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Abstract: The prediction and smoothing fusion problems in multisensor systems with mixed uncer-
tainties and correlated noises are addressed in the tessarine domain, under Tk-properness conditions.
Bernoulli distributed random tessarine processes are introduced to describe one-step randomly
delayed and missing measurements. Centralized and distributed fusion methods are applied in a
Tk-proper setting, k = 1, 2, which considerably reduce the dimension of the processes involved. As a
consequence, efficient centralized and distributed fusion prediction and smoothing algorithms are
devised with a lower computational cost than that derived from a real formalism. The performance
of these algorithms is analyzed by using numerical simulations where different uncertainty situations
are considered: updated/delayed and missing measurements.

Keywords: hypercomplex algebra; missing measurements; multi-sensor information fusion estima-
tion; random delayed measurements; Tk-proper signals
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1. Introduction

Multisensor systems and data fusion techniques are receiving increasing research
and practical attention due to their ability to provide more robust estimation procedures
than those that use a single sensor, as well as their broad applications in fields such as
robotics, image processing, autonomous navigation, and smart homes, among others [1–5].
In estimation problems from noisy sensor measurements, the best known and most widely
applied procedure is the Kalman filter and its different extensions, which are based on a
state–space system (see, for example, [5–8]).

Of great interest are those systems that incorporate the effect of possible uncertainties
into the measurements caused by physical failures in the sensors and measurement noises
as well as failures in data transmission, all of which result in random delayed and missing
measurements.

These uncertainties can be modeled by using stochastic parameters, being widely
spread to consider Bernoulli distributed random processes. In these uncertainty scenarios,
an extensive literature exists on the design of efficient recursive estimation algorithms (see,
e g., [9–15], and references therein).

Depending on how raw data from different sensors are processed, two fundamental
multisensor information fusion approaches are used: centralized and distributed fusion
methods. In the centralized fusion structure, data coming from multiple sources are directly
sent to a single fusion center, where the optimal estimator can be obtained, whereas in the
distributed fusion strategy, these data are independently transmitted to individual nodes
where local estimators are computed and sent in a second layer to the fusion center, produc-
ing robust and reliable estimators with a lower computational cost. These two approaches
have been extensively studied in the real field, and both centralized and distributed fusion
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estimation algorithms have been designed under different initial hypotheses. Specifically,
when the signal to be estimated is modeled by a state–space model with uncertain measure-
ments, filtering, prediction, and smoothing algorithms have been proposed in [9–11] from
a centralized fusion perspective and in [13–15] by applying distributed fusion techniques.

Alternatively, the multisensor fusion estimation problem has also been analyzed by
using 4D hypercomplex algebras [16–23]. These algebras appear to be a natural extension
of complex algebras comprising a real part and three imaginary parts, which gives rise to
ideal structures for describing phenomena in the real physical world. Moreover, the use
of these algebras in different practical problems has revealed their supremacy over their
treatment in the real space [24–27]. In this field, quaternions have been the most common
4D hypercomplex algebra in signal processing, since they have the desirable property of
being a normed division algebra. Unlike quaternions, tessarines constitute a commutative
algebra which facilitates the extension of the main results obtained in the real and complex
fields to the four-dimensional case, and the use of tessarines as a signal processing tool has
been gaining popularity in the last few years [22,23,28].

In general, the most suitable processing for these signals is the widely linear processing
(WL) based on four-dimensional augmented vectors given by the signal itself and its three
principal conjugations. Nevertheless, some properness properties related to the vanishing
of the complementary functions make it possible to determine the type of processing to be
used, which is based on reduced-dimensional processes that lead to computational savings
without losing accuracy. This computational cost reduction cannot be achieved from a real
formalism [24,29–31].

In the tessarine domain, two types of properness have recently been introduced,
namely T1 and T2-properness [24,32], and they have been satisfactorily applied in multi-
sensor fusion estimation problems with uncertainties in the measurements [22,23]. In [22],
Tk-proper, k = 1, 2, centralized fusion algorithms of reduced dimension are proposed
for the computation of the optimal (in the least-squares sense) filter, predictor, and fixed-
point smoother of the state in systems with random one-step delays and correlated noises.
In [23], a more general problem with random sensor delays and missing measurements is
analyzed. Under Tk-properness conditions, k = 1, 2, the authors have devised computa-
tionally efficient centralized and distributed fusion filtering algorithms by considering the
LS distributed weighted fusion criterion. However, the prediction and smoothing problems
remain to be solved.

Therefore, our aim in this paper is to address the prediction and smoothing problems
under Tk-properness conditions, k = 1, 2, from both centralized and distributed approaches.
As in [23], the state to be estimated is assumed to be observed through a state–space
model with correlated noises, where measurements may be updated, one-step delayed,
or contain only noise according to Bernoulli tessarine random variables. In this setting,
both centralized and distributed fusion prediction and smoothing algorithms are provided.
The advantage of these algorithms is that they have a lower computational load than
their counterparts derived from a real processing. The behavior of these algorithms is
numerically analyzed for different uncertainty scenarios by means of simulation examples,
in which the prediction and smoothing results are also compared with the filter.

With this purpose, the remainder of the paper is structured as follows: Section 2
presents the basic concepts and properties regarding the signal processing in the tessarine
field. In Section 3, the multisensor fusion estimation problem for systems with random
one-step sensor delays and missing measurements is formulated in the tessarine domain,
by considering a Tk-proper scenario, k = 1, 2. Sections 4 and 5 provide, respectively, the
Tk-proper distributed and centralized fusion estimation algorithms for the computation
of the corresponding prediction and smoothing estimators, as well as their mean square
errors. Specifically, in Section 4, the least squares (LS) local estimators are first determined,
and in a second layer, a weighted linear combination of these local estimators, in LS sense,
is used to generate the distributed fusion estimators.

Afterwards, Section 6 includes numerical simulations to illustrate the performance
of the proposed algorithms in different settings: both T1-proper and T2-proper scenar-
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ios, different uncertainty situations (one-step delay, missing measurements, and mixed
uncertainties), centralized and distributed fusion methods, and different prediction and
smoothing problems. Finally, the main conclusions of the paper are drawn in Section 7. For
the sake of readability, all the proofs have been moved to Appendices A–D.

Notation: The notation used throughout this paper is fairly standard. The superscripts
“*”, “T”, and “H” denote the tessarine conjugate, transpose, and Hermitian transpose.
Boldface uppercase letters refer to matrices, boldface lowercase letters refer to column
vectors, and lightface lowercase letters are used for scalar quantities. In particular, 0n×m
represents the n×m zero matrix, In is the identity matrix of dimension n, and 1n (respec-
tively, 0n) is the column vector of dimension n whose elements are all 1 (respectively, 0).
Moreover, Z, R and T represent the set of integer, real, and tessarine numbers, respec-
tively. Then, A ∈ Rn×m (respectively, A ∈ Tn×m) indicates that A is a real (respectively,
tessarine) n×m matrix, and a ∈ Rn (respectively, a ∈ Tn) means that a is a n-dimensional
real (respectively, tessarine) vector. Additionally, E[·] and Cov(·) are the expectation and
covariance operators, respectively; diag(·) is a diagonal (or block diagonal) matrix with
entries (block entries) on the main diagonal. Finally, “◦” and “⊗” symbolize the Hadamard
and Kronecker products, respectively, and δts, is the Kronecker delta function.

2. Tessarine Processing

The tessarine domain is a commutative extension of the complex domain comprising
a real part and three imaginary parts [28]. In this section, the main concepts and properties
present in the tessarine domain are established.

Note that, unless otherwise stated, all the random variables are assumed to have
zero-mean throughout this paper.

Definition 1. A tessarine random signal vector x(t) ∈ Tn can be defined as a stochastic process of
the form [32]

x(t) = xr(t) + ηxη(t) + η′xη′(t) + η′′xη′′(t), t ∈ Z,

with xν(t) ∈ Rn, for ν = r, η, η′, η′′, real random signal vectors, and the triad {η, η′, η′′} satisfying
the following identities:

ηη′ = η′′, η′η′′ = η, η′′η = −η′, η2 = η′′ 2 = −1, η′ 2 = 1.

Definition 2. The pseudo-autocorrelation function of x(t) ∈ Tn is defined as Rx(t, s) = E[x(t)xH(s)],
∀t, s ∈ Z, and the pseudo-cross-correlation function of x(t), y(t) ∈ Tn as Rxy(t, s) = E[x(t)yH(s)],
∀t, s ∈ Z.

Given a random signal x(t) ∈ Tn, the real vector formed by its components is de-
noted by

xr(t) =
[
xTr (t), xTη(t), xTη′(t), xTη′′(t)

]T
, t ∈ Z.

Moreover, the conjugate of x(t) is defined as

x∗(t) = xr(t)− ηxη(t) + η′xη′(t)− η′′xη′′(t),

and the following auxiliary tessarines are introduced:

xη(t) = xr(t) + ηxη(t)− η′xη′(t)− η′′xη′′(t),
xη′′(t) = xr(t)− ηxη(t)− η′xη′(t) + η′′xη′′(t).

For a complete description of the second-order statistics of x(t), the augmented tes-
sarine signal vector x̄(t) = [x

T
(t), x∗

T
(t), xηT(t), xη′′T(t)]T might be defined, which satisfies

the following relationship with xr(t):

x̄(t) = 2T xr(t),
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where T = 1
2A⊗ In, with

A =


1 η η′ η′′

1 −η η′ −η′′

1 η −η′ −η′′

1 −η −η′ η′′

,

and where T HT = I4n.
In this context, based on the vanishing of the different pseudo-correlation functions

Rxxν(t, s), ν = ∗, η, η′′, [29,32] introduced two interesting types of properness, named T1
and T2-properness, which are included in the following definition.

Definition 3. A random signal x(t) ∈ Tn is T1-proper (respectively, T2-proper) if, and only if,
Rxxν(t, s), with ν = ∗, η, η′′ (respectively, ν = η, η′′), vanish ∀t, s ∈ Z.

Analogously, two random signals x(t) ∈ Tn1 and y(t) ∈ Tn2 are cross T1-proper, (respec-
tively, cross T2-proper) if, and only if, Rxyν(t, s), with ν = ∗, η, η′′ (respectively, ν = η, η′′),
vanish ∀t, s ∈ Z.

Finally, x(t) and y(t) are jointly T1-proper (respectively, jointly T2-proper) if, and only if,
they are T1-proper (respectively, T2-proper) and cross T1-proper (respectively, cross T2-proper).

Note that the T1 and T2-properness properties have a direct impact on the signal
processing approach. Thus, the optimal linear processing in the tessarine domain is the
widely linear (WL) processing that entails operating on the augmented tessarine vector
x̄(t) ∈ T4n. Nevertheless, under Tk-properness conditions, k = 1, 2, the WL processing is
reduced to a Tk-proper linear processing, which implies a considerable reduction in the
dimension of the processes involved. Particularly, T1-proper linear processing considers
the tessarine random signal itself , x(t) ∈ Tn, and T2-proper linear processing takes into
account the 2n-dimensional augmented vector given by the signal and its conjugate [29].

Definition 4. Given two random tessarine signal vectors x(t), y(s) ∈ Tn, the product ? between
them is defined as

x(t) ? y(s) = xr(t) ◦ yr(s) + ηxη(t) ◦ yη(s) + η′xη′(t) ◦ yη′(s) + η′′xη′′(t) ◦ yη′′(s).

Property 1. The augmented vector of x(t) ? y(s) is x(t) ? y(s) = Dx(t)ȳ(s), where Dx(t) =
T diag(xr(t))T H.

3. Problem Statement

Consider a networked system given by an n-dimensional tessarine state x(t) ∈ Tn

which is observed from R sensors, each of which provides measurements z(i)(t) ∈ Tn,
i = 1, . . . , R, perturbed by additive noises. Specifically, this system is assumed to be
described by the following state–space model:

x(t + 1) =F1(t)x(t) + F2(t)x∗(t) + F3(t)xη(t) + F4(t)xη′′(t) + u(t), t ≥ 0,

z(i)(t) =x(t) + v(i)(t), t ≥ 1, i = 1, . . . , R,
(1)

where Fj(t) ∈ Tn×n, j = 1, . . . , 4, are deterministic matrices, and u(t), v(i)(t) ∈ Tn are
correlated tessarine white noises with pseudo-variances Q(t) and R(i)(t), respectively, and
E[u(t)v(i)H(s)] = S(i)(t)δt,s. Moreover, v(i)(t) is independent of v(j)(t), for any two sensors
i 6= j, and the initial state x(0), with E[x(0)xH(0)] = P0, is independent of u(t) and v(i)(t),
for t ≥ 0, i = 1, . . . , R.



Mathematics 2022, 10, 2495 5 of 29

Remark 1. Unlike the state–space systems considered in the conventional linear processing, which
only use the information supplied by the signal itself, the state equation in (1) captures the full
second-order information available in the state transmission.

The measurements available from each sensor are assumed to be affected by random
network-induced delay and missing measurements, according to the following model:

y(i)(t) = γ
(i)
1 (t) ? z(i)(t) + γ

(i)
2 (t) ? z(i)(t− 1) + (1n − γ

(i)
1 (t)− γ

(i)
2 (t)) ? v(i)(t), t ≥ 2,

y(i)(1) = z(i)(1).
(2)

For each sensor i = 1, . . . , R and, for j = 1, 2, γ
(i)
j (t) = [γ

(i)
j1
(t), . . . , γ

(i)
jn (t)]T ∈ Tn is a

tessarine random vector whose elements γ
(i)
jm (t), for m = 1, . . . , n, are composed of indepen-

dent Bernoulli random variables, γ
(i)
jm ,ν(t), with ν = r, η, η′, η′′, with known probabilities

p(i)jm ,ν(t), which indicate whether the corresponding component of the available measure-

ment is updated (γ(i)
1m ,ν(t) = 1), one-step delayed (γ(i)

2m ,ν(t) = 1), or only contains noise

(γ(i)
1m ,ν(t) = γ

(i)
2m ,ν(t) = 0).

The following hypotheses on the Bernoulli random variables are assumed:

1. For each i = 1, . . . , R, m = 1, . . . , n, ν = r, η, η′, η′′, they must satisfy that γ
(i)
1m ,ν(t) +

γ
(i)
2m ,ν(t) = 1 or γ

(i)
1m ,ν(t) + γ

(i)
2m ,ν(t) = 0 at every instant of time, i.e., if one of them

takes the value 0, the other one is 1, or both are 0.
2. p(i)1m ,ν(t) + p(i)2m ,ν(t) ≤ 1, for every i = 1, . . . , R, m = 1, . . . , n, ν = r, η, η′, η′′.

3. For each sensor i = 1, . . . R, and j = 1, 2, γ
(i)
j (t) and γ

(i)
j (s) are independent for s 6= t,

and also γ
(i)
j (t) and γ

(l)
j (t) are independent for i 6= l.

4. γ
(i)
j (t) is independent of x(t), u(t) and v(l)(t), for any i, l = 1, . . . , R.

In this setting, we consider the optimal (in the least-squares sense) linear estimation
problem of the state x(t) on the basis of the measurements available from the R sensors:
{y(i)(1), . . . , y(i)(s)}, i = 1, . . . , R.

To exploit the complete second-order statistical information available, the augmented
statistics should be considered. With this purpose, the following WL model is defined from
(1), (2), and Property 1:

x̄(t + 1) = Φ̄(t)x̄(t) + ū(t), t ≥ 0, (3)

z̄(i)(t) = x̄(t) + v̄(i)(t), t ≥ 1, (4)

ȳ(i)(t) = Dγ
(i)
1 (t)z̄(i)(t) +Dγ

(i)
2 (t)z̄(i)(t− 1) +D1−γ

(i)
1 −γ

(i)
2 (t)v̄(i)(t), t ≥ 2, (5)

with ȳ(i)(1) = z̄(i)(1), and where

Φ̄(t) =


F1(t) F2(t) F3(t) F4(t)
F∗2(t) F∗1(t) F∗4(t) F∗3(t)
Fη

3(t) Fη
4(t) Fη

1(t) Fη
2(t)

Fη′′

4 (t) Fη′′

3 (t) Fη′′

2 (t) Fη′′

1 (t)

.

Moreover, E
[
ū(t)ūH(t)

]
= Q̄(t), E

[
v̄(i)(t)v̄(i)H(t)

]
= R̄(i)(t), E

[
ū(t)v̄(i)H(t)

]
= S̄(i)(t), and

E
[
x̄(0)x̄H(0)

]
= P̄0.

By considering that x(t) and y(i)(t) are jointly Tk-proper, the available measurement
Equation (5) can be rewritten in a reduced dimension form as follows:

y(i)
k (t) = Dγ

(i)
1

k (t)z̄(i)(t) +Dγ
(i)
2

k (t)z̄(i)(t− 1) +D1−γ
(i)
1 −γ

(i)
2

k (t)v̄(i)(t), t ≥ 2, (6)
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with y(i)
k (1) =

[
Ikn, 0kn×(4−k)n

]
z̄(i)(1), and where

D
γ
(i)
j

k (t) = T k diag
(

γ
(i)r

j (t)
)
T H, i = 1, . . . , R, j = 1, 2,

D1−γ
(i)
1 −γ

(i)
2

k (t) = T k diag
(

14n − γ
(i)r

1 (t)− γ
(i)r

2 (t)
)
T H, i = 1, . . . , R,

with
T k =

1
2
Bk ⊗ In,

and

Bk =


[1 η η′ η′′], for k = 1[

1 η η′ η′′

1 −η η′ −η′′

]
, for k = 2.

Moreover,

Π
γ
(i)
j

k (t) = E

[
D

γ
(i)
j

k (t)

]
=

[
Π

j(i)

k (t), 0kn×(4−k)n

]
, i = 1, . . . , R, j = 1, 2,

Π
1−γ

(i)
1 −γ

(i)
2

k (t) = E
[
D1−γ

(i)
1 −γ

(i)
2

k (t)
]
=
[
Ikn −Π1(i)

k (t)−Π2(i)
k (t), 0kn×(4−k)n

]
, i = 1, . . . , R,

(7)

where
Π

j(i)
1 (t) = diag

(
p(i)j1,r(t), . . . , p(i)jn,r(t)

)
, i = 1, . . . , R, j = 1, 2,

Π
j(i)
2 (t) =

1
2

 Π
j(i)
a (t) Π

j(i)

b (t)

Π
j(i)

b (t) Π
j(i)
a (t)

, i = 1, . . . , R, j = 1, 2,
(8)

with

Π
j(i)
a (t) = diag

(
p(i)j1,r(t) + p(i)j1,η′(t), . . . , p(i)jn,r(t) + p(i)jn,η′(t)

)
, i = 1, . . . , R, j = 1, 2,

Π
j(i)

b (t) = diag
(

p(i)j1,r(t)− p(i)j1,η′(t), . . . , p(i)jn,r(t)− p(i)jn,η′(t)
)

, i = 1, . . . , R, j = 1, 2.

Remark 2. Note that the Tk-properness means a reduction in the dimension of the available
measurements by a half (if k = 2) or by a quarter (if k = 1).

Analagously, in a T1-proper setting, the processes x̄(t), ū(t) z̄(i)(t), v̄(i)(t) and Φ̄(t)
can be replaced by x1(t) , x(t), u1(t) , u(t), z(i)1 (t) , z(i)(t), v(i)

1 (t) , v(i)(t), and
Φ1(t) , F1(t); and, in a T2-proper settings, they can be replaced by x2(t) ,

[
x(t), xH(t)

]T,

u2(t) ,
[
u(t), uH(t)

]T, z(i)2 (t) ,
[
z(i)(t), z(i)

H
(t)
]T

, v(i)
2 (t) ,

[
v(i)(t), v(i)H(t)

]T
and Φ2(t) =[

F1(t) F2(t)
F∗2(t) F∗1(t)

]
.

Furthermore, E
[
uk(t)u

(i)H

k (t)
]
= Q(i)

k (t), E
[
vk(t)v

(i)H

k (t)
]
= R(i)

k (t), E
[
uk(t)v

(i)H

k (t)
]
=

S(i)
k (t), and E

[
xk(0)xHk (0)

]
= P0k .

This reduction in dimension results in computational savings in the estimation algorithms
proposed, which cannot be attained from a real formalism.

In [23], conditions on the state–space model (3) which guarantee the Tk-properness, for
k = 1, 2, of the processes involved are provided.

Then, by considering Tk-proper conditions, our aim is to obtain the LS linear estimator
of the state x(t) from the set of measurements {y(i)

k (1), . . . , y(i)
k (s)}, i = 1, . . . , R. Recently,

this problem has been solved for the case of t = s (filtering problem), providing both
Tk-proper centralized and distributed fusion filtering algorithms with similar performance
to that obtained from a vectorial real approach but with a lower computational cost [23]. In
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this paper, this approach is extended to tackle the prediction (case t > s) and smoothing
(case t < s) problems by using both centralized and distributed methods.

4. Tk-Proper Distributed Fusion LS Linear Estimation

In this section, the distributed fusion LS linear estimation problem is addressed under
Tk-proper conditions.

The distributed fusion method consists of two steps: First, the measurements of each
sensor are used to generate local LS linear estimators. Then, similar to the distributed
fusion method used in [23], a fusion criterion based on weighted matrices in the LS sense is
applied to generate the distributed fusion LS linear estimator as a linear combination of the
local estimators. Next, these two steps are carried out.

4.1. Local Tk-Proper LS Linear Estimation Algorithms

Consider the multisensor system given by (3)–(4) and (6). The local Tk-proper LS linear
estimator of x(t), denoted by x̂(i)

Tk (t|s) is obtained by extracting the first n components
of x̂(i)k (t|s), where x̂(i)k (t|s) is given by the projection of x̄(t) onto the set of measurements

{y(i)
k (1), . . . , y(i)

k (s)}, for k = 1, 2, under Tk-proper conditions.

Theorems 1–3 provide the algorithms to compute the LS linear estimator, x̂(i)k (t|s),
as well as their mean square errors, P(i)

k (t|s), for the filtering, prediction, and smoothing
estimation problems. It should be remarked that the formulas of the LS linear filtering
algorithm given in Theorem 1 were devised in [23]. They are included in this section without
proof since they are used to initialize the LS linear prediction and smoothing algorithms.
The proof of Theorems 2 and 3 are deferred to Appendixes A and B, respectively.

Theorem 1 (Local LS linear filter). For each sensor i = 1, . . . , R, the optimal filter, x̂(i)k (t|t),
obtained from the system defined by Equations (3)–(4) and (6), is computed through the following
recursive expressions:

x̂(i)k (t|t) = x̂(i)k (t|t− 1) + L(i)
k (t)ε(i)k (t), t ≥ 1,

where x̂(i)k (t + 1|t) can be recursively calculated as

x̂(i)k (t + 1|t) = Φk(t)x̂
(i)
k (t|t) + H(i)

k (t)ε(i)k (t), t ≥ 1,

with x̂(i)k (1|0) = x̂(i)k (0|0) = 0kn as the initial conditions.

The innovations, ε
(i)
k (t), satisfy the recursive equation:

ε
(i)
k (t) = y(i)

k (t)−Π1(i)
k (t)x̂(i)k (t|t− 1)

−Π2(i)
k (t)

(
x̂(i)k (t− 1|t− 1) + G(i)

k (t− 1)ε(i)k (t− 1)
)

, t ≥ 2,
(9)

with ε
(i)
k (1) = y(i)

k (1) as the initial condition, and G(i)
k (t) = R(i)

k (t)
(

Ikn −Π2(i)
k (t)

)
Ω

(i)−1

k (t).

Moreover, L(i)
k (t) = Θ

(i)
k (t)Ω(i)−1

k (t) and H(i)
k (t) = S(i)

k (t)
(

Ikn −Π2(i)
k (t)

)
Ω

(i)−1

k (t),

where the matrices Θ
(i)
k (t) are obtained by this expression:

Θ
(i)
k (t) = P(i)

k (t|t− 1)Π1(i)
k (t) + Φk(t− 1)P(i)

k (t− 1|t− 1)Π2(i)
k (t)

−H(i)
k (t− 1)

(
Θ

(i)
k (t− 1) + G(i)

k (t− 1)Ω(i)
k (t− 1)

)H
Π2(i)

k (t)

+
(

S(i)
k (t− 1)−Φk(t− 1)Θ(i)

k (t− 1)G(i)H

k (t− 1)
)

Π2(i)
k (t), t ≥ 2;

Θ
(i)
k (1) = Dk(1),

(10)
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with
Dk(1) =

[
Ikn, 0kn×(4−k)n

]
D̄(1)

[
Ikn, 0kn×(4−k)n

]T
, (11)

and D̄(t) obtained from the recursive formula:

D̄(t) = Φ̄(t− 1)D̄(t− 1)Φ̄H(t− 1) + Q̄(t− 1), t ≥ 1; D̄(0) = P̄0. (12)

The pseudo-covariance matrix of the innovations, Ω
(i)
k (t), is computed as follows:

Ω
(i)
k (t) = Ψ

(i)
1k
(t) + Ψ

(i)
2k
(t) + Ψ

(i)H
2k

(t) + Ψ
(i)
3k
(t) + Ψ

(i)
4k
(t)

+ Π1(i)
k (t)P(i)

k (t|t− 1)Π1(i)
k (t) + Π1(i)

k (t)J(i)k (t− 1)Π2(i)
k (t)

+ Π2(i)
k (t)J(i)

H

k (t− 1)Π1(i)
k (t) + Π2(i)

k (t)
(

P(i)
k (t− 1|t− 1)

−Θ
(i)
k (t− 1)G(i)H

k (t− 1)−G(i)
k (t− 1)Θ(i)H

k (t− 1)

− G(i)
k (t− 1)Ω(i)

k (t− 1)G(i)H

k (t− 1)
)

Π2(i)
k (t), t ≥ 2;

Ω
(i)
k (1) = Dk(1) + R(i)

k (1),

(13)

with

Ψ
(i)
1k
(t) = T k

(
Cov

(
γ
(i)r

1 (t)
)
◦
(
T HD̄(t)T

))
T H

k ,

Ψ
(i)
2k
(t) = T k

(
Cov

(
γ
(i)r

1 (t), γ
(i)r

2 (t)
)
◦
{
T H
(

Φ̄(t− 1)D̄(t− 1) + S̄(i)(t− 1)
)
T
})

T H
k ,

Ψ
(i)
3k
(t) = T k

(
Cov

(
γ
(i)r

2 (t)
)
◦
(
T HD̄(t− 1)T

))
T H

k ,

Ψ
(i)
4k
(t) = T k

(
E
[(

1− γ
(i)r

2 (t)
)(

1− γ
(i)r

2 (t)
)T]
◦
(
T HR̄(i)(t)T

))
T H

k

+ T k

(
E
[

γ
(i)r

2 (t)γ(i)rT

2 (t)
]
◦
(
T HR̄(i)(t− 1)T

))
T H

k ,

and
J(i)k (t) = Φk(t)P

(i)
k (t|t)−H(i)

k (t)Θ(i)H

k (t)−Φk(t)Θ
(i)
k (t)GH

k (t) + S(i)
k (t)

−H(i)
k (t)Ω(i)

k (t)G(i)H

k (t).

Finally, the pseudo-covariance matrices of the filtering errors, P(i)
k (t|t), are obtained from the

following recursive formula:

P(i)
k (t|t) = P(i)

k (t|t− 1)−Θ
(i)
k (t)Ω(i)−1

k (t)Θ(i)H

k (t), t ≥ 1,

with P(i)
k (t + 1|t), calculated by the equation

P(i)
k (t + 1|t) = Φk(t)P

(i)
k (t|t)ΦH

k (t)−Φk(t)Θ
(i)
k (t)H(i)H

k (t)

−H(i)
k (t)Θ(i)H

k (t)ΦH
k (t)−H(i)

k (t)Ω(i)
k (t)H(i)H

k (t) + Qk(t), t ≥ 1,

and the initial conditions: P(i)
k (0|0) = P0k , P(i)

k (1|0) = Dk(1).

Theorem 2 (Local LS linear predictor). For each sensor i = 1, . . . , R, the optimal predictor,
x̂(i)k (t|s), t > s, obtained from the system defined by Equations (3), (4) and (6), is computed as
follows:

x̂(i)k (t|s) = Φk(t− 1)x̂(i)k (t− 1|s), t > s + 1, (14)

with the initial condition: the one-step predictor, x̂(i)k (s + 1|s), given in Theorem 1.
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Moreover, the pseudo-covariance matrices of the prediction errors, P(i)
k (t|s), satisfy the follow-

ing recursive formula:

P(i)
k (t|s) = Φk(t− 1)P(i)

k (t− 1|s)ΦH
k (t− 1) + Qk(t− 1), t > s + 1, (15)

with the initial condition: the one-step prediction error, P(i)
k (s + 1|s), calculated from Theorem 1.

Theorem 3 (Local LS linear smoother). For each sensor i = 1, . . . , R, the optimal smoother
x̂(i)k (t|s), t < s, obtained from the system defined by Equations (3), (4) and (6), is computed through
the following recursive formulas:

x̂(i)k (t|s) = x̂(i)k (t|s− 1) + L(i)
k (t, s)ε(i)k (s), s > t, (16)

with the initial condition: the filter, x̂(i)k (t|t), computed from Theorem 1. The innovations ε
(i)
k (s)

are recursively computed from (9), and L(i)
k (t, s) = Θ

(i)
k (t, s)Ω(i)−1

k (s), with Ω
(i)
k (s) given by (13),

and
Θ

(i)
k (t, s) = E(i)

k (t|s− 1)A(i)H

k (s− 1)−Θ
(i)
k (t, s− 1)B(i)H

k (s− 1), (17)

with the initial condition: Θ
(i)
k (t, t) = Θ

(i)
k (t), computed from (10), and A(i)

k (s) = Π1(i)
k (s +

1)Φk(s) + Π2(i)
k (s + 1), B(i)

k (s) = Π1(i)
k (s + 1)H(i)

k (s) + Π2(i)
k (s + 1)G(i)

k (s), and

E(i)
k (t, s) = E(i)

k (t|s− 1)ΦH
k (s− 1)−Θ

(i)
k (t, s− 1)H(i)H

k (s− 1)−Θ
(i)
k (t, s)L(i)H

k (s− 1), (18)

with the initial condition: E(i)
k (t, t) = P(i)

k (t|t), computed from Theorem 1.

Finally, the pseudo-covariance matrices of the smoothing errors, P(i)
k (t|s), satisfy the following

recursive formula:

P(i)
k (t|s) = P(i)

k (t|s− 1)−Θ
(i)
k (t, s)Ω(i)−1

k (s)Θ(i)H

k (t, s), s > t, (19)

with the initial condition: the local LS filtering error, P(i)
k (t|t), given in Theorem 1.

4.2. Distributed Tk-Proper LS Linear Estimation Algorithms

Now, to determine the distributed LS linear estimators under Tk-proper conditions,
a linear combination of the local LS linear estimators

{
x̂(1)k (t|s), . . . , x̂(R)

k (t|s)
}

computed

in Section 4.1 is considered to obtain the distributed LS linear estimator x̂D
k (t|s). The

weights of this linear combination are those that minimize the mean square error. Then,
the distributed Tk-proper LS linear estimator x̂DTk (t|s) is obtained by extracting the first
n-components from x̂D

k (t|s).
By applying the LS optimality criterion, the distributed fusion LS linear estimator,

x̂D
k (t|s), can be expressed by the form

x̂D
k (t|s) = J k(t, s)K−1

k (t, s)~̂xk(t|s),

where ~̂x(t|s) =
[
x̂(1)

T

k (t|s), . . . , x̂(R)T

k (t|s)
]T

, and

J k(t, s) = E
[
xk(t)~̂xHk (t|s)

]
=
[
K(11)

k (t, s), . . . ,K(RR)
k (t, s)

]
,

Kk(t, s) = E
[
~̂xk(t|s)~̂xHk (t|s)

]
=
[
K(ij)

k (t, s)
]

i,j=1,...,R
,

with K(ij)
k (t, s) = E

[
x̂(i)k (t|s)x̂(j)H

k (t|s)
]
.
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Moreover, the associated error pseudo-covariance matrix, PD
k (t|s), satisfies the equation

PD
k (t|s) = Dk(t)−J k(t, s)K−1

k (t, s)J H
k (t, s),

with Dk(t) =
[
Ikn, 0kn×(4−k)n

]
D̄(t)

[
Ikn, 0kn×(4−k)n

]T
, and D̄(t) given in (12).

Therefore, the distributed Tk-proper LS linear estimators can be completely deter-
mined from the local LS linear estimators x̂(i)k (t|s) of each sensor i = 1, . . . , R, and the

computation of their pseudo-cross-covariance matrices K(ij)
k (t, s).

The following theorems (Theorems 4–6) provide recursive formulas for the efficient
computation of such matrices in the filtering, prediction, and smoothing problem, respec-
tively. Note that the filtering pseudo-cross-covariance matrices presented in Theorem 4
were obtained in [23], and hence the proof is omitted. They have been included here
because they are used in Theorems 5 and 6. The proof of these theorems for the prediction
and smoothing problems are deferred to Appendices C and D, respectively.

Theorem 4 (Filtering pseudo-cross-covariance matrices). The pseudo-cross-covariance matrices
of the local filters, K(ij)

k (t), are calculated as follows:

K(ij)
k (t) = K(ij)

k (t, t− 1) +N (ij)
k (t)L(j)H

k (t) + L(i)
k (t)L(ji)H

k (t), t ≥ 1,

where K(ij)
k (t + 1, t) are the pseudo-cross-covariance matrices of the local one-step predictors, which

satisfy the equation

K(ij)
k (t + 1, t) = Φk(t)

(
K(ij)

k (t)ΦH
k (t) +N (ij)

k (t)H(j)H

k (t)
)

+ H(i)
k (t)L(ji)H

k (t + 1, t), t ≥ 1,

with K(ij)
k (1, 0) = K(ij)

k (0) = 0kn×kn as the initial conditions.

Moreover, N (ij)
k (t) = L(ij)

k (t) + L(i)
k (t)M(ij)

k (t), where

L(ij)
k (t) =

(
K(ii)

k (t, t− 1)−K(ij)
k (t, t− 1)

)
Π1(j)

k (t)

+ Φk(t− 1)
(
K(ii)

k (t− 1)−K(ij)
k (t− 1)

)
Π2(j)

k (t)

+ H(i)
k (t− 1)

(
Θ

(i)
k (t− 1)−N (ji)

k (t− 1)
)H

Π2(j)

k (t)

+
(

C(i)
k (t− 1)Θ(ji)H

vk (t− 1)−L(ij)
k (t, t− 1)G(j)H

k (t− 1)
)

Π2(j)

k (t), t ≥ 2,

with L(ij)
k (1) = 0kn×kn as the initial condition, and where C(i)

k (t) = Φk(t)L
(i)
k (t) + H(i)

k (t),

Θ
(i)
k (t) is obtained from (10),

Θ
(ij)
vk (t) = R(i)

k (t)
(

Ikn −Π2(i)
k (t)

)
δij, t ≥ 2,

with Θ
(ij)
vk (1) = R(i)

k (1)δij, and

L(ij)
k (t, t− 1) = Φk(t− 1)L(ij)

k (t− 1) + C(i)
k (t− 1)M(ij)

k (t− 1), t ≥ 2,

where

M(ij)
k (t) = Π1(i)

k (t)
(

Θ
(j)
k (t)−L(ij)

k (t)
)
+
(

Ikn −Π2(i)
k (t)

)
Θ

(ij)
vk (t) + Π2(i)

k (t)
(

Θ
(j)
k (t− 1, t)

+ Θ
(ij)
vk (t− 1, t)−L(ij)

k (t− 1, t)−G(i)
k (t− 1)M(ij)

k (t− 1, t)
)

, t ≥ 2,
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with M(ij)
k (1) = Dk(1) + R(i)

k (1)δij as the initial condition, and where

Θ
(i)
k (t− 1, t) =

(
Dk(t− 1)−K(ii)

k (t− 1)
)

A(i)H

k (t− 1)−Θ
(i)
k (t− 1)B(i)H

k (t− 1),

Θ
(ij)
vk (t− 1, t) = S(i)H

k (t− 1)Π1(j)

k (t) + R(i)
k (t− 1)Π2(i)

k (t)δij

−Θ
(ij)
vk (t− 1)

(
A(j)

k (t− 1)L(j)
k (t− 1) + B(j)

k (t− 1)
)H

,

L(ij)
k (t− 1, t) =

(
K(ii)

k (t− 1)−K(ij)
k (t− 1)

)
A(j)H

k (t− 1)−N (ij)
k (t− 1)B(j)H

k (t− 1)

+ Θ
(i)
k (t− 1)H(i)H

k (t− 1)Π1(j)

k (t) + L(i)
k (t− 1)Θ(ji)H

vk (t− 1)Π2(j)

k (t),

and

M(ij)
k (t− 1, t) = Θ

(i)H

k (t− 1)A(j)H

k (t− 1)

+
(

Π1(i)
k (t− 1)S(i)

k (t− 1)−L(ji)
k (t, t− 1)

)H
Π1(j)

k (t)

+
(

Θ
(ji)
vk (t− 1)−N (ji)

k (t− 1)−G(j)
k (t− 1)M(ij)H

k (t− 1)
)H

Π2(j)

k (t),

for t ≥ 2, and A(i)
k (t) and B(i)

k (t) defined in Theorem 3.

Theorem 5 (Prediction pseudo-cross-covariance matrices). The pseudo-cross-covariance matri-
ces of the local predictors, K(ij)

k (t, s), for t > s + 1, are computed through the equation:

K(ij)
k (t, s) = Φk(t− 1)K(ij)

k (t− 1, s)ΦH
k (t− 1), t > s + 1, (20)

with the initial condition: K(ij)
k (t + 1, t), given in Theorem 4.

Theorem 6 (Smoothing pseudo-cross-covariance matrices). The pseudo-cross-covariance matri-
ces of the local smoothers, K(ij)

k (t, s), for t < s, are obtained from the following equations:

K(ij)
k (t, s) = K(ij)

k (t, s− 1) +N (ij)
k (t, s)L(j)H

k (t, s) + L(i)
k (t, s)L(ij)H

k (t, s), t < s, (21)

with the initial condition: K(ij)
k (t, t) = K(ij)

k (t), given in Theorem 4, N (ij)
k (t, s) = L(ij)

k (t, s) +

L(i)
k (t, s)M(ij)

k (s), and

L(ij)
k (t, s) =

[
O(ii)

k (t, s− 1)−O(ij)
k (t, s− 1)

]
A(j)H

k (s− 1)

+ Θ
(i)
k (t, s− 1)H(i)H

k (s− 1)Π1(j)

k (s) + L(i)
k (t, s− 1)Θ(ji)H

vk (s− 1)Π2(j)

k (s)

−N (ij)
k (t, s− 1)B(j)H

k (s− 1), t < s,

(22)

with the initial condition: L(ij)
k (t, t) = L(ij)

k (t), given in Theorem 4, and where

O(ij)
k (t, s) = O(ij)

k (t, s− 1)ΦH
k (s− 1) +N (ij)

k (t, s− 1)H(j)H

k (s− 1) +N (ij)
k (t, s)L(j)H

k (s)

+ L(i)
k (t, s)L(ji)H

k (s), t < s,
(23)

with the initial condition: O(ij)
k (t, t) = K(ij)

k (t), given in Theorem 4.

4.3. Computational Complexity

In this section, the computational complexity associated with the proposed distributed
Tk-proper LS linear estimation algorithms is analyzed.
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First, it should be remarked that due to the isomorphism between the WL processing
in the quaternion or tessarine domain and the R4 processing, the three approaches are
completely equivalent, and the same computational complexity is required in each of them.
However, this equivalence vanishes under properness conditions when compared to their
counterparts derived from real-valued processing.

Effectively, under Tk, for k = 1, 2, properness conditions, the dimension of the ob-
servation vector is reduced 4/k times, which leads to estimation algorithms with a lower
computational load with respect to the ones derived from a WL or R4 approach (see [30] for
further details). Specifically, for each iteration, this computational load is of order O(64n3)
for the local LS linear algorithms devised from a real formalism, whereas this is of order
O(k3n3) for the Tk, for k = 1, 2, algorithms.

Moreover, the computational load for the distributed linear estimation algorithms
obtained from a real formalism is of order O(64R3n3), whereas this is of order O(k3R3n3),
k = 1, 2, for the distributed Tk-proper LS linear estimation algorithms.

5. Tk-Proper Centralized Fusion LS Linear Estimation

In this section, the centralized fusion estimation problem is addressed under Tk-proper
conditions. With this approach, the measurement data from each sensor are directly sent to
the fusion center to be processed.

Therefore, let us define the stacking vector of the augmented real measurements as

~z(t) =
[
z̄(1)

T
(t), . . . , z̄(R)T(t)

]T
, and consider the following augmented state–space system

under Tk-proper conditions:

x̄(t + 1) = Φ̄(t)x̄(t) + ū(t), t ≥ 0,

~z(t) = Ξnx̄(t) +~v(t), t ≥ 1,

yk(t) = D̄~γ1
k (t)~z(t) + D̄~γ2

k (t)~z(t− 1) + D̄1−~γ1−~γ2
k (t)~v(t), t ≥ 2,

(24)

where yk(1) = ∆k~z(1), with ∆k = IR ⊗
[
Ikn, 0kn×(4−k)n

]
. Moreover, Ξn = 1R ⊗ I4n,

D̄~γj
k (t) = Υk diag

(
~γr

j (t)
)

ΥH, j = 1, 2, and D̄1−~γ1−~γ2
k (t) = Υk diag

(
14Rn − ~γr

1(t)− ~γr
2(t)

)
ΥH,

with ~γr
j (t) =

[
γ
(1)rT

j (t), . . . , γ
(R)rT

j (t)
]T

, Υk = IR ⊗ T k, and Υ = IR ⊗ T .

Additionally, ~R(t) = E
[
~v(t)~vH(t)

]
= diag

(
R̄(1)(t), . . . , R̄(R)(t)

)
, E
[
ū(t)~vH(s)

]
=

~S(t)δts, with the matrix~S(t) given by~S(t) =
[
S̄(1)(t), . . . , S̄(R)(t)

]
, and

Π̄
~γj
k (t) =E

[
D̄~γj

k (t)
]
= diag

(
Π

γ
(1)
j

k (t), . . . , Π
γ
(R)
j

k (t)

)
, j = 1, 2,

Π̄
1−~γ1−~γ2
k (t) =E

[
D̄1−~γ1−~γ2

k (t)
]
= diag

(
Π

1−γ
(1)
1 −γ

(1)
2

k (t), . . . , Π
1−γ

(R)
1 −γ

(R)
2

k (t)
)

,

with Π
γ
(i)
j

k (t) and Π
1−γ

(i)
1 −γ

(i)
2

k (t), for i = 1, . . . , R, given in (7).
In this setting, the centralized fusion Tk-proper LS linear estimator, x̂Tk (t|s) is the

optimal LS linear estimator of the state xk(t) from the measurements {yk(1), . . . , yk(s)}. In
a similar way to Section 4.1, this estimator is obtained by extracting the first n components
of x̂k(t|s), where x̂k(t|s) is given by the projection of x̄(t) onto the the set of measurements
{y(i)

k (1), ..., y(i)
k (s)}, for k = 1, 2, under Tk-proper conditions.

Theorems 7–9 provide the algorithms to compute the centralized fusion Tk-proper
LS linear filtering, prediction, and smoothing estimators, x̂Tk (t|s), as well as their mean
square errors, PTk (t|s). It should be mentioned that the centralized fusion Tk-proper LS
linear filtering algorithm presented in Theorem 7 was devised in [23], and it will be used in



Mathematics 2022, 10, 2495 13 of 29

both the prediction and smoothing algorithms. The proof of these Theorems is obtained by
following a similar reasoning to that of Theorems 1–9 on the state–space system (24).

Theorem 7 (Centralized fusion Tk-proper LS linear filter). The optimal centralized fusion
Tk-proper LS linear filter, x̂Tk (t|t), is obtained by extracting the first n components of x̂k(t|t), which
is recursively calculated as follows:

x̂k(t|t) = x̂k(t|t− 1) + Lk(t)εk(t) t ≥ 1,

where x̂k(t + 1|t) can be recursively computed as

x̂k(t + 1|t) = Φk(t)x̂k(t|t) + Hk(t)εk(t) t ≥ 1,

with x̂k(1|0) = x̂k(0|0) = 0kn as the initial conditions.
The innovations, εk(t), are obtained as follows:

εk(t) = yk(t)−Π1
k(t)Ξkx̂k(t|t− 1)

−Π2
k(t)(Ξkx̂k(t− 1|t− 1) + Gk(t− 1)εk(t− 1)), t ≥ 2,

(25)

with εk(1) = yk(1) as the initial condition, and Ξk = 1R ⊗ Ikn, Gk(t) = Rk(t)
(
IknR −Π2

k(t)
)

Ω−1
k (t), with Rk(t) = diag

(
R(1)

k (t), . . . , R(R)
k (t)

)
.

Moreover, Lk(t) = Θk(t)Ω−1
k (t), and Hk(t) = Sk(t)

(
IknR −Π2

k(t)
)
Ω−1

k (t), where Sk(t) =

[S(1)
k (t), . . . , S(R)

k (t)] and Π
j
k(t) = diag

(
Π

j(1)

k (t), . . . , Π
j(R)

k (t)
)

, for j = 1, 2, with Π
j(i)

k (t)

given in (8).
The matrices Θk(t) are computed from the equation

Θk(t) = Pk(t|t− 1)ΞT
k Π1

k(t) + Φk(t− 1)Pk(t− 1|t− 1)ΞT
k Π2

k(t)

−Hk(t− 1)(ΞkΘk(t− 1) + Gk(t− 1)Ωk(t− 1))HΠ2
k(t)

+
(
Sk(t− 1)−Φk(t− 1)Θk(t− 1)GH

k (t− 1)
)
Π2

k(t), t ≥ 2;

Θ(1) = 1TR ⊗Dk(1),

with Dk(1) given in (11).
The pseudo-covariance matrix of the innovations, Ωk(t), is obtained from the expression

Ωk(t) = Ψ1k (t) + Ψ2k (t) + ΨH
2k
(t) + Ψ3k (t) + Ψ4k (t)

+ Π1
k(t)ΞkPk(t|t− 1)ΞT

k Π1
k(t) + Π1

k(t)Jk(t− 1)Π2
k(t)

+ Π2
k(t)J

H
k (t− 1)Π1

k(t) + Π2
k(t)

(
ΞkPk(t− 1|t− 1)ΞT

k

− ΞkΘk(t− 1)GH
k (t− 1)−Gk(t− 1)ΘH

k (t− 1)ΞT
k

− Gk(t− 1)Ωk(t− 1)GH
k (t− 1)

)
Π2

k(t), t ≥ 2;

Ωk(1) = IR ⊗Dk(1) + Rk(1),

(26)

where

Ψ1k (t) = Υk
(
Cov(~γr

1(t)) ◦
(
ΥHΞnD̄(t)ΞT

nΥ
))

ΥH
k ,

Ψ2k (t) = Υk

(
Cov(~γr

1(t),~γ
r
2(t)) ◦

{
ΥHΞn

(
Φ̄(t− 1)D̄(t− 1)ΞT

n +~S(t− 1)
)

Υ
})

ΥH
k ,

Ψ3k (t) = Υk
(
Cov(~γr

2(t)) ◦
(
ΥHΞnD̄(t− 1)ΞT

nΥ
))

ΥH
k ,

Ψ4k (t) = Υk

(
E
[
(14Rn − ~γr

2(t))(14Rn − ~γr
2(t))

T
]
◦
(

ΥH~R(t)Υ
))

ΥH
k

+ Υk

(
E
[
~γr

2(t)~γ
rT
2 (t)

]
◦
(

ΥH~R(t− 1)Υ
))

ΥH
k ,
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with D̄(t) computed in (12), and Jk(t) given by

Jk(t) = Ξk
{(

Φk(t)Pk(t|t)−Hk(t)ΘH
k (t)

)
ΞH

k −Φk(t)Θk(t)GH
k (t)

+ Sk(t)−Hk(t)Ωk(t)GH
k (t)

}
.

Finally, the filtering error pseudo-covariance matrix, PTk (t|t), is obtained from Pk(t|t), recur-
sively computed through the following equation:

Pk(t|t) = Pk(t|t− 1)−Θk(t)Ω−1
k (t)ΘH

k (t),

with Pk(0|0) = P0k as the initial condition, and

Pk(t + 1|t) = Φk(t)Pk(t|t)ΦH
k (t)−Φk(t)Θk(t)HH

k (t)

−Hk(t)ΘH
k (t)Φ

H
k (t)−Hk(t)Ωk(t)HH

k (t) + Qk(t),

with Pk(1|0) = Dk(1) as the initial condition.

Theorem 8 (Centralized fusion Tk-proper LS linear predictor). The optimal centralized fusion
Tk-proper LS linear predictor, x̂Tk (t|s), t > s, is obtained by extracting the first n components of
x̂k(t|s), which satisfies the expression

x̂k(t|s) = Φk(t− 1)x̂k(t− 1|s), t > s + 1,

with the initial condition: the one-step predictor, x̂k(s + 1|s), given in Theorem 7.
Moreover, the pseudo-covariance matrices of the prediction errors, PTk (t|s), t > s, are obtained

from Pk(t|s), which satisfies the following recursive formula:

Pk(t|s) = Φk(t− 1)Pk(t− 1|s)ΦH
k (t− 1), t > s + 1,

with the initial condition: the pseudo covariance matrix of the one-step prediction error, Pk(s + 1|s),
computed from Theorem 7.

Theorem 9 (Centralized Tk-proper LS linear smoother). The optimal centralized fusion Tk-
proper LS linear smoother, x̂Tk (t|s), t < s, is obtained by extracting the first n components of
x̂k(t|s), which satisfies the following expression:

x̂k(t|s) = x̂k(t|s− 1) + Lk(t, s)εk(s), s > t,

with the initial condition: the filter x̂k(t|t), computed from Theorem 7. The innovations εk(s) are
recursively computed from (25), and Lk(t, s) = Θk(t, s)Ω−1

k (s), with Ωk(s) given by (26) and

Θk(t, s) = Ek(t|s− 1)AH
k (s− 1)−Θk(t, s− 1)BH

k (s− 1),

with the initial condition: Θk(t) given in Theorem 7, and Ak(s) = Π1
k(s + 1)Φk(s) + Π2

k(s + 1),
Bk(s) = Π1

k(s + 1)Hk(s) + Π2
k(s + 1)Gk(s), and

Ek(t, s) = Ek(t|s− 1)ΦH
k (s− 1)−Θk(t, s− 1)HH

k (s− 1)−Θk(t, s)LH
k (s− 1),

with Ek(t, t) = Pk(t|t) as the initial condition.
Finally, the pseudo-covariance matrix of the smoothing errors, PTk (t|s), t < s are obtained

from P(i)
k (t|s), which satisfies the following recursive formula:

Pk(t|s) = Pk(t|s− 1)−Θk(t, s)Ω−1
k (s)ΘH

k (t, s), s > t,

with the initial condition: the pseudo-covariance matrix of the filtering error, Pk(t|t), given in
Theorem 7.
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Remark 3. A similar analysis to the one performed in Section 4.3 on the computational complexity
of the proposed algorithms can be performed here. In this case, the computational load for each
iteration of the centralized LS linear estimation algorithms obtained from a real formalism is of order
O(64R3n3), whereas this is of order O(k3R3n3), k = 1, 2, for the centralized Tk-proper LS linear
estimation algorithms.

6. Numerical Example

In this section, the behavior and effectiveness of the Tk-proper distributed and cen-
tralized algorithms given in Sections 4.2 and 5, respectively, are analyzed by means of two
numerical examples.

In the first example, the performance of these algorithms is illustrated under different
uncertainty scenarios. In the second example, a general setting that is intended to be
adoptable for use in a variety of practical applications is considered to evaluate the better
behavior of the proposed Tk estimators over their counterparts in the quaternion domain.

6.1. Example 1

With the aim of assessing the performance of the proposed theoretical algorithms,
prediction and smoothing estimates obtained through both centralized and distributed
fusion algorithms are compared with the corresponding filtering ones and also compared
with each other by considering different situations of uncertainty in the measurements
and both Tk- proper, with k = 1, 2, scenarios. With this purpose, a scalar tessarine signal
x(t) ∈ T satisfying the following equation:

x(t + 1) = F1(t)x(t) + u(t), t ≥ 0, (27)

is considered. The aim is to estimate x(t) from the measurements obtained from five sensors,
modeled by the following measurement equation available at each sensor i = 1, . . . , 5:

y(i)(t) = γ
(i)
1 (t) ? z(i)(t) + γ

(i)
2 (t) ? z(i)(t− 1) + (1− γ

(i)
1 (t)− γ

(i)
2 (t)) ? v(i)(t), t ≥ 2;

y(i)(1) = z(i)(1),
(28)

where the real measurement, z(i)(t), satisfies the equation

z(i)(t) = x(t) + v(i)(t), t ≥ 1, i = 1, . . . , 5.

In the state Equation (27), F1(t) = 0.9 + 0.3η + 0.1η′ + 0.1η′′ ∈ T, and the covariance
matrices of the real state noise are given as follows:

E
[
ur(t)urT(s)

]
=


a 0 c 0
0 b 0 c
c 0 a 0
0 c 0 b

δts,

with a = b = 0.9, c = 0.3, in the T1-proper case, and a = 0.9, b = 0.6, c = 0.3, in the
T2-proper case.

Moreover, in the measurement Equation (28) available, the parameters p(i)j,ν(t) of the

Bernoulli random variables γ
(i)
j,ν (t), for i = 1, . . . , 5, j = 1, 2, and ν = r, η, η′η′′, are assumed

to be constant in time, that is, p(i)j,ν(t) = p(i)j,ν , and characterized as follows:

- in the T1-proper scenario, p(i)j,ν = p(i)j , for all ν = r, η, η′η′′, j = 1, 2, i = 1, . . . , 5, and

- in the T2-proper scenario, p(i)j,r = p(i)j,η , and p(i)j,η′ = p(i)j,η′′ , for j = 1, 2, i = 1, . . . , 5.
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Furthermore, the correlation between the additive noises, u(t) and v(i)(t), is obtained
from the following relation between them:

v(i)(t) = αiu(t) + w(i)(t), t ≥ 1,

with α1 = 0.5, α2 = 0.3, α3 = 0.4, α4 = 0.6, α5 = 0.2, and where u(t) and w(i)(t) are
independent, and the real covariance matrices of the tessarine white Gaussian noises w(i)(t)
are given by

E
[

w(i)r
(t)w(i)rT

(t)
]
= diag(βi, βiβi, βi), t ≥ 1,

with β1 = 3, β2 = 7, β3 = 15, β4 = 21, β5 = 25.
To complete the conditions that guarantee the joint Tk-properness between the state

x(t) and measurements y(i)(t), the variance matrix of the real initial state is assumed to be
given as follows:

E
[
xr(0)xrT(0)

]
=


d 0 f 0
0 e 0 f
f 0 d 0
0 f 0 e

,

with d = e = 6, f = −5.5, in the T1-proper case, and d = 3, e = 4, f = −2.5, in the
T2-proper one.

Under the above conditions, and considering the hypotheses of independence estab-
lished in Section 3 on the Bernoulli random variables, the initial state and the additive
noises and the prediction and smoothing error variances have been computed for both
centralized and distributed fusion estimation methods by considering different values of
the Bernoulli parameters in the T1-proper scenario as well as in the T2-proper scenario.
More specifically, the following six cases have been analyzed in each scenario:

• In the T1-proper scenario:

- Case 1: p(i)1 = 0.2, p(i)2 = 0.8, ∀i = 1, . . . , 5;

- Case 2: p(i)1 = 0.8, p(i)2 = 0.2, ∀i = 1, . . . , 5;

- Case 3: p(i)1 = 0.25, p(i)2 = 0, ∀i = 1, . . . , 5;

- Case 4: p(i)1 = 0.75, p(i)2 = 0, ∀i = 1, . . . , 5;

- Case 5: p(i)1 = 0.1, p(i)2 = 0.1, ∀i = 1, . . . , 5;

- Case 6: p(i)1 = 0.3, p(i)2 = 0.3, ∀i = 1, . . . , 5.

• In the T2-proper scenario:

- Case 1:
(

p(i)1,r, p(i)1,η′

)
= (0.15, 0.2),

(
p(i)2,r, p(i)2,η′

)
= (0.85, 0.8), ∀i = 1, . . . , 5;

- Case 2:
(

p(i)1,r, p(i)1,η′

)
= (0.85, 0.8),

(
p(i)2,r, p(i)2,η′

)
= (0.15, 0.2), ∀i = 1, . . . , 5;

- Case 3:
(

p(i)1,r, p(i)1,η′

)
= (0.25, 0.2),

(
p(i)2,r, p(i)2,η′

)
= (0, 0), ∀i = 1, . . . , 5;

- Case 4:
(

p(i)1,r, p(i)1,η′

)
= (0.75, 0.7),

(
p(i)2,r, p(i)2,η′

)
= (0, 0), ∀i = 1, . . . , 5;

- Case 5:
(

p(i)1,r, p(i)1,η′

)
= (0.1, 0.05),

(
p(i)2,r, p(i)2,η′

)
= (0.1, 0.1), ∀i = 1, . . . , 5;

- Case 6:
(

p(i)1,r, p(i)1,η′

)
= (0.3, 0.35),

(
p(i)2,r, p(i)2,η′

)
= (0.3, 0.3), ∀i = 1, . . . , 5.

Note that in each Tk-proper scenario, for k = 1, 2, all the uncertainty situations are
considered. Specifically, in Cases 1 and 2, since p(i)1 + p(i)2 = 1, for all i = 1, . . . , 5, in the

T1-proper scenario, (respectively, p(i)1,r + p(i)2,r = p(i)1,η′ + p(i)2,η′ = 1, for all i = 1, . . . , 5, in the
T2-proper scenario), they represent the delay situation in different levels. In other words,
in Case 1, there is a greater probability that the corresponding measurement component
is delayed one instant of time. In contrast, in Case 2 there is a high probability that the
corresponding measurement component is updated. The situation of missing measurements
is reflected in Cases 3 and 4, where it is more probable that the corresponding measurement
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component contains only noise in Case 3, and a signal plus noise in Case 4. Finally, in
Cases 5 and 6, two situations of mixed uncertainties have been considered, which allow the
performance of the estimators to be compared as the probability that the corresponding
measurement component is delayed or updated increases.

As a measure of the accuracy of the estimators, the filtering, prediction, and smooth-
ing error variances have been calculated and displayed versus time in Figures 1–4; also,
the mean of these error variances (whose calculus expressions are described in Table 1)
have been shown in Tables 2 and 3. Note that these measures allow us to compare the
performance of the estimators. That is, those estimators whose error variances have the
smaller value present a better performance than those with a greater error variance (same
consideration for the mean of the error variances).

Table 1. Expressions for filtering, prediction, and smoothing mean square errors.

Fusion Method Filtering Prediction Smoothing

Centralized ME f =
1

100

100

∑
t=1

PTk (t|t) MEp,τ = 1
100−τ

100−τ

∑
t=1

PTk (t + τ|t) MEs,τ = 1
100

100

∑
t=1

PTk (t|t + τ)

Distributed MED
f = 1

100

100

∑
t=1

PDTk (t|t) MED
p,τ = 1

100−τ

100−τ

∑
t=1

PDTk (t + τ|t) MED
s,τ = 1

100

100

∑
t=1

PDTk (t|t + τ)

The error variances have been calculated for prediction and smoothing estimators, as
well as for the filtering estimators in several stages, in all the cases previously described.
By way of illustration, only one case for each situation of delay, missing measurements, and
mixed uncertainties has been displayed in figures containing prediction errors (Figures 1
and 3) as well as in figures drawing smoothing errors (Figures 1 and 4), although the mean
square errors for each case have been included in Tables 2 and 3 for the T1 and T2-proper
scenarios, respectively. More specifically, the centralized and distributed fusion prediction
error variances, PTk (t + τ|t) and PDTk (t + τ|t), respectively, for τ = 1, 2, 3, 4, as well as
the corresponding filtering ones, are displayed in Figure 1 for Cases 1, 3, and 5 in the T1-
proper scenario and for the same Cases in the T2-proper scenario in Figure 3. Analogously,
Figures 2 and 4 depict the centralized and distributed fusion smoothing error variances,
PTk (t|t + τ) and PDTk (t|t + τ), respectively, for τ = 1, 2, 3, 4, as well as the corresponding
filtering variances, for Cases 2, 4, and 6 in the T1-proper scenario (Figure 2), and for the
same Cases in the T2-proper scenario (Figure 4).

Figures 1 and 3 allow the centralized and distributed fusion prediction error variances
to be compared with each other in each case and also with the corresponding filtering
variances. So, it can be observed that on the one hand, the prediction error variances are
greater than the corresponding filtering ones, and on the other hand, they also increase as
τ (the number of the prediction stage) is greater. Analogously, from Figures 2 and 4, we
can confirm that smoothing algorithms provide better estimations than the corresponding
filtering ones, and the accuracy of the smoothers also improves as τ (that is, as the number
of measurements used to estimate the state) increases. Moreover, the centralized fusion
algorithms provide better estimations than the corresponding distributed ones since they
are optimal estimators versus the suboptimal ones obtained from the distributed fusion
methods.
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Figure 1. Filtering and prediction error variances in the T1-proper scenario for Cases 1, 3, and 5
computed by using the centralized fusion algorithm (on the left) and the distributed algorithm (on
the right).
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Figure 2. Filtering and smoothing error variances in the T1-proper scenario for Cases 2, 4, and 6
computed by using the centralized fusion algorithm (on the left) and the distributed algorithm (on
the right).
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Figure 3. Filtering and prediction error variances in the T2-proper scenario for Cases 1, 3, and 5
computed by using the centralized fusion algorithm (on the left) and the distributed algorithm (on
the right).
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Figure 4. Filtering and smoothing error variances in the T1-proper scenario for Cases 2, 4, and 6
computed by using the centralized fusion algorithm (on the left) and the distributed algorithm (on
the right).

To compare the cases considered in each uncertainty situation, the means of the filter-
ing, prediction and smoothing errors variances (whose calculus expressions are described
in Table 1), are shown in Tables 2 and 3 for the T1 and T2-proper scenarios, respectively. In
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addition to the considerations drawn from Figures 1–4, the following conclusions can be
derived from Table 2, in the T1-proper scenario:

• Better performance of the centralized estimators over the distributed ones. Effectively, in
Case 1, it can be observed that the mean of the centralized and distributed filtering
error variances, ME f and MED

f , takes the values 6.9234 and 7.6676, respectively,
which indicate a better performance of the centralized filters over the distributed ones.
The same conclusion can be deduced when comparing the means of the prediction
and smoothing error variances at the same stage τ. As an example, observe that
the mean of the centralized and distributed prediction error variances for τ = 3,
denoted by MEp,3 and MED

p,3, respectively, take the values 15.0486 and 15.6886, and
the one corresponding to the mean of the centralized and distributed smoothing error
variances at stage τ = 2 are given by MEs,2 = 4.7648, and MED

s,2 = 5.1388. Similar
considerations can be made for all the cases.

• Better performance of the smoothing estimators over the filtering ones and both, in turn,
over the prediction ones. Effectively, in Case 1, the following relation is true: MED

s,1 =

5.9197 < MED
f = 7.6676 < MED

p,1 = 10.3765. Similar conclusions are obtained in all
the cases and for any τ.

• Worse performance of the prediction estimators as the stage τ increases (the opposite considera-
tion for the smoothing estimators). As an example, in Case 1, it is observed that MEp,1 =
9.6168 < MEp,2 = 12.4458 < MEp,3 = 15.0486 < MEp,4 = 17.4433 (for the prediction
errors) and MEs,1 = 5.3697 > MEs,2 = 4.7648 > MEs,3 = 4.5051 > MEs,4 = 4.3921
(for the smoothing errors). Similar considerations can be made for all the cases.

Table 2. Filtering, prediction, and smoothing mean square errors in the T1-proper scenario.

Cases Filtering
ME f

MED
f

Prediction:
MEp,τ

MED
p,τ

Smoothing:
MEs,τ

MED
s,τ

τ = 1 τ = 2 τ = 3 τ = 4 τ = 1 τ = 2 τ = 3 τ = 4

1 6.9234
7.6676

9.6168
10.3765

12.4458
13.1431

15.0486
15.6886

17.4433
18.0306

5.3697
5.9197

4.7648
5.1388

4.5051
4.7790

4.3921
4.6328

2 4.5390
5.5281

6.7719
7.8469

9.8292
10.8171

12.6421
13.5498

15.2299
16.0640

3.7946
4.5354

3.5424
4.1401

3.4435
3.9973

3.4212
3.9622

3 16.2548
16.5213

18.2474
18.5119

20.3810
20.6221

22.3444
22.5641

24.1511
24.3512

14.9311
15.1552

13.9736
14.1378

13.2796
13.3827

12.7753
12.8245

4 5.7176
6.4844

7.9889
8.8057

10.9485
11.7014

13.6715
14.3629

16.1767
16.8116

4.8191
5.4013

4.4473
4.8981

4.2898
4.6787

4.2218
4.5968

5 20.5823
20.9046

22.4152
22.7121

24.2120
24.4833

25.8656
26.1134

27.3876
27.6139

19.1857
19.5125

18.1108
18.4190

17.2780
17.5536

16.6324
16.8704

6 8.9821
9.5247

11.5869
12.0809

14.2575
14.7101

16.7147
17.1292

18.9754
19.3550

7.3064
7.7961

6.4887
6.8709

6.0641
6.3559

5.8423
6.0840

Moreover, the following conclusions can be drawn by comparing Cases 1 and 2 in the
delay situation, Cases 3 and 4 in the situation of missing measurements, and Cases 5 and 6 for
mixed uncertainties. Specifically:

• In the delay situation: For Cases 1 and 2, it can be observed that the estimations obtained
in Case 2 outperform the ones obtained in Case 1, due to the fact that in this case, the
probability that the measurements are updated is greater than that of Case 1.

• In the situation of missing measurements: For Cases 3 and 4, the probability that the
measurements contain only noise is smaller in Case 4 than in Case 3; hence, better
estimations are obtained.

• In the situation of mixed uncertainties: For Cases 5 and 6, better estimations are obtained
in Case 6 versus Case 5 since there is a greater probability that the measurements are
updated or delayed and a lower probability that they contain only noise.
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These same conclusions obtained from Table 2 for the T1-proper case can be drawn
from Table 3 for the T2-proper one.

Table 3. Filtering, prediction, and smoothing mean square errors in the T2-proper scenario.

Cases Filtering
ME f

MED
f

Prediction:
MEp,τ

MED
p,τ

Smoothing:
MEs,τ

MED
s,τ

τ = 1 τ = 2 τ = 3 τ = 4 τ = 1 τ = 2 τ = 3 τ = 4

1 6.0702
6.6500

8.3156
8.9052

10.6490
11.1900

12.7959
13.2922

14.7711
15.2263

4.7329
5.1555

4.1974
4.4732

3.9544
4.1470

3.8409
4.0052

2 3.8564
4.6005

5.6914
6.5058

8.2355
8.9830

10.5761
11.2629

12.7295
13.3605

3.2399
3.7966

3.0210
3.4710

2.9380
3.3482

2.9049
3.3127

3 14.9522
15.3920

16.5263
16.9481

18.1980
18.5837

19.7363
20.0890

21.1520
21.4744

13.8800
14.3013

13.0793
13.4627

12.4797
12.8189

12.0298
12.3261

4 5.1916
5.9890

7.0810
7.9173

9.5134
10.2815

11.7514
12.4568

13.8103
14.4581

4.3965
5.0333

4.0439
4.5557

3.8817
4.3248

3.8049
4.2216

5 18.7493
19.4711

20.1627
20.8326

21.5402
22.1542

22.8080
23.3709

23.9750
24.4909

17.6607
18.4132

16.8025
17.5593

16.1205
16.8643

15.5780
16.2995

6 7.1621
7.9999

9.3053
10.1092

11.5591
12.2969

13.6328
14.3097

15.5406
16.1617

5.8434
6.5764

5.2147
5.8134

4.8912
5.3839

4.7212
5.1533

6.2. Example 2

In this second example, the effectiveness of our method is assessed in a realistic setting
where the superiority of the proposed estimators over their counterparts in the quaternion
domain under Tk-properness conditions is analyzed in the case of a single sensor.

Specifically, we consider the following general equation of motion [21]:

∂ϕ

∂t
= φ and

∂φ

∂t
= ω (29)

where ω is the input of the system, and ϕ represents the variable of interest with φ indicating
its range of change.

Note that the equations given in (29) are applicable in a wide variety of practical
situations including bearings-only and rotation tracking. In the case of bearing-only
tracking applications, the input typically represents force or acceleration, and in a rotation
tracking scenario, it represents the torque or angular acceleration.

Consider the equivalent discrete-time model of (29)

x(t + 1) =
(

1 ∆T
0 1

)
x(t) +

[
∆T2/2

∆T

]
ω(t), t = 1, . . . , 100.

with x(t) = [ϕ(t), φ(t)]T, and initial condition x(0) = 02×1. Moreover, ∆T = 0.04 denotes
the sampling interval, and the input ω(t) is a tessarine white noise with real covariance
matrix given by

E
[
ωr(t)ωrT(s)

]
=


3 0 2 0
0 3 0 2
2 0 3 0
0 2 0 3

δts

By way of illustration, assume that the measurements available come from one sensor
according to the equation (2), where v(t) = [v1(t), v2(t)]

T is a tessarine white noise such
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that v1(t) and v2(t) are independent and their associated real covariance matrices are
given by

E
[
vr

m(t)v
rT
m (s)

]
=


6.5 0 0.1 0
0 6.5 0 0.1

0.1 0 6.5 0
0 0.1 0 6.5

δts, m = 1, 2

Moreover, the independent Bernoulli random variables γjm,ν(t), for j = 1, 2, m = 1, 2, and
ν = r, η, η′η′′, have constant parameters pjm,ν(t) = pjm,ν.

In this setting, the comparative analysis is carried under both Tk-proper, k = 1, 2
scenarios, by considering the following Bernoulli parameters:

- T1-proper scenario: p11,ν = 0.2, p12,ν = 0.3, p21,ν = 0.4 and p22,ν = 0.4, for all
ν = r, η, η′η′′, and

- T2-proper scenario: p11,r = p11,η = 0.7 and p11,η′ = p11,η′′ = 0.3, p12,r = p12,η = 0.1
and p12,η′ = p12,η′′ = 0.8, p21,r = p21,η = 0.2 and p21,η′ = p21,η′′ = 0.5, and p22,r =
p22,η = 0.4 and p22,η′ = p22,η′′ = 0.2.

Then, for each Tk-proper scenario, k = 1, 2, the Tk-proper LS linear estimation error
variances Pk(t|s) are compared with their counterparts in the quaternion domain, i.e., the
quaternion strictly linear (QSL) and the quaternion semi-widely linear (QSWL) estimation
error variances, denoted by PQSL(t|s) and PQSWL(t|s), respectively. As a measurement
for comparison, we consider the difference between both errors for the prediction and
smoothing problems given by the expressions:

- T1-proper scenario: D1(t|s) = PQSL(t|s)− P1(t|s).
- T2-proper scenario: D2(t|s) = PQSWL(t|s)− P2(t|s).

Figures 5 and 6 display these differences for the variable of interest ϕ(t) in the T1
and T2-proper case, respectively. All the graphics show the superiority of the Tk-proper
estimators over their counterparts in the quaternion domain. Moreover, in the prediction
problem, this superiority is higher as time ahead in the prediction stage is greater, whereas
in the smoothing problem, a better performance of the Tk-proper estimators is achieved
in situations with a lower number of measurements used to estimate the state. Note that
similar results are obtained for the component φ(t) of state vector x(t). These graphs have
been omitted to not increase the length of the paper.

Figure 5. Difference between QSL and T1-proper error variances for the prediction (on the left) and
smoothing (on the right) problems in the T1-proper scenario.
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Figure 6. Difference between QSWL and T2-proper error variances for the prediction (on the left)
and the smoothing (on the right) problems in the T2-proper scenario.

7. Discussion

The multisensor fusion prediction and smoothing estimation problems in systems
with random sensor delays, missing measurements, and correlated noises have been
investigated. As usual, these uncertainties are assumed to be modeled by independent
Bernoulli distributed random processes.

Unlike most of the results existing in the literature, the problem has been addressed in
the tessarine domain. An extremely interesting characteristic of this type of processing is
the possibility to reduce the dimension of the problem when the processes involved are
Tk-proper. In practice, these properness characteristics can be statistically tested. Then,
both distributed and centralized fusion estimation algorithms are proposed under Tk-
properness conditions, which offer significant computational advantages when compared
to their counterparts derived from a real-valued processing.

It should be highlighted that as an alternative to tessarines, some other 4D hypercom-
plex algebras, such as quaternions, could have been used. The convenience of using a
tessarine or quaternion processing depends on the particular property conditions verified
by the processes involved. Additionally, in future research, more general structures, such
as the generalised Segre’s quaternions, which include tessarines as a particular case, would
offer the possibility to choose the best commutative algebra according to its properness
characteristics.
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Appendix A. Proof of Theorem 2

Based on an innovation approach, the optimal LS linear predictor, ˆ̄x(i)(t|s), for each
sensor i = 1, . . . , R, can be obtained from the following expression [32]:

ˆ̄x(i)(t|s) =
t

∑
l=1

Θ̄
(i)
k (t, l)Ω(i)−1

k (l)ε(i)k (l), t > s

where Θ̄
(i)
k (t, l) = E

[
x̄(t)ε(i)

H

k (l)
]
, Ω

(i)
k (l) = E

[
ε
(i)
k (l)ε(i)

H

k (l)
]
, and the innovations ε

(i)
k (t) =

y(i)
k (t)− ŷ(i)

k (t|t− 1), with ŷ(i)
k (t|t− 1) the local LS linear estimator of y(i)

k (t) based on the

set of available measurements
{

y(i)
k (1), . . . , y(i)

k (t− 1)
}

. Then, using the state equation

in (3), and taking into account the fact that E
[
ū(t)ε(i)

H

k (s)
]
= 04n×kn, for t > s, the following

expression is obtained:

ˆ̄x(i)(t|s) = Φ̄(t− 1) ˆ̄x(i)(t− 1|s), t > s + 1. (A1)

Therefore, Equation (14) is immediately derived by characterizing (A1) for both Tk-
proper scenarios.

Moreover, from (A1), the following equation is obtained:

˜̄x(i)(t|s) = Φ̄(t− 1) ˜̄x(i)(t− 1|s) + ū(t− 1), t > s + 1, (A2)

where ˜̄x(i)(t|s) = x̄(t) − ˆ̄x(i)(t|s) and ˜̄x(i)(t − 1|s) = x̄(t − 1) − ˆ̄x(i)(t − 1|s). Hence,
Equation (15) is deduced by characterizing (A2) for both Tk-proper scenarios.

Appendix B. Proof of Theorem 3

Similar to the Proof of Theorem 2 given in Appendix A, the optimal LS linear smoother,
ˆ̄x(i)(t|s), can be expressed as follows [2]:

ˆ̄x(i)(t|s) =
s

∑
l=1

Θ̄
(i)
k (t, l)Ω(i)−1

k (l)ε(i)k (l), s > t, (A3)

and hence, the following recursive expression is easily derived:

ˆ̄x(i)(t|s) = ˆ̄x(i)(t|s− 1) + L̄(i)
k (t, s)ε(i)k (s), s > t. (A4)

Then, Equation (16) is easily derived from (A4), and taking into account the character-
istics of both Tk-proper scenarios.

Analogously, the optimal LS linear filter, ˆ̄x(i)(s|s), and the one-stage predictor, ˆ̄x(i)(s|s−
1), admit the following expressions:

ˆ̄x(i)(s|s) = ˆ̄x(i)(s|s− 1) + L̄(i)
k (s)ε(i)k (s), (A5)

and
ˆ̄x(i)(s|s− 1) = Φ̄(s− 1) ˆ̄x(i)(s− 1|s− 1) + H̄(i)

k (s− 1)ε(i)k (s− 1), (A6)

respectively, where L̄(i)
k (s) = Θ̄

(i)
k (s)Ω(i)−1

k (s), with Θ̄
(i)
k (s) = Θ̄

(i)
k (s, s), and H̄(i)

k (s− 1) =

S̄(i)(s− 1)Π(1−γ2
(i))

H

k (s− 1)Ω(i)−1

k (s− 1).
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Now, from (6) and (9), we have

Θ̄
(i)
k (t, s) = E

[
x̄(t) ˜̄x(i)

H
(s|s− 1)

]
Π

γ
(i)H
1

k (s)

+
(

Ē(i)
k (t, s− 1)− Θ̄

(i)
k (t, s− 1)Ḡ(i)H

k (s− 1)
)

Π
γ
(i)H
2

k (s),

where Ē(i)
k (t, s− 1) = E

[
x̄(t) ˜̄x(i)

H
(s− 1|s− 1)

]
, and Ḡ(i)

k (s− 1) = R̄(i)(s− 1)Π(1−γ2
(i))

H

k (s−

1)Ω(i)−1

k (s − 1). Thus, from (3), (A5), and (A6), and reordering terms, Equation (17) is
derived by using the characteristics of both Tk-proper scenarios on the resulting expression.
Its initial condition is immediately deduced from its definition.

In a similar way, from (3), (A5), and (A6), the expression (18) is directly obtained by
virtue of the Tk-properness conditions.

Finally, the recursive formula (19) for the pseudo covariance matrix of the smoothing
errors P(i)

k (t|s) is easily derived from (16).

Appendix C. Proof of Theorem 5

From (A1), the pseudo-cross-covariance matrix K̄(ij)
(t, s) = E

[
x̂(i)(t|s)x̂(j)H(t|s)

]
, for

t > s + 1, takes the form

K̄(ij)
(t, s) = Φ̄(t− 1)K̄(ij)

(t− 1, s)Φ̄H(t− 1), t > s + 1.

Hence, by characterizing this expression for both Tk-proper scenarios, Equation (20)
can be deduced.

Appendix D. Proof of Theorem 6

From (16), K̄(ij)
(t, s)E

[
x̂(i)(t|s)x̂(j)H(t|s)

]
, for s > t, can be expressed as follows:

K̄(ij)
(t, s) = K̄(ij)

(t, s− 1) + N̄ (ij)
k (t, s)L̄(j)H

k (t, s) + L̄(i)
k (t, s)L̄(ji)H

k (t, s), s > t, (A7)

where N̄ (ij)
k (t, s) = E

[
ˆ̄x(i)(t|s)ε(i)

H

k (s)
]
= L̄(ij)

k (t, s) + L̄(i)
k (t, s)M(ij)

k (s), with L̄(ij)
k (t, s) =

E
[

ˆ̄x(i)(t|s− 1)ε(i)
H

k (s)
]
. Then, Equation (21) is easily derived by characterizing (A7) for

both Tk-proper scenarios. The initial condition is directly obtained from its definition.
Next, from (9), the following expression for L̄(ij)

k (t, s), with s > t, is obtained:

L̄(ij)
k (t, s) = E

[
ˆ̄x(i)(t|s− 1)y(j)H

k (s)
]
− E

[
ˆ̄x(i)(t|s− 1) ˆ̄x(j)H(s|s− 1)

]
Π

γ
(j)H
1

k (s)

− Ō(ij)
(t, s− 1)Π

γ
(j)H
2

k (s)− N̄ (ij)
k (t, s− 1)Ḡ(j)H

k (s− 1)Π
γ
(j)H
2

k (s), s > t,

(A8)

with Ō(ij)
(t, s) = E

[
ˆ̄x(i)(t|s) ˆ̄x(j)H(s|s)

]
. Now, by using (6), the hypotheses on the model,

and Equations (A3) and (A6), the following equation can be obtained:

E
[

ˆ̄x(i)(t|s− 1)y(j)H

k (s)
]
= Ō(ii)

(t, s− 1)Ā(j)H

k (s− 1)

+ Θ̄
(i)
k (t, s− 1)H̄(i)H

k (s− 1)Π
γ
(j)H
1

k (s)

+ L̄(i)
k (t, s− 1)Θ̄(ji)H

vk (s− 1)Π
γ
(j)H
2

k (s),

E
[

ˆ̄x(i)(t|s− 1) ˆ̄x(j)H(s|s− 1)
]
= Ō(ij)

(t, s− 1)Φ̄H(s− 1) + N̄ (ij)
k (t, s− 1)H̄(j)H

k (s− 1),

(A9)
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where Ā(j)
k (s− 1) = Π

γ
(j)
1

k (s)Φ̄(s− 1) + Π
γ
(j)
2

k (s). Then, by substituting (A9) in (A8), re-
ordering terms, and taking into account the characteristics of the Tk-proper scenarios,
Equation (22) is deduced. Its initial condition is determined by its proper definition.

Finally, to derive Equation (23), the following expression will be used,

ˆ̄x(j)(s|s) = Φ̄(s− 1) ˆ̄x(j)(s− 1|s− 1) + H̄(j)
k (s− 1)ε(j)

k (s− 1) + L̄(j)
k (s)ε(j)

k (s), (A10)

immediately obtained from (A5) and (A6). Then, by using the definition of Ō(ij)
(t, s), (A4)

and (A10), reordering terms in the resultant expression, and applying the characterization
of both Tk-proper scenarios, Equation (23) can be deduced. From its definition, the initial
condition is established.
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