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Abstract: Cavitation will increase the leakage and discharge pressure fluctuation of axial piston
pumps. In particular, specific cavitation damage may aggravate the pressure impact and performance
degradation. The influence of the specific cavitation damage on the discharge pressure is unclear,
and the need for fault detection of this damage is urgent. In this paper, we propose a discharge
pressure-based model and fault detection methodology for the specific cavitation damage of axial
piston pumps. The discharge pressure model with specific damage is constructed using a slender
hole. The simulation model is solved through numerical integration. Experimental investigation
of cavitation damage detection is carried out. Discharge pressure features in the time domain and
frequency domain are compared. The results show that waveform distortions, spectrum energy
relocation, generation of new frequencies and sidebands can be used as features for fault detection
regarding the specific cavitation damage of axial piston pumps.

Keywords: modelling; fault detection; cavitation damage; discharge pressure; axial piston pump
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1. Introduction

Axial piston pumps are key power components of hydraulic systems applied in the
industrial equipment and construction machinery [1,2]. They can convert mechanical
energy into fluid power energy with a high efficiency and compact structure. The fluid
with high pressure and a high flow rate can accomplish the power transmission and energy
output in these applications.

Structures of an axial piston pump consist of three main interfaces: the interface
between the slipper and a swash plate, the interface between the piston and a cylinder
block, and the interface between the cylinder block and a valve plate [3,4]. These interfaces
with the oil film work as bearings and sealings in the pump [5]. The output flow and
pressure of piston pumps are discontinuous and fluctuate. The transformation from low
pressure to high pressure is achieved through the valve plate. The cylinder block is subject
to unbalanced forces from the low-pressure area and high-pressure area. Therefore, the
interface between the cylinder block and valve plate plays an important role in improving
the pump’s efficiency and lifetime [6].

The pressure transformation in the valve plate will result in a huge variation gradient.
In addition, flow passages in the cylinder block are irregular and complex. They exacerbate
oil cavitation [7–9]. The pressure of some places in the interface between the cylinder block
and valve plate is less than the gas separation pressure. The separated bubbles will be
crushed when they arrive at the high-pressure area of the valve plate. Energies released by
the bubbles can damage this interface and decrease the volumetric efficiency [10,11].
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Numerous studies on the cavitation of axial piston pumps have been carried out.
In terms of the analysis of the cavitation mechanism, the centrifugal effect of fluid in
the cylinder block can result in pressure differences between the outside wall and inside
wall, and the cavitation is more likely to appear in the inside wall [12]. The effect of the
fluid temperature on the cavitation is analyzed. The high viscosity caused by the low
temperature will aggravate the cavitation [13]. Throttling structures of the valve plate
have an important influence on the pressure transformation. An unreasonable structure
design causes the pressure variation gradient to increase [14]. Triangular grooves of the
spherical valve plate cause special cavitation [15]. Low suction pressure of the inlet will
induce insufficient inlet flow [16]. In addition, the effect of a long pipeline for the inlet on
wave propagation is investigated [17].

The above-mentioned factors can exacerbate the cavitation problems of axial piston
pumps. In order to reduce the intensity of cavitation, methods for improving these factors
are proposed. Anti-cavitation throttling structures of the valve plate [18,19], a higher back
pressure of the inlet [20,21], an optimized suction duct [22], and an improved unloading
outlet [23] are utilized for cavitation suppression. During the analysis of the cavitation
mechanism and cavitation suppression, computational fluid dynamics (CFD) models are
built. Four CFD models, based on the cavitation [3] and a CFD model based on the
full cavitation [22] are proposed for the modelling of pumps’ cavitation. A full CFD
model is developed from the fluid compressibility, gaseous dynamics, and cavitation
damage [24]. The vapor cavitation [25] based CFD model is presented to identify the critical
inlet pressure [26]. Apart from the CFD model, an analytical cavitation model is used to
determine the pump’s speed limitations [27].

For the detection of cavitation for axial piston pumps, the vibration signal is widely
used as an indicator for the machine learning model. The denoised time frequency im-
ages [28] and multi-channel signals [29] are put into the convolutional neural networks
model. Time domain analysis and frequency spectral analysis of the vibration signal are
carried out to detect the pumps’ cavitation on line [30].

Pumps’ cavitation will increase the flow leakage and pressure impact. Therefore, the
discharge pressure has a strong correlation with the cavitation, in contrast to the vibration
signal [31,32]. In particular, specific cavitation can damage the surface of the cylinder block
and valve plate. The specific cavitation damage is shown in Figure 1. This damage is
located between the two adjacent piston holes of the cylinder block. It should be pointed
out that there is little research on the modelling and fault diagnosis of cavitation damage
based on the pressure signal. In addition, the effects of the specific cavitation damage on
the discharge pressure are unclear.
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In this paper, a model of the discharge pressure is built, which takes into account
effects of the specific cavitation damage. Fault detection, based on the discharge pressure
model, is accomplished. The remainder of this paper is structured as follows. Section 2
describes the simulation model of the pump’s discharge pressure. Section 3 presents the
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experimental investigation on the cavitation damage. Section 4 shows the results and
discussions of the simulation model and experimental investigation. Conclusions are
summarized in Section 5.

2. Simulation Model
2.1. Discharge Pressure

The typical structure of an axial piston pump is shown in Figure 2. The pump rotor
system mainly includes the shaft, cylinder block, piston, slipper, and retainer. The shaft is
supported by the large and small bearings at both ends. The cylinder block is in splined
connection with the shaft. Pistons are at equal distance around the cylinder block center.
Slippers and pistons are linked by spherical hinges. When the rotor system rotates, pistons
reciprocate along the cylinder block hole under the action of the retainer and inclined swash
plate. Oil suction and extrusion are accomplished by the pistons’ reciprocating motions
and valve plate with the high-pressure area and low-pressure area.
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Figure 2. Typical structure of an axial piston pump.

The discharge pressure of an axial piston pump is a key parameter during the oil
extrusion process. It depends on the pump’s kinematics. The kinematic diagram of the
piston pump is shown in Figure 3. The coordinate systems O-xyz and O′-x′y′z′ represent
the positions when the inclined angles of the swash plate are 0 and β, respectively. The
angle γ is the inclined angle of pistons in the cylinder block hole. The point M′ represents
the piston’s position when the shaft rotates clockwise by an angle ϕ. Assuming OO′′ = x0,
OM = R, O′′Mx = x, MM′ = h, MM′′ = r, MMz = n, one can obtain the following equations:

h = (x− x0)/ cos γ, x = n tan β = (R + r) tan β cos ϕ, r = (x− x0) tan γ. (1)
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By substituting parameters r and x in the parameter h, one can obtain the follow-
ing equation:

h =
R tan β cos ϕ− x0

cos γ(1− cos ϕ tan β tan γ)
(2)

The piston displacement of the reciprocating motions along the cylinder block hole is
calculated as:

xp(1) =
(R− x0 tan γ) tan β(1− cos ϕ)

cos γ(1− tan β tan γ)(1− cos ϕtanβtanγ)
, (3)

where xp(1) refers to the piston displacement of the first piston when the shaft rotates
clockwise by an angle ϕ. The piston displacement of the kth piston is xp(k):

xp(k) =
(R− x0 tan γ) tan β[1− cos(ϕ + 2πk/Z)]

cos γ(1− tan β tan γ)[1− cos(ϕ + 2πk/Z)tanβtanγ]
, (4)

where Z is the number of pistons distributed in the cylinder block. The axial piston pump
presented in this paper has an odd number of pistons.

The piston velocity of the reciprocating motions along the cylinder block hole is
calculated as:

vp(1) =
dxp(1)

dt = ωs sin ϕ tan β(R−x0 tan γ)

cos γ(1−cos ϕ tan β tan γ)2

...

vp(k) =
dxp(k)

dt = ωs sin(ϕ+2πk/Z) tan β(R−x0 tan γ)

cos γ[(1−cos(ϕ+2πk/Z) tan β tan γ)]2

...

vp(Z) = dxp(Z)
dt = ωs sin(ϕ+2π) tan β(R−x0 tan γ)

cos γ[(1−cos(ϕ+2π) tan β tan γ)]2
,

(5)

where ωs is the rotating speed of the cylinder block.
The output flow rate of an axial piston pump depends on the flow of a single piston

located in the high-pressure area. The flow of the kth piston is calculated as:

Qp(k) = πr2
pvp(k)−Qc1(k)−Qc2(k)−Qc3(k), (6)

where rp refers to the radius of the piston. Qc1(k), Qc2(k), and Qc3(k) are leakage flows of
the slipper pair, the piston pair, and the valve plate pair, respectively.

Qc1(k) =
πh3

c1λ
[
Pp(k)− Ple

]
6µ(ln rs − ln Rs)

, (7)

where hc1 is the clearance between the slipper and a base plate. λ refers to the pressure ratio
coefficient. Pp(k) represents the pressure of the kth piston. Ple is the pressure of the leakage
port. µ refers to the dynamic viscosity. rs and Rs are radius of the sealing belt for slippers.

Qc2(k) =
2πrph3

c2+3ε2πrph3
c2

12µlp

[
Pp(k)− Ple

]
, (8)

where hc2 and lp represent the clearance and contact length between the piston and cylinder
block, respectively. ε refers to the eccentricity.

Qc3(k) =
πλh3

c3
6µ

(
ϕ2 − ϕ1

ln R2 − ln R1
+

ϕ2 − ϕ1

ln R4 − ln R3

)[
Pp(k)− Ple

]
, (9)

where hc3 is the clearance between the cylinder block and a valve plate. R1, R2, R3, and R4
represent the radius of the sealing belt for the valve plate. ϕ1 and ϕ2 are the distribution
angles of the damping grooves.



Mathematics 2022, 10, 2461 5 of 13

The output flow rate Qout is the sum of instantaneous flows of pistons distributed in
the high-pressure area:

Qout = Qp(1) + Qp(2) + · · ·+ Qp(K)

= πr2
p

K
∑
1

vp(k) +
K
∑
1

Qc1(k)−
K
∑
1

Qc2(k)−
K
∑
1

Qc3(k),
(10)

where the number K of pistons distributed in the high-pressure area is calculated as:

K =

{ Z+1
2 0 < ϕ ≤ π

Z
Z−1

2
π
Z < ϕ ≤ 2π

Z .
(11)

The time derivative of the discharge pressure Pout is given by:

dPout
dt = QoutBf

Vout

=
πr2

pBf
Vout

K
∑
1

vp(k) +
Bf

Vout

K
∑
1

Qc1(k)− Bf
Vout

K
∑
1

Qc2(k)− Bf
Vout

K
∑
1

Qc3(k),
(12)

where Bf is the fluid bulk modulus. Vout refers to the volume of the output port.
The time derivative of the pressure Pp(k) for the kth piston is calculated as:

dPp(k)
dt =

Qp(k)Bf
V(k)

=
πr2

pBf
V(k) vp(k)− Bf

V(k)Qc1(k)− Bf
V(k)Qc2(k)− Bf

V(k)Qc3(k),
(13)

where V(k) refers to the volume of the kth piston.

2.2. Input of the Specific Cavitation Damage

As shown in Figure 1, the specific cavitation damage will lead to internal leakage
flows between the adjacent pistons [33]. The size of the cavitation damage is approximately
a slender hole. Therefore, the flow model of the slender hole is utilized as an input of the
specific cavitation damage in the discharge pressure model. It is assumed that a specific
cavitation damage is located between the kth piston and k + 1th piston. The leakage flow of
the specific cavitation damage Qscd is given by the flow model of the slender hole:

Qscd =
πd3

scd

[
Pp-scd(k)− Pp-scd(k + 1)

]
128µlscd

, (14)

where dscd and lscd are the diameter and length of the slender hole, respectively. Pp-scd(k)
and Pp-scd(k + 1) represent the pressures of the kth piston and k + 1th piston with the input of
the specific cavitation damage. The flows of the adjacent pistons are given by the following
equations:

Qp-scd(k) = πr2
pvp(k)−Qc1(k)−Qc2(k)−Qc3(k)−Qscd (15)

Qp-scd(k + 1) = πr2
pvp(k + 1)−Qc1(k + 1)−Qc2(k + 1)−Qc3(k + 1) + Qscd. (16)

The output flow rate Qout-scd with the input of the specific cavitation damage is the
difference between the output flow rate Qout and the internal leakage flow Qscd:

Qout-scd = Qp(1) + Qp(2) + · · ·+ Qp(K)−Qscd

= πr2
p

K
∑
1

vp(k) +
K
∑
1

Qc1(k)−
K
∑
1

Qc2(k)−
K
∑
1

Qc3(k)−Qscd.
(17)

The time derivative of the discharge pressure Pout-scd with the input of the specific
cavitation damage is given by:
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dPout-scd
dt = Qout-scdBf

Vout

=
πr2

pBf
Vout

K
∑
1

vp(k)+
Bf

Vout

K
∑
1

Qc1(k)− Bf
Vout

K
∑
1

Qc2(k)−

Bf
Vout

K
∑
1

Qc3(k)− BfQscd
Vout

.

(18)

The time derivative of the pressures Pp-scd(k) and Pp-scd(k + 1) for the kth piston and
mboxemphk + 1th piston is calculated as:

dPp-scd(k)
dt =

Qp-scd(k)Bf
V(k)

=
πr2

pBfvp(k)
V(k) − BfQc1(k)

V(k) −
BfQc2(k)

V(k) −
BfQc3(k)

V(k) −
BfQscd
V(k)

(19)

dPp-scd(k+1)
dt =

Qp-scd(k+1)Bf
V(k+1)

=
πr2

pBfvp(k+1)
V(k+1) − BfQc1(k+1)

V(k+1) −
BfQc2(k+1)

V(k+1) −
BfQc3(k+1)

V(k+1) + BfQscd
V(k+1) .

(20)

2.3. Model Properties

Simulation models with the specific cavitation damage are constructed based on the
flow continuity and pressure derivative equation. The main parameters of the pump
simulation models are listed in Table 1.

Table 1. Simulation model properties.

Parameters Values Parameters Values

γ 5◦ β 14◦

R 36.75 mm Z 9
ωs 1500 r/min rp 8.50 mm
hc1 0.01 mm x0 8.89 mm
Ple 0.10 MPa λ 0.9
rs 7.70 mm µ 46 cP

hc2 0.02 mm Rs 9.10 mm
hc3 0.01 mm ε 0.01 mm
R2 23.50 mm R1 20.00 mm
R4 34.75 mm R3 31.50 mm
ϕ2 154◦ ϕ1 26◦

Vout 48.60 mm3 Bf 1.7 × 10−2 MPa
dscd 0.5 mm/0.8 mm lscd 6.0 mm

The normal pump model and simulation models with specific cavitation damage input
(case 1: dscd = 0.5 mm, case 2: dscd = 0.8 mm) are constructed. The rotating speed of the
cylinder block is 1500 r/min. The initial pressure of the discharge pressure is 21.0 MPa. The
simulation models are solved through the Runge–Kutta numerical integration algorithm.
The fixed time step valve is 1 × 10−4 s. The order of the integration algorithm is 4. The
total simulation time is 0.2 s.

3. Experimental Investigation
3.1. Layout of the Test Rig

Experimental investigation on the axial piston pump was carried out. The test rig
of the pump is shown in Figure 4a. The system schematic diagram of this test rig is
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presented in Figure 4b. The power of the electric motor as supplied to the pump through
the torque-speed sensor. The pump converted mechanical energy into fluid power. The
discharge pressure of the pump was measured through the pressure gauge and pressure
sensor. A relief valve was used as the regulator of the discharge pressure. A flow sensor
was placed between the pump and relief valve. Detailed descriptions of the test rig are
shown in Table 2.
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3 Discharge pressure sensor HM90-0~35MPa-H3V2F1
4 Flow sensor LXB-1
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3.2. Testing Pump with Cavitation Damage

The valve plate pair of the testing pump is shown in Figure 5. Specific cavitation
damage was applied between the adjacent piston holes of the cylinder block. The size of
the specific damage was 6.0 mm × 2.0 mm × 1.0 mm. An axial piston pump with specific
cavitation damage and a normal pump was tested on the test rig. The motor speed was
1500 r/min. The discharge pressure was regulated at around 21.0 MPa. All the pumps had
full displacements. The discharge pressures of the tested pumps were measured for 10 s
with a sampling frequency of 48,000 Hz.
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4. Results and Discussion
4.1. Simulations

The discharge pressure of the simulation model with no specific cavitation damage
is shown in Figure 6. It can be seen that the pressure oscillation is due to the iterative
calculation during the initial stage. The discharge pressure becomes convergent after
6.5 × 10−4 s. The pressure cure fluctuates around 21.0 MPa. The fluctuation range
is ±0.2 MPa. This means that the simulation model is effectively solved through the
numerical integration.
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Figure 6. Simulated discharge pressure during the iterative process (normal pump model, rotational
speed: 1500 r/min, discharge pressure: 21 MPa).

Discharge pressures of the normal pump model and pump models with specific
cavitation damage (case 1: 0.5 mm, case 2: 0.8 mm) are shown in Figure 7. Considering that
the discharge pressure fluctuates periodically, pressures under different model cases are
compared during two cycles (0.08 s). It can be seen that the pressure curve of case 1 has
nearly uniform spikes. There are a lot of signal burrs in case 1 and case 2. The burrs occur
at 0 s, 0.2 s, 0.4 s, 0.6 s, and 0.8 s. In addition, the amplitudes of burrs in case 2 are higher
than those in case 1. The results show that specific cavitation damages in the valve plate
pair cause the discharge pressure to become distorted. On average, there are two signal
distortions in a cycle. The greater the damage, the greater the signal distortion.
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Spectra of the discharge pressures under three cases are shown in Figure 8. The
spectral energy of the pressure is mainly concentrated in the 1st, 2nd, 3rd, and 4th pumping
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frequencies. The amplitudes of these frequencies for case 1 and case 2 are lower than
those in the normal pump model. In addition, the amplitudes in case 2 are less than
the amplitudes in case 1. This shows that specific cavitation damage will decrease the
amplitudes of the pumping frequencies in the spectra. As the damage increases, the
amplitudes become smaller. The spectral energies of the pumping frequencies in case 1 and
case 2 are allocated to other sidebands around themselves. It can be seen that the spectrum
of the normal pump model has almost no 25 Hz sideband, while the amplitudes of this
sideband for case 1 and case 2 increase gradually. In addition, amplitudes of the sideband
around the 4th pumping frequency are larger than those around the 2nd and 3rd pumping
frequency. No sideband can be found around the 1st pumping frequency. Moreover, the
spectra of case 1 and case 2 have frequencies (50 Hz, 100 Hz, 150 Hz, and 200 Hz) below
the 1st pump frequency. The amplitudes of these frequencies increase as damage increases.
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Figure 8. Spectra of the discharge pressures under different model cases.

Comparisons of the simulated discharge pressures and their spectra show that the
specific cavitation damage will lead to waveform distortions, spectrum energy relocation,
and the generation of new frequencies and sidebands. In order to study the effects of these
influence mechanisms on the discharge pressure, internal leakage flow rates of the slender
hole are shown in Figure 9. We define the flow rates as positive flows and negative flows.
Positive flow occurs when the pressure of the k + 1th piston is larger than the pressure
of the kth piston. In the opposite case, it is called negative flow. It can be seen that flow
rates alternately appear at 0 s, 0.2 s, 0.4 s, 0.6 s, and 0.8 s. The absolute values of flow rates
for case 1 and case 2 are 1.83 L/min and 4.69 L/min, respectively. This means that high
specific damage will lead to more leakage flows between the adjacent pistons. In addition,
backflows occur at the start and end of the positive flows and negative flows. The specific
cavitation damage in the valve plate pair exacerbates the backflows in axial piston pumps.
Backflows in case 2 are higher than those in case 1. The maximum backflows of case 1 and
case 2 are −0.91 L/min and −0.40 L/min, respectively.

The internal pressures of the kth piston and k + 1th piston are shown in Figure 10. The
initial pressures in the kth piston and k + 1th piston are the inlet pressures (0.1 MPa) due to
the fact that two pistons are located in the low-pressure area. The pressure of the kth piston
and the k + 1th piston becomes the discharge pressure (21.0 MPa) when the shaft rotates by
an angle of 2π(k − 1)/Z and 2πk/Z, respectively. At this time, backflows appear, and the
pressure difference results in the negative flow rate. Then, the two adjacent pistons are both
located in the high-pressure area and no flow is found with no pressure difference. Positive
flow rates appear when the pressure of the kth piston becomes the inlet pressure. It is also
found that the amplitudes of the pressure spikes decrease when the pump has specific
cavitation. The maximum pressure spikes for the normal pump model, case 1 and case
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2 are 23.0 MPa, 22.6 MPa and 22.1 MPa, respectively. The results show that the pressure
difference between the two adjacent pistons leads to leakage flow and discharge pressure
distortions of axial piston pumps.
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4.2. Cavitation Damage Detection

The experimental results of discharge pressures for the normal pump and the testing
pump with cavitation damage are shown in Figure 11. Measured discharge pressures
during the two cycles are shown in Figure 11a. The tested pressure of the normal pump
fluctuates around 21.0 MPa. It ranges from 20.8 MPa to 21.2 MPa. The variations of the
tested pressures are consistent with the simulation results shown in Figure 7. Some signal
distortions of the tested pressure for the testing pump with cavitation damage are found
at 0.2 s and 0.4 s during one cycle. This is because internal leakage flows appear in the
corresponding time due to the specific cavitation damages, as shown in Figure 9.
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Figure 11. Comparisons of the tested discharge pressures and their spectra.

Frequency spectra of the tested discharge pressures for the normal pump and the
testing pump with cavitation damage are shown in Figure 11b. Spectral energies are
mostly located in the first four pumping frequencies. The 3rd pumping frequency has
the maximum amplitudes. It can be seen that the specific cavitation damage results in
amplitude decreases for these pumping frequencies. Sidebands with a frequency of 25 Hz
appear in the spectra. In particular, the amplitudes of the sideband around the 4th pumping
frequency are larger than the sidebands around the 2nd and 3rd pumping frequency.
In addition, the 50 Hz frequency and its harmonics also occur below the 1st pumping
frequency. The experimental results show that the waveform distortions, spectrum energy
relocation, and the generation of new frequencies and sidebands can be used as features
for the fault detection of the specific cavitation damage of axial piston pumps.

5. Conclusions

This paper proposes a discharge pressure-based model and a fault detection methodol-
ogy for the specific cavitation damage of axial piston pumps. A slender hole is used as the
input of the simulated discharge pressure model with specific damage. An experimental
investigation on the fault detection of cavitation damage is carried out. The following
conclusions are drawn. First, the modelling methodology based on the pressure and slender
hole is applicable for the cavitation damage detection. Second, the internal leakage flow
leads to waveform distortions of the adjacent piston pressure and discharge pressure. Third,
specific cavitation damage gives rise to new frequency of 50 Hz and its harmonics, 25 Hz
sidebands around the 4th pumping frequency. These frequencies and sidebands in the
spectra can be used as fault features for the specific cavitation damage detection of axial
piston pumps.
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