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Abstract: The Miller—Ross-type Poisson distribution is an important model for plenty of real-world
applications. In the present analysis, we study and introduce a new class of bi-univalent functions
defined by means of Gegenbauer polynomials with a Miller-Ross-type Poisson distribution series.
For functions in each of these bi-univalent function classes, we have derived and explored estimates
of the Taylor coefficients |a;| and |a3| and Fekete-Szego functional problems for functions belonging
to these new subclasses.
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1. Definitions and Preliminaries

In recent years, the distributions of random variables have generated a great deal of
interest. Their probability density functions have played an important role in statistics and
probability theory. Because of this, the study of distributions has been considerable. Many
forms of distributions are regarded from real-life situations, such as binomial distribution,
Poisson distribution and hyper geometric distribution.

A distribution is a Poisson distribution if its probability density function for a random
variable x is given by:

e*m
f(x):7mx,x:0,1,2,---. 1)

and m is the parameter of the distribution.
Let A denote the class of all normalized analytic functions f of the form:

flz)=z+mZ+a3z®+--=z+ Y a,2", (z€U). )
n=2

In addition, the open unit disk U = {z € C: |z| < 1}. Further, let S denote the class
of all functions f € A which are univalent in U.

Let the functions f and g be analytic in U. We say that the function f is subordinate to
g, written as f < g, if there exists a Schwarz function w, which is analytic in U with

w(0) =0and |w(z)| <1 (z€U)
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such that
f(z) = g(w(z)).

In addition, if the function g is univalent in U, then the following equivalence holds:

f(z) < g(z) ifandonlyif f(0)= g(0)

and
£(U) € g(U).
It is well known that every function f € S has an inverse f !, defined by
@)=z (zeU)
and .
fHf@)=w (o] <ro(f); ro(f) > 7)
where

FHw) = w— ayw? + (2a5 — a3)w® — (5a5 — 5a0a3 + ag)w* + - . 3)

A function is said to be bi-univalent in U if both f(z) and f~!(z) are univalent in U.

Let X denote the class of bi-univalent functions in U given by (2). For interesting
subclasses of functions in the class X, see [1-21].

Orthogonal polynomials have been extensively studied in recent years from various
perspectives due to their importance in mathematical statistics, mathematical physics,
probability theory and engineering. From a mathematical point of view, orthogonal polyno-
mials often arise from solutions of ordinary differential equations under certain conditions
imposed by a certain model. Orthogonal polynomials that appear most commonly in
applications are the classical orthogonal polynomials (Legendre polynomials, Chebyshev
polynomials, Horadam polynomials, Fibonacci polynomials and Jacobi polynomials). For
a recent connection between the geometric function theory and orthogonal polynomials,
see [7,22-24].

In 2020, Amourah et al. [1] considered the following generating function of Gegenbauer
polynomials:

1

Hy(x,2) = ————.
«(x2) (1—2xz+22)"

4)

For a fixed x, the function H, is analytic in U, so it can be expanded in a Taylor
series as:

Hy(x,z) = i Ch(x)z", (5)
n=0

where —1 < x <1,z € Uand Cj(x) is a Gegenbauer polynomial of degree 7.
Clearly, H, generates nothing when a = 0. Therefore, the generating function of the
Gegenbauer polynomial is set to be:

Ho(x,z) = f Cp(x)z" (6)
n=0

for « = 0. Moreover, it is worth mentioning that a normalization of & to be greater than
—1/2 is desirable [25]. Gegenbauer polynomials can also be defined by the following
recurrence relations:

Ch(x) = S [2x(n+ o — 1)C%y (x) — (n+ 22 — 2)C%_,(x)], %

= E n—1
with the initial values:

Ch(x) =1, Cf(x) = 20x and C§ (x) = [ (2+ 20)2% 1], ®)
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Special cases:
i When a = 1, we obtain the Chebyshev Polynomials.
ii When o« = %, we obtain the Legendre Polynomials.
Let @, ((z) be the Miller-Ross function [26] (see also, [10,27,28]) defined by
; n+v+1) (v,d,z€ C). 9)

In addition, let E,(z) be the two parameters of the Mittag—Leffler function [18]
defined by:

o0
Egu(z Z

Tt B (z,6,u € C,Re(g) >0, Re(u) >0). (10)

If u =1, from (10), we obtain the one-parameter Mittag-Leffler function [29]:
n

Ec(z) = ;0 m (z,¢c € C,Re(c) > 0). (11)

Several properties of the Mittag—Leffler function and the generalized Mittag—Leffler
function can be found in [3,4,6,8].
From (9) and (10), the Miller-Ross function may be written as:

D, 4(z) = z"E1 144 (dz).

Very recently, Seker et al. [30] introduced a power series whose coefficients are Miller—
Ross-type Poisson distributions as follows:

= wmyt
“+ L it vy, 2V

wherev > —1,d > 0.
In addition, they define the series

0 dm)"—1
mai(z) =22 =Y)(z) =z — Z F(:+(v;71qzvd(m)zn' zeU. (12)

Now, we consider the linear operator I}, : A — A defined by the convolution or
Hadamard product

ol mY (dm)"—1
() = Vi)« f2) =2+ B et a2, ()

wherev > —1and d > 0.
Motivated essentially by the work of Amourah et al. [20], we introduce a new subclass
of X involving the Pascal distribution associated with Gegenbauer polynomial and obtain

bounds for the Taylor-Maclaurin coefficients |a,| and |a3| and Fekete-Szego functional
problems [31] for functions in this new class.

2. Coefficient Bounds of the Class &% (x, 7y, B)

We begin this section by defining the new subclass &% (x, 7y, ) associated with the
Miller-Ross-type Poisson distribution
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Definition 1. A function f € X. given by (2) is said to be in the class &$.(x, vy, B) if the following
subordinations are satisfied:

Im f(z / "
(1-y+25)L 8y (o) (af ) +B2(Lf(2) < Halxz) (14

Z

and

Iaf (@)

(1= +28) 2 (7= 2) (T f () + P (Taf(@)” < Halxw),  (15)

where y, B > 0, x € (4,1] and the function g = f~! are given by (3), and H, is the generating
function of the Gegenbauer polynomial given by (4).

Upon specializing the parameters 7y and j, one can obtain the various new subclasses
of %, as illustrated in the following examples.

Example 1. For f = 0, we have, &% (x,,0) = &% (x, ), in which &% (x, y) denotes the class of
functions f € X given by (2) and satisfying the following conditions:

I /
(1- 'y)wi(Z) +7(I1f(2)) < Ha(x,2) (16)
and " £(2)
4 l
1= () < Halxw), )

wherea > 0,7 > 0,x € (%, 1] and the function ¢ = f ! are given by (3), and H, is the generating
function of the Gegenbauer polynomial given by (4).

Example 2. For B = 0and v = 1, we have, &5.(x,1,0) = &% (x), in which &$.(x) denotes the
class of functions f € X. given by (2) and satisfying the following conditions:

(1,f(2)) < He(x2) (18)

and ,
(1£(2)) < Ha(x,0), (19)

where . > 0, x € (%, 1] and the function ¢ = f~! are given by (3), and H, is the generating
function of the Gegenbauer polynomial given by (4).

Example 3. For B = 1/2, we have, &% (x,v,1/2) = B%(x,7), in which % (x,y) denotes the
class of functions f € X given by (2) and satisfying the following conditions:

m / "
(2- ')/)V"{(Z) +(r=1)(Uaf@) + %z(ﬂyd f(2))" < Ha(x,2) (20)
and " f(w)
- (- 1) (If @) + o (Taf@) < Herw), @)

where « > 0, x € (%, 1] and the function ¢ = f~! are given by (3), and H, is the generating
function of the Gegenbauer polynomial given by (4).

Unless otherwise mentioned, we shall assume in this paper thata > 0, 7, > 0 and
x € (3,1].
First, we give the coefficient estimates for the class & (x,y, B) given in Definition 1.
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Theorem 1. Let f € X given by (2) belong to the class &% (x,y, B). Then,

|aa| <
2|a|x/2|a|xT(2 4+ v) P, 4(m)
\/‘ [ZxZ‘I’V,d(m, o,y B) +a(l+ ’y)zmv} mV(dm)2’

4

and
_ 422 (T2 4 v)Pyg(m)®  20alxT(3 +v)Dya(m)

sl < e amE L E (4 2y T 2B (dm)E

where

2(1+ 27 +2B)

) T2+ ) Pug(m)e® — (1 7)Pma(l +a).

Yo,a(m, a7, B) =

Proof. Let f € &% (x,7, ). From Definition 1, for some analytic functions w, v such that
w(0) =v(0) =0and |w(z)| <1, |v(w)| < 1forall z,w € U, then we can write:

1=y +29 4L 4 (a4 (@) = ) @)
and
(1= 4280 g () + oo (@) = Halow). @)
From the equalities (22) and (23), we obtain that
(17428 4L E (g (1r) + () (24)
=1+ C{(@)erz + [Cl(x)er + CH(x) |2+ -
and
(1428 gy () 4 po(B@) @)
=1+ Cl () + [C(x)da + C§ ()| )P 4 -
It is fairly well known that if
[w(z)] = |z 4+ + e+ | <1, (zeU)
and
[o(w)] = |[diw +dyw? + dsw? + | <1, (w e ),
then

lcjl <1and |d;| <1foralljeN. (26)

Thus, upon comparing the corresponding coefficients in (24) and (25), we have:

v(d
1+ 7)r(2 —Tv()clz)d(m)@ = C%(x)cy, 27)
vid 2
(1+27+26); (3’1 j)gjd = C(x)cp + C2(x)3, (28)
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m" (dm) o
- (1 + r)/) 1—~(2 I V)q)v,d(m) a = C] (x)dll (29)
and Ul
(1+27+ Zﬁ)m%q% [291% - ”3} = Cf (x)d + C3 (x)df. (30)
It follows from (27) and (29) that
1= —d1 (31)
and 2 (dm)?
2 m m 2 a2 2 0 42
21 i g = ) (+42). (32)
If we add (28) and (30), we obtain
v 2
201427+ 26) 15 s = CHO(e + ) + G (G + ). (@

Substituting the value of (c% + d%) from (32) the right-hand side of (33), we deduce that

2

I S 2 m” Ci(x) | m*(dm)* ,
(1+2'7+2ﬁ)1“(3+v) ) (T(2+v))*®, 4(m) [Ci‘(x)]zl Pualm) "

= Cq (x)(c2 + da). (34)
Moreover, using computations (25), (26) and (34), we find that
|az| <
2|a|x/2|a|xT (2 4+ v) D, 4(m)
\/‘ [sz‘-}ﬂ,,d(m, a7, B)+a(l+ ,Y)va} mV(dm)2’

Moreover, if we subtract (30) from (28), we obtain

mY (dm)?
(3 + V)q)v,d

2(1+27+28)7 O (35— a3) = C{(x) (2 — o) + G5 (x) (3 - ). (39)

Then, in view of (8) and (32), Equation (35) becomes:

(T2 + 1)@, 4(m))* [C3(x)]?

8 2m2v(dnj)2(1 + 7)12 (¢+4)
C{‘(x)l’(?) + v)CIDV,d(m) p
201+ 2y + 2B)my (dm)2 2~ %)

Thus, applying (8), we conclude that

as] < 4022 (T2 + )@y g(m))* | 2|a|xT(3+v)®, 4(m)
T (dm)2 (1 + )2 (1427 +2B)m" (dm)?’

This completes the proof of the Theorem. [

Making use of the values of a3 and a3, we prove the following Fekete-Szegd inequality
for functions in the class &% (x, v, B).

Theorem 2. Let f € X. given by (2) belong to the class &$(x,y, B). Then,
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|as —na3| <
12T (3+v)Py ()
(1+27-+2p)m" (dm)2’ n—1] <6
80233 (D(2+))* (Py,0(m))* (1-1) —1]> 4,
402 (14274 2P) 1z (D(2+0)) @y ()= (147 *m? (2(14+a) 2= 1) | m? (dm)2” -
where
TB+v)(1+9)*m' (2(1+a) — 1)

5—|1_

4(1+ 279 +2B)ax?(T(2 + 1)) 2D, 4(m) |
Proof. From (34) and (35)

a3 — a3
= (1-7) [CH)) (e2+ o) (T2 4 ¥) P (®@ya(m))?
2| BB (T(2 4 1))@y () [C ()] = (14 7) m C (x) | m (dm)?
CHOT G+ ) @ualm)
2(1 42y +2B)m" (dm)?

. F(3 +V)q>v, (7’1’1)
= Cf(x) [h(ﬂ) + 2(1 +27+2/3)21V(dm)2] ’

w I(3+v)®, (m)
+Cix) [h(”) T2 +2y+ 25)§1v(dm)2] a2
where
) = [CH (01 (€2 + o) (L2 + 1) (@ya(m))* (1~ )

2[(1 427 +2B) iy (T2 1)) 2Py a(m) [CF(x)]7 = (14 7)mV CE (x) | m¥ (dm)?

Then, in view of (8), we conclude that

LEH2m|CHE] 0 < [h(y)| < groa i Pualr)

5 2012y +2B)ym’[dm)2 * (1+2y-+2B)m (dm)2’
’”3—’7”2‘§ (B+v) Py 4(m)
IB+v)®, 4(m
AC@Ih0p)| )] > st

Which completes the proof of Theorem 2. [J

3. Corollaries and Consequences

Corresponding essentially to Examples 1-3, Theorems 1 and 2 yield the following corollaries.

Corollary 1. Let f € X. given by (2) belong to the class &% (x, ). Then,

|az| <
2|a|x/2|a|xT (2 4+ v) D, 4(m)
\/‘ [sz‘lfv/d(m, a,y) +a(l+ ’y)zmv} m"(dm)2‘

4

Pt + )@y (m))? 2]alxT(3+ )Py q(m)
31 = m2 (dm)2(1+ )2 (1+2y)m(dm)?

7

and
a3 —na3] <
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|| xT (3+v) Py 4 (1)

(T 2y)m (em)® -1 <t
8022 ([ (24)) (®y,(m))*(1=1) =1 >,
[4ax2(1+27)%(F(2+1/))2<I>V,d(m)7(1+7)2mV(2(1+1x)x271)]m‘/(dm)zl
where
_ |y T4+ Y2m'(2(1+a) —1)
4(1+27)ax?(T(2 4 v)) @, 4(m)
and 21 +29)
_ +27 2 2 _ 2 v
¥ya(m,a,y) = TG1v) (T2 +v)) Py, (m)a”— (14 v) m"a(l+a).

Corollary 2. Let f € X. given by (2) belong to the class &$ (x). Then,

laz| <
vy TR 2 4 1))
\/’ H%(F(Z +v))2®y g (m)a? — dmVa(l+ uc)} x%+ Zamv} mV(dm)z‘

7

PP (C2+v)Pya(m)®  20a|xT (3 +v) Py 4(m)

<
a3 < m2 (dm)? 3mV (dm)? ’
and
|as —na3| <
|a|xT (3+v) Py 4 (1) T (3+v)m" (2(14a)—1)
3m¥(em)> 7 I =1] < ‘1  B3ax2(T(241)) P, 4 (m)

202831 (24v))* (@40 () (1-17) L (3 (21 1)

[3”2 r(31+y) (r(zﬂ/))zq)ud(m),MV(2(1+,,¢)x2,1)]mv(dm)Z' |11 o 1‘ = ‘1 o 3ocx2(1"(2+v))2<1>vrd(m) ’

Corollary 3. Let f € X given by (2) belong to the class &% (x, 7). Then,

|aa| <
2lafxey/TIRT (2 4 1)@y a(m)
\/’ {sz‘l’vrd(m, a,v,1/2)+a(l+ 'y)zm’/} mV(dm)z‘

7

and
4022 (T(2 4+ 1)@, 4(m))*  |a|xT(3 + v)D, 4(m)

|a3| < mZv(dm)Z(l + 7)2 (1 + ’Y)mv(dm)z '

where

4(1+1)
r3+v)

Y, a(m,a,,1/2) = (T2 + 1))@, g(m)a® — (1 +7)*m’a(1 + «).

Corollary 4. Let f € X given by (2) belong to the class &% (x, 7). Then,

|ag — na3| <
|2 (34v)Py 4 (m)
2(1+y)m" (dm)Z ’ ln—1] <6
8023 (I (24+v))(@y,0(m)) (1) =124,

8032 (1) gy (T(20)) @y g (m) = (147) m¥ (2(1+a)22 1) | m? (dm)?
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where

_ | TE+) I+ ) m (1 +a) —1)
8(1+ 7)ax(T(2+v))*®, 4(m) |

Remark 1. The results presented in this paper would lead to various other new results for the

1
classes &3 (x, 7y, B) for Chebyshev Polynomials and &2 (x,y, B) for Legendre Polynomials.

4. Conclusions

In our present investigation, we have introduced a new class & (x,, 8) of normal-
ized analytic and bi-univalent functions associated with the Miller-Ross-type Poisson
distribution series. For functions belonging to this class, we have derived the estimates
of the Taylor—-Maclaurin coefficients |a;| and |a3| and the Fekete-Szeg6 functional prob-
lems. Furthermore, the results for the subclasses &4 (x, ), ®% (x) and &4 (x, ), which are
defined in Examples 1-3, respectively, are associated with the Miller—Ross-type Poisson
distribution series.
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