the postprocessor mode in
FEMM 4.2, and the corresponding values of magnetic field components Br and Bz calculated along
the evaluation line.

3.2. Position Detection of the PM within a Ferrofluid-Filled Container—Case B

Simulation of the magnetic field distribution in the space around the PM immersed in
ferrofluid (case B) was executed similarly as in case A already discussed. The numerical
results presented in Figure 7 show that the magnet’s center coincided with the points in
the graph located at z = 17.64 mm, where Br = 0 and Bz = Bz,min, which was somewhat
the expected outcome. The PM’s height h0 can also be evaluated through the Br curve by
measuring the distance between its extremes, as was observed in case A. The levitation
altitude z0 was then located, considering the magnet’s height as z0 = z− h0

2 , which resulted
in z0 = 7.64 mm.

Figure 7. The magnetic field distribution for case B encapsulated from the postprocessor mode in
FEMM 4.2, and the corresponding values of magnetic field components Br and Bz calculated along
the evaluation line.
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The comparison of the results for both cases is given in Figure 8. The solid and the
dashed lines pertain to case A and B, respectively. The levitation height z0 occurred as the
difference between the Br zero-cross points. The effect of the ferrofluid’s permeability is
also observable in the figure, where case B came with slightly lower values than case A. In
general, this contrast was intensified by the difference in the permeability of the substance
surrounding the PM.

Figure 8. The comparison of the numerical results obtained in both cases A and B.

Even though the interpretation of results can be brought on graphical bases as depicted
in Figure 8, the mathematical explanation was delivered by considering the PM’s representa-
tion as a single current loop (Figure 3). In this case, Equations (1) and (2) should be examined
in more detail. The zero-cross point of the radial magnetic field component is apparent from
Equation (1). By replacing the global z coordinate with the local one = z− ξ0 in Equation (1),
the Br vanished at z = ξ0 (ξ0 indicates the distance between the PM’s center and the con-
tainer’s bottom). Some more mathematical effort should be employed to explain the extreme
of Bz at z = ξ0. Here, it is convenient to rewrite Equation (2) as a product of two functions
α and β, i.e., Bz = αβ, where α = µ0 I

4π
1√

(r0+r)2+ξ2
, β = 2K(m) + E(m)

1−m

(
m r0+r

r − 2
)

, and

ξ = z− ξ0. Now, the condition for the extreme is given as ∂Bz
∂ξ = 0, where ∂Bz

∂ξ = ∂α
∂ξ β + α

∂β
∂ξ .

Since the elliptic integrals are functions of m, which, in turn, is ξ dependent, it follows that
∂β
∂ξ = ∂β

∂m
∂m
∂ξ . Taking the derivatives of α and m with respect to ξ, it can easily be seen that

∂α
∂ξ = − ξ

((r0+r)2+ξ2)
3/2 and ∂m

∂ξ = − 2mξ

(r0+r)2+ξ2 . The condition ∂Bz
∂ξ = 0 is satisfied at z = ξ0,

while ∂α
∂ξ β = 0 and α

∂β
∂ξ = 0 at the point in question.

3.3. Parametric Analysis

In order to estimate the technical limits of the presented technique, additional para-
metric analysis was conducted in the FEMM 4.2 environment. The analysis encompassed
a variation of the three crucial parameters, the relative permeability of the ferrofluid µr,
the distance a from the PM’s center to the sensor and the PM’s height, which all affect the
magnitude and dispersion of the field in the air. For convenience, the geometry arrange-
ment shown in Figure 9 was adopted to all cases in the analysis. Despite the fact that the
levitation height z0 changed with the magnetic properties of the fluid, the one here was
fixed at 5 mm. The goal of the analysis was to appraise the design limits and constraints of
the technique.
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Figure 9. The geometrical arrangement used with the parametric analysis.

3.3.1. Variation in the Ferrofluid’s Relative Permeability—µr

The relative permeability of the ferrofluid was varied in the range from 1 to 4 in the
step of 1. For each value of µr the radial magnetic field component Br was calculated along
the line 1 mm distant from the container’s wall, as shown in Figure 10a. The results show
that the increase in magnetic permeability of the fluid diminished the magnetic field’s
magnitude in the air. The difference between the extreme values of Br, on which basis
the estimation of the magnet’s height was brought, increased along with µr, as shown in
Figure 10b. The first parameter’s value µr = 1 corresponded to the magnetic property of
the air.

Figure 10. Variation of the relative permeability value. (a) A radial component of the magnetic field
Br calculated along the line 1 mm distant from the container. (b) The influence of the ferrofluid’s
relative permeability µr to the field’s peak to peak distance ∆∗.

3.3.2. Variation in the Sensor Distance from the PM Center—a

To see how the magnetic field distribution dispersed with distance a from the magnet’s
center, the field was calculated along four vertical lines 11, 13, 16, and 19 mm distant from
the PM’s center (Figure 11a). According to the FEM analysis, the sensor should be placed
to the container as close as possible to accurately estimate the magnet’s height h0. For
example, if accuracy within 10% is desired, the distance from the PM to the sensor should
not exceed 0.35 h0 for µr = 1.31. The relative permeability used with this virtual experiment
was set to unity (µr = 1).
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Figure 11. Variation of the PM–sensor distance. (a) A radial component of the magnetic field Br

calculated along the line 1, 3, 6, and 9 mm remote from the container’s wall. (b) The influence of the
PM–sensor distance a to the field’s peak to peak distance ∆∗.

3.3.3. Variation of the PM’s Height—h0

The influence of the PM’s height h0 on the radial field’s peak-to-peak distance ∆∗ was
conducted similarly to the previous cases. The magnetic field was evaluated along the
evaluation line, 1 mm distance from the container’s wall (a = 11 mm). In the simulations,
the height of the magnet was changed in four steps: 10 mm, 15 mm, 20 mm, and 25 mm.
While the PM’s base remained unchanged, the variation in the PM’s height corresponded
to the variation in the PM’s volume to the ferrofluid volume ratio. The relative permeability
of ferrofluid in the model was set to µr = 1 in these simulations. The results plotted in
Figure 12 show that much better accuracy in estimation of the PM’s height through the
magnetic field was obtained with higher magnets. If the accuracy within 10% is appreciated,
the ratio of the PM’s height to its diameter (h0/d0) should not be less than 2.

Figure 12. Variation of the PM’s height h0. (a) A radial component of the magnetic field Br calculated
along the line 1 mm remote from the container’s wall. (b) The influence of the PM’s height h0 to the
field’s peak-to-peak distance ∆∗.

4. Conclusions

A novel technique in the permanent magnet vertical position detection within the
ferrofluid is proposed in the article. Here, the magnet’s center was determined from
the radial magnetic field distribution along the vertical line at some distance from the
container’s wall. The concept is based on the solenoidal nature of the magnetic field, where
the turning point of the radial component corresponds to the center of the magnet. The
study on the subject was conducted purely theoretically, where the simulation model was
settled in accordance with the experimentally verified physical model [23]. The main goal
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of the study was the determination of the permanent magnet’s center, for which a numerical
evaluation of the magnetic field distribution near the container’s wall was desired. The
simulations were conducted for two cases; in the first one, case A, the PM was placed at
the bottom of the empty container. In the second simulation setup (case B), the PM was
levitating in the ferrofluid-filled container. In both cases, the turning point of the radial
field component coincided with the center of the PM.

Furthermore, the results revealed another possibility that could be gathered from
the field distribution. Namely, with proper design and experimental setup, the height
of the magnet could be achieved with precision under a few percentages. The impact
of the ferrofluid’s permeability, PM–sensor distance, and PM’s height on the technique’s
accuracy is disclosed in the parametric analysis. In brief, the best results were obtained
with ferrofluid with its relative permeability close to unity and with a higher magnet at
the nearest PM–sensor distance. For practical design purposes, it is more convenient to
express the PM–sensor distance with the magnet’s height, which should not exceed 0.35h0.
According to the results shown in Section 3.3.3, an accuracy within 10% was obtained for
magnets with the h0/d0 ratio greater than 2. At this point, it should be noted that the
presented approach is limited only to simple symmetric magnet shapes such as cylindrical
and spherical.

However, the results obtained by the finite element method showed good agreement
with the theoretical expectations and open a space for a practical perspective of the proposed
approach. Instead of using a single magnetic sensor (i.e., a Hall sensor), an array of
sensors can be installed on the container’s wall. With such modification, the magnetic field
distribution is scanned instantaneously, and no moving parts are required in the design.

The future work on the subject will be focused on the further improvement and
experimental verification of the technique.

Author Contributions: Conceptualization, A.H., M.J., V.G. and M.T.; methodology, M.T.; software,
M.T.; validation, M.T. and V.G.; formal analysis, M.T.; investigation, M.T.; resources, M.J.; data
curation, M.J.; writing—original draft preparation, M.T.; writing—review and editing, M.T., M.J. and
A.H.; visualization, M.T.; supervision, M.J.; project administration, A.H.; funding acquisition, M.J. All
authors have read and agreed to the published version of the manuscript.

Funding: This work was supported by the Slovenian Research Agency under grant P2-0114.

Data Availability Statement: All data are presented in the article.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Moskowitz, R.; Stahl, P.; Reed, W.R. Inertia Damper Using Ferrofluid. U.S. Patent 4123675, 31 October 1978.
2. Miller, D.L. Magnetic Viscous Damper. U.S. Patent 4200003, 29 April 1980.
3. Kogure, T. Damper Device for a Motor. U.S. Patent 5191811, 9 March 1993.
4. Elsaady, W.; Oyadiji, S.O.; Nasser, A. A one-way coupled numerical magnetic field and CFD simulation of viscoplastic compress-

ible fluids in MR dampers. Int. J. Mech. Sci. 2020, 167, 105265. [CrossRef]
5. Yoon, D.-S.; Par, Y.-J.; Choi, S.-B. An eddy current effect on the response time of a magnetorheological damper: Analysis and

experimental validation. Mech. Syst. Sig. Process. 2019, 127, 136–158. [CrossRef]
6. Piso, M.I. Applications of magnetic fluids for inertial sensors. J. Magn. Magn. Mater. 1999, 201, 380–384. [CrossRef]
7. Qian, L.; Li, D.; Yu, J. Study of the Second-Order Levitation Force in the Magnetic Fluid Accelerometer. IEEE Sens. J. 2015, 15,

6805–6810. [CrossRef]
8. Yu, J.; He, X.; Li, D.; Li, W. Effective and Practical Methods to Calculate the Second-Order Buoyancy in Magnetic Fluid Acceleration

Sensor. IEEE Sens. J. 2018, 18, 2278–2284. [CrossRef]
9. Bashtovoi, V.G.; Kabachikov, D.N.; Kolobov, A.Y.; Samoylov, V.B.; Vikoulenkov, A.V. Research of the dynamics of a magnetic fluid

dynamic absorber. J. Magn. Magn. Mater. 2002, 252, 312–314. [CrossRef]
10. Wang, Z.; Bossis, G.; Volkova, O.; Bashtovoi, K.M. Active Control of Rod Using Magnetic Fluids. J. Intell. Mater. Syst. Struct. 2003,

14, 93–97. [CrossRef]
11. Yang, W. Magnetic levitation force exerted on the cylindrical magnet in a ferrofluid damper. J. Vib. Control 2015, 23, 2345–2354.

[CrossRef]

http://doi.org/10.1016/j.ijmecsci.2019.105265
http://doi.org/10.1016/j.ymssp.2019.02.058
http://doi.org/10.1016/S0304-8853(99)00164-X
http://doi.org/10.1109/JSEN.2015.2464686
http://doi.org/10.1109/JSEN.2018.2793944
http://doi.org/10.1016/S0304-8853(02)00599-1
http://doi.org/10.1177/1045389X03014002004
http://doi.org/10.1177/1077546315616516


Mathematics 2022, 10, 2499 12 of 12

12. Yao, J.; Chang, J.; Li, D.; Yang, X. The dynamics analysis of a ferrofluid shock absorber. J. Magn. Magn. Mater. 2016, 402, 28–33.
[CrossRef]

13. Yao, J.; Li, D.; Chen, X.; Huang, C.; Xu, D. Damping performance of a novel ferrofluid dynamic vibration absorber. J. Fluid Struct.
2019, 90, 190–204. [CrossRef]

14. Li, Y.; Li, D. The dynamics analysis of a magnetic fluid shock absorber with different inner surface materials. J. Magn. Magn.
Mater. 2022, 542, 168473. [CrossRef]

15. Volkova, T.I.; Böhm, V.; Naletova, V.A.; Kaufhold, T.; Becker, F.; Zeidis, I.; Zimmermann, K. A ferrofluid based artificial tactile
sensor with magnetic field control. J. Magn. Magn. Mater. 2017, 431, 277–280. [CrossRef]

16. Alberto, N.; Domingues, M.F.; Marques, C.; André, P.; Antunes, P. Optical Fiber Magnetic Field Sensors Based on Magnetic Fluid:
A Review. Sensors 2018, 18, 4325. [CrossRef] [PubMed]

17. Ruan, Z.; Pei, L.; Ning, T.; Wang, J.; Wang, J.; Li, J.; Xie, Y.; Zhao, Q.; Zheng, J. Simple structure of tapered FBG filled with magnetic
fluid to realize magnetic field sensor. Opt. Fiber Technol. 2021, 67, 102698. [CrossRef]

18. Rosensweig, R.E. Fluidmagnetic Buoyancy. AIAA J. 1966, 4, 1751–1758. [CrossRef]
19. Rosensweig, R.E. Buoyancy and Stable Levitation of a Magnetic Body immersed in a Magnetizable Fluid. Nature 1966, 210,

613–614. [CrossRef]
20. Yang, W.; Li, D.; He, X.; Li, Q. Calculation of magnetic levitation force exerted on the cylindrical magnets immersed in ferrofluid.

Int. J. Appl. Electromagn. Mech. 2012, 40, 37–49. [CrossRef]
21. Yang, W.; Wang, P.; Hao, R.; Ma, B. Experimental verification of radial magnetic levitation force on the cylindrical magnets in

ferrofluid dampers. J. Magn. Magn. Mater. 2017, 426, 334–339. [CrossRef]
22. He, X.; Li, D.; Yang, W.; Zhang, H. Experimental Study on the Second- Order Buoyancy of Magnetic Fluid. Key Eng. Mater. 2012,

512–515, 1464–1469. [CrossRef]
23. Yu, J.; Chen, J.; Li, D. Experimental error analysis of measuring the magnetic self-levitation force experienced by a permanent

magnet suspended in magnetic fluid with a nonmagnetic rod. J. Magn. Magn. Mater. 2019, 469, 323–328. [CrossRef]
24. Yu, J.; Chen, D.; Cai, Z.; Li, D.; Cao, Q.; Qian, L. Research on the magnetic fluid levitation force received by a permanent magnet

suspended in magnetic fluid: Consideration a surface instability. J. Magn. Magn. Mater. 2019, 492, 165678. [CrossRef]
25. Wei, Y.; Zhou, H.; Li, D.; Yao, Y.; Chen, Y. Numerical simulation and experimental study on the ferrofluid second-order buoyancy

with a free surface. J. Magn. Magn. Mater. 2022, 553, 169013. [CrossRef]
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