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Abstract: Multicomponent stress–strength reliability (MSR) is explored for the system with Burr
XII distributed components under Type-II censoring. When the distributions of strength and stress
variables have Burr XII distributions with common or unequal inner shape parameters, the existence
and uniqueness of the maximum likelihood estimators are investigated and established. The asso-
ciated approximate confidence intervals are obtained by using the asymptotic normal distribution
theory along with the delta method and parametric bootstrap procedure, respectively. Moreover,
alternative generalized pivotal quantities-based point and confidence interval estimators are devel-
oped. Additionally, a likelihood ratio test is presented to diagnose the equivalence of both inner
shape parameters or not. Conclusively, Monte Carlo simulations and real data analysis are conducted
for illustration.

Keywords: multicomponent stress–strength model; Burr XII distribution; maximum likelihood
estimation; generalized pivotal estimation; asymptotic theory
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1. Introduction

The stress–strength model, under which a system or unit survives if its strength is
greater than the stress imposed, plays a considerable role in lifetime studies, engineering
applications, supply and demand applications, and others. The associated stress–strength
reliability (SSR), R, is defined to be R = P(Y < X), where X represents the strength of
the system or unit and Y is the associated stress applied on it. Generally, the strength X
is defined as the quality characteristics of the main subject and the stress is defined as the
quality characteristics Y of the opposite subject in the model. To address the aforementioned
stress–strength model, three examples are given for illustration. The first example is about
mechanical engineering applications. The strength of the long horizontal part for a crane,
denoted by X, is required to exceed the stress of loading weight of the lifting object for
operation. We denote the stress of loading weight by Y. The SSR of R = P(Y < X) can
be an important measure for assessing the quality of crane. The second example is about
civil engineering applications. The allowable bearing capacity of a suspension bridge is
an important quality measure. The strength of a pairs of cables for the suspension bridge,
denoted by X, should exceed the total amount of car weight passing through. We denote
the stress of the total amount of car weight passing through by Y. In this application, a
high SSR of R = P(Y < X) is required for the design of the suspension bridge. The third
example is about logistics applications. To maintain the quality of a logistics system, the
supply capacity can be the strength, denoted by X, and the demand can be the stress,
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denoted by Y. A high SSR of R = P(Y < X) indicates that the logistics system is reliable.
Over the past few years, the stress–strength model has been extensively used in a variety of
fields that include economics, hydrology, reliability engineering, seismology and survival
analysis, and the inference of SSR had been discussed in numerous works; for example, by
Eryilmaz [1], Kundu and Raqad [2], Krishnamoorthy and Lin [3], Mokhlis et al. [4], and
Wang et al. [5]. Conventional studies for the SSR inference focus on the system of a sole
main component, i.e., a unit. However, many practical systems, which include a series
system, parallel system, or a combination of these two systems, are composed of multiple
components to achieve their functions. Therefore, the SSR investigation has been extended
to a multicomponent system. Generally, aforementioned multicomponent systems consist
of k main components that have independent and identically distributed (i.i.d.) strengths
subject to an opposite commonly distributed stress, and the system survives if at least
s(1 ≤ s ≤ k) main components simultaneously function. In the literature, this system is
usually referred to as the s-out-of-k G system.

In reality, there are many examples of a multicomponent system. For a communication
system with three transmitters, the average message load may be such that at least two
transmitters must be operational at all times; otherwise, critical messages may be lost. Thus,
the transmission subsystem functions can be a 2-out-of-3 G system. Another example in
the aircraft industry is that the Airbus A-380 has four engines and the airplane can fly if
and only if at least two of its four engines are functioning, and this case is referred to as a
2-out-of-4 G system.

Let X1, X2, . . . , Xk denote the strength variables of k components in an s-out-of-k G
system and follow a common cumulative distribution function (CDF), F(·). Each compo-
nent is subject to a stress, denoted by Y, which follows the CDF G(·). Bhattacharyya and
Johnson [6] provided the multicomponent stress–strength reliability (MSR), Rs,k, as follows:

Rs,k = P(at least s of the (X1, X2, . . . , Xk) exceed Y)

=
k

∑
i=s

(
k
i

) ∫ ∞

−∞
[1− F(t)]i[F(t)]k−idG(t). (1)

The s-out-of-k G system has attracted extensive attention and Rs,k inference has been
broadly investigated by numerous studies. These include multicomponent strength–stress
models for Kumaraswamy distribution by Dey et al. [7], based on Chen distribution by
Kayal [8], based on general class of inverse exponentiated distribution and proportional
reversed hazard rate distribution by Kizilaslan [9,10], based on bivariate Kumaraswamy
distribution by Kizilaslan and Nadar [11], based on Marshall-Olkin bivariate Weibull
distribution by Nadar and Kizilaslan [12], based on Rayleigh stress–strength model by
Rao [13], based on Burr XII distribution by Rao et al. [14], based on progressively Type-II
censored samples from generalized Pareto distribution by Sauer et al. [15], and based on
Rayleigh stress–strength model by Wang et al. [16].

The Burr XII distribution has gained much attention regarding the applications of
modeling in reliability studies in recent decades. Let T be the Burr XII distributed random
variable. Then, the CDF and probability density function (PDF) of T are respectively
given as

F(t; λ, α) = 1− (1 + tλ)−α and f (t; λ, α) = αλtλ−1(1 + tλ)−(α+1), t > 0, (2)

where λ > 0 is the inner shape parameter and α > 0 is the outer shape parameter. For easy
reference, the Burr XII distribution with parameters λ > 0 and α > 0 will be denoted by
BurrXII(λ, α), hereafter. The BurrXII(λ, α) was initially introduced by Burr [17]. Due to
two shape parameters, the BurrXII(λ, α) is a very important and flexible probability model
for any positive random variable. Tadikamalla [18] provided the link of BurrXII(λ, α) to
some widely used lifetime distributions such as Weibull, chi-square, Rice, and extreme
value models. Since then, many authors have investigated the inference methods with
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different applications of the Bur XII model. Kumar [19] studied the mathematical properties
for the moment-generating function, conditional moments, mean residual time and mean
past time, the mean deviation about mean and median, stochastic ordering, and SSR
estimates for the Burr XII distribution. Lio and Tsai [20] investigated the SSR estimates
using progressively first-failure-censored samples of strength and stress that are Burr
XII distributed. Wingo [21,22] explored the existence and uniqueness of the maximum
likelihood estimators of the Burr XII distribution parameters based on multiple censored
datasets. An example of the failure times of a certain electronic component was used
for illustration. Wu et al. [23] studied the failure-censored sampling plan for the Burr
XII distribution and used the proposed sampling for quality control applications, and
Zimmer et al. [24] used Burr XII distribution to characterize several real lifetime datasets
for reliability analysis, including the breakdown of an insulting fluid between electrodes at
a voltage of 34 kilovolts in minutes and the first-failure time of small electric carts.

In statistical inference, the sample size often has a strong impact on the validity of
results. Because modern products always feature high reliability and a long life-cycle,
complete failure times for all test units do not often obtain possibly in practice, except
censored failure times. The goal of this investigation is to develop an alternative novelty
inferential methodology for Rs,k when strength and stress variables follow the Burr XII
distributions under Type-II censoring on strength data. Three contributions of current
work are addressed as follows: the MSR model has been formulated under a censored
data scenario to save sample resource; the existence and uniqueness properties of the
maximum likelihood estimators of the model parameters and the associated estimates
for Rs,k are established to guarantee the maximum likelihood estimation method under
Type-II censoring; moreover, the proposed alternative novelty generalized estimates of the
model parameters and the associated estimates of Rs,k using pivotal quantities are shown
uniquely existence under Type-II censoring and the simulation study shows the proposed
generalized estimates of Rs,k to be competitive with the maximum likelihood ones. To our
best knowledge, the procedures developed in the current study have not appeared in the
literature for the Burr XII distribution.

The rest of this paper is organized as follows. In Section 2, the Type-II censored
strength and the associated stress samples for each s-out-of-k G system and the likelihood
function based on n systems are briefly described. Section 3 presents maximum likelihood-
based inferential approaches to estimate Rs,k when the latent strength and stress variables
follow Burr XII distributions. Theoretical results are provided to support the existence
and uniqueness of estimators. Meanwhile, asymptotic confidence intervals (ACIs) are also
developed based on delta method and bootstrap percentile procedure. Section 4 provides
inferences based on pivotal quantities and numerous theoretical results to support the
existence and uniqueness of estimators. To compare the equivalence of strength and stress
Burr XII inner shape parameters, a likelihood ratio test is presented in Section 5. Simulation
studies and a real data example are provided in Section 6 for illustration. Finally, some
concluding remarks are addressed in Section 7.

2. The G System Model and Likelihood Function

Let n s-out-of-k G systems be put on a life-testing experiment, where each system
contains k i.i.d. strength components subject to a commonly distributed stress. Under the
failure mechanism of the system, the samples of strength and stress can be, respectively,
presented as follows:

Strength sample observed Stress sample observed X11 X12 · · · X1s
...

...
. . .

...
Xn1 Xn2 · · · Xns

 and

 Y1
...

Yn

,
(3)
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where {Xi1, Xi2, . . . , Xis} are the first s strength samples with Xij ≤ Xis for 1 ≤ j ≤ s
under Type-II censoring and Yi is the associated common stress variable for the ith system,
i = 1, 2, . . . , n. Let the lifetimes of the i.i.d. system components follow the CDF FX(·) with
the PDF fX(·) and the associated stress variables follow the CDF FY(·) with the PDF is
fY(·). The joint likelihood function of samples described by (3) can be given as

L(data) ∝
n

∏
i=1

(
s

∏
j=1

fX(xij)

)
[1− FX(xis)]

k−s fY(yi). (4)

The likelihood function of (4) is a general form. When s = 1, it presents the likelihood
function for the conventional series system; although s = k, it is the likelihood function for
the parallel system.

3. The Maximum Likelihood Estimation of Rs,k

In this section, estimation is developed for Rs,k based on the maximum likelihood
method when the strength and stress variables have Burr XII distributions with various
parameter assumptions.

In general, let the observed strength sample, X = {Xi1, Xi2, . . . , Xis} and associ-
ated stress sample, Y = {Y1, Y2, . . . , Yn} for i = 1, 2, . . . , n of (3) be from BurrXII(λ1, α1)
and BurrXII(λ2, α2), respectively. Using Equations (2), the likelihood function (4) of
Θ = (λ1, α1, λ2, α2) based on samples of (3) can be represented as

L(Θ) ∝
n

∏
i=1

(
s

∏
j=1

f (xij; λ1, α1)

)
[1− F(xis; λ1, α1)]

k−s f (yi; λ2, α2)

∝ αns
1 λns

1 αn
2 λn

2

(
n

∏
i=1

s

∏
j=1

xλ1−1
ij

n

∏
i=1

yλ2−1
i

)
exp

{
−(α2 + 1)

n

∑
i=1

ln(1 + yα2
i )

}

× exp

{
−(α1 + 1)

n

∑
i=1

s

∑
j=1

ln(1 + xα1
ij )− α1(k− s)

n

∑
i=1

ln(1 + xλ1
is )

}
(5)

and the log-likelihood function without constant term can be obtained by

`(Θ) = ns(ln λ1 + ln α1) + n(ln λ2 + ln α2) +
n

∑
i=1

s

∑
j=1

(λ1 − 1) ln(xij)

+
n

∑
i=1

(λ2 − 1) ln(yi)− (α1 + 1)

(
n

∑
i=1

s

∑
j=1

ln(1 + xλ1
ij )

)
− α1

(
(k− s)

n

∑
i=1

ln(1 + xλ1
is )

)

− (α2 + 1)
n

∑
i=1

ln(1 + yλ2
i ). (6)

3.1. Case 1: Common Inner Shape Parameter

Let λ1 = λ2 = λ. Equation (1) can be represented as follows:

Rs,k =
k

∑
i=s

(
k
i

) ∫ ∞

−∞
[1− F(t; λ, α1)]

i[F(t; λ, α1)]
k−idF(t; λ, α2)

=
k

∑
i=s

k−i

∑
j=0

(
k
i

)(
k− i

j

)
(−1)jα2

(i + j)α1 + α2
(7)
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and the likelihood function of (5) based on observed samples of (3) will be reduced to the
following one for Θ1 = (α1, α2, λ),

L1(Θ1) ∝
n

∏
i=1

(
s

∏
j=1

f (xij; λ, α1)

)
[1− F(xis; λ, α1)]

k−s f (yi; λ, α2)

∝ αns
1 αn

2 λn(s+1)

(
n

∏
i=1

s

∏
j=1

xλ−1
ij

)(
n

∏
i=1

yλ−1
i

)
·

n

∏
i=1

(1 + yλ
i )
−α2−1

(
n

∏
i=1

s

∏
j=1

(1 + xλ
ij)
−(α1+1)

)
n

∏
i=1

(1 + xλ
is)
−α1(k−s) (8)

and the associated log-likelihood function without constant term is given by

`1(Θ1) = ns ln(α1) + n ln(α2) + n(s + 1) ln(λ) + (λ− 1)

(
n

∑
i=1

s

∑
j=1

ln(xij) +
n

∑
i=1

ln(yi)

)

− (α1 + 1)

(
n

∑
i=1

s

∑
j=1

ln(1 + xλ
ij)

)
− α1(k− s)

n

∑
i=1

ln(1 + xλ
is)− (α2 + 1)

n

∑
i=1

ln(1 + yλ
i ). (9)

3.1.1. Point Estimator for Rs,k

The partial derivatives of `1(Θ1) with respective to α1, α2 and λ can be given as

∂`1(Θ1)

∂α1
=

ns
α1
−

n

∑
i=1

s

∑
j=1

ln(1 + xλ
ij)− (k− s)

n

∑
i=1

ln(1 + xλ
is) (10)

∂`1(Θ1)

∂α2
=

n
α2
−

n

∑
i=1

ln(1 + yλ
i ) (11)

∂`1(Θ1)

∂λ
=

n(s + 1)
λ

+

(
n

∑
i=1

s

∑
j=1

ln(xij) +
n

∑
i=1

ln(yi)

)
− (α2 + 1)

n

∑
i=1

yλ
i ln(yi)

1 + yλ
i

− (α1 + 1)

(
n

∑
i=1

s

∑
j=1

xλ
ij ln(xij)

1 + xλ
ij

)
− α1(k− s)

n

∑
i=1

xλ
is ln(xis)

1 + xλ
is

. (12)

The MLE of (α1, α2, λ) is the solution to the normal equation ∇`1(Θ1) = (0, 0, 0),
where

∇`1(Θ1) =

(
∂`1(Θ1)

∂α1
,

∂`1(Θ1)

∂α2
,

∂`1(Θ1)

∂λ

)
is the gradient of `1(Θ1) with respect to α1, α2, λ. The MLEs can be established through
Theorems 1 and 2. It is worth mentioning that no literature has provided the following
theories, yet.

Theorem 1. Given a positive value of α1 and a positive value of α2, if and only if either one of
strength or stress contains at least one observation different from unity then the MLE (λ̂) of λ is
uniquely defined as the solution to the following equation,

n(s + 1)
λ

+

(
n

∑
i=1

s

∑
j=1

ln(xij) +
n

∑
i=1

ln(yi)

)
− (α2 + 1)

n

∑
i=1

yλ
i ln(yi)

1 + yλ
i
− α1(k− s)

n

∑
i=1

xλ
is ln(xis)

1 + xλ
is

− (α1 + 1)

(
n

∑
i=1

s

∑
j=1

xλ
ij ln(xij)

1 + xλ
ij

)
= 0 (13)

Proof. See Appendix A.
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Theorem 2. Let n ≥ 2 and s ≥ 2. Suppose that at least two observations from the strength and
stress are different. Then, the MLEs of α1, α2 and λ are uniquely defined if and only if at least one
observation from strength and stress less than 1.

Proof. See Appendix B.

Because the MLE λ̂ does not have an analytic form in the nonlinear Equation (A4), it
can be obtained using an iterative procedure such as the Newton–Raphson method with
an initial guess can be a random generated value from uniform distribution over (0, 2)
or uniroot function with an arbitrary interval and option extendInt = “yes" in R. In this
work, uniroot function will be used. Then, the MLEs of α1 and α2 can be obtained from
Equation (A3) and expressed by

α̂1 =
ns

∑n
i=1 ∑s

j=1 ln(1 + xλ̂
ij) + (k− s)∑n

i=1 ln(1 + xλ̂
is)

and
α̂2 =

n

∑n
i=1 ln(1 + yλ̂

i )

respectively. Therefore, the MLE of Rs,k can be obtained from (7) and expressed by

R̂s,k =
k

∑
i=s

k−i

∑
j=0

(
k
i

)(
k− i

j

)
(−1)jα̂2

(i + j)α̂1 + α̂2
.

3.1.2. Asymptotic Confidence Interval for Rs,k

Because it is difficult to derive the exact sampling distribution of R̂s,k, the exact
confidence interval cannot be available. In this subsection, two ACIs of Rs,k are constructed
by using the asymptotic normal distribution along with the delta method and the bootstrap
sampling technique, respectively.

The observed Fisher information matrix of Θ1 is given by

I(Θ1) =


− ∂2`1

∂α2
1
− ∂2`1

∂α1∂α2
− ∂2`1

∂α1∂λ

− ∂2`1
∂α1∂α2

− ∂2`1
∂α2

2
− ∂2`1

∂α2∂λ

− ∂2`1
∂α1∂λ − ∂2`1

∂α2∂λ − ∂2`1
∂λ2

,

where the second derivatives can be acquired directly. The detailed expressions of the
second derivatives are omitted here for concision. An ACI can be obtained using delta
method based on Theorems 3 and 4.

Theorem 3. When n→ ∞,
√

n
(
Θ̂1 −Θ1

) d−→ N(0, nI−1(Θ1)), where Θ̂1 = (α̂1, α̂2, λ̂) is the

associated MLE of Θ1 and ‘ d−→’ stands for ‘converges in law’.

Proof. Using the asymptotic properties of MLEs and multivariate central limit theorem,
the result can be proven.

Based on Theorem 3, the following result is provided.

Theorem 4. Let Rs,k be defined by (7). If n→ ∞, then

√
n
(

R̂s,k − Rs,k
) d−→ N(0, n ∑(Θ1)),

where R̂s,k is MLE of Rs,k, ∑(Θ1) =
(

∂Rs,k
∂Θ1

)T
I−1(Θ1)

(
∂Rs,k
∂Θ1

)
and ∂Rs,k

∂Θ1
=
(

∂Rs,k
∂α1

, ∂Rs,k
∂α2

, ∂Rs,k
∂λ

)T
.
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Proof. See Appendix C.

Substituting Θ1 by its MLE, Θ̂1 and given arbitrary 0 < γ < 1, a 100× (1− γ)% ACI
of Rs,k can be formed by Theorem 4 as,(

R̂s,k − zγ/2

√
V̂ar(R̂s,k), R̂s,k + zγ/2

√
V̂ar(R̂s,k)

)
,

where V̂ar(R̂s,k) =
(̂

∂Rs,k
∂Θ1

)T

V̂ar(Θ̂1)
(̂

∂Rs,k
∂Θ1

)
, V̂ar(Θ̂1) = I−1(Θ̂1) and

̂(∂Rs,k

∂Θ1

)
=

(
∂Rs,k

∂α1
,

∂Rs,k

∂α2
,

∂Rs,k

∂λ

)T∣∣∣
Θ1=Θ̂1

.

The ACI obtained by the procedure mentioned above may have a negative lower
bound. To remove this drawback, the logarithmic transformation and delta methods can
be applied to develop the asymptotic normal distribution of ln R̂s,k as follows:

ln R̂s,k − ln Rs,k

Var(ln R̂s,k)

d→ N(0, 1).

The 100× (1− γ)% ACI of Rs,k can alternatively be derived as, R̂s,k

exp
(

zγ/2

√
V̂ar(ln R̂s,k)

) , R̂s,k exp
(

zγ/2

√
V̂ar(ln R̂s,k)

),

where V̂ar(ln R̂s,k) = V̂ar(R̂s,k)/R̂2
s,k by delta method via Taylor’s expansion.

For complementary and comparison purposes, a bootstrap confidence interval (BCI)
for Rs,k is further established using the parametric bootstrap procedure and the details
are provided in Algorithm 1. For more detail information about the parametric bootstrap
procedure, one may refer to Efron [25] and Hall [26].

Algorithm 1: Parametric Bootstrap Percentile for the Case of λ1 = λ2 = λ

Step 1 Based on origin strength and stress data X = {Xi1, Xi2, Xi3, . . . , Xis : i = 1, . . . , n} and
Y = {Y1, Y2, Y3, . . . , Yn}, compute MLEs α̂1, α̂2 and λ̂ of the parameters α1, α2 and λ.

Step 2 For given n, s and k, generate a Type-II bootstrap sample x∗ = {x∗(i1), x∗(i2), x∗(i3) . . . , x∗(is)}
from BurrXII(λ̂, α̂1) for i = 1, 2, . . . , n; whereas generate a complete i.i.d. sample
y∗ = {y∗(1), y∗(2), . . . , y∗(n)} from BurrXII(λ̂, α̂2).

Step 3 Based on (x∗, y∗), compute bootstrap MLEs α̂∗1 , α̂∗2 and λ̂∗ of the parameters α1, α2 and λ

and the bootstrap MLE R∗s,k of the multicomponent strength–stress reliability Rs,k.
Step 4 Repeat Steps 2 and 3 N times, and rearrange the obtained N bootstrap MLEs of Rs,k in

ascending order as R∗[1]s,k , R∗[2]s,k , . . . , R∗[N]
s,k .

Step 5 Given 0 < γ < 1, the 100× (1− γ)% BCI can be constructed as(
R∗[γN/2]

s,k , R∗[(1−γ/2)N]
s,k

)
,

where [y] denotes the greatest integer less than or equal to y.
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3.2. Case 2: Unequal Inner Shape Parameters

Let the strength variable X = {Xi1, Xi2, . . . , Xis : i = 1, 2, . . . , n} follow BurrXII(λ1, α1)
and the associated stress variable Y = {Y1, Y2, . . . , Ys} follow BurrXII(λ2, α2), where λ1 6=
λ2 and α1 6= α2. Under this condition, Rs,k can be expressed by

Rs,k =
k

∑
i=s

(
k
i

) ∫ ∞

0
[1− F(t; λ1, α1)]

i[F(t; λ1, α1)]
k−idF(t; λ2, α2)

=
k

∑
i=s

k−i

∑
j=0

(
k
i

)(
k− i

j

)
(−1)j

∫ 1

0

(
1 + (u−1/α2 − 1)λ1/λ2

)−α1(i+j)
du.

It is worth mentioning that no existing study has published the MSR parameter based
on Burr XII distributions under unequal parameters based on our best knowledge.

3.2.1. Point Estimator for Rs,k

The partial derivatives of `(Θ) with respective to α1, α2, λ1 and λ2 can be given as

∂`(Θ)

∂α1
=

ns
α1
−

n

∑
i=1

s

∑
j=1

ln(1 + xλ1
ij )− (k− s)

n

∑
i=1

ln(1 + xλ1
is ), (14)

∂`(Θ)

∂α2
=

n
α2
−

n

∑
i=1

ln(1 + yλ2
i ), (15)

∂`(Θ)

∂λ1
=

ns
λ1

+
n

∑
i=1

s

∑
j=1

ln(xij)

− (α1 + 1)

 n

∑
i=1

s

∑
j=1

xλ1
ij ln(xij)

1 + xλ1
ij

− α1(k− s)
n

∑
i=1

xλ1
is ln(xis)

1 + xλ1
is

(16)

∂`(Θ)

∂λ2
=

n
λ2

+
n

∑
i=1

ln(yi)− (α2 + 1)
n

∑
i=1

yλ2
i ln(yi)

1 + yλ2
i

. (17)

The MLE of Θ is the solution to the normal equation ∇`(Θ) = (0, 0, 0, 0), where

∇`(Θ) = (
∂`(Θ)

∂α1
,

∂`(Θ)

∂α2
,

∂`(Θ)

∂λ1
,

∂`(Θ)

∂λ2
)

is the gradient of `(Θ) with respect to α1, α2, λ1, λ2. The existence and uniqueness of MLE,
Θ̂, can be verified by Theorem 5 that can be proved following the similar proof procedures
of Theorems 1 and 2, and the details are omitted for concision.

Theorem 5. If and only if at least one of latent strength and stress are different from unity, then
the MLEs λ̌1, λ̌2, α̌1, α̌2 of λ1, λ2, α1, α2 uniquely exist and are given by:

α̌1 =
ns

∑n
i=1 ∑s

j=1 ln(1 + xλ̌1
ij ) + (k− s)∑n

i=1 ln(1 + xλ̌1
is )

and
α̌2 =

n

∑n
i=1 ln(1 + yλ̌2

i )
,

where λ̌1 and λ̌2 are solutions of the following equations:
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ns
λ1

+
n

∑
i=1

s

∑
j=1

ln(xij)− (α1 + 1)

 n

∑
i=1

s

∑
j=1

xλ1
ij ln(xij)

1 + xλ1
ij

− α1(k− s)
n

∑
i=1

xλ1
is ln(xis)

1 + xλ1
is

= 0,

n
λ2

+
n

∑
i=1

ln(yi)− (α2 + 1)
n

∑
i=1

yλ2
i ln(yi)

1 + yλ2
i

= 0.

Using the invariant property of maximum likelihood estimation, the MLE of Rs,k
under unequal parameters is given by

Řs,k =
k

∑
i=s

k−i

∑
j=0

(
k
i

)(
k− i

j

)
(−1)j

∫ 1

0

(
1 + (u−1/α̌2 − 1)λ̌1/λ̌2

)−α̌1(i+j)
du.

3.2.2. Asymptotic Confidence Interval for Rs,k

The observed Fisher information matrix of Θ is given by

J(Θ) =


− ∂2`2

∂λ2
1
− ∂2`1

∂λ1∂α1
0 0

− ∂2`2
∂λ1∂α1

− ∂2`1
∂α2

1
0 0

0 0 − ∂2`2
∂λ2

2
− ∂2`2

∂λ2∂α2

0 0 − ∂2`2
∂λ2∂α2

− ∂2`2
∂α2

2


where the second derivatives can be obtained directly, and the detailed expressions are
omitted for concision.

Following a similar procedure to obtain Theorem 4 and substituting Θ by Θ̌, given an
arbitrary 0 < γ < 1, an 100× (1− γ)% ACI of Rs,k can be developed as follows:(

Řs,k − zγ/2

√
Ṽar(Řs,k), Řs,k + zγ/2

√
Ṽar(Řs,k)

)
,

where

Ṽar(Řs,k) =

(
∂̃Rs,k

∂Θ

)T

Ṽar(Θ̌)

(
∂̃Rs,k

∂Θ

)
, Ṽar(Θ̌) = J−1(Θ̌),

and

∂̃Rs,k

∂Θ
=

(
∂Rs,k

∂λ1
,

∂Rs,k

∂α1
,

∂Rs,k

∂λ2
,

∂Rs,k

∂α2

)T∣∣∣
Θ=Θ̌

.

An alternative 100× (1− γ)% ACI of Rs,k can be obtained by Řs,k

exp
(

zγ/2

√
Ṽar(ln Řs,k)

) , Řs,k exp
(

zγ/2

√
Ṽar(ln Řs,k)

),

where Ṽar(ln Řs,k) = Ṽar(Řs,k)/Ř2
s,k by delta method via Taylor’s expansion.

Similarly, the BCI of Rs,k under unequal inner shape parameter case can be still
obtained through a procedure such as Algorithm 1 and the details are omitted for concision.

4. Pivotal-Based Inference for Rs,k

In this subsection, pivotal quantities will be derived by using the stress sample from
BurrXII(λ2, α2) and strength sample from BurrXII(λ1, α1), and then the pivotal quantities-
based estimators for Rs,k will be uniquely established through Theorems 6–8.
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Theorem 6. Let X = {Xi1, Xi2, . . . , Xis : i = 1, 2, . . . , n} be the strength sample of (3) from
BurrXII(λ1, α1). Then

PX(λ1) = 2
n

∑
i=1

s−1

∑
j=1

ln

 (k− s) ln(1 + Xλ1
is ) + ∑s

r=1 ln(1 + Xλ1
ir )

(k− j) ln(1 + Xλ1
ij ) + ∑

j
r=1 ln(1 + Xλ1

ir )


and

QX(α1, λ1) = 2α1

n

∑
i=1

{
(k− s) ln(1 + Xλ1

is ) +
s

∑
r=1

ln(1 + Xλ1
ir )

}

are statistically independent and follow the chi-square distributions with 2n(s− 1) and 2ns degrees
of freedom, respectively. Hence, PX(λ1) and QX(α1, λ1) are pivotal quantities for λ1 and α1.

Proof. See Appendix D.

Theorem 7. Let Y = (Y1, Y2, . . . , Yn) be the stress sample of (3) from BurrXII(λ2, α2). Then

PY(λ2) = 2
n−1

∑
j=1

ln

 ∑n
r=1 ln(1 + Yλ2

(r))

(n− j) ln(1 + Yλ2
(j)) + ∑

j
r=1 ln(1 + Yλ2

(r))


and

QY(α2, λ2) = 2Mn = 2α2

n

∑
r=1

ln(1 + Yλ2
(r)),

where y(j) is jth order statistic of Y, are statistically independent and have the chi-square distribu-
tions with 2(n− 1) and 2n degrees of freedom, respectively. Hence, PY(λ2) and QY(α2, λ2) are
pivotal quantities for λ2 and α2,

Proof. See Appendix E.

To develop estimators for model parameters and Rs,k based on pivotal quantities,
Lemma 1 is needed and provided below.

Lemma 1. For arbitrary values of a and b with 0 < a < b, the function K(t) =
(

ln(1+bt)
ln(1+at)

)
increases in t.

Proof. See Appendix F.

Corollary 1. Pivotal quantities PX(λ1) and PY(λ2) are increasing functions.

Proof. See Appendix G.

4.1. Case 1: Pivotal-Based Inference under Common Inner Shape Parameter

When both inner shape parameters λ1 = λ2 = λ, let PX
1 (λ) = PX(λ),

PY
1 (λ) = PY(λ), QX

1 (α1, λ) = QX(α1, λ1) and QY
1 (α2, λ) = QY(α2, λ2). Because PX(λ)

and PY(λ) are independent, Theorems 6 and 7 imply the pivotal quantity,
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P1(λ) = PX
1 (λ) + PY

1 (λ)

= 2
n

∑
i=1

s−1

∑
j=1

ln

 (k− s) ln(1 + Xλ
is) + ∑s

r=1 ln(1 + Xλ
ir)

(k− j) ln(1 + Xλ
ij) + ∑

j
r=1 ln(1 + Xλ

ir)


+ 2

n−1

∑
j=1

ln

 ∑n
r=1 ln(1 + Yλ

(r))

(n− j) ln(1 + Yλ
(j)) + ∑

j
r=1 ln(1 + Yλ

(r))


has the chi-square distribution with 2(ns− 1) degree of freedom. Moreover, from Corollary 1
that P1(λ) is an increasing function of λ.

For a given P1 ∼ χ2
2(ns−1), the equation P1(λ) = P1 has an unique λ solution, labeled

by h1(P1; X, Y) that can be obtained using the bisection method or the R function ‘uniroot’.
The solution is a generalized pivotal quantity to estimate λ. Meanwhile, from Theorem 6,
QX

1 ∼ χ2
2ns and

α1 =
QX

1
HX

1 [λ]
, where HX

1 [λ] = 2
n

∑
i=1

{
(k− s) ln(1 + xλ

is) +
s

∑
r=1

ln(1 + xλ
ir)

}
.

Following the substitution method of Weerahandi [27], a generalized pivotal quantity,
denoted by SX

1 , to estimate α1 can be uniquely obtained by substituting h1(P1; X, Y) for λ

in α1 =
QX

1
HX

1 [λ]
and the result can be represented as follows:

SX
1 =

QX
1

2 ∑n
i=1

{
(k− s) ln(1 + xh1(P1;x,y)

is ) + ∑s
r=1 ln(1 + xh1(P1;x,y)

ir )
}

=
∑n

i=1

{
(k− s) ln(1 + xh1(P1;X,Y)

is ) + ∑s
r=1 ln(1 + xh1(P1;X,Y)

ir )
}

∑n
i=1

{
(k− s) ln(1 + xh1(P1;x,y)

is ) + ∑s
r=1 ln(1 + xh1(P1;x,y)

ir )
} · α1

=
QX

1
HX

1 [h1(P1; x, y)]
,

where (x, y) is the observation of sample (X, Y). It should be mentioned that the distribution
of SX

1 is free from any unknown parameters in its original expression and SX
1 reduces to α1

when (X, Y) = (x, y). Therefore, SX
1 is a generalized pivotal quantity for α1. Similarly, from

Theorem 7, a generalized pivotal quantity for parameter α2 can be derived as

SY
1 =

QY
1

HY
1 [h1(P1; x, y)]

, where HY
1 [λ] = 2

n

∑
r=1

[
ln(1 + yλ

(r))
]

and QY
1 ∼ χ2

2n.

A generalized pivotal quantity for Rs,k can be developed as

W1 =
k

∑
i=s

k−i

∑
j=0

(
k
i

)(
k− i

j

)
(−1)j

1 + (i + j)QX
1

QY
1

HY
1 [h1(P1;x,y)]

HX
1 [h1(P1;x,y)]

.

The procedure shown in Algorithm 2 is given to obtain a 100× (1− γ)% generalized
confidence interval (GCI) of Rs,k via using the pivotal-based estimation method under the
common inner shape parameter case.
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Algorithm 2: Pivotal-based estimation for Rs,k with the common λ parameter.

Step 1 Generate a realization p1 of P1 from χ2
2(ns−1). Then, an observation h1 of h1(P1; X, Y) can

be obtained from the equation of P1(λ) = p1.
Step 2 Generate random data for QX

1 and QY
1 from χ2

2ns and χ2
2n, respectively. Then, compute W1.

Step 3 Repeat Step 1 and 2 N times, one can obtain N values of W1 as W(1)
1 , W(2)

1 , . . . , W(N)
1 .

Step 4 Two types of point estimators are proposed here. One natural generalized point estimator
for Rs,k is given by

Ŕs,k =
1
N

N

∑
j=1

W(j)
1 .

Moreover, an alternative point estimator using Fisher Z transformation is given as

ŔF
s,k =

exp
{

1
N ∑N

j=1 ln
[

1+W(j)
1

1−W(j)
1

]}
− 1

exp
{

1
N ∑N

j=1 ln
[

1+W(j)
1

1−W(j)
1

]}
+ 1

.

Step 5 Arrange all estimates of W1 in ascending order as W [1]
1 , W [2]

1 , . . . , W [N]
1 . For arbitrary

0 < γ < 1, a series of 100× (1− γ)% confidence intervals of Rs,k can be constructed as

(W [j]
1 , W [j+N−[Nγ+1]]

1 ), j = 1, 2, . . . , [Nγ], where [t] denotes the greatest integer less than
or equal to t. Therefore, a 100× (1− γ)% GCI of Rs,k can be constructed as the j∗th one
satisfying:

W [j∗+N−[Nγ+1]]
1 −W [j∗ ]

1 =
[Nγ]
min
j=1

(W [j+N−[Nγ+1]]
1 −W [j]

1 ).

Remark 1. Using pivotal quantity P1(λ), for arbitrary 0 < γ < 1, a 100× (1− γ)% GCI exact
confidence interval for λ is given by(

h1(χ
1−γ/2
2(ns−1); X, Y), h1(χ

γ/2
2(ns−1); X, Y)

)
,

where χ
γ
k denotes the right-tail γth quantile of the chi-square distribution with k degrees of freedom.

Meanwhile, the 100× (1− γ)% GCI exact confidence regions for (λ, α1) and (λ, α2) can be
constructed from (P1(λ), QX

1 (α1, λ)), and (P1(λ), QY
1 (α2, λ)) as follows:(λ, α1) : h1(χ

1−
√

1−γ
2

2(ns−1); X, Y) < λ < h1(χ
1+
√

1−γ
2

2(ns−1); X, Y),
χ

1−
√

1−γ
2

2ns
HX

1 [λ]
< α1 <

χ
1+
√

1−γ
2

2ns
HX

1 [λ]


and(λ, α2) : h1(χ

1−
√

1−γ
2

2(ns−1); X, Y) < λ < h1(χ
1+
√

1−γ
2

2(ns−1); X, Y),
χ

1−
√

1−γ
2

2n
HY

1 [λ]
< α2 <

χ
1+
√

1−γ
2

2n
HY

1 [λ]

.

Remark 2. Consider the following null hypothesis H0 and alternative hypothesis H1,

(a) H0 : λ ≤ λ0 vs. H1 : λ > λ0,

(b) H0 : λ ≥ λ0 vs. H1 : λ < λ0,

(c) H0 : λ = λ0 vs. H1 : λ 6= λ0.
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For arbitrary 0 < γ < 1, the decision rule to reject the null hypothesis in (a), (b), (c) can be
expressed by

(a)′
{

P1(λ0) ≥ χ
γ
2(ns−1)

}
,

(b)′
{

P1(λ0) ≤ χ
γ
2(ns−1)

}
,

(c)′
{

P1(λ0) ≤ χ
γ/2
2(ns−1), or P1(λ0) ≥ χ

1−γ/2
2(ns−1)

}
,

respectively.

4.2. Case 2: Pivotal-Based Inference under Unequal Inner Shape Parameters

When both inner shape parameters λ1 6= λ2, let PX
2 (λ1) = PX(λ1), PY

2 (λ2) = PY(λ2),
QX

2 (α1, λ1) = QX(α1, λ1) and QY
2 (α2, λ2) = QY(α2, λ2). From Theorems 6 and 7, one can

directly have

Theorem 8. Let X = {Xi1, Xi2, . . . , Xis : i = 1, 2, . . . , n} and Y = {Y1, X2, . . . , Yn} be indepen-
dent strength and stress variables of (3) from BurrXII(λ1, α1) and BurrXII(λ2, α2), respectively.
Denote pivotal quantities,

PX
2 (λ1) = 2

n

∑
i=1

s−1

∑
j=1

ln

 (k− s) ln(1 + Xλ1
is ) + ∑s

r=1 ln(1 + Xλ1
ir )

(k− j) ln(1 + Xλ1
ij ) + ∑

j
r=1 ln(1 + Xλ1

ir )

,

QX
2 (α1, λ1) = 2α1

n

∑
i=1

{
(k− s) ln(1 + Xλ1

is ) +
s

∑
r=1

ln(1 + Xλ1
ir )

}
,

and

PY
2 (λ2) = 2

n−1

∑
j=1

ln

 ∑n
r=1 ln(1 + Yλ2

(r))

(n− j) ln(1 + Yλ2
(j)) + ∑

j
r=1 ln(1 + Yλ2

(r))

,

QY
2 (α2, λ2) = 2α2

n

∑
r=1

ln(1 + Yλ2
(r)).

Then,

• PX
2 (λ1) ∼ χ2

2n(s−1), QX
2 (α1, λ1) ∼ χ2

2ns are statistically independent;

• PY
2 (λ2) ∼ χ2

2(n−1), QY
2 (α2, λ2) ∼ χ2

2n are statistically independent.

Similar to the process in Section 3, for given PX
2 ∼ χ2

2n(s−1) and PY
2 ∼ χ2

2(n−1), denote

h2(PX
2 ; X) and h2(PY

2 ; Y) as the solutions of equations PX
2 (λ1) = PX

2 and PY
2 (λ2) = PY

2 ,
respectively. Using the substitution method of Weerahandi [27], the generalized pivotal
quantities for α1 and α2 can be constructed, respectively, by

SX
2 =

QX
2

HX
2 [h2(PX

2 ; x)]

with QX
2 ∼ χ2

2ns and

HX
2 [λ1] = 2

n

∑
i=1

{
(k− s) ln(1 + xλ1

is ) +
s

∑
r=1

ln(1 + xλ1
ir )

}
,
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whereas,

SY
2 =

QY
2

HY
2 [h2(PY

2 ; y)]
with QX

2 ∼ χ2
2n and HY

2 [λ2] = 2
n

∑
r=1

ln(1 + Yλ2
(r)).

Therefore, a generalized pivotal quantity for Rs,k can be expressed as,

W2 =
k

∑
i=s

k−i

∑
j=0

(
k
i

)(
k− i

j

)
(−1)j

∫ 1

0

(
1 + (u−1/SY

2 − 1)h2(PX
2 ;X)/h2(PY

2 ;Y)
)−SX

2 (i+j)
du.

Meanwhile, the aforementioned generalized estimates of Rs,k can be obtained via
following the procedures of Algorithm 3.

Algorithm 3: Pivotal-based estimation for Rs,k when λ1 6= λ2

Step 1 Generate a realization p21 of PX
2 from χ2

2n(s−1). Then, an observation h21 of h2(PX
2 ; X)

can be obtained from the equation PX
2 (λ1) = p21. Similarly, generate a realization

p22 of PY
2 from χ2

2(n−1). An observation h22 of h2(PY
2 ; Y) is obtained from the

equation PY
2 (λ2) = p22.

Step 2 Generate random data for QX
2 and QY

2 from χ2
2ns and χ2

2n, respectively. Then,
compute W2.

Step 3 Repeat Step 1 and 2 N times, one can obtain N values of W2 as W(1)
2 , W(2)

2 , . . . , W(N)
2 .

Step 4 A natural generalized estimator R̀s,k and a Fisher Z transformation-based estimator
R̀F

s,k for Rs,k can be constructed as:

R̀s,k =
1
N

N

∑
j=1

W(j)
2 and R̀F

s,k =

exp
{

1
N ∑N

j=1 ln
[

1+W(j)
2

1−W(j)
2

]}
− 1

exp
{

1
N ∑N

j=1 ln
[

1+W(j)
2

1−W(j)
2

]}
+ 1

.

Step 5 Arrange all estimates of W2 in ascending order as W [1]
2 , W [2]

2 , . . . , W [N]
2 . For arbitrary

0 < γ < 1, a series of 100× (1− γ)% confidence intervals of Rs,k can be constructed

as (W [j]
2 , W [j+N−[Nγ+1]]

2 ), j = 1, 2, . . . , [Nγ]. Therefore, a 100× (1− γ)% GCI of
Rs,k can be obtained as the j∗th one satisfying:

W [j∗+N−[Nγ+1]]
2 −W [j∗ ]

2 =
[Nγ]

min
j=1

(W [j+N−[Nγ+1]]
2 −W [j]

2 ).

Similarly, some applications are also presented below.

Remark 3. For arbitrary 0 < γ < 1, the 100× (1− γ)% exact confidence intervals of λ1 and λ2
are given by:(

h2(χ
1−γ/2
2n(n−1); X), h2(χ

γ/2
2n(s−1); X)

)
and

(
h2(χ

1−γ/2
2(n−1); Y), h2(χ

γ/2
2(n−1); Y)

)
,

respectively. Furthermore, exact confidence regions for (λ1, α1) and (λ2, α2) are constructed by(λ1, α1) : h2(χ
1−
√

1−γ
2

2n(s−1); X) < λ1 < h2(χ
1+
√

1−γ
2

2n(s−1); X),
χ

1−
√

1−γ
2

2ns
HX

2 [λ1]
< α1 <

χ
1+
√

1−γ
2

2ns
HX

2 [λ1]


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and (λ2, α2) : h2(χ
1−
√

1−γ
2

2(n−1) ; Y) < λ2 < h2(χ
1+
√

1−γ
2

2(n−1) ; Y),
χ

1−
√

1−γ
2

2n
HY

2 [λ2]
< α2 <

χ
1+
√

1−γ
2

2n
HY

2 [λ2]

,

respectively.

Remark 4. For i = 1, 2, consider the following null hypothesis H0 and alternative hypothesis H1,

(d) H0 : λi ≤ λi0 vs. H1 : λi > λi0,

(e) H0 : λi ≥ λi0 vs. H1 : λi < λi0,

( f ) H0 : λi = λi0 vs. H1 : λi 6= λi0.

Therefore, under the significance level 0 < γ < 1, the decision rule to reject the null hypothesis
H0 in (d), (e), ( f ) for λ1 and λ2 can be expressed as

(d)′
{

PX
2 (λ10) ≥ χ

γ
2n(s−1)

}
,

(e)′
{

PX
2 (λ10) ≤ χ

γ
2n(s−1)

}
,

( f )′
{

PX
2 (λ10) ≤ χ

γ/2
2n(s−1), or PX

2 (λ10) ≥ χ
1−γ/2
2n(s−1)

}
,

and

(d)′′
{

PY
2 (λ20) ≥ χ

γ
2(n−1)

}
,

(e)′′
{

PY
2 (λ20) ≤ χ

γ
2(n−1)

}
,

( f )′′
{

PY
2 (λ20) ≤ χ

γ/2
2(n−1), or PX

2 (λ20) ≥ χ
1−γ/2
2(n−1)

}
.

respectively.

Remark 5. It is worth mentioning that the value of s from the s-out-of-k G system must be at least
2 for computational purposes; otherwise, the aforementioned pivotal quantities PX

i and QX
i , i = 1, 2

cannot be constructed. In this case, the strength variables X11, X21, . . . , Xn1 can be viewed as a
random sample of size n from lifetime distribution with CDF F(t; α, λ) = 1− (1 + tλ)−α. As an
alternative approach, one can use the following pivotal quantities,

PX
i (λ(·)) = 2

n−1

∑
j=1

ln

 ∑n
r=1 ln(1 + X

λ(·)
(r1))

(n− j) ln(1 + X
λ(·)
(j1)) + ∑

j
r=1 ln(1 + X

λ(·)
(r1))


and

QX
i (α1, λ(·)) = 2α1

n

∑
r=1

ln(1 + X
λ(·)
(r1)),

where λ(·) = λ if λ1 = λ2 = λ and λ(·) = λ1 otherwise. X(11), X(21), . . . , X(n1) are the order
statistic of X11, X21, . . . , Xn1 in ascending order, and PX

i (λ(·)) and QX
i (α1, λ(·)) have the chi-

square distributions with 2(n− 1) and 2n degrees of freedom, respectively. Therefore, previous
generalized point and confidence interval estimates could also be developed.

5. Testing Problem on Model Identification

The MSR parameter for a multicomponent system has been studied based on Burr XII
distributions under both cases of common and unequal inner shape parameters. Practically,
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it may be important to test whether the inner shape parameters, λ1 and λ2, from two Burr
XII distributions are equal or not. Therefore, a likelihood ratio test along with hypothesis is
presented as follows:

H0 : λ1 = λ2 = λ vs H1 : λ1 6= λ2.

As n→ ∞, the likelihood ratio statistic has the following property:

−2{`2(Θ̂)− `2(Θ)} → χ2
1, (18)

where Θ̂ = (λ̂, α̂1, λ̂, α̂2). Hence, the likelihood ratio test for H0 vs. H1 can be established
by using the test statistic of −2{`2(Θ̂)− `2(Θ)} and the reject region is given by

−2{`2(Θ̂)− `2(Θ)} > c∗,

where c∗ satisfies P
(
χ2

1 > c∗
)

size of the test.

6. Illustration via Numerical Studies
6.1. Simulation Studies

The goal of this subsection is to investigate the quality of the novelty generalized
estimate of Rs,k and compare the quality the novelty generalized estimate of Rs,k with the
typical MLE. In the simulation design, we will evaluate the performance of point estimation
and interval estimation based on different estimation methods. Then, we suggest a most
competitive estimation method for evaluating the target parameter of Rs,k. All findings in
the simulation study will be summarized in the Discussion Subsection. Let R̄s,k present any
aforementioned estimate for Rs,k. The performance evaluation will be investigated by the
following criteria quantities:

• for point estimator

– mean square error (MSE), which will be computed by 1
N ∑(R̄s,k − Rs,k)

2;
– average absolute bias (AB), which will be calculated by 1

N ∑ |R̄s,k − Rs,k|;
• for confidence interval estimator

– coverage probability (CP) of a 100(1− γ)% confidence interval estimator for Rs,k,
which is defined as the relative frequency of the estimated confidence intervals
containing the true value of the parameter;

– average width (AW) of a 100(1 − γ)% confidence interval estimator for Rs,k,
which is defined as the average length of the estimated confidence intervals.

Simulation parameter inputs include λ1, α1, λ2, α2 for both Burr XII distributions, s
and k for the multicomponent G system and sample size n. Some different values of
λ1, α1, λ2, α2, s and k that are closed to the multicomponent G system based on Burr XII
model fitting parameters to the real dataset presented in the next section will be used for
the current simulation study. The sample sizes n considered are from small, medium and
large. For each combination of simulation input parameters, the simulation was conducted
for 10,000 runs. All aforementioned different estimates for Rs,k were calculated, and the
associated criteria quantities were obtained based on 10,000 simulation runs. The results
are reported in Tables 1–5, where R̂s,k is MLE, Ŕs,k is a natural generalized estimator and
ŔF

s,k is a Fisher Z transformation-based estimator, ACI is based on maximum likelihood
estimation method, GCI is based on generalized pivotal quantity, and the confidence level
for interval estimators is given as 1− γ = 0.95.
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Table 1. The AB and MSE of Rs,k for S1: Θ1 = (α1, α2, λ) = (7.63, 19.97, 4.24) and S2:
Θ1 = (α1, α2, λ) = (5.15, 10.25, 7.76).

Θ1 (s, k) n R̂s,k Ŕs,k ŔF
s,k

AB MSE AB MSE AB MSE

S1 (3,7) 5 0.0198 0.0131 0.0835 0.0253 0.0805 0.0274
10 0.0107 0.0057 0.0816 0.0131 0.0773 0.0115
30 0.0030 0.0017 0.0486 0.0042 0.0470 0.0038
50 0.0021 0.0010 0.0377 0.0024 0.0367 0.0023

100 0.0009 0.0005 0.0274 0.0012 0.0268 0.0012

(5,10) 5 0.0066 0.0139 0.0858 0.0118 0.0816 0.0101
10 0.0023 0.0071 0.0614 0.0059 0.0594 0.0054
30 0.0006 0.0024 0.0362 0.0021 0.0357 0.0020
50 0.0001 0.0014 0.0105 0.0019 0.0213 0.0015

100 0.0005 0.0007 0.0086 0.0015 0.0096 0.0014

S2 (3,7) 5 0.0217 0.0204 0.1377 0.0353 0.1325 0.0318
10 0.0120 0.0094 0.1114 0.0225 0.1069 0.0206
30 0.0032 0.0029 0.0726 0.0092 0.0699 0.0085
50 0.0024 0.0017 0.0611 0.0062 0.0591 0.0058

100 0.0010 0.0009 0.0506 0.0040 0.0492 0.0038

(5,10) 5 0.0025 0.0203 0.1215 0.0237 0.1239 0.0235
10 0.0002 0.0104 0.0944 0.0142 0.0948 0.0140
30 0.0003 0.0035 0.0592 0.0056 0.0587 0.0054
50 0.0005 0.0021 0.0469 0.0035 0.0464 0.0034

100 0.0004 0.0011 0.0344 0.0019 0.0339 0.0019

Table 2. The AW and CP of Rs,k for S1: (α1, α2, λ) = (7.63, 19.97, 4.24) and S2:
(α1, α2, λ) = (5.15, 10.25, 7.76).

Θ1 n (s, k) = (3,7) (s, k) = (5,10)

ACI GCI ACI GCI

AW CP AW CP AW CP AW CP

S1 5 0.3238 0.7645 0.3345 0.8258 0.3706 0.7791 0.4171 0.9531
10 0.2439 0.8455 0.2684 0.8302 0.2805 0.8445 0.3079 0.9507
30 0.1458 0.8997 0.1593 0.9012 0.1717 0.8988 0.1852 0.9560
50 0.1143 0.9141 0.1237 0.9133 0.1346 0.9088 0.1532 0.9532
100 0.0812 0.9235 0.0881 0.9230 0.0963 0.9214 0.1308 0.9505

S2 5 0.4233 0.7470 0.4468 0.8317 0.4964 0.7692 0.4666 0.8711
10 0.2986 0.8215 0.3495 0.8431 0.3285 0.8269 0.3599 0.8721
30 0.1787 0.8653 0.2188 0.8521 0.1988 0.8671 0.2224 0.8843
50 0.1394 0.8782 0.1728 0.8851 0.1586 0.8710 0.1751 0.8978
100 0.0979 0.8955 0.1244 0.8965 0.1108 0.8766 0.1254 0.9235

Tables 1 and 3 show that ABs and MSEs of point estimators for Rs,k decrease as
sample sizes n increase for a given (s, k) and a set of model parameters, as (s, k) changes
from (3,7) to (5,10) for a given sample size n and a set of model parameters, or as the
combination of sample sizes n increases and the changes of (s, k) from (3,7) to (5,19) for a
given set of model parameters, regardless of common or unequal inner shape parameters.
These observations can serve as the numerical verification of consistency properties of the
estimators considered. It was noted that both the likelihood and pivotal estimates have
a satisfactory performance in terms of the AB and MSE. For a given effective sample size
combining n and (s, k) and a set of model parameters, MLE R̂s,k has smaller AB and MSE
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than the pivotal quantities-based generalized point estimators, Ŕs,k and ŔF
s,k, regardless of

equal or unequal inner shape parameters. Tables 2 and 4 show that the AWs of ACIs and
GCIs are becoming smaller and the associated CPs are increasing as sample sizes increase
for a given set of model parameters and (s, k) regardless of equal or unequal inner shape
parameter case. In general, CPs for GCIs are closer to the nominal level than those of the
ACIs via the delta method. When λ1 6= λ2, CPs of ACIs via the delta method seriously
underestimate the nominal level.

Table 3. The AB and MSE of Rs,k for S3: Θ = (α1, λ1, α2, λ4) = (7.63, 4.24, 19.97, 7.76) and S4:
Θ = (α1, λ1, α2, λ4) = (10.25, 4.24, 5.65, 7.76).

Θ (s, k) n R̂s,k Ŕs,k ŔF
s,k

AB MSE AB MSE AB MSE

S3 (3,7) 5 0.0257 0.0369 0.1474 0.0320 0.1620 0.0381
10 0.0154 0.0202 0.1148 0.0199 0.1209 0.0219
30 0.0081 0.0072 0.0715 0.0078 0.0729 0.0082
50 0.0049 0.0045 0.0560 0.0048 0.0567 0.0049
100 0.0020 0.0022 0.0400 0.0025 0.0403 0.0025

(5,10) 5 0.0011 0.0250 0.1276 0.0249 0.1365 0.0286
10 0.0010 0.0137 0.0956 0.0141 0.0990 0.0151
30 0.0009 0.0048 0.0562 0.0050 0.0569 0.0051
50 0.0010 0.0030 0.0446 0.0031 0.0449 0.0032
100 0.0015 0.0015 0.0450 0.0016 0.0451 0.0016

S4 (3,7) 5 0.0004 0.0102 0.1126 0.0230 0.1189 0.0261
10 0.0002 0.0056 0.0751 0.0101 0.0767 0.0106
30 0.0019 0.0020 0.0407 0.0028 0.0409 0.0028
50 0.0010 0.0012 0.0312 0.0016 0.0313 0.0016
100 0.0003 0.0006 0.0216 0.0008 0.0216 0.0008

(5,10) 5 0.0005 0.0052 0.0737 0.0106 0.0756 0.0112
10 0.0009 0.0027 0.0495 0.0044 0.0499 0.0045
30 0.0003 0.0009 0.0261 0.0012 0.0262 0.0012
50 0.0001 0.0005 0.0197 0.0007 0.0198 0.0007
100 0.0002 0.0003 0.0196 0.0004 0.0199 0.0004

Table 4. The AW and CP of Rs,k for S3: Θ = (α1, λ1, α2, λ4) = (7.63, 4.24, 19.97, 7.76) and S4:
Θ = (α1, λ1, α2, λ4) = (10.25, 4.24, 5.65, 7.76).

Θ n (s, k) = (3,7) (s, k) = (5,10)

ACI GCI ACI GCI

AW CP AW CP AW CP AW CP

S3 5 0.4951 0.7405 0.5819 0.8754 0.8442 0.6828 0.5075 0.8856
10 0.3685 0.7709 0.4572 0.8797 0.2587 0.6993 0.3845 0.8892
30 0.2218 0.7926 0.2877 0.8820 0.1526 0.7170 0.2326 0.8925
50 0.1735 0.8008 0.2272 0.8836 0.1187 0.7131 0.1810 0.8964

100 0.1237 0.8030 0.1630 0.8854 0.0841 0.7180 0.0965 0.9015

S4 5 0.1570 0.4553 0.3910 0.8427 0.0819 0.3017 0.2574 0.8465
10 0.1047 0.4597 0.2651 0.8439 0.0552 0.3613 0.1693 0.8476
30 0.0586 0.4705 0.1437 0.8439 0.0311 0.3813 0.0898 0.8462
50 0.0455 0.4746 0.1091 0.8456 0.0239 0.3789 0.0667 0.8481

100 0.0322 0.4769 0.0751 0.8463 0.0168 0.3834 0.0354 0.8495
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The simulated AWs and CPs for the ACIs based on parametric bootstrap percentile
are placed in Table 5, which shows AWs are decreasing and CPs are increasing when the
effective sample sizes increase for given a set of model parameters. From Tables 2, 4 and 5,
it can be noted that the ACIs from parametric bootstrap percentile method have CPs
much closer to the nominal level than ACIs based on the delta method and generalized
pivotal quantity. Therefore, one can draw conclusions from the simulation results that the
MLE point estimate along with ACI based on parametric bootstrap percentile would be
suggested. Meanwhile, the generalized pivotal quantity method could be used to provide
good ACI instead of using the parametric bootstrap percentile to save computational time.

Table 5. The AW and CP of the BCI of Rs,k.

Θ n (s, k) = (3,7) (s, k) = (5,10)

AW CP AW CP

(5.15, 7.76, 10.25, 7.76) 5 0.4880 0.9049 0.4782 0.9031
10 0.3521 0.9297 0.3687 0.9218
30 0.2062 0.9421 0.2267 0.9400
50 0.1606 0.9446 0.1779 0.9410

100 0.1135 0.9464 0.1543 0.9453

(7.63, 4.24, 19.97, 4.24) 5 0.3939 0.8991 0.3946 0.8954
10 0.2739 0.9262 0.3021 0.9186
30 0.1585 0.9440 0.1861 0.9396
50 0.1231 0.9484 0.1458 0.9420

100 0.0870 0.9486 0.1047 0.9496

(7.63, 4.24, 19.97, 7.76) 5 0.6670 0.8892 0.5459 0.9418
10 0.5261 0.9004 0.4251 0.9452
30 0.3264 0.9402 0.2643 0.9455
50 0.2578 0.9494 0.2088 0.9482

100 0.1840 0.9528 0.1508 0.9496

(10.25, 4.24, 5.65, 7.76) 5 0.4134 0.8576 0.2320 0.8471
10 0.2636 0.8676 0.1768 0.8901
30 0.1658 0.9484 0.1118 0.9262
50 0.1309 0.9492 0.0889 0.9382

100 0.0944 0.9500 0.0639 0.9452

6.2. Discussion

In summary, we have the following findings from the simulation study:

1. Tables 1 and 3 indicate that the maximum likelihood, natural generalized estimation
and Fisher Z transformation methods perform well whatever the cases of λ1 = λ2 = λ
or λ1 6= λ2 in terms of the metrics of AB and MSE even the sample size is small.

2. The AWs of ACIs and GCIs in Tables 2 and 4 are decreased and the associated CPs
are increasing as the sample size increases. The delta method is conservative due to
the property of normality approximation. We note that the CP underestimates the
nominal confidence level in Tables 2 and 4. In particular, the nominal confidence level
is seriously underestimated for the case of λ1 6= λ2.

3. To improve the drawback of underestimating the nominal confidence level, the para-
metric bootstrap method is suggested to obtain an ACI of Rs,k for the maximum
likelihood estimation. Additionally, the generalized pivotal quantity method is sug-
gested to improve the performance of interval inference. Table 5 shows that the CP
based on the parameter bootstrap method is closer to the nominal confidence level.
The generalized pivotal quantity method can provide a good ACI for estimating Rs,k
with a satisfactory CP, too.
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The parametric bootstrap method can provide a good ACI for Rs,k instead of using the
delta method. However, the parametric bootstrap method is time-consuming to implement.
The generalized pivotal quantity method can be an alternative to the parametric bootstrap
percentile to save computational time. In practice, practitioners could not have enough
to determine the conditions of λ1 = λ2 = λ or λ1 6= λ2 before using the proposed
estimation methods. When practitioners lack the knowledge to determine the conditions
of λ1 = λ2 = λ or λ1 6= λ2, using the maximum likelihood estimation method with the
generalized pivotal quantity method to obtain the point and interval estimates for Rs,k
under the condition of λ1 6= λ2 is suggested.

6.3. Real Data Illustration

As the largest synthetic lake in California, Shasta Reservoir is located on the upper
Sacramento River in northern California. The monthly water capacity of the Shasta reser-
voir over the months of August, September, and December from 1980 to 2015, which
was accessed on September 19, 2021, is used in this section for the illustration of the pro-
cesses considered. The dataset was also considered by Wang et al. [16] for the Rayleigh
stress–strength model.

It is assumed that the water level would not lead to excessive drought if the water
capacity of reservoir in December is less than the water capacity for at least two Augusts
within the next five years. Specifically, we want to infer the reliability that at least three
years within next five years the water capacity in August is not less than the water capacity
in the previous December. In this study, s = 3, k = 5, n = 6. Hence, Y1 is the capacity of
December 1980, and X11, X12, X13, . . . , X15 are the capacities of August from 1981 to 1985;
Y2 is the capacity of December 1986, X21, X22, X23, . . . , X25 are the capacities of August from
1987 to 1991, and so on. For the easy fitting of water capacities with BurrXII(λ, α), all
the water capacities are divided by 3,014,878 (the maximum of water capacity) and the
transformed data are obtained as follows:

Observed complete strength data Observed complete stress data

0.4238 0.5579 0.7262 0.8112 0.8296
0.2912 0.3634 0.3719 0.4637 0.4785
0.5381 0.5612 0.7226 0.7449 0.7540
0.5249 0.6060 0.6686 0.7159 0.7552
0.3451 0.4253 0.4688 0.7188 0.7420
0.2948 0.3929 0.4616 0.6139 0.7951

 and



0.7009
0.6532
0.4589
0.7183
0.5310
0.7665


For the above-transformed data, one can refer to Kizilaslan and Nadar [11] for more

details, and the complete monthly water capacity of the Shasta reservoir in California, USA
between 1981 to 1985 is provided in Appendix H.

The Burr XII distribution is applied to fit these real-life data via using the Kol-
mogorov–Smirnov (K–S) test with two-sided reject region. The results for strength
and stress data have distances and the corresponding p-values (within brackets),
0.17557(0.2793) and 0.20679(0.9158), respectively. Additionally, the plots of empiri-
cal cumulative and Burr XII distributions overlay. Probability–probability (P–P) and
Quantile–Quantile (Q–Q) plots are shown in Figures 1–3. P–P plot is a probability plot for
evaluating how closely of a dataset fitting a specified model or how closely two datasets
agree. Q-Q plot is a graphic method for evaluating if two datasets come from populations
with a common distribution. Figure 2 shows two P-P plots to present the empirical CDFs of
the strength (left side) and the stress (right side) versus the theoretical CDF of Burr XII. The
imposed linear regressions over P-P plots in Figure 2 are significant with R-squared, 0.9664
and 0.9459, for the complete strength and stress samples, respectively and the imposed
linear regressions over Q-Q plots in Figure 3 are also significant with R-squared, 0.9461
and 0.9502, for the complete strength and stress samples, respectively. Therefore, the Burr
XII distribution can be used as a proper probability model to address the transformed
datasets well.
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Figure 1. Empirical and fitted Burr XII distributions based on real data.
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Figure 2. Probability to probability plot based on real data.
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Figure 3. Quantity to quantity plots based on real data.
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Based on previous complete strength and stress data, a MSR censored observation of
the 3-out-of-5 G system can be constructed as

Strength data of X Stress data of Y

0.4238 0.5579 0.7262
0.2912 0.3634 0.3719
0.5381 0.5612 0.7226
0.5249 0.6060 0.6686
0.3451 0.4253 0.4688
0.2948 0.3929 0.4616

 and



0.7009
0.6532
0.4589
0.7183
0.5310
0.7665

.

The associated point and interval estimates for the MSR parameter Rs,k are presented
in Table 6, where the significance level of γ is taken to be 0.05. The interval lengths are
obtained as 0.4077, 0.4949 and 0.6077 for the ACI, GCI and BCI, respectively, under λ1 = λ2
and as 0.3678, 0.5189 and 0.5791 for ACI, GCI and BCI, respectively, under λ1 6= λ2. It is
observed that the point estimates are close to each other and the ACI of Rs,k performs better
than the others in terms of interval length.

Furthermore, for comparison of the equivalence between strength and stress inner
shape parameters, λ1 and λ2, the likelihood ratio statistic and p-value are calculated as
3.5068 and 0.0611, respectively. The results show that there is no significant statistical
evidence to reject the null hypothesis, H0 : λ1 = λ2 at 0.05 significance level. Hence, the
strength and stress are suggested to have Burr XII distributions with equal inner shape
parameter λ1 and λ2 for this current monthly capacity data application.

Table 6. The estimates of Rs,k based on the real dataset from 3-out-of-5 G System.

λ1 = λ2

R̂s,k = 0.4792 Ŕs,k = 0.4451 ŔF
s,k = 0.4556

ACI = (0.3169, 0.7246) GCI = (0.1989, 0.6938) BCI = (0.2076, 0.8153)

λ1 6= λ2

Řs,k = 0.3403 R̀s,k = 0.4133 R̀F
s,k = 0.4244

ACI = (0.2029, 0.5707) GCI = (0.1416, 0.6605) BCI = (0.0639, 0.6430)

7. Concluding Remarks

The reliability inference for a multicomponent stress–strength model has been studied
based on the Burr XII distributions. The existence and uniqueness of maximum likelihood
estimators of the strength and stress parameters are established and the generalized piv-
otal quantity-based estimators have been constructed under common and unequal inner
shape parameter situations. Meanwhile, confidence intervals have also been provided
using asymptotic normal distribution along with delta technique, bootstrap percentile
and generalized pivotal sampling, respectively. Generally, simulation results show that
bootstrap percentile procedure produces better ACI than the other two in terms of coverage
probability for all cases. When two inner shape parameters are equal, asymptotic normal
distribution along with delta method and generalized pivotal sampling are very competi-
tive with each other in terms of coverage probability. However, the maximum likelihood
method provides better point estimators than the generalized pivotal sampling method in
terms of MSE and AB. Overall, the proposed procedures work quite well under the given
sampling scheme, except for the ACI based on delta method for the case of unequal inner
shape parameters.

Although the current work is developed using a Type-II censoring scheme, it can be
extended to other censoring schemes such as the progressively Type-II censoring scheme
or progressively first-failure Type-II censoring scheme with proper modification of piv-
otal quantities for the progressively Type-II or progressively first-failure Type-II censored
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samples. For further study, the moment estimation and the maximum product of spacing
estimation seem also interesting to pursue new inferential results and will be discussed in
future. The authors are currently working on these possible projects.
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Appendix A. Proof of Theorem 1

Let α1 and α2 be known and φ(λ) = ∂`1(α1,α2,λ)
∂λ . It is trivial that φ(λ)→ ∞ as λ→ 0+.

Let M1 = {xij < 1; i = 1, 2, 3, · · · , n; j = 1, 2, 3, · · · , s}, P1 = {xij ≥ 1; i = 1, 2, 3, · · · , n; j =
1, 2, 3, · · · , s}, M2 = {yi < 1; i = 1, 2, 3, · · · , n} and P2 = {yi ≥ 1; i = 1, 2, 3, · · · , n}. It can
be shown that

n

∑
i=1

s

∑
j=1

xλ
ij ln(xij)

1 + xλ
ij
→ ∑

xij∈P1

ln(xij), as λ→ ∞

n

∑
i=1

yλ
i ln(yi)

1 + yλ
i
→ ∑

yi∈P2

ln(yi), as λ→ ∞

(A1)

We can obtain that

φ(∞) = ∑
xij∈M1

ln(xij) + ∑
yi∈M2

ln(yi)− α2 ∑
yi∈P2

ln(yi)− α1 ∑
xij∈P1

ln(xij)

− α1(k− s) ∑
xis∈P1

ln(xis). (A2)

Since at least one of M1, P1, M2 and P2 is not empty, it can be shown that φ(∞) < 0.
Therefore, at least one positive real solution to φ(λ) = 0. Meanwhile, it can be shown that
∂φ(λ)

∂λ < 0. Therefore, φ(λ) = 0 has uniquely solution.

Appendix B. Proof of Theorem 2

Let ∂`1
∂α1

(α1, α2, λ) = 0, ∂`1
∂α2

(α1, α2, λ) = 0 and ∂`1
∂λ (α1, α2, λ) = 0. Given a positive value

of λ, the MLEs, α̂1 and α̂2, for α1 and α2 can be obtained through the following,

α̂1 =
ns

∑n
i=1 ∑s

j=1 ln(1 + xλ
ij) + (k− s)∑n

i=1 ln(1 + xλ
is)

α̂2 =
n

∑n
i=1 ln(1 + yλ

i )
(A3)
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Replacing α1 and α2 in ∂`1
∂λ (α1, α2, λ) = 0, by α̂1 and α̂2, respectively, the MLE, λ̂ of λ can be

derived via the solution to

n(s + 1)
λ

+

(
n

∑
i=1

s

∑
j=1

ln(xij) +
n

∑
i=1

ln(yi)

)
−

n

∑
i=1

yλ
i ln(yi)

1 + yλ
i
−
(

n

∑
i=1

s

∑
j=1

xλ
ij ln(xij)

1 + xλ
ij

)

−
(

ns
∑n

i=1 ∑s
j=1 ln(1 + xλ

ij) + (k− s)∑n
i=1 ln(1 + xλ

is)

)

×
(

n

∑
i=1

s

∑
j=1

xλ
ij ln(xij)

1 + xλ
ij

+ (k− s)
n

∑
i=1

xλ
is ln(xis)

1 + xλ
is

)
−
(

n
∑n

i=1 ln(1 + yλ
i )

)
×
(

n

∑
i=1

yλ
i ln(yi)

1 + yλ
i

)
= 0 (A4)

Let

Φ(λ) =
n(s + 1)

λ
+

(
n

∑
i=1

s

∑
j=1

ln(xij) +
n

∑
i=1

ln(yi)

)
−

n

∑
i=1

yλ
i ln(yi)

1 + yλ
i
−
(

n

∑
i=1

s

∑
j=1

xλ
ij ln(xij)

1 + xλ
ij

)

−
(

ns
∑n

i=1 ∑s
j=1 ln(1 + xλ

ij) + (k− s)∑n
i=1 ln(1 + xλ

is)

)

×
(

n

∑
i=1

s

∑
j=1

xλ
ij ln(xij)

1 + xλ
ij

+ (k− s)
n

∑
i=1

xλ
is ln(xis)

1 + xλ
is

)
−
(

n
∑n

i=1 ln(1 + yλ
i )

)
×
(

n

∑
i=1

yλ
i ln(yi)

1 + yλ
i

)

Using same arguments as that proposed by Lio and Tsai [20] and Wingo [22], it can be
shown that dΦ(λ)

dλ < 0 for λ > 0 and

Φ(λ)→ ∞ as λ→ 0+

Φ(λ)→ ∑
xij∈M1

ln(xij) + ∑
yi∈M2

ln(yi) < 0, as λ→ ∞.

(A5)

The MLEs of α1, α2 and λ are uniquely defined.

Appendix C. Proof of Theorem 4

Using the Taylor series expansion and the Mean Value Theorem for derivative, Rs,k(Θ̂)
can be written as,

Rs,k(Θ̂) = Rs,k(Θ) +

(
∂Rs,k(Θ)

∂Θ

)T

(Θ̂−Θ) +
1
2
(Θ̂−Θ)T

(
∂2Rs,k(Θ∗)

∂Θ

)
(Θ̂−Θ)

≈ Rs,k(Θ) +

(
∂Rs,k(Θ)

∂Θ

)T

(Θ̂−Θ), (A6)

where ∂Rs,k(Θ)
∂Θ and ∂2Rs,k(Θ)

∂Θ denotes the matrices of the first and second derivatives for Rs,k
with respect to Θ, and Θ∗ is some proper value between Θ and Θ̂. Then, expression (A6)
could be rewritten as

Rs,k(Θ̂)− Rs,k(Θ) ≈
(

∂Rs,k(Θ)

∂Θ

)T

(Θ̂−Θ),

which implies that Rs,k(Θ̂) → Rs,k(Θ) when n → ∞ using Θ̂ → Θ from Theorem 3.
Moreover, from (A6), since the variance of Rs,k(Θ̂) can be written as
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Var[Rs,k(Θ̂)] ≈ Var

[
Rs,k(Θ) +

(
∂Rs,k(Θ)

∂Θ

)T

Θ̂−
(

∂Rs,k(Θ)

∂Θ

)T

Θ

]

= Var

[(
∂Rs,k(Θ)

∂Θ

)T

Θ̂

]
=

(
∂Rs,k(Θ)

∂Θ

)T

Var[Θ̂]

(
∂Rs,k(Θ)

∂Θ

)
.

Using Theorem 3 and delta method [28],

Rs,k(Θ̂)− Rs,k(Θ)
d→ N

(
0,
(

∂Rs,k(Θ)

∂Θ

)T

Var[Θ̂]

(
∂Rs,k(Θ)

∂Θ

))
,

and Theory 4 is proved.

Appendix D. Proof of Theorem 6

For given positive integer i(≤ n), Xi1, Xi2, . . . , Xis are the first s order statistics of
size k from BurrXII(λ1, α1). Hence, Tij = α1(ln(1 + Xλ1

ij )), j = 1, 2, . . . , s can be viewed
as the Type-II censored data from standard exponential distribution with mean one.
Due to the memoryless property of the standard exponential distribution, the quantities
Zi1 = kTi1, Zi2 = (k− 1)(Ti2− Ti1), · · · , Zis = (k− s + 1)(Tis − Ti(s−1)) are random sample
from the standard exponential distribution with mean one. Lawless [29] provided more
information regarding the memoryless property and exponential distribution.

For i = 1, 2, . . . , n, let Wij = ∑
j
r=1 Zir = α1{(k− j) ln(1 + Xλ1

ij ) + ∑
j
r=1 ln(1 + Xλ1

ir )},
j = 1, 2, . . . , s, one could conduct from Stephens [30] and Viveros and Balakrishnan [31] that

Ui1 = Wi1
Wis

, Ui2 = Wi2
Wis

, . . . , Ui(s−1) =
Wi(s−1)

Wis
are order statistics from the uniform distribution

between 0 to 1 with sample size s − 1. Moreover, Ui1 < Ui2 < · · · < Ui(s−1) are also

independent with Wis = ∑s
r=1 Zir = α1{(k− s) ln(1 + Xλ1

is ) + ∑s
r=1 ln(1 + Xλ1

ir )}.
Using theory of sampling distribution, it is observed directly that quantity

Pi1(λ1) = −2 ∑s−1
j=1 ln(Uij) follows a chi-square distribution with 2(s− 1) degrees of free-

dom, which is independent with Qi1(α1, λ1) = 2Wis being chi-square distributed with 2s
degrees of freedom. Therefore, using the independent property of Pi1(λ1), i = 1, 2, . . . , n, it
can be shown that

PX(λ1) = 2
n

∑
i=1

Pi1(λ1) = 2
n

∑
i=1

s−1

∑
j=1

ln

[
(k− s) ln(1 + Xλ1

is ) + ∑s
r=1 ln(1 + Xλ1

ir )

(k− j) ln(1 + Xλ1
is ) + ∑

j
r=1 ln(1 + Xλ1

ir )

]

comes from a chi-square distribution with 2n(s− 1) degrees of freedom, and:

QX(α1, λ1) = 2
n

∑
i=1

Qi1(α1, λ1) = 2α1

n

∑
i=1

{
(k− s) ln(1 + Xλ1

is ) +
s

∑
r=1

ln(1 + Xλ1
ir )

}
.

follows chi-square distribution with 2ns degrees of freedom. PX(λ1) and QX(α1, λ1) are
statistically independent. Therefore, the assertion is completed.

Appendix E. Proof of Theorem 7

Let Y(1), Y(2), . . . , Y(n) be the order statistic of Y1, Y2, . . . , Yn. Then α2 ln(1 + Yλ2
(j)),

j = 1, 2, 3, . . . n are order statistics from standard exponential distribution with mean
one. Following the same proof procedure of Theorem 6, Theorem 7 can be derived.
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Appendix F. Proof of Lemma 1

Taking derivative of K(t) with respect to t > 0, one directly has

dK(t)
dt

=
1

t[ln(1 + at)]2

{
bt ln bt

(1 + bt)
ln(1 + at)− at ln at

(1 + at)
ln(1 + bt)

}
.

Showing K(t) is increasing function of t > 0 with dK(t)
dt > 0 is equivalent to proving the

following inequality

bt

(1 + bt)

ln bt

ln(1 + bt)
>

at

(1 + at)

ln at

ln(1 + at)
for t > 0.

Let g(t) = t
(1+t)

ln t
ln(1+t) for t > 0. Since

d
dt

(
t

(1 + t)

)
=

1
(1 + t)2 > 0,

d
dt

(
ln t

ln(1 + t)

)
=

(1 + t) ln(1 + t)− t ln t
t(1 + t)[ln(1 + t)]2

> 0,

one directly has that function dg(t)
dt > 0 when 1 ≤ t < ∞. However, for 0 < t < 1, since

(1 + t) ln(1 + t) > 0, ln t < 0 and ln(1 + t)− t < 0, it is noted that

dg(t)
dt

=
(1 + t) ln(1 + t) + ln t[ln(1 + t)− t]

(1 + t)2[ln(1 + t)]2
> 0.

K(t) increases in t and the assertion is completed.

Appendix G. Proof of Corollary 1

Using the definitions of notations PX and PY, It can be shown that

(k− s) ln(1 + Xλ1
is ) + ∑s

r=1 ln(1 + Xλ1
ir )

(k− j) ln(1 + Xλ1
ij ) + ∑

j
r=1 ln(1 + Xλ1

ir )
= 1 +

(k− s)

[
ln(1+X

λ1
is )

ln(1+X
λ1
ij )

]
+ ∑s

r=j+1

[
ln(1+X

λ1
ir )

ln(1+X
λ1
ij )

]
− (k− j)

∑
j
r=1

[
ln(1+X

λ1
ir )

ln(1+X
λ1
ij )

]
+ (k− j)

, (A7)

and

∑n
r=1 ln(1 + Yλ2

(r))

(n− j) ln(1 + Yλ2
(j)) + ∑

j
r=1 ln(1 + Yλ2

(r))
= 1 +

ln(1+Yλ2
(n))

ln(1+Yλ2
(j) )

+ ∑n
r=j+1

ln(1+Yλ2
(r) )

ln(1+Yλ2
(j) )
− (n− j)

∑
j
r=1

ln(1+Yλ2
(r) )

ln(1+Yα2
(j) )

+ (n− j)

. (A8)

From Lemma 1, it is seen that the numerator of (A7) increase in λ1 and the associated
denominator of (A8) decrease in λ1. Therefore, pivotal quantity PX is increasing function.
Similarly, Lemma 1 implies that PY is increasing functions.
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Appendix H. Complete Monthly Water Capacity Data of the Shasta Reservoir

Table A1. Capacity data of Shasta reservoir from the years 1981 to 1985.

Date Storage AF Date Storage AF Date Storage AF

January 1981 3,453,500 September 1982 3,486,400 May 1984 4,294,400
February 1981 3,865,200 October 1982 3,433,400 June 1984 4,070,000
March 1981 4,320,700 November 1982 3,297,100 July 1984 3,587,400
April 1981 4,295,900 December 1982 3,255,000 August 1984 3,305,500
May 1981 3,994,300 January 1983 3,740,300 September 1984 3,240,100
June 1981 3,608,600 February 1983 3,579,400 October 1984 3,155,400
July 1981 3,033,000 March 1983 3,725,100 November 1984 3,252,300
August 1981 2,547,600 April 1983 4,286,100 December 1984 3,105,500
September 1981 2,480,200 May 1983 4,526,800 January 1985 3,118,200
October 1981 2,560,200 June 1983 4,471,200 February 1985 3,240,400
November 1981 3,336,700 July 1983 4,169,900 March 1985 3,445,500
December 1981 3,492,000 August 1983 3,776,200 April 1985 3,546,900
January 1982 3,556,300 September 1983 3,616,800 May 1985 3,225,400
February 1982 3,633,500 October 1983 3,458,000 June 1985 2,856,300
March 1982 4,062,000 November 1983 3,395,400 July 1985 2,292,100
April 1982 4,472,700 December 1983 3,457,500 August 1985 1,929,200
May 1982 4,507,500 January 1984 3,405,200 September 1985 1,977,800
June 1982 4,375,400 February 1984 3,789,900 October 1985 2,083,100
July 1982 4,071,200 March 1984 4,133,600 November 1985 2,173,900
August 1982 3,692,400 April 1984 4,342,700 December 1985 2,422,100

The website: https://cdec.water.ca.gov/dynamicapp/QueryMonthly?s=SHA, which was accessed on 19 Septem-
ber 2021.
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